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Abstract. Keller–Segel systems in two and three space dimensions with an additional
cross-diffusion term in the equation for the chemical concentration are analyzed. The
cross-diffusion term has a stabilizing effect and leads to the global-in-time existence of
weak solutions. The limit of vanishing cross-diffusion parameter is proved rigorously
in the parabolic-elliptic and parabolic-parabolic cases. When the signal production is
sublinear, the existence of global-in-time weak solutions as well as the convergence of
the solutions to those of the classical parabolic-elliptic Keller–Segel equations are proved.
The proof is based on a reformulation of the equations eliminating the additional cross-
diffusion term but making the equation for the cell density quasilinear. For superlinear
signal production terms, convergence rates in the cross-diffusion parameter are proved for
local-in-time smooth solutions (since finite-time blow up is possible). The proof is based
on careful Hs(Ω) estimates and a variant of the Gronwall lemma. Numerical experiments
in two space dimensions illustrate the theoretical results and quantify the shape of the
cell aggregation bumps as a function of the cross-diffusion parameter.

1. Introduction

Chemotaxis describes the directed movement of cells in response to chemical gradients
and may be modeled by the (Patlak–) Keller–Segel equations [24, 29]. The aggregation
of cells induced by the chemical concentration is counter-balanced by cell diffusion. If the
cell density is sufficiently large, the chemical interaction dominates diffusion and results in
a blow-up of the cell density. However, a single point blow-up is not very realistic from
a biological view point, due to the finite size of the cells. Therefore, chemotaxis models
that avoid blow-up were suggested in the literature. Possible approaches are bounded
chemotaxis sensibilities to avoid over-crowding [7, 12], degenerate cell diffusion [8, 25, 26],
death-growth terms [6, 32], or additional cross-diffusion [10, 18]. In this paper, we continue
our study of the Keller–Segel system with additional cross-diffusion, which allows for global
weak solutions [10, 18]. The question how well the solutions approximate those from
the original Keller–Segel system remained open. Here, we will answer this question by
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performing rigorously the vanishing cross-diffusion limit and giving an estimate for the
difference of the respective solutions.
The equations for the cell density ρδ(x, t) and the chemical concentration cδ(x, t) are

given by

(1) ∂tρδ = div(∇ρδ − ρδ∇cδ), ε∂tcδ = ∆cδ + δ∆ρδ − cδ + ραδ in Ω, t > 0,

subject to the no-flux and initial conditions

(2) ∇ρδ · ν = ∇cδ · ν = 0 on ∂Ω, t > 0, ρδ(0) = ρ0, εcδ(0) = εc0 in Ω,

where Ω ⊂ R
d (d = 2, 3) is a bounded domain, ν is the exterior unit normal vector of ∂Ω,

δ > 0 describes the strength of the additional cross-diffusion, and the term ραδ with α > 0
is the nonlinear signal production. The case ε = 1 is called the parabolic-parabolic case,
while ε = 0 refers to the parabolic-elliptic case. The existence of global weak solutions to
(1)–(2) was proved in [18] in two space dimensions and in [10] in three space dimensions
(with degenerate diffusion).
Setting δ = 0, we obtain the Keller–Segel system with nonlinear signal production. In

the classical Keller–Segel model, the signal production is assumed to be linear, α = 1. In
order to deal with the three-dimensional case, we need sublinear signal productions, α < 1.
In fact, it is shown in [33] that α = 2/d is the critical value for global existence versus
finite-time blow-up in a slightly modified Keller–Segel system with δ = 0. We show that
also for δ > 0, the condition α < 2/d guarantees the global existence of weak solutions,
while numerical results indicate finite-time blow-up if α > 2/d.
We are interested in the limit δ → 0 in (2) leading to the Keller–Segel equations

(3) ∂tρ = div(∇ρ− ρ∇c), ε∂tc = ∆c− c+ ρα in Ω, t > 0,

with the initial and boundary conditions (2). We refer to the reviews [3, 16] for refer-
ences concerning local and global solvability and results for variants of this model. In the
following, we recall only some effects related to the blow-up behavior.
In the parabolic-elliptic case, a dichotomy arises for (3) in two space dimensions: If the

initial mass M := ‖ρ0‖L1(Ω) is smaller than 8π, the solutions are global in time, while they
blow up in finite time if M > 8π and the second moment of the initial datum is finite (see,
e.g., [5]). The condition on the second moment implies that the initial density is highly
concentrated around some point. It is necessary in the sense that there exists a set of
initial data with total mass larger than 8π such that the corresponding solutions are global
[2].
In the parabolic-parabolic case, again in two space dimensions and with finite second

moment, the solutions exist globally in time of M < 8π [9]. However, in contrast to the
parabolic-elliptic case, the threshold value for M is less precise, and solutions with large
mass can exist globally. In dimensions d ≥ 3, a related critical phenomenon occurs: The
solutions exist globally in time if ‖ρ0‖Ld/2(Ω) is sufficiently small, but they blow up in finite
time if the total mass is large compared to the second moment [11].
In this paper, we prove two results. The first one is the convergence of the solutions to the

parabolic-elliptic model (1) with ε = 0 to a solution to the parabolic-elliptic Keller–Segel
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system (3) with ε = 0. Since we impose a restriction on the parameter α as mentioned
above, this result holds globally in time. We set QT = Ω× (0, T ).

Theorem 1 (Convergence for the parabolic-elliptic model). Let Ω ⊂ R
d (d = 2, 3) be

bounded with ∂Ω ∈ C1,1, T > 0, δ > 0, ε = 0, and 0 ≤ ρ0 ∈ L∞(Ω). If α < 2/d, there
exists a weak solution (ρδ, cδ) ∈ L2(0, T ;H1(Ω))2 to (1)-(2) satisfying

∂tρδ ∈ L2(0, T ;H1(Ω)′), ρδ ∈ L∞(0, T ;L3(Ω)), cδ + δρδ ∈ L∞(0, T ;W 1,p(Ω)),

for any p < ∞. Furthermore, as δ → 0,

ρδ → ρ strongly in L2(QT ),

∇ρδ ⇀ ∇ρ weakly in L2(QT ),

cδ + δρδ ⇀
∗ c weakly* in L∞(0, T ;W 1,p(Ω)), p < ∞,

and (ρ, c) solves (2)–(3), and it holds that ρ, c ∈ L∞(0, T ;L∞(Ω)).

The idea of the proof is to reformulate (1) via vδ := cδ + δρδ as the system

(4) ∂tρδ = div((1 + δρδ)∇ρδ − ρδ∇vδ), −∆vδ + vδ = δρδ + ραδ in Ω, t > 0,

together with the initial and boundary conditions

(5) ∇ρδ · ν = ∇vδ · ν = 0 in ∂Ω, ρδ(0) = ρ0 in Ω.

This reformulation was already used in [18] to prove the existence of weak solutions in the
two-dimension case with α = 1. It transforms the asymptotically singular problem to a
quasilinear parabolic equation, thus simplifying considerably the asymptotic limit problem.
Still, we need estimates uniform in δ to apply compactness arguments. For this, we use
the “entropy” functional H1(ρδ) =

∫
Ω
ρδ(log ρδ − 1)dx:

(6)
dH1

dt
+ 4

∫

Ω

|∇ρ
1/2
δ |2dx+ δ

∫

Ω

|∇ρδ|2dx ≤
∫

Ω

(δρ2δ + ρα+1
δ )dx.

By the Gagliardo–Nirenberg inequality, the first term on the right-hand side can be esti-
mated as (see Section 2 for the proof)

δ

∫

Ω

ρ2δdx ≤ δ

2
‖∇ρδ‖2L2(Ω) + C‖ρδ‖2L1(Ω).

The first term on the right-hand side is absorbed by the left-hand side of (6) and the
second term is bounded since the total mass is conserved. To estimate the second term
on the right-hand side of (6), we need another “entropy” functional Hp(ρ) =

∫
Ω
ρpδdx with

p = 2 or p = 3, leading to

(7)
dHp

dt
+

∫

Ω

|∇ρ
p/2
δ |2dx+ δ

∫

Ω

|∇ρ
(p+1)/2
δ |2dx ≤ C‖ρδ‖(p+1)/2

L(p+1)/2(Ω)
+ C‖ρp/2δ ‖β(p)L1(Ω),

where β(p) ≥ 2 is some function depending on p. If p = 2, the last term is the total mass

which is bounded uniformly in time. Moreover, the estimate for ρ
1/2
δ in H1(Ω) from (6)

implies that ρδ is bounded in W 1,1(Ω) →֒ L3/2(Ω) such that the first term on the right-hand
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side of (7) is uniformly bounded as well. Higher-order integrability is then obtained for
p = 3.
Clearly, these arguments are formal. In particular, the estimate for H1 requires the

test function log ρδ in (1) which may be not defined if ρδ = 0. Therefore, we consider an
implicit Euler discretization in time with parameter τ > 0 and an elliptic regularization in
space with parameter η > 0 to prove first the existence of approximate weak solutions with
strictly positive ρδ. This is done by using the entropy method of [18]. The approximate
solutions also satisfy the δ-uniform bounds, and they hold true when passing to the limit
(η, τ) → 0. Then the limit δ → 0 can be performed by applying the Aubin–Lions lemma
and weak compactness arguments.
The second result is concerned with the derivation of a convergence rate both in the

parabolic-parabolic and parabolic-elliptic case. For α ≥ 1, we cannot generally expect
global solutions. In this case, it is natural to consider local solutions. The technique
requires smooth solutions so that we need some regularity assumptions on the initial data.

Theorem 2 (Convergence rates). Let Ω ⊂ R
d (d ≤ 3) be a bounded domain with smooth

boundary and let (ρ0, c0) ∈ (W 1,p(Ω))2 for p > d if ε = 1 and ρ0 ∈ C2+γ(Ω) for some
γ ∈ (0, 1) if ε = 0. Furthermore, let α = 1 or α ≥ 2 and let (ρδ, cδ) and (ρ, c) be (weak)
solutions to (1) and (3), (2), respectively, with the same initial data. Then these solutions
are smooth locally in time and there exist constants C > 0 and δ0 > 0 such that for all
0 < δ < δ0 and λ > 0,

(8) ‖(ρδ − ρ, cδ − c)‖L∞(0,T ;H2(Ω)) ≤ Cδ1−λ.

The theorem is proved as in, e.g., [19] by deriving carefully Hs(Ω) estimates for the
difference (ρR, cR) := (ρδ − ρ, cδ − c). The index s ∈ N is chosen such that we obtain
L∞(Ω) estimates which are needed to handle the nonlinearities. If ε = 1, we introduce the
functions

Γ(t) = ‖(ρR, cR)(t)‖2H2(Ω), G(t) = ‖(ρR, cR)(t)‖2H2(Ω) + ‖∇∆(ρR, cR)(t)‖2L2(Ω).

The aim is to prove the inequality

Γ(t) + C1

∫ t

0

G(s)ds ≤ C2

∫ t

0

(Γ(s) + Γ(s)max{2,α})ds+ C2

∫ t

0

Γ(s)G(s)ds+ C2δ
2,

where C1, C2 > 0 are constants independent of δ. This inequality allows us to apply
a variant of Gronwall’s lemma (see Lemma 4 in the Appendix), implying (8). In the
parabolic-elliptic case ε = 0, the functions Γ(t) and G(t) are defined without cR, and the

final inequality contains the additional integral
∫ t

0
Γ(s)α+1G(s)ds, which is still covered by

Lemma 4. The condition α = 1 or α ≥ 2 comes from the fact that the derivative of the
mapping s 7→ sα is Hölder continuous exactly for these values. The numerical results in
Section 4 indicate that the convergence result may still hold for α ∈ (1, 2).
The optimal convergence rate is expected to be one. Theorem 2 provides an almost

optimal rate. The reason for the non-optimality comes from the variant of the nonlinear
Gronwall lemma proved in Lemma 4. We conjecture that an optimal rate holds (changing
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the constants in Lemma 4), but since this issue is of less interest, we did not explore it
further.
The theoretical results are illustrated by numerical experiments, using the software tool

NGSolve/Netgen. We remark that numerical tests for model (1) were already performed
in [4, 18]. For positive values of δ, the (globally existing) cell density forms bumps at
places where the solution to the classical Keller–Segel system develops an L∞(Ω) blow up.
Compared to [4, 18], we investigate the dependence of the shape of the bumps on δ. In a
radially symmetric situation, it turns out that the radius of the bump (more precisely the
diameter of a level set ρδ ≈ 0) behaves like δa with a ≈ 0.43, and the maximum of the
bump behaves like δ−b with b ≈ 1.00.
The paper is organized as follows. Theorem 1 is proved in Section 2, while Theorem 2

is shown in Section 3. The numerical experiments for model (1) are performed in Section
4. Some technical tools, including the nonlinear Gronwall inequality, are recalled in the
Appendix.

2. Proof of Theorem 1

We prove Theorem 1 by an approximation procedure and by deriving the uniform bounds
from discrete versions of the entropy inequalities (6) and (7).
Step 1: Solution of a regularized system and entropy estimates. We show the existence of

solutions to a discretized and regularized version of (4). For this, let N ∈ N and τ = T/N ,
and set ρ(w) = exp(w/δ). This means that we transform w = δ log ρ. Let wk−1 ∈ H2(Ω)
and vk−1 ∈ H1(Ω) be given and set ρj = ρ(wj) for j = k, k − 1. Consider for given τ > 0
and η > 0 the regularized system

1

τ

∫

Ω

(ρk − ρk−1)φdx+

∫

Ω

(
(1 + δρk)∇ρk − ρk∇vk

)
· ∇φdx

= −η

∫

Ω

(
∆wk∆φ+ δ−2|∇wk|2∇wk · ∇φ+ wkρkφ

)
dx,(9)

∫

Ω

(∇vk · ∇θ + vkθ)dx =

∫

Ω

(
δρk + (ρk)α

)
θdx(10)

for φ ∈ H2(Ω) and θ ∈ H1(Ω). The time discretization is needed to handle issues due
to low time regularity, while the elliptic regularization guarantees H2(Ω) solutions which,
by Sobolev embedding (recall that d ≤ 3), are bounded. The higher-order gradient term
|∇wk|2∇wk · ∇φ is necessary to derive Lp(Ω) estimates. The existence of a solution wk ∈
H2(Ω), 0 ≤ vk ∈ H1(Ω) follows from the techniques used in the proof of Proposition 3.1 in
[18] employing the Leray–Schauder fixed-point theorem. Since these techniques are rather
standard now, we omit the proof and refer to [18, 21, 22] for similar arguments.

Inequality wkρk = wkew
k/δ ≥ ew

k/δ − 1 = ρk − 1 allows us to show as in [18, page 1004]
that the total mass ‖ρk‖L1(Ω) is bounded uniformly in δ.
Entropy estimates are derived from (9)–(10) by choosing the test functions φ = wk/δ =

log ρk and θ = ρk, respectively, and adding both equations. Then the terms involving ∇vk
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cancel and after some elementary computations, we end up with

1

τ

∫

Ω

(
h(ρk)− h(ρk−1)

)
dx+ 4

∫

Ω

|∇(ρk)1/2|2dx+ δ

∫

Ω

|∇ρk|2dx

+
η

δ

∫

Ω

(
(∆wk)2 + δ−2|∇wk|4 + (wk)2ρk

)
dx

≤
∫

Ω

(
− vkρk + δ(ρk)2 + (ρk)α+1

)
dx ≤

∫

Ω

(
δ(ρk)2 + (ρk)α+1

)
dx,(11)

where h(s) = s(log s − 1) for s ≥ 0. Using the Gagliardo–Nirenberg inequality with
σ = d/(d + 2), the Poincaré–Wirtinger inequality, and then the Young inequality with
p = 1/σ, p′ = 1/(1− σ), it holds for any u ∈ H1(Ω) and µ > 0 that

‖u‖2L2(Ω) ≤ C‖u‖2σH1(Ω)‖u‖
2(1−σ)

L1(Ω) = C
(
‖∇u‖2L2(Ω) + ‖u‖2L1(Ω)

)σ‖u‖2(1−σ)

L1(Ω)

≤ µ
(
‖∇u‖2L2(Ω) + ‖u‖2L1(Ω)

)
+ C(µ)‖u‖2L1(Ω) = µ‖∇u‖2L2(Ω) + C(µ)‖u‖2L1(Ω).(12)

We deduce from this inequality that the first term on the right-hand side of (11) can be
estimated as

δ

∫

Ω

(ρk)2dx ≤ δ

4
‖∇ρk‖2L2(Ω) + C‖ρk‖2L1(Ω),

where here and in the following, C > 0 denotes a constant, independent of η, τ , and δ, with
values varying from line to line. The first term on the right-hand side can be absorbed by
the left-hand side of (11), while the second term is bounded. Using sα+1 ≤ s2+1 for s ≥ 0
(since α < 1) and (12), the second term on the right-hand side of (11) becomes

∫

Ω

(ρk)α+1dx ≤
∫

Ω

(
(ρk)2 + 1

)
dx ≤ δ

4
‖∇ρk‖2L2(Ω) + C‖ρk‖2L1(Ω) + C(Ω).

Inserting these estimations into (11), we conclude that

1

τ

∫

Ω

(
h(ρk)− h(ρk−1)

)
dx+ 4

∫

Ω

|∇(ρk)1/2|2dx+
δ

2

∫

Ω

|∇ρk|2dx

+
η

δ

∫

Ω

(
(∆wk)2 + δ−2|∇wk|4 + (wk)2ρk

)
dx ≤ C(Ω).(13)

Step 2: Further uniform estimates. The estimates from (13) are not sufficient for the
limit δ → 0, therefore, we derive further uniform bounds. Let p = 2 or p = 3. We choose
the admissible test functions p(ρk)p−1 and (p − 1)(ρk)p in (9)–(10), respectively, and add
both equations. The convexity of s 7→ sp implies that sp − tp ≤ p(s − t)sp−1. Then,
observing that the terms involving ∇vk cancel, we find that

1

τ

∫

Ω

(
(ρk)p − (ρk−1)p

)
dx+

4

p
(p− 1)

∫

Ω

|∇(ρk)p/2|2dx+ δ
4p(p− 1)

(p+ 1)2

∫

Ω

|∇(ρk)(p+1)/2|2dx

+ ηp

∫

Ω

(
∆wk∆(ρk)p−1 + δ−2|∇wk|2∇wk · ∇(ρk)p−1 + wk(ρk)p

)
dx

≤ (p− 1)

∫

Ω

(
δ(ρk)p+1 + (ρk)p+α

)
dx.(14)
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By (12), we find that

δ

∫

Ω

(ρk)p+1dx = δ‖(ρk)(p+1)/2‖2L2(Ω) ≤
δ

2
‖∇(ρk)(p+1)/2‖2L2(Ω) + C‖(ρk)(p+1)/2‖2L1(Ω).

The estimate for (ρk)α+p requires that α < 2/d. Indeed, we deduce from the Gagliardo–
Nirenberg inequality with σ = d(2α+ p)/((d+2)(α+ p)) and similar arguments as in (12)
that

∫

Ω

(ρk)α+pdx = ‖(ρk)p/2‖2(α+p)/p

L2(α+p)/p(Ω)
≤ C‖(ρk)p/2‖2(α+p)σ/p

H1(Ω) ‖(ρk)p/2‖2(α+p)(1−σ)/p

L1(Ω)

= C
(
‖∇(ρk)p/2‖2L2(Ω) + ‖(ρk)p/2‖2L1(Ω)

)(α+p)σ/p‖(ρk)p/2‖2(α+p)(1−σ)/p

L1(Ω)

≤ 1

2

(
‖∇(ρk)p/2‖2L2(Ω) + ‖(ρk)p/2‖2L1(Ω)

)
+ C‖(ρk)p/2‖β(p)L1(Ω),

where β(p) := 2(α + p)(1 − σ)/((α + p)(1 − σ) − α) ≥ 2 (the exact value of β(p) is not
important in the following). For the last step, we used the crucial inequality (α+p)σ/p < 1
(which is equivalent to α < p/d).
Because of ρk = exp(wk/δ), a computation shows that the integral with factor η can be

written as

ηp

∫

Ω

(
∆wk∆(ρk)p−1 + δ−2|∇wk|2∇wk · ∇(ρk)p−1 + wk(ρk)p

)
dx

=
η

δ
p(p− 1)

∫

Ω

(ρk)p−1

[(
∆wk +

p− 1

2δ
|∇wk|2

)2

+
1

4δ2
(
4− (p− 1)2

)
|∇wk|4

]
dx

+ ηp

∫

Ω

wkepw
k/δdx.

The last integral is bounded from below, independently of δ. Since p = 2 or p = 3, the
first integral on the right-hand side is nonnegative. (At this point, we need the term
|∇wk|2∇wk · ∇φ.) Summarizing these estimates, we infer that

1

τ

∫

Ω

(
(ρk)p − (ρk−1)p

)
dx+

∫

Ω

|∇(ρk)p/2|2dx+
δ

4

∫

Ω

|∇(ρk)(p+1)/2|2dx

≤ C‖(ρk)(p+1)/2‖2L1(Ω) + C‖(ρk)p/2‖β(p)L1(Ω).(15)

Step 3: Limit (η, τ) → 0. Let wτ (x, t) = wk(x), ρτ (x, t) = ρ(wk(x)), vτ (x, t) = vk(x) for
x ∈ Ω and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N , be piecewise constant functions in time. At
time t = 0, we set wτ (x, 0) = log ρ0(x) and ρτ (x, 0) = ρ0(x) for x ∈ Ω. (Here, we need
ρ0 ≥ C > 0 in Ω and another approximation procedure which we omit; see, e.g., [22, proof
of Theorem 4.1].) Furthermore, we introduce the shift operator πτρτ (x, t) = ρτ (x, t − τ)
for x ∈ Ω, t ≥ τ . Then the weak formulation (9)–(10) can be written as

1

τ

∫ T

0

∫

Ω

(ρτ − πτρτ )φdxdt+

∫ T

0

∫

Ω

(
(1 + δρτ )∇ρτ − ρτ∇vτ

)
· ∇φdxdt
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= −η

∫ T

0

∫

Ω

(
∆wτ∆φ+ δ−2|∇wτ |2∇wτ · ∇φ+ wτρτφ

)
dxdt,(16)

∫ T

0

∫

Ω

(∇vτ · ∇θ + vτθ)dxdt =

∫ T

0

∫

Ω

(δρτ + ρατ )θdxdt,(17)

where φ : (0, T ) → H2(Ω) and θ : (0, T ) → H1(Ω) are piecewise constant functions.
Multiplying (13) by τ , summing over k = 1, . . . , N , and applying the discrete Gronwall

inequality [22, Lemma A.2] provides the following uniform estimates:

‖ρτ‖L∞(0,T ;L1(Ω)) + ‖ρ1/2τ ‖L2(0,T ;H1(Ω)) + δ1/2‖ρτ‖L2(0,T ;H1(Ω)) ≤ C,(18)

η1/2‖∆wτ‖L2(QT ) + η1/4δ−1/2‖∇wτ‖L4(QT ) + η1/2‖wτρ
1/2
τ ‖L2(QT ) ≤ C.(19)

The (simultaneous) limit (η, τ) → 0 does not require estimates uniform in δ. There-
fore, we can exploit the bound for ρτ in L2(0, T ;H1(Ω)). Together with the uniform
L∞(0, T ;L1(Ω)) bound, we obtain from the Gagliardo–Nirenberg inequality as in [22, page
95] that (ρτ ) is bounded in L2+2/d(QT ), recalling that QT = Ω× (0, T ). Since −∆vτ +vτ =
δρτ + ρατ is bounded in L2+2/d(QT ), we deduce from elliptic regularity a uniform bound
for vτ in L2+2/d(0, T ;W 2,2+2/d(Ω)). Therefore, ρτ∇vτ is uniformly bounded in L1+1/d(QT )
and ρτ∇ρτ is uniformly bounded in L(2d+2)/(2d+1)(QT ). Consequently, (ρτ − πτρτ )/τ =
div((1+δρτ )∇ρτ−ρτ∇vτ ) is uniformly bounded in L(2d+2)/(2d+1)(0, T ;W−1,(2d+2)/(2d+1)(Ω)).
The Aubin–Lions lemma in the version of [13] shows that there exists a subsequence,

which is not relabeled, such that, as (η, τ) → 0,

ρτ → ρ strongly in L2(0, T ;Lp(Ω))

for any p < 6 and in Lq(QT ) for any q < 2 + 2/d. Moreover, because of the bounds (18),
again for a subsequence, as (η, τ) → 0,

∇ρτ ⇀ ∇ρ weakly in L2(QT ),

τ−1(ρτ − πτρτ ) ⇀ ∂tρ weakly in L(2d+2)/(2d+1)(0, T ;W−1,(2d+2)/(2d+1)(Ω)),

vτ ⇀ v weakly in L2+2/d(0, T ;W 2,2+2/d(Ω)).

We deduce that ρτ∇ρτ ⇀ ρ∇ρ and ρτ∇vτ ⇀ ρ∇v weakly in L1(QT ) as well as ρ
α
τ → ρα

strongly in L2(QT ).
The limit in the term involving η is performed as in [18]: Estimates (19) imply that, for

any φ ∈ L4(0, T ;H2(Ω)),
∣∣∣∣η

∫ T

0

∫

Ω

(
∆wτ∆φ+ δ−2|∇wτ |2∇wτ · ∇φ+ wτρτφ

)
dxdt

∣∣∣∣

≤ η‖∆wτ‖L2(QT )‖∆φ‖L2(QT ) + ηδ−2‖∇wτ‖3L4(QT )‖∇φ‖L4(QT )

+ η‖wτρ
1/2
τ ‖L2(QT )‖ρ1/2τ ‖L4(QT )‖φ‖L4(QT )

≤ C(δ)(η1/2 + η1/4)‖φ‖L4(0,T ;H2(Ω)) → 0 as η → 0.
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Thus, performing the limit (η, τ) → 0 in (16)–(17), it follows that (ρ, c) solve
∫ T

0

〈∂tρ, φ〉dt+
∫ T

0

∫

Ω

(
(1 + δρ)∇ρ− ρ∇v

)
· ∇φdxdt = 0,(20)

∫ T

0

∫

Ω

(∇v · ∇θ + vθ)dxdt =

∫ T

0

∫

Ω

(δρ+ ρα)θdxdt,(21)

where, by density, we can choose test functions φ ∈ L∞(0, T ;H1(Ω)) and θ ∈ L2(0, T ;
H1(Ω)). The initial datum ρ(0) = ρ0 is satisfied in the sense of H1(Ω)′; see, e.g., [21,
pp. 1980f.] for a proof.
Step 4: Limit δ → 0. For this limit, we need further uniform estimates. Let (ρτ , vτ ) be

a solution to (16)–(17). We formulate (15) as
∫

Ω

(ρpτ − (πτρτ )
p)dx+

∫ T

0

∫

Ω

|∇ρp/2τ |2dxdt+ δ

4

∫ T

0

∫

Ω

|∇ρ(p+1)/2
τ |2dxdt

≤ C

∫ T

0

‖ρ(p+1)/2
τ ‖2L1(Ω)dt+ C

∫ T

0

‖ρp/2τ ‖β(p)L1(Ω)dt,(22)

where we recall that C > 0 is independent of (η, τ, δ). The L∞(0, T ;L2(Ω)) and L2(0, T ;

H1(Ω)) bounds for (ρ
1/2
τ ) show that

∫ T

0

‖∇ρτ‖2L1(Ω)dt = 4

∫ T

0

‖ρ1/2τ ∇ρ1/2τ ‖2L1(Ω)dt ≤ 4

∫ T

0

‖ρ1/2τ ‖2L2(Ω)‖∇ρ1/2τ ‖2L2(Ω)dt

≤ 4‖ρτ‖L∞(0,T ;L1(Ω))

∫ T

0

‖∇ρ1/2τ ‖2L2(Ω)dt ≤ C.

Thus, (ρτ ) is bounded in L2(0, T ;W 1,1(Ω)) →֒ L2(0, T ;L3/2(Ω)), as d ≤ 3.
Let p = 2 in (22). As the right-hand side of (22) is uniformly bounded, we infer the

bounds
‖ρτ‖L∞(0,T ;L2(Ω)) + ‖ρτ‖L2(0,T ;H1(Ω)) + δ1/2‖ρ3/2τ ‖L2(0,T ;H1(Ω)) ≤ C.

Choosing p = 3 in (22), the right-hand side is again bounded, yielding the estimates

‖ρτ‖L∞(0,T ;L3(Ω)) + δ1/2‖ρ2τ‖L2(0,T ;H1(Ω)) ≤ C.

By elliptic regularity, since −∆vτ + vτ = δρτ + ρατ ∈ L∞(0, T ;L3(Ω)), the family (vτ ) is
bounded in L∞(0, T ;W 2,3(Ω)) →֒ L∞(0, T ;W 1,p(Ω)) for all p < ∞.
We know from Step 3 that (ρτ , vτ ) converges in some norms to (ρδ, vδ) := (ρ, v) solving

(20)–(21). By the weakly lower semicontinuity of the norm and the a.e. convergence ρ2τ →
ρ2 in QT , it follows that, after performing the limit (η, τ) → 0,

(23) ‖ρδ‖L∞(0,T ;L3(Ω)) + ‖ρδ‖L2(0,T ;H1(Ω)) + δ1/2‖ρ2δ‖L2(0,T ;H1(Ω)) + ‖vδ‖L∞(0,T ;W 1,p(Ω)) ≤ C.

We wish to derive a uniform estimate for the time derivative ∂tρδ. Let φ ∈ L2(0, T ;H1(Ω)).
Then ∣∣∣∣

∫ T

0

〈∂tρδ, φ〉dt
∣∣∣∣ ≤

(
‖∇ρδ‖L2(QT ) +

δ

2
‖∇(ρ2δ)‖L2(QT )

)
‖∇φ‖L2(QT )
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+ ‖ρδ‖L2(0,T ;L4(Ω))‖∇vδ‖L∞(0,T ;L4(Ω))‖∇φ‖L2(QT ) ≤ C.

This shows that (∂tρδ) is bounded in L2(0, T ;H1(Ω)′). By the Aubin–Lions lemma in the
version of [30], there exists a subsequence, which is not relabeled, such that, as δ → 0,

ρδ → ρ strongly in L2(0, T ;Lp(Ω)), p < 6.

Furthermore, we deduce from the bounds (23), again for a subsequence, that

∇ρδ ⇀ ∇ρ weakly in L2(QT ),

δ∇(ρ2δ) → 0 strongly in L2(QT ),

∂tρδ ⇀ ∂tρ weakly in L2(0, T ;H1(Ω)′),

vδ ⇀
∗ v weakly* in L∞(0, T ;W 1,p(Ω)), p < ∞.

In particular, ρδ∇vδ ⇀ ρ∇v weakly in L2(QT ). Thus, we can perform the limit δ → 0 in
(20)–(21), which gives

∫ T

0

〈∂tρ, φ〉dt+
∫ T

0

∫

Ω

(∇ρ− ρ∇v) · ∇φdxdt = 0,

∫ T

0

∫

Ω

(∇v · ∇θ + vθ)dxdt =

∫ T

0

∫

Ω

ραθdx

for all φ, θ ∈ L2(0, T ;H1(Ω)). Furthermore, we show as in [21, pp. 1980f.] that ρ(0) = ρ0

in the sense of H1(Ω)′.
Step 5: Convergence of the whole sequence. The whole sequence (ρδ, vδ) converges if

the limit problem has a unique solution. Uniqueness follows by standard estimates if ρ,
∇c ∈ L∞(0, T ;L∞(Ω)). Since −∆c+ c = ρα ∈ L∞(0, T ;L3/α(Ω)) and 3/α > 3 ≥ d, elliptic
regularity shows that c ∈ L∞(0, T ;W 2,3/α(Ω)) →֒ L∞(0, T ;W 1,∞(Ω)). Then [17, Lemma 1]
shows that ρ ∈ L∞(0, T ;L∞(Ω)), finishing the proof.

3. Proof of Theorem 2

It is shown in [18] that (1)–(2) with α = 1 has a global weak solution in two space
dimensions. Since the solutions to the limiting Keller–Segel system may blow up after
finite time, we cannot generally expect estimates that are uniform in δ globally in time.
Moreover, we need higher-order estimates not provided by the results of [18]. Therefore,
we show first the local existence of smooth solutions and then uniform Hs(Ω) bounds.
Step 1: Local existence of smooth solutions. Let ε = 1. The eigenvalues of the diffusion

matrix associated to (1),

A(ρ, c) =

(
1 −ρ
δ 1

)
,

equal λ = 1± i
√
δρ, and they have a positive real part for all ρ > 0, i.e., A(ρ, c) is normally

elliptic. Therefore, according to [1, Theorem 14.1] (also see [23, Theorem 3.1]), there
exists a unique maximal solution to (1)–(2) satisfying (ρ, c) ∈ C∞(Ω× (0, T ∗);R2), where
0 < T ∗ ≤ ∞.
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Next, let ε = 0. We use the Schauder fixed-point theorem to prove the regularity of the
solutions to (4)–(5). We only sketch the proof, since the arguments are rather standard.
We introduce the set

S =
{
ρ̃ ∈ C0(Ω× [0, T ]) : 0 ≤ ρ̃ ≤ R, ‖ρ̃‖Cγ,γ/2(Ω×[0,T ]) ≤ K

}

for some R > 0 and M > 0. Let ρ̃ ∈ S. By elliptic regularity (combining Theorems 2.4.2.7
and 2.5.1.1 in [15]), the unique solution to

−∆v + v = δρ̃+ ρ̃α in Ω, ∇ρ̃ · ν = 0 on ∂Ω,

satisfies v ∈ C0([0, T ];W 2,p(Ω)) for all p < ∞. Hence, by Sobolev embedding, h := ρ̃∇v ∈
C0(Ω× [0, T ]). Thus, using [27, Lemma 2.1iv], the unique solution to

∂tρ = div
(
(1 + δρ̃)∇ρ− h) in Ω, t > 0, ∇ρ · ν = 0 on ∂Ω,

satisfies ρ ∈ Cγ,γ/2(Ω × [0, T ]). By elliptic regularity again, v ∈ C2,γ/2(Ω × [0, T ]). Con-
sequently, h ∈ Cγ,γ/2(Ω × [0, T ]) and applying [27, Lemma 2.1iv] again, we infer that
ρ ∈ C2,1(Ω × [0, T ]). It is possible to show that ρ ∈ S for suitable R > 0 and M > 0.
Hence, the existence of a solution to (4)–(5) follows from the Schauder fixed-point theorem.
Elliptic regularity implies that v ∈ C4,1(Ω × [0, T ]). Then f := div(ρ∇v) ∈ C1,1(Ω ×

[0, T ]) and the solution u = ρ to the linear parabolic equation ∂tu −∆u − div(ρ∇u) = f
in Ω, t > 0, with no-flux boundary conditions satisfies u ∈ C2+γ,1+γ/2(Ω × [0, T ]) [28,
Corollary 5.1.22] (here we need ρ0 ∈ C2+γ(Ω)). Thus, the regularity of f improves to
f ∈ C1+γ,1+γ/2(Ω× [0, T ]). By parabolic regularity [14, Theorem 9.2, p. 137], we infer that
u ∈ C2+γ,2(Ω × [0, T ]). Bootstrapping this argument and using [14, Theorems 10.1–10.2,
pp. 139f.], we find that ρ = u ∈ C∞(Ω× (0, T ]) and consequently v ∈ C∞(Ω× (0, T ]).
Step 2: Preparations. Let ε = 1, let (ρδ, cδ) be a local smooth solution to (1)-(2) with

0 < δ < 1, and let (ρ, c) be a local smooth solution to (2)–(3). Then ρR := ρδ − ρ and
cR := cδ − c solve

∂tρR = div
(
∇ρR − ρR∇(c+ cR)− ρ∇cR

)
,(24)

∂tcR = ∆cR − cR + δ∆(ρ+ ρR) + (ρ+ ρR)
α − ρα in Ω, t > 0,(25)

(ρR, cR) satisfies homogeneous Neumann boundary conditions and vanishing initial condi-
tions:

∇ρR · ν = ∇cR · ν = 0 on ∂Ω, t > 0, ρR(0) = cR(0) = 0 in Ω.

The aim is to prove a differential inequality for

Γ(t) = ‖(ρR, cR)(t)‖2H2(Ω), G(t) = ‖(ρR, cR)(t)‖2H2(Ω) + ‖∇∆(ρR, cR)(t)‖2L2(Ω),

where ‖(ρR, cR)‖2X = ‖ρR‖2X + ‖cR‖2X for suitable norms ‖ · ‖X .
Step 3: H1(Ω) estimates. We use ρR as a test function in (24):

1

2

d

dt
‖ρR‖2L2(Ω) + ‖∇ρR‖2L2(Ω) =

∫

Ω

ρR∇(c+ cR) · ∇ρRdx+

∫

Ω

ρ∇cR · ∇ρRdx

=: I1 + I2.
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By Young’s inequality, for any η > 0, we have

I2 ≤
η

2
‖∇ρR‖2L2(Ω) +

1

2η
‖ρ‖2L∞(Ω)‖∇cR‖2L2(Ω) ≤

η

2
‖∇ρR‖2L2(Ω) + C(η)‖∇cR‖2L2(Ω),

where here and in the following, C > 0 and C(η) > 0 denote generic constants independent
of δ but depending on suitable norms of (ρ, c). The embeddingH2(Ω) →֒ L∞(Ω) (for d ≤ 3)
gives

I1 ≤ η‖∇ρR‖2L2(Ω) +
1

2η
‖∇c‖2L∞(Ω)‖ρR‖2L2(Ω) +

1

2η
‖ρR‖2L∞(Ω)‖∇cR‖2L2(Ω)

≤ η‖∇ρR‖2L2(Ω) + C(η)‖ρR‖2L2(Ω) + C(η)‖ρR‖2H2(Ω)‖∇cR‖2L2(Ω).

Combining the estimates for I1 and I2 and choosing η > 0 sufficiently small, we find that

(26)
d

dt
‖ρR‖2L2(Ω) + C‖∇ρR‖2L2(Ω) ≤ C

(
1 + ‖ρR‖2H2(Ω)

)
‖∇cR‖2L2(Ω) + C‖ρR‖2L2(Ω).

Next, we use the test function cR in (25):

1

2

d

dt
‖cR‖2L2(Ω) + ‖cR‖2H1(Ω) = −δ

∫

Ω

∇(ρ+ ρR) · ∇cRdx+

∫

Ω

(
(ρ+ ρR)

α − ρα
)
cRdx

= I3 + I4.

Thus, for any η > 0,

I3 ≤
η

2
‖∇cR‖2L2(Ω) +

δ2

2η

(
‖∇ρ‖2L2(Ω) + ‖∇ρR‖2L2(Ω)

)

≤ η

2
‖∇cR‖2L2(Ω) + C(η)‖∇ρR‖2L2(Ω) + C(η)δ2.

For the estimate of I4, we apply the mean-value theorem to the function s 7→ sα (recalling
that α ≥ 1):

|(ρ+ ρR)
α − ρα| ≤ C(1 + ‖ρR‖L∞(Ω))

α−1|ρR| ≤ C(1 + ‖ρR‖α−1
L∞(Ω))|ρR|.

Hence, together with the embedding H2(Ω) →֒ L∞(Ω),

I4 ≤ η‖cR‖2L2(Ω) + C(η)
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖ρR‖2L2(Ω).

Collecting these estimates and choosing η > 0 sufficiently small, it follows that

(27)
1

2

d

dt
‖cR‖2L2(Ω) + C‖cR‖2H1(Ω) ≤ C‖∇ρR‖2L2(Ω) + C

(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖ρR‖2L2(Ω) + Cδ2.

Thus, summing (26) and (27),

(28)
d

dt
‖(ρR, cR)‖2L2(Ω) + C‖(ρR, cR)‖2H1(Ω) ≤ C

(
Γ(t) + Γ(t)2 + Γ(t)α

)
+ Cδ2.

Step 4: H2(Ω) estimates. We multiply (24) by −∆ρR and integrate by parts in the
expression with the time derivative:

1

2

d

dt
‖∇ρR‖2L2(Ω) + ‖∆ρR‖2L2(Ω) =

∫

Ω

div
(
ρR∇(c+ cR)

)
∆ρRdx+

∫

Ω

div(ρ∇cR)∆ρRdx
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=

∫

Ω

(
∇ρR · ∇(c+ cR) + ρR∆(c+ cR)

)
∆ρRdx

+

∫

Ω

(
∇ρ · ∇cR + ρ∆cR)∆ρRdx =: I5 + I6.

Then, taking into account inequality (37) in the Appendix,

I5 ≤ η‖∆ρR‖2L2(Ω) + C(η)‖∇ρR‖2L2(Ω) + C(η)‖∇ρR‖2H1(Ω)‖∇cR‖2H1(Ω)

+ C(η)‖ρR‖2L2(Ω) + C(η)‖ρR‖2H1(Ω)‖∆cR‖2H1(Ω),

I6 ≤ η‖∆ρR‖2L2(Ω) + C(η)‖∇cR‖2L2(Ω) + C(η)‖∆cR‖2L2(Ω),

and choosing η > 0 sufficiently small, we end up with

1

2

d

dt
‖∇ρR‖2L2(Ω) + C‖∆ρR‖2L2(Ω) ≤ C‖ρR‖2H1(Ω) + C

(
1 + ‖∇ρR‖2H1(Ω)

)
‖cR‖2H2(Ω)

+ C‖ρR‖2H1(Ω)‖∆cR‖2H1(Ω).(29)

We multiply (25) by −∆cR and estimate similarly as in Step 3:

1

2

d

dt
‖∇cR‖2L2(Ω) + ‖∆cR‖2L2(Ω) + ‖∇cR‖2L2(Ω)

= δ

∫

Ω

∆(ρ+ ρR)∆cRdx+

∫

Ω

(
(ρ+ ρR)

α − ρα
)
∆cRdx

≤ η‖∆cR‖2L2(Ω) + C
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖ρR‖2L2(Ω) + Cδ2‖∆ρR‖2L2(Ω) + Cδ2.

Hence, for sufficiently small η > 0,

1

2

d

dt
‖∇cR‖2L2(Ω) + ‖∆cR‖2L2(Ω) + ‖∇cR‖2L2(Ω)

≤ C
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖ρR‖2L2(Ω) + Cδ2‖∆ρR‖2L2(Ω) + Cδ2.(30)

Adding this inequality and (29), adding ‖cR‖2L2(Ω) on both sides, using (38) in the Appendix,

and choosing δ > 0 sufficiently small to absorb the term Cδ2‖∆ρR‖2L2(Ω), we infer that

d

dt
‖∇(ρR, cR)‖2L2(Ω) + C‖(ρR, cR)‖2H2(Ω) ≤ C‖(ρR, cR)‖2H2(Ω) + C‖∇ρR‖2H1(Ω)‖∇cR‖2H1(Ω)

+ C‖ρR‖2H1(Ω)‖∆cR‖2H1(Ω) + C‖ρR‖2(α−1)

H2(Ω) ‖ρR‖2L2(Ω) + Cδ2

≤ C
(
Γ(t) + Γ(t)2 + Γ(t)α + Γ(t)G(t)

)
+ Cδ2.(31)

Step 5: H3(Ω) estimates. We apply the Laplacian to (24) and (25) and multiply both
equations by ∆ρR, ∆cR, respectively:

1

2

d

dt
‖∆ρR‖2L2(Ω) + ‖∇∆ρR‖2L2(Ω) =

∫

Ω

∇ div(ρR∇(c+ cR)) · ∇∆ρRdx

+

∫

Ω

∇ div(ρ∇cR) · ∇∆ρRdx =: I7 + I8,
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1

2

d

dt
‖∆cR‖2L2(Ω) + ‖∇∆cR‖2L2(Ω) + ‖∆cR‖2L2(Ω) = δ

∫

Ω

∇∆(ρ+ ρR) · ∇∆cRdx

+

∫

Ω

∇
(
(ρ+ ρR)

α − ρα
)
· ∇∆cRdx =: I9 + I10.

We estimate

I8 ≤ η‖∇∆ρR‖2L2(Ω) + C(η)‖∇ div(ρ∇cR)‖2L2(Ω) + C(η)‖ρR‖2H2(Ω)

≤ η‖∇∆ρR‖2L2(Ω) + C(η)‖cR‖2H2(Ω) + C(η)‖∇∆cR‖2L2(Ω) + C(η)‖ρR‖2H2(Ω).

Taking into account

∇ div(ρR∇cR) = ∇
(
∇ρR · ∇cR + ρR∆cR

)

= (∇cR · ∇)∇ρR + (∇ρR · ∇)∇cR +∇ρR∆cR + ρR∇∆cR,

and inequalities (37) and (39) in the Appendix as well as the embedding H2(Ω) →֒ L∞(Ω),
we obtain

‖∇ div(ρR∇cR)‖2L2(Ω) ≤ ‖∇cR‖2L∞(Ω)‖∇2ρR‖2L2(Ω) + ‖∇ρR‖2H1(Ω)‖∇2cR‖2H1(Ω)

+ ‖∇ρR‖2H1(Ω)‖∆cR‖2H1(Ω) + ‖ρR‖2L∞(Ω)‖∇∆cR‖2L2(Ω)

≤ C‖ρR‖2H2(Ω)

(
‖∇∆cR‖2L2(Ω) + ‖cR‖2H2(Ω)

)
,

which gives

I7 ≤ η‖∇∆cR‖2L2(Ω) + C(η)‖ρR‖2H2(Ω) + C(η)‖ρR‖2H2(Ω)

(
‖∇∆cR‖2L2(Ω) + ‖cR‖2H2(Ω)

)
.

This shows that, again for sufficiently small η > 0,

1

2

d

dt
‖∆ρR‖2L2(Ω) + C‖∇∆ρR‖2L2(Ω) ≤ C‖(ρR, cR)‖2H2(Ω) + C

(
1 + ‖ρR‖2H2(Ω)

)
‖∇∆cR‖2L2(Ω)

+ C‖ρR‖2H2(Ω)‖cR‖2H2(Ω).(32)

Next, we estimate I9 and I10:

I9 ≤ η‖∇∆cR‖2L2(Ω) + C(η)δ2‖∇∆ρR‖2L2(Ω) + Cδ2,

I10 = α

∫

Ω

(
(ρ+ ρR)

α−1 − ρα−1)∇ρ · ∇∆cRdx

+ α

∫

Ω

(ρ+ ρR)
α−1∇ρR · ∇∆cRdx = J1 + J2.

We find that

J2 ≤ η‖∇∆cR‖2l2(Ω) + C(η)
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖∇ρR‖2L2(Ω).

By the Hölder continuity of s 7→ sα−1, it follows that

J2 ≤ C

∫

Ω

|ρR|α−1|∇∆cR|dx ≤ η‖∇∆cR‖2L2(Ω) + C(η)‖ρR‖2(α−1)

L2(α−1)(Ω)

≤ η‖∇∆cR‖2L2(Ω) + C(η)‖ρR‖2(α−1)

H2(Ω) .
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Consequently, for sufficiently small η > 0,

1

2

d

dt
‖∆cR‖2L2(Ω) + C‖∇∆cR‖2L2(Ω) + ‖∆cR‖2L2(Ω)

≤ C‖ρR‖2(α−1)

H2(Ω) + C
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖∇ρR‖2L2(Ω) + Cδ2‖∇∆ρR‖2L2(Ω) + Cδ2.(33)

Adding the previous inequality and (32) and taking δ > 0 sufficiently small such that
the term Cδ2‖∇∆ρR‖2L2(Ω) is absorbed by the corresponding term on the left-hand side of

(32), we infer that

d

dt
‖(ρR, cR)‖2L2(Ω) + C‖∇∆(ρR, cR)‖2L2(Ω) + C‖∆cR‖2L2(Ω)

≤ C‖(ρR, cR)‖2H2(Ω) + C
(
1 + ‖ρR‖2H2(Ω)

)
‖∇∆cR‖2L2(Ω) + C‖ρR‖2H2(Ω)‖cR‖2H2(Ω)

+ C‖ρR‖2(α−1)

H2(Ω) + C
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖∇ρR‖2L2(Ω) + Cδ2

≤ C
(
Γ(t) + Γ(t)α−1 + Γ(t)2 + Γ(t)α + Γ(t)G(t)

)
+ Cδ2.(34)

Step 6: End of the proof for ε = 1. We sum inequalities (28), (31), and (34):

d

dt

(
‖(ρR, cR)‖2H1(Ω) + ‖∆(ρR, cR)‖2L2(Ω)

)

+ C
(
‖(ρR, cR)‖2H2(Ω) + ‖∇∆(ρR, cR)‖2L2(Ω)

)

≤ C
(
Γ(t) + Γ(t)α−1 + Γ(t)2 + Γ(t)α + Γ(t)G(t)

)
+ Cδ2.(35)

To get rid of the term Γ(t)α−1, we need the condition α ≥ 2. Indeed, under this condition,

Γ(t)α−1 ≤ Γ(t) + Γ(t)α.

We also remove the term Γ(t)2 by defining κ := max{α, 2} and estimating

Γ(t)2 ≤ Γ(t) + Γ(t)κ.

We deduce from elliptic regularity that

Γ(t) ≤ C‖∆(ρR, cR)‖2L2(Ω) + C‖(ρR, cR)‖2H1(Ω).

Therefore, integrating (35) over (0, t) and observing that (ρR, cR)(0) = 0, (35) becomes

Γ(t) + C

∫ t

0

G(s)ds ≤ C

∫ t

0

(Γ(s) + Γ(s)κ)ds+ C

∫ t

0

Γ(s)G(s)ds+ Cδ2.

Lemma 4 proves the result for ε = 1.
Step 7: Parabolic-elliptic case ε = 0. Since there is no time derivative of cR anymore,

we need to change the definition of the functionals Γ(t) and G(t):

Γ0(t) = ‖ρR‖2H2(Ω), G0(t) = ‖ρR‖2H2(Ω) + ‖∇∆ρR‖2L2(Ω).

The estimates are very similar to the parabolic-parabolic case with two exceptions: In (34),
we have estimated the terms ‖ρR‖2H2(Ω)‖∇∆cR‖2L2(Ω) and ‖ρR‖2H2(Ω)‖cR‖2H2(Ω) from above

by Γ(t)G(t). In the present case, we cannot estimate ‖∇∆cR‖2L2(Ω) by G0(t) and we need

to proceed in a different way.
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Estimates (30) and (33), adapted to the case ε = 0, become

‖∆cR‖2L2(Ω) + ‖∇cR‖2L2(Ω) ≤ C
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖ρR‖2L2(Ω) + Cδ2‖∆ρR‖2L2(Ω) + Cδ2

≤ C
(
Γ0(t) + Γ0(t)

α
)
+ Cδ2,

‖∇∆cR‖2L2(Ω) + ‖∆cR‖2L2(Ω) ≤ C‖ρR‖2(α−1)

H2(Ω) + C
(
1 + ‖ρR‖2(α−1)

H2(Ω)

)
‖∇ρR‖2L2(Ω)

+ Cδ2‖∇∆ρR‖2L2(Ω) + Cδ2.

The term δ2‖∇∆ρR‖2L2(Ω) can be absorbed by the corresponding term on the left-hand side

of (32). The critical term ‖ρR‖2(α−1)

H2(Ω) ‖∇ρR‖2L2(Ω) is bounded from above by Γ(t)α. Thus,

‖∇∆cR‖2L2(Ω) is estimated by Γ0(t)
α and lower-order terms, and consequently, ‖ρR‖2H2(Ω)

×‖∇∆cR‖2L2(Ω) in (32) is estimated by Γ0(t)
αG0(t), together with lower-order terms. Fur-

thermore, ‖ρR‖2H2(Ω)‖cR‖2H2(Ω) is bounded by Γ0(t)
α+1, up to lower-order terms. More

precisely, a computation shows that

d

dt

(
‖ρR‖2H1(Ω) + ‖∆ρR‖2L2(Ω)

)
+ C

(
‖ρR‖2H2(Ω) + ‖∇∆ρR‖2L2(Ω)

)
+ CG0(t)

≤ C
(
Γ0(t) + Γ0(t)

2 + Γ0(t)
α−1 + Γ0(t)

α + Γ0(t)
α+1 + Γ0(t)G0(t)

+ Γ0(t)
αG0(t) + δ2G0(t)

)
+ Cδ2.

Observing that Γ0(t) ≤ C(‖ρR‖2H1(Ω)+‖∆ρR‖2L2(Ω)) and Γ0(t)
α−1+Γ0(t)

α ≤ Γ0(t)+Γ0(t)
α+1,

choosing δ > 0 sufficiently small, integrating in time, and using Γ0(0) = 0, we arrive at

Γ0(t) + C

∫ t

0

G0(s)ds ≤ C

∫ t

0

(Γ0(s) + Γ0(t)
α+1)ds

+ C

∫ t

0

(Γ0(s) + Γ0(s)
α+1)G0(s)ds+ Cδ2.

An application of Lemma 4 finishes the proof.

4. Numerical experiments

We present some numerical examples for system (1)–(2) in two space dimensions and for
various choices of the parameters α and δ. Equations (1) are discretized by the implicit
Euler method in time and by cubic finite elements in space. The scheme is implemented
by using the finite-element library NGSolve/Netgen (http://ngsolve.org). The mesh is
refined in regions where large gradients are expected. The number of vertices is between
2805 and 12,448, and the number of elements is between 5500 and 24,030. The time step
is chosen between 10−3 and 10−4 when no blow up is expected and is decreased down
to 10−13 close to expected blow-up times. The resulting nonlinear discrete systems are
solved by the standard Newton method. The Jacobi matrix is computed by the NGSolve
routine AssembleLinearization. The surface plots are generated by the Python package
Matplotlib [20]. We do not use any kind of additional regularizations, smoothing tools, or
slope-limiters. All experiments are performed for the parabolic-parabolic equations with
δ > 0.
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We choose the same domain and initial conditions as in [10], i.e. Ω = {x ∈ R
2 : |x| < 1}

and

(36) ρ0(x, y) = 80(x2 + y2 − 1)2(x− 0.1)2 + 5, c0(x, y) = 0, (x, y) ∈ Ω.

A computation shows that the total mass M =
∫
Ω
ρ0dx = 25π/3 > 8π is supercritical, i.e.,

the solution to the classical Keller–Segel system can blow up in the interior of the domain.
A sufficient condition is that the initial density is suffciently concentrated in the sense that∫
Ω
|x− x0|2ρ0dx is sufficiently small for some x0 ∈ Ω. Blow up at the boundary can occur

if x0 ∈ ∂Ω and M > 4π.
Experiment 1: α = 1. We choose the initial datum (36) and the values α = 1, δ = 10−3.

In this nonsymmetric setting, the solution exists for all time and the density is expected to
concentrate at the boundary [18]. Figure 1 shows the surface plots for the cell density at
various times. Since the total mass is initially concentrated near the boundary, we observe
a boundary peak. Observe that there is no L∞ blow-up. The steady state is reached at
approximately T = 2.5. By Theorem 2, the peak approximates the blow-up solution to
the classical Keller–Segel system in the L∞ norm; see Figure 2. We see that the L∞ norm
of the density becomes larger with decreasing values of δ.
Experiment 2: α > 1. First, we choose the value α = 1.5. The initial datum is still

given by (36). Since α > 1, we cannot exclude finite-time blow-up, which is confirmed
by the numerical experiments in Figure 3. Numerically, the solution seems to exist until
time T ∗ ≈ 0.079. The numerical scheme breaks down at slightly smaller times when δ
becomes smaller. This may indicate that the numerical break-down is an upper bound
for the blow-up time of the classical Keller–Segel model. The break-down time becomes
smaller for larger values of α. Indeed, Figure 4 shows a stronger and faster concentration
behavior when we take α = 2.5.
Experiment 3: Multi-bump initial datum. We take α = 1 and δ = 5 · 10−3. As initial

datum, we choose a linear combination of the bump function

Wx0,y0,M(x, y) =
M

2πθ
exp

(
− (x− x0)

2 + (y − y0)
2

2θ

)
, (x, y) ∈ Ω,

where (x0, y0) ∈ Ω, M > 0, and θ > 0. Setting θ = 10−2, we define c0 = 0 and

ρ0 = W0.25,0,10π +W−0.25,0,4π +W0,−0.25,4π +W0,0.25,4π

+W0,0.5,4π +W0,0.35,4π +W0.5,0,4π +W0.5,0.25,4π.

The evolution of the density is presented in Figure 5. The density concentrates in the
interior of the domain and the peak travels to the boundary. At time t = 1, the peak is
close to the boundary which is reached later at t = 2.5 (not shown). A similar behavior
was already mentioned in [4] for the parabolic-elliptic model using a single-bump initial
datum.
Experiment 4: Shape of peaks. The previous experiments show that the shape of the

peaks depends on the value of δ. In this experiment, we explore this dependence in more
detail. We claim that the diameter and the height of the bump can be controlled by δ. We
choose α = 1 and the initial datum ρ0 = W0,0,20π with θ = 1/400 and c0 = 0. Furthermore,
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Figure 1. Cell density with α = 1 and δ = 10−3 at times t = 0 (top left),
t = 0.1 (top right), t = 2.0 (bottom left), t = 5.0 (bottom right).

we prescribe homogeneous Dirichlet boundary conditions for c to avoid that the aggregated
bump of cells moves to the boundary. Figure 6 (top row) shows the stationary cell densities
for two values of δ. As expected, the maximal diameter of the peak (defined at height 10−2)
becomes smaller and the maximum of the peak becomes larger for decreasing values of δ.
The level sets show that the solutions are almost radially symmetric and the level set
for ρ = 10−2 is approximately a circle. This behavior is quantified in Figure 6 (bottom
row). We observe that the radius depends on δ approximately as r ∼ δ0.43 and the height
approximately as ρmax ∼ δ−1.00.
We remark that under no-flux boundary conditions for the chemical concentration, the

same behavior of the bumps can be observed for intermediate times. However, the bump
will eventually move to the boundary (as in Figure 5), since the chemical substance is not
absorbed by the boundary as in the Dirichlet case.



VANISHING CROSS-DIFFUSION LIMIT 19

x

−1.0
−0.5

0.0
0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

0
50
100
150

200

250

300

350

400

450

x

−1.0
−0.5

0.0
0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

0
500
1000
1500

2000

2500

3000

3500

4000

4500

x

−1.0
−0.5

0.0
0.5

1.0

y

−1.0

−0.5

0.0

0.5

1.0

0
5000
10000
15000

20000

25000

30000

35000

40000

45000

0 0.5 1 1.5 2 2.5

0

2

4

·104

t

||
ρ
||
L

∞
(Ω

)

δ = 0.01

δ = 0.001

δ = 10
−4

Figure 2. Cell density at time T = 2.5 with α = 1 and δ = 10−2 (top left),
δ = 10−3 (top right), δ = 10−4 (bottom left). The L∞ norm of the density is
shown in the bottom right panel.

Appendix A. Some technical tools

For the convenience of the reader, we collect some technical results.

Lemma 3 (Inequalities). Let d ≤ 3, Ω ⊂ R
d be a bounded domain, and ∂Ω ∈ C2,1. There

exists a constant C > 0 such that for all u, v ∈ H1(Ω),

(37) ‖uv‖L2(Ω) ≤ C‖u‖H1(Ω)‖v‖H1(Ω),

for all u ∈ H2(Ω) with ∇u · ν = 0 on ∂Ω,

(38) ‖u‖2H2(Ω) ≤ C
(
‖∆u‖2L2(Ω) + ‖u‖2L2(Ω)

)
,

and for all u ∈ H3(Ω) with ∇u · ν = 0 on ∂Ω,

(39) ‖u‖2H3(Ω) ≤ C
(
‖∇∆u‖2L2(Ω) + ‖u‖2H2(Ω)

)
.
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Figure 3. Cell density at time T ∗ = 0.079 with α = 1.5 and δ = 10−2 (top
left), δ = 10−3 (top right), δ = 10−4 (bottom left). The L∞ norm of the
density is shown in the bottom right panel.

Inequality (37) follows after applying the Cauchy–Schwarz inequality and then the con-
tinuous embedding H1(Ω) →֒ L4(Ω); (38) is proved in [15, Theorem 2.3.3.6], while (39) is
a consequence of [31, Theorem 2.24].

Lemma 4 (Nonlinear Gronwall inequality). Let δ > 0 and Γ, G ∈ C0([0, T ]) be nonnegative
functions, possibly depending on δ, satisfying

Γ(t) + C0

∫ t

0

G(s)ds ≤ C1Γ(0) + C2

∫ t

0

(Γ(s) + Γ(s)α)ds

+ C3δ
β

∫ t

0

(Γ(s) + Γ(s)γ)G(s)ds+ C4δ
ν ,

where α > 1, β ≥ 0, γ > 0, ν > 0, and C0, . . . , C4 > 0 are constants independent of δ.
Furthermore, let Γ(0) ≤ C5δ

ν for some C5 > 0. Then there exists δ0 > 0 such that for all
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Figure 4. Cell density at time T ∗ = 3.35 · 10−3 with α = 2.5 and δ = 10−2

(top left), δ = 10−3 (top right), δ = 10−4 (bottom left). The L∞ norm of the
density is shown in the bottom right panel.

0 < δ < δ0, 0 ≤ t ≤ T , and 0 < ε < ν,

Γ(t) ≤ C5δ
ν−ε.

Proof. A slightly simpler variant of the lemma was proved in [19, Lemma 10]. Assume, by
contradiction, that for all δ0 ∈ (0, 1), there exist δ ∈ (0, δ0), t0 ∈ [0, T ], and ε ∈ (0, ν) such
that Γ(t0) > C5δ

ν−ε. Since Γ(0) ≤ C5δ
ν by assumption and Γ is continuous, there exists

t1 ∈ [0, t0) such that Γ(t1) = C5δ
ν−ε and Γ(t) ≤ C5δ

ν−ε for all t ∈ [0, t1]. This leads for
t ∈ [0, t1] to

Γ(t) + C0

∫ t

0

G(s)ds ≤ C1C5δ
ν + C2

(
1 + (C5δ

ν−ε)α−1
) ∫ t

0

Γ(s)ds

+ C3δ
β
(
C5δ

ν−ε + (C5δ
ν−ε)γ

) ∫ t

0

G(s)ds+ C4δ
ν .
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Figure 5. Cell density with α = 1 and δ = 5 ·10−3 at times t = 0 (top left),
t = 5 · 10−3 (top right), t = 1 (bottom left). The L∞ norm of the density is
shown in the bottom right panel.

Since ν−ε > 0, the integral over G(s) on the right-hand side can be absorbed for sufficiently
small δ > 0 by the corresponding term on the left-hand side. This implies that

Γ(t) ≤ (C1C5 + C4)δ
ν + 2C2

∫ t

0

Γ(s)ds, 0 ≤ t ≤ t1.

Then Gronwall’s lemma gives, for sufficiently small δ0 > 0 and 0 < δ < δ0,

Γ(t) ≤ (C1C5 + C4)δ
νe2C2T ≤ C5

2
δν−ε < C5δ

ν−ε, 0 ≤ t ≤ t1.

which contradicts Γ(t1) = C5δ
ν−ε. �
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Figure 6. Cell density at time t = 5 (stationary case) with α = 1 and
δ = 10−2 (top left), δ = 5 · 10−4 (top right). Log-log plots of the radius of
the density level set ρ = 10−2 versus δ (bottom left) and of the maximum of
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