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Abstract. A coupled semiconductor–circuit model including thermal effects is proposed. The
charged particle flow in the semiconductor devices is described by the energy-transport equations
for the electrons and the drift-diffusion equations for the holes. The electric circuit is modeled by
the network equations from modified nodal analysis. The coupling is realized by the node potentials
providing the voltages applied to the semiconductor devices and the output device currents for
the network model. The resulting partial differential-algebraic system is discretized in time by the
2-stage backward difference formula and in space by a mixed-hybrid finite-element method using
Marini-Pietra elements. A static condensation procedure is applied to the coupled system reducing
the number of unknowns. Numerical simulations of a one-dimensional pn-junction diode with time-
depending voltage and of a rectifier circuit show the heating of the electrons which allows to identify
hot spots in the devices. Moreover, the choice of the boundary conditions for the electron density
and energy density is numerically discussed.
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1. Introduction. In industrial applications, complex semiconductor device
models are usually substituted by circuits of basic network elements (resistors, capac-
itors, inductors, voltage and current sources) resulting in simpler so-called compact
models. Such a strategy was advantageous up to now since integrated circuit simula-
tions were possible without computationally expensive device simulations. Parasitic
effects and high frequencies in the circuits, however, require to take into account a
very large number of basic elements and to adjust carefully a large number of pa-
rameters in order to achieve the required accuracy. Moreover, device heating and hot
spots cannot be easily modeled by this approach.

Therefore, it is preferable to model those semiconductor devices which are critical
for the parasitic effects by semiconductor transport equations. Since structural infor-
mation about the resulting device–circuit equations was missing for a long time, the
first approaches to couple circuits and devices were based on an extension of existing
device simulators by more complex boundary conditions [35, 39] or the combination
of device simulators with circuit simulators as a “black box” solver [15]. Both ap-
proaches, however, are not suitable for complex circuits in the high-frequency domain.
In this work, we follow an approach that includes the device model into the network
equations directly. As the device model is described by partial differential equations
and the network equations are given by differential-algebraic equations (DAE), this
results in a coupled system of partial differential-algebraic equations (PDAE).

The mathematical analysis and numerical approximation of coupled network and
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device equations were studied only recently. The first mathematical results were
obtained in [18, 20] where a semiconductor device was coupled to a simple circuit in
such a way that the currents entering the device can be expressed by a function of
the applied voltage. In this case, the network is treated only as a special boundary
condition for the semiconductor. This approach fails for integrated circuits. A network
containing uniform lossy transmission lines was investigated in [21]. The resulting
model becomes a PDAE system, but with partial differential equations of hyperbolic
type. An electro-thermal problem coupling the network model with a heat equation
containing a local dissipative power term was numerically solved in [4].

Later, networks with semiconductor devices described by the drift-diffusion equa-
tions were studied. An existence analysis containing the drift-diffusion model was
developed in [1, 2]. For a reliable and efficient numerical simulation, it is important
to know the index of the PDAE system consisting of the network and drift-diffusion
equations. It has been shown in [46] that the coupled circuit is of (tractability) index
one if and only if the network(s) without the semiconductors satisfy some topological
conditions, i.e., if they contain neither CV-loops nor LI-cutsets. Here, a loop con-
sisting of capacitors and voltage sources only is called a CV-loop, whereas a cutset
containing inductors and current sources only is called an LI-cutset. In [47] it was
proved that the index of the coupled system is at most two under weak conditions on
the circuit (local passivity, no shortcuts). Moreover, the index of the coupled system
is two if and only if the circuit contains LI-cutsets or CVS-loops (loops of capacitors,
voltage sources, and semiconductors) with at least one voltage source or one semicon-
ductor device. The same results were obtained in [42] for the discretized drift-diffusion
equations. A sensitivity analysis generalizing the DAE index for finite systems to infi-
nite ones was presented in [7] and applied to the coupled PDAE system. It was shown
that the system is of index one if the voltages applied to the semiconductors are low
and the network without the semiconductors is of index one.

In this paper, we couple and simulate the network equations with the energy-
transport model for semiconductors for the first time. Compared to the coupling
with the drift-diffusion equations, we are able to calculate the electron temperature
in the devices. The energy-transport model can be derived from the semiconductor
Boltzmann equation in the diffusion limit under the assumption of dominant electron-
electron scattering [5]. It consists of the conservation laws for the electron density
and the electron energy density with constitutive relations for the particle and energy
current densities, coupled to the Poisson equation for the electric potential. Mathe-
matically, the energy-transport equations (without the Poisson equation) constitute
a parabolic cross-diffusion system in the entropic variables [14]. The system can be
written in a drift-diffusion-type formulation, which allows for an efficient numerical
approximation [13].

The energy-transport model is discretized by mixed-hybrid finite elements of
Marini-Pietra type [32, 33]. The one-dimensional equations are considered in or-
der to test the coupling and to achieve a fast algorithm required by our industrial
partner. For two-dimensional simulations of the energy-transport model (without
any coupling to circuits), we refer to [23, 24]. Marini-Pietra finite elements instead of
standard Raviart-Thomas elements are employed since this guarantees the M-matrix
property of the global stiffness matrix, even in the presence of zeroth-order terms.
Hence, the positivity of the particle densities is guaranteed. For the bipolar devices
considered in this paper, we model the flow of the positively charged holes by the
drift-diffusion equations which are also approximated by mixed Marini-Pietra finite
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elements.
The network equations as well as the parabolic equations are discretized in time by

the 2-stage backward difference formula (BDF2) since this scheme allows to maintain
the M-matrix property. Then, the semi-discretized equations are approximated by the
mixed finite-element method and static condensation is applied to reduce the number
of variables (see section 3 for details). The final nonlinear discrete system is solved
by Newton’s method.

For large applied bias, we observe strong gradients of the temperature at the
boundary. Employing Robin boundary conditions for the electron density and en-
ergy density instead of standard Dirichlet conditions allows to essentially eliminate
the boundary layer. This is the first time that the energy-transport equations are
numerically solved with Robin boundary conditions.

The paper is organized as follows. In section 2 we describe the circuit model
using modified nodal analysis and the semiconductor device model employing the
energy-transport equations. Moreover, the coupling of both models is explained.
Section 3 is devoted to the numerical discretization of the circuit and semiconductor
equations. In section 4 two circuits containing one-dimensional semiconductor devices
are simulated, namely a pn-junction diode with time-depending applied voltage and a
rectifier circuit with four pn diodes. The numerical results from the transient energy-
transport equations are compared with those from the stationary energy-transport
model and from the transient drift-diffusion equations. Finally, we conclude in section
5.

2. Modeling. In this section we explain the modeling of the electric circuits by
modified nodal analysis and of the semiconductor devices using the energy-transport
and drift-diffusion equations. Furthermore, the coupling of both models is made
explicit.

2.1. Circuit modeling. The circuits considered in this paper are supposed to
contain (ideal) resistors, capacitors, inductors, and voltage sources. In addition, we
use ideal current sources, as they appear in proper compact models for semiconductor
devices. Thus we can reduce these electric circuits by RCL-circuits (just containing
resistors, capacitors, and inductors).

A well-established mathematical description of RCL-circuits is the modified nodal
analysis. The basic tools are the Kirchhoff laws and the current-voltage characteristics
of the basic elements. In order to accomplish the modified nodal analysis, the circuit is
replaced by a directed graph with branches and nodes. Branch currents, branch volt-
ages, and node potentials (without the mass node) are introduced as (time-dependent)
variables. Then, the circuit can be characterized by the incidence matrix A = (ajk)
describing the node-to-branch relations and defined as

ajk =





1 if the branch k leaves the node j,
−1 if the branch k enters the node j,

0 else.

(see [48] for details on circuit topologies). The Kirchhoff current law expresses that
the sum of all branch currents entering a node is equal to zero,

Ai = 0,

and the Kirchhoff voltage law means that the sum of all branch voltages in a loop
vanishes, which can be expressed here as

v = A⊤e,
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where i, v, and e are the vectors of branch currents, branch voltages, and node
potentials, respectively. The current-voltage characteristics for the basic elements
can be given as

iR = g(vR), iC =
dq

dt
(vC), vL =

dΦ

dt
(iL),

where g denotes the conductivity of the resistor, q the charge of the capacitor, and
Φ the flux of the inductor. Moreover, iα and vα with α = R, C, L, are the branch
current vectors and branch voltage vectors for, respectively, all resistors, capacitors,
and inductors. The network branches are numbered in such a way that the incidence
matrix forms a block matrix with blocks describing the different types of network
elements, i.e., A consists of the block matrices AR, AC , AL, Ai, and Av, where the
index indicates the resistive, capacitive, inductive, current source, and voltage source
branches, respectively.

Denoting by is = is(t) and vs = vs(t) the given input functions for the current
and voltage sources, respectively, and replacing the branch currents in the Kirchhoff
current law by the current-voltage characteristics and the branch voltages by node
potentials using the Kirchhoff voltage law, we obtain the system in the charge-oriented
modified nodal analysis approach [48],

AC
dq

dt
(A⊤

Ce) +ARg(A
⊤

Re) +ALiL +Aviv = −Aiis, (2.1)

dΦ

dt
(iL) −A⊤

Le = 0, (2.2)

A⊤

v e = vs (2.3)

for the unknowns e(t), iL(t), and iv(t). Equation (2.1) is the Kirchhoff current law for
the complete circuit, where the current-voltage relations for the resistors and capaci-
tors have been included. Equation (2.2) decribes the voltage-current characteristic for
the inductors, and (2.3) determines the node potentials adjacent to the given voltage
sources.

Equations (2.1)-(2.3) represent a system of differential-algebraic equations (DAE)
with a properly stated leading term [30, 31] if the matrices C(v, t) = (∂q/∂v)(v, t)
and L(i, t) = (∂Φ/∂i)(i, t) are positive definite for all arguments v, i, and t. Under
the assumptions that the matrices C, L, and G = ∂g/∂v are positive definite and that
the circuit does neither contain loops of voltage sources only nor cutsets of current
sources only, it is proved in [46, 48] that the (tractability) index of the DAE system is
at most two. Furthermore, if the circuit does neither contain LI-cutsets nor CV-loops
with at least one voltage source (see the introduction) then the index is at most one.

2.2. Semiconductor device modeling. In the semiconductor device, we as-
sume that the electron flow can be described by the energy-transport equations. They
consist of the (scaled) conservation laws for the particle density n and energy density
w,

∂tn− divJn = −R(n, p), (2.4)

∂tw − divJw = −Jn · ∇V +W (n, T ) −
3

2
TR(n, p), (2.5)

together with (scaled) constitutive relations for the particle current Jn and energy
current density Jw,

Jn = µn

(
∇n−

n

T
∇V

)
, Jw =

3

2
µn(∇(nT ) − n∇V ), (2.6)
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coupled self-consistently to the Poisson equation for the electric potential V ,

λ2∆V = n− p− C(x). (2.7)

Here, the electron temperature T is defined via the relation w = 3
2nT , p denotes the

hole density determined by the drift-diffusion equations

∂tp+ divJp = −R(n, p), Jp = −µp(∇p+ p∇V ), (2.8)

and the function C(x) models fixed charged background ions in the semiconductor
crystal (doping profile). The physical parameters are the (scaled) electron and hole
mobilities µn and µp and the Debye length λ, given by

λ2 =
εsUT

qCmL
,

where εs is the permittivity constant, UT = kBTL/q with the Boltzmann constant kB ,
the lattice temperature TL and the elementary charge q denotes the thermal voltage,
Cm is the maximal doping value, and L is the device diameter. The equations (2.4)-
(2.8) are solved in the bounded domain Ω. The function

W (n, T ) = −
3

2

n(T − TL)

τ0

with the (scaled) energy relaxation time τ0 and the lattice temperature TL = 1 de-
scribes the energy relaxation to the equilibrium energy, and

R(n, p) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
(2.9)

models recombination-generation processes with the (scaled) intrinsic density ni and
the material-depending electron and hole lifetimes τn and τp, respectively.

We have used the following scaling. The densities n, p, ni, and C are scaled by
the maximal doping concentration Cm = max |C(x)|; the temperature is scaled by
the lattice temperature (usually, 300 K); the electric potential by the thermal voltage
UT ; the mobilities µn and µp by µ̄ = max{µn, µp}; and finally, the relaxation time τ0
and the lifetimes τn, τp by t0 = L2/(UT µ̄). For notational convenience, we have not
renamed the scaled quantities.

For the model equations (2.4)-(2.8) we need to impose appropriate initial and
boundary conditions. We prescribe the initial conditions for the particle densities and
the temperature

n(·, 0) = nI , p(·, 0) = pI , T (·, 0) = TI on ∂Ω. (2.10)

The device boundary is assumed to split into two parts, the union of Ohmic contacts
ΓD and the union of insulating boundary segments ΓN , where ∂Ω = ΓD ∪ ΓN . Al-
though we will present later spatial one-dimensional simulations, we give the boundary
conditions for the multidimensional situation. On the insulating parts, it is assumed
that the normal components of the current densities and of the electric field vanish,

Jn · ν = Jp · ν = Jw · ν = ∇V · ν = 0 on ΓN , t > 0. (2.11)
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At the contacts, the temperature, the electric potential, and the particle densities are
assumed to be known. The electric potential equals the sum of the applied voltage U
and the so-called built-in potential Vbi,

V = U + Vbi on ΓD, t > 0. (2.12)

The built-in potential is the potential in the device in thermal equilibrium,

Vbi = arsinh
( C

2ni

)
.

The temperature is supposed to be equal to the (scaled) lattice temperature at the
contacts:

T = 1 on ΓD, t > 0. (2.13)

The boundary conditions for the particle densities are derived under the assumptions
of charge neutrality, n − p − C(x) = 0, and thermal equilibrium, np = n2

i . Solving
these equations for n and p gives

n =
1

2

(
C +

√
C2 + 4n2

i

)
, p =

1

2

(
− C +

√
C2 + 4n2

i

)
on ΓD. (2.14)

We will show in section 4 that the Dirichlet boundary conditions for the particle
densities and the temperature may lead, for large applied voltages, to strong boundary
layers. Therefore, we will also employ Robin boundary conditions for comparison (see
section 4).

Energy-transport models have been used by engineers for more than 40 years to
describe thermal effects in semiconductor devices [44], mostly with phenomenological
transport coefficients. In the physical literature, these models have been usually
derived from hydrodynamic equations by neglecting certain convection terms (see [40]
and references therein). Another approach is to derive the energy-transport models
from the semiconductor Boltzmann equation by using a Hilbert expansion method
under the assumptions of nondegenerate Boltzmann statistics and dominant electron-
electron and elastic collisions [5]. Depending on the conditions on the microscopic
relaxation time, various energy-transport models can be derived [13]. Here, we employ
the model of [11] which is also used in the simulations of [23, 24].

The numerical discretization of energy-transport models has been investigated in
the physical literature for quite some time [11, 16, 43]. Mathematicians started to
pay attention to these models in the 1990s, using essentially non-oscillatory (ENO)
schemes [25], finite-difference methods [17, 38], mixed finite-volume schemes [8], or
mixed finite-element methods [23, 24, 27, 34] (also see [10] for an overview).

In this paper, we will use as in [13] the mixed finite-element method applied to
the drift-diffusion-like formulation of the energy-transport model since this method
allows for a good approximation of the current densities (see, e.g. [3, 10]). For this,
we define the variables g1 = µnn and g2 = 3

2µnnT and write (2.4)-(2.6) as

µ−1
n ∂tg1 − divJn = −R(n, p),

µ−1
n ∂tg2 − divJw = −Jn · ∇V +W (n, T ) −

3

2
TR(n, p)

with the current densities

Jn = ∇g1 −
g1
T
∇V, Jw = ∇g2 −

g2
T
∇V, (2.15)
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where the temperature is now given by T = 2g2/3g1. This corresponds (up to a sign)
to the drift-diffusion equations (2.8), where p is replaced by g1 or g2, T = 1, and the
right-hand side is different. The initial and boundary conditions for g1, g2, and V
now follow directly from (2.10)-(2.14).

2.3. Coupling. The coupling is realized on the one hand by the semiconductor
current density from the energy-transport and drift-diffusion equations, which needs
to be included in the Kirchhoff current law (2.1), and on the other hand by the
potentials of the circuit nodes adjacent to the semiconductor device, defining the
boundary condition for the electric potential in the device.

First, we consider the semiconductor current density which consists of three parts,
the electron current Jn, the hole current Jp, and the displacement current Jd caused
by the electric potential and given by Jd = −λ2∂t∇V . The total current density Jtot

is then given by

Jtot = Jn + Jp + Jd.

The displacement current guarantees charge conservation. Indeed, differentiating the
Poisson equation (2.7) with respect to time and replacing the time derivatives of the
particle densities by (2.4) and (2.8), we obtain

divJtot = div(Jn + Jp) − ∂t(n− p) = 0.

The current leaving the semiconductor device at terminal k, corresponding to the
Dirichlet boundary part Γk, is defined by

jk =

∫

Γk

Jtot · ν ds.

Clearly, due to charge conservation, the current through one terminal can be computed
by the negative sum of the currents through all other terminals. Therefore, it is
possible to choose one terminal (usually the bulk terminal) as the reference terminal.
We denote by jS the vector of all terminal currents except the current corresponding to
the reference terminal. In the one-dimensional case, there remains only one terminal,
and the current through the terminal at x = 0 is given by

jS(t) = Jn(0, t) + Jp(0, t) − λ2∂tVx(0, t).

Now, we define the semiconductor incidence matrix AS by its elements

aik =





1 if the current jk enters the circuit node i,
−1 if the reference terminal is connected to the node i,

0 else.

Including the row for the mass node, each column of AS has exactly one entry 1
and one entry −1. Therefore, it is of the same form as the other incidence matrices
introduced in section 2.1 and can be added to the Kirchhoff current law (2.1), leading
to

AC
dq

dt
(A⊤

Ce) +ARg(A
⊤

Re) +ALiL +Aviv +ASjS = −Aiis.

Notice that this procedure extends easily to the case of several semiconductors. In
this situation, we need to choose one reference terminal for each semiconductor device



8 M. BRUNK AND A. JÜNGEL

and to follow the above procedure for each device. We notice that the scaling of time
in the semiconductor model also changes the time variable in the above DAE system,
for instance t = t0ts, where t0 is the scaling factor and ts is the scaled time, and the
time derivative d/dt has to be replaced by t−1

0 (d/dts).
The second part of the coupling is described via the boundary conditions for the

electric potential in the semiconductor device. On the terminal k, we have

V (t) = ei(t) + Vbi on Γk,

if the terminal k of the device is connected to the circuit node i, where ei denotes the
potential at the circuit node i.

We summarize the complete coupled system with one-dimensional semiconductor
equations. The network equations are given by

AC
dq

dt
(A⊤

Ce) +ARg(A
⊤

Re) +ALiL +Aviv +ASjS = −Aiis,

dΦ

dt
(iL) −A⊤

Le = 0,

A⊤

v e = vs,

the current jS is defined by

jd,S − λ2Vx = 0, jS − (Jn + Jp − ∂tjd,S) = 0, (2.16)

the semiconductor model reads as

µ−1
n ∂tg1 − Jn,x = −R, λ2Vxx = µ−1

n g1 − p− C(x),

µ−1
n ∂tg2 − Jw,x = −JnVx +W −

3

2
TR, ∂tp+ Jp,x = −R,

together with the current relations

Jn = g1,x −
g1
T
Vx, Jw = g2,x −

g2
T
Vx, Jp = −µp (px + pVx) .

The boundary conditions for the potential are

V (0, t) = ei + Vbi(0), V (1, t) = ej + Vbi(1)

for appropriate nodes ei and ej . The remaining boundary conditions for g1, g2, and
T are given by

n(x, t) =
1

2

(
C(x) +

√
C(x)2 + 4n2

i

)
, T (x, t) = TL,

p(x, t) =
1

2

(
− C(x) +

√
C(x)2 + 4n2

i

)
at x = 0, 1.

For the choice of initial conditions, we refer to section 4.
The equations above form a system of partial differential-algebraic equations.

We have already mentioned in the introduction that the partial differential-algebraic
equations resulting from a coupled circuit with the drift-diffusion equations have at
most index 2 and that they have index 1 under some topological assumptions [6, 47].
No analytical result is available for the coupled system consisting of the circuit and
energy-transport equations. However, we conjecture that the index of this system is
also at most two.
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3. Numerical approximation.

3.1. Numerical integration of DAEs. For the numerical integration of diffe-
rential-algebraic equations (DAEs) we can employ Runge-Kutta methods or backward
difference formulas (BDF). For Runge-Kutta methods applied to DAEs we refer to
[22], for instance. Only implicit Runge-Kutta schemes are feasible for DAEs, and
stiffly accurate methods provide the best properties. For instance, stiffly accurate
methods for index-1 DAEs have the same convergence order as in the case of the
numerical integration of explicit ordinary differential equations. For other Runge-
Kutta methods, order reduction in the algebraic part down to the stage order q occurs.
For stiffly accurate methods for index-2 DAEs, an order reduction in the differential
and algebraic part down to the order q+ 1 can be observed. For other methods, even
stronger order reduction may occur.

Concerning BDF methods, k-step BDF (with k < 7) for index-1 DAEs are feasible
for sufficiently small time steps, and they are convergent with the same order as in
the case of explicit ordinary differential equations [29]. The numerical integration
of index-2 DAEs with BDF is studied in [9, 22]. In [45], quasilinear index-2 DAEs,
as they occur in circuit simulation, were examined. It has been shown that k-step
BDF for k < 7 are feasible and weakly instable under suitable assumptions. The
convergence order is the same as in the case of explicit ordinary differential equations.

In the previous subsection, we made the conjecture, based on coupled drift-
diffusion and network equations, that the index of the partial differential-algebraic
system derived in section 2.3 is not larger than two. Therefore, we employ the 2-step
BDF, defined by

∂tg(tm) ≈
1

2△t
(3g(m+1) − 4g(m) + g(m−1)), (3.1)

where g(k) approximates g(·, tk), tk = k△t. We found that on the one hand, simple
methods like the implicit Euler scheme have a too strong damping effect. On the
other hand, methods like Radau IIa are not suitable since the stiffness matrix coming
from the finite-element discretization of the semiconductor equations does not pro-
vide an M-matrix after static condensation (see below for details). Using the 2-step
BDF allows to keep the M-matrix property provided by the finite-element scheme.
Furthermore, higher-order schemes are not appropriate here, since the input signals
may be discontinuous.

3.2. Numerical discretization of the energy-transport equations. The
semiconductor equations are discretized in time by the 2-step BDF (see section 3.1)
and in space by a mixed-hybrid finite-element scheme. The Poisson equation is dis-
cretized by a standard P1 finite-element method. Thus, the discrete electric potential
is piecewise linear and the approximation of the electric field −Vx is piecewise con-
stant. In the following we only describe the discretization of the electron and energy
equation, since the discretization of the hole equation is similar.

The recombination-generation term (2.9) is treated semi-linearly. More precisely,
we employ in the denominator the values of the particle densities from the former time
step, whereas in the enumerator, one of the particle densities is fixed (using again the
values of the previous time step). In this way, the recombination-generation term

becomes, in each iteration step, linear. For given V , T , and p and g̃1 and J̃n from the
previous time step, we can thus express the continuity equations as

µ−1
n ∂tgj − Jj,x + σ̄jgj = f̄j , j = 1, 2,
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where the current densities J1 = Jn and J2 = Jw are given by (2.15) and

σ̄1 =
µ−1

n p

τp(µ
−1
n g̃1 + ni) + τn(p+ ni)

, σ̄2 =
3

2
T σ̄1 + (µnτ0)

−1,

f̄1 =
n2

i

τp(µ
−1
n g̃1 + ni) + τn(p+ ni)

, f̄2 =
3

2
T f̄1 − J̃nVx +

3

2
(µnτ0)

−1TLg̃1.

After time discretization with the 2-step BDF (3.1) we obtain at time tm+1 =
(m+ 1)△t

−Jj,x + σjgj = fj , Jj = gj,x −
gj

T
Vx, j = 1, 2, (3.2)

where

σj = σ̄j +
3

2
(µn△t)

−1gj , fj = f̄j + 2(µn△t)
−1g

(m)
j −

1

2
(µn△t)

−1g
(m−1)
j

and g
(m)
j and g

(m−1)
j are the values of gj from the previous time steps.

In the following we explain the spatial discretization of (3.2) using mixed finite
elements. In the case σj = 0, the use of the lowest-order Raviart-Thomas elements
[37] guarantees that the resulting stiffness matrix is an M-matrix. This provides a
positivity-preserving numerical scheme, i.e., the discrete particle densities stay posi-
tive if they are positive initially and on the boundary. Unfortunately, this property
generally does not hold in the presence of the zeroth-order term σigi. Marini and
Pietra [33] have developed finite elements which guarantee the M-matrix property
even with zeroth-order terms. They have been successfully applied to the energy-
transport equations in one and two space dimensions [13, 23, 24].

We consider (3.2) in the interval (0, 1) with Dirichlet boundary conditions (see
section 2.3) and with Robin boundary conditions (see section 4). For convenience,
we omit the index j in (3.2). We introduce the uniform mesh xi = ih, i = 0, . . . , N ,
where N ∈ N and h = 1/N . In order to deal with the convection dominance due
to high electric fields, we use exponential fitting. Assume in the following that the
temperature is given by a piecewise constant function T (see (3.6) for the definition of
T ) and that the electric potential V is a given piecewise linear function. Then we define
a local Slotboom variable by y = exp(−V/T )g in each subinterval Ii = (xi−1, xi).
Equation (3.2) can be written as

e−V/TJ − yx = 0, −Jx + σeV/T y = f.

The ansatz space for the current density J consists of piecewise polynomials of
the form ψi(x) = ai + biPi(x) on each Ii with constants ai, bi and second-order
polynomials Pi(x) which are defined as follows. Let P (x) be the unique second-order

polynomial satisfying
∫ 1

0
P (x)dx = 0, P (0) = 0, and P (1) = 1. Then P (x) = 3x2−2x.

We define Pi(x) (depending on V ) by

Pi(x) = −P
(xi − x

h

)
for imin = i− 1,

Pi(x) = P
(x− xi−1

h

)
for imin = i,

where imin is the boundary node of Ii at which the potential attains its minimum.
Notice that the minimum is always attained at the boundary since V is linear on Ii.
If V is constant in Ii, we define Pi(x) = P ((x− xi−1)/h).
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Now we introduce the finite-dimensional spaces:

Vh = {ψ ∈ L2(0, 1) : ψ(x) = ai + biPi(x) in Ii, i = 1, . . . , N},

Wh = {φ ∈ L2(0, 1) : φ is constant in Ii, i = 1, . . . , N},

Γh,ξ = {q is defined at the nodes x0, . . . , xN , q(x0) = ξ(0), q(xN ) = ξ(1)}.

The mixed-hybrid finite-element approximation of (3.2) is as follows. Find Jh ∈ Vh,
ḡh ∈Wh, and gh ∈ Γh,gD

such that

N∑

i=1

( ∫

Ii

QiJhψdx+

∫

Ii

Siḡhψxdx−
[
e−V/T ighψ

]xi

xi−1

)
= 0, (3.3)

N∑

i=1

(
−

∫

Ii

Jh,xφdx+

∫

Ii

σḡhφdx
)

=

N∑

i=1

∫

Ii

fφdx, (3.4)

N∑

i=1

[
qJh

]xi

xi−1
= 0 (3.5)

for all ψ ∈ Vh, φ ∈Wh, and q ∈ Γh,0, where gD denotes the Dirichlet boundary values
of g, and

Qi =
1

h

∫

Ii

e−V (x)/T idx, Si = e−Vmin/T i , i = 1, . . . , N,

are introduced in order to treat accurately large gradients of the potential [33]. Here,
Vmin denotes the minimal value of V on Ii. Equation (3.3) is the weak formulation of
the second equation in (3.2), together with the inverse of the Slotboom transformation.
Notice that the discrete inverse transformation is not the same for the variables ḡh

and gh. Equation (3.4) is the discrete weak version of the first equation in (3.2). The
third equation (3.5) implies the continuity of Jh at the nodes. Clearly, in the case of
Robin boundary conditions, these equations have to be modified appropriately.

The additional variables Jh and ḡh can be eliminated by static condensation. For
this, we write the weak formulation in matrix-vector notation for the vectors of nodal
values similarly as in [23]:



A B̃⊤ −C̃⊤

−B D 0
C 0 0






Jh

ḡh

gh


 =




0
F
0


 .

The matrices A ∈ R
2N×2N , B ∈ R

N×2N , C ∈ R
(N−1)×2N , and D ∈ R

N×N are given
by the corresponding elementary matrices associated with the interval Ii, denoted by
the superscript i:

Ai
jk = Qi

∫

Ii

ψjψkdx, Bi
jk =

∫

Ii

φjψk,xdx,

Ci
jk =

[
qjψk

]xi

xi−1
, Di

jk =

∫

Ii

σφjφkdx,

where ψk, φk, and qk are the canonical basis functions of the corresponding spaces.
Furthermore, the matrices B̃ and C̃ are given by the elementary matrices

B̃i = SiB
i, C̃i

jk =
[
e−Vj/T iqjψk

]xi

xi−1
,
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and the right-hand side F represents the integral on the right-hand side of (3.4).
Now, static condensation as in [23] can be applied. As the matrix A has a diagonal

structure, it can be easily inverted, which allows to eliminate Jh. A similar argument
for BA−1B̃⊤ +D allows to eliminate gh. This leads to the system

Mḡh = G.

The stiffness matrix M has a tridiagonal structure with diagonal elements

Mii =
1

h

(
Ni+1+

Vi+1 − Vi

2T i+1

+Ni−
Vi − Vi−1

2T i

)
+

hσi

γiσi + 1
Pi(xi)−

hσi+1

γi+1σi+1 + 1
Pi+1(xi),

where

Ni =
Vi − Vi−1

2T i

coth
Vi − Vi−1

2T i

, γi =
2

15
h2Qie

Vmin/T i ,

Vi = V (xi), σi is the restriction of the piecewise constant function σ to Ii, and the
elements on the secondary diagonals are

Mi,i+1 =
1

h

(
−Ni+1 +

Vi+1 − Vi

2T i+1

)
, Mi+1,i =

1

h

(
−Ni −

Vi − Vi−1

2T i

)
.

It is not difficult to see that M is an M-matrix. In particular, it holds Mij ≤ 0 for
all i 6= j. In view of the construction of the polynomial Pi, it holds either Pi(xi) = 1
and Pi(xi−1) = 0 or Pi(xi) = 0 and Pi(xi−1) = −1. Thus Mii ≥ 0.

The components of the vector G are given by

Gi =
hfi

γiσi + 1
Pi(xi) −

hfi+1

γi+1σi+1 + 1
Pi+1(xi+1),

where fi denotes the restriction of the piecewise constant function f (see (3.4)) to
Ii. Thus, for nonnegative f , also G is nonnegative. Since M is an M-matrix, this
shows the nonnegativity of the solution. For the equation for the particle densities, a
nonnegative right-hand side f can be achieved by adjusting the size of the time step.
We cannot guarantee generally nonnegativity of the right-hand side for the energy
equation since the term −JnVx may be negative and large. However, we observed
that −JnVx is negative in few cases only, and by adjusting the step size in space and
time we always obtained positive solutions even for negative values of the right-hand
side.

The eliminated variables ḡh and Jh can be computed by the following relations:

ḡi
h =

1

γiσi + 1
(gimin

h + γifi),

J i
h = Ni

gi
h − gi−1

h

h
−
gi

h + gi−1
h

2T i

Vi − Vi−1

2T i

+
h

γiσi + 1
(gimin

h σi − fi)Pi(x).

In order to complete the scheme, we still have to specify how the piecewise con-
stant temperature T is defined. The temperature is implicitly defined in terms of g1
and g2, T = 2g2/3g1. Hence, we define

T i =
1

2
(Ti + Ti−1), where Ti =

2ḡi
2,h

3ḡi
1,h

. (3.6)
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Parameter Physical meaning Numerical value
Ly extension of device in y-direction 6 · 10−7 m
Lz extension in z-direction 10−6 m
q elementary charge 1.6 · 10−19 As
ǫs permittivity constant 10−12 As/Vcm
UT thermal voltage at TL = 300K 0.026 V
µn/µp low-field carrier mobilities 1500/450 cm2/Vs
τn/τp carrier lifetimes 10−6/10−5 s
ni intrinsic density 1016 m−3

τ0 energy relaxation time 4 · 10−13 s
Table 4.1

Physical parameters for a silicon pn-junction diode.

For each time step, we have to solve a discrete nonlinear system corresponding
to the discretized semiconductor equations and the network model. The Newton
method is applied to the whole system. The temperature is updated during the
Newton iterations only if

‖(g1,h, g2,h, ph, Vh)new − (g1,h, g2,h, ph, Vh)old‖2 ≤ max{ε, c‖T new − T‖d
2},

where the parameters ε = 10−7, c = 0.01, and d = 0.08 are chosen similarly as in [23].
For the first time step we apply the implicit Euler method (BDF1).

4. Numerical examples. In this section, we present the numerical results of
two coupled circuit-semiconductor models, a pn-junction diode with time-depending
voltage and a rectifier circuit (Graetz bridge) with four pn diodes.

4.1. A pn diode with time-depending voltage. We consider a silicon pn-
junction with a time-depending voltage source. The diode is assumed to be homoge-
neous in the y- and the z-direction such that a one-dimensional approach is suitable.
In order to unscale the current densities and to obtain a current (and not a current
density), the size of the diode in the y- and z-direction are specified (see Table 4.1).
The quasi one-dimensional diode consists of a p-doped region with length L/2 and
minimal doping profile −C0 and of a n-doped region with the same length and with
a maximal doping of C0. We have used the values L = 0.1µm or L = 0.6µm and
C0 = 1022 m−3 or C0 = 5 · 1023 m−3, respectively. The doping profile is slightly
smoothed using the tanh function (see, e.g. [26]). The circuit operates with 1 GHz,
i.e., the applied voltage equals v(t) = U0 sin(2πωt) with maximal voltage U0 = 1.5 V
and frequency ω = 109 Hz. The physical parameters are collected in Table 4.1. We
refer to [41] for more details about carrier life-times.

We have used a uniform spatial grid with 101 nodes and a uniform time step
△t = 10−13 s. The time step is rather small; this can be explained by the fact that
we need careful computations at the switching point when the voltage changes from
forward to backward bias and vice versa. An adaptive time stepping procedure would
certainly allow to choose larger time steps; we plan to implement this in the future.

Initially, the semiconductor device is assumed to be in thermal equilibrium, i.e.,
the total current of electrons and holes vanishes. Thus, the initial node potentials and
the current densities are taken to be zero. The initial displacement current is then
defined by jd,S(·, 0) = λ2(Veq)x, where Veq denotes the thermal equilibrium potential
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given by

λ2(Veq)xx = e−Veq − eVeq − C(x), Veq(0, ·) = Vbi(0), Veq(1, ·) = Vbi(1).

Recall that Vbi is the built-in potential introduced in section 2.3. The definition of
jd,S ensures that the first equation in (2.16) is fulfilled. Summarizing, the initial
conditions read as follows:

e = 0, iV = 0, jS = 0, jd,S = λ2(Veq)x,
g1 = µnneq, g2 = 3

2µnneq, p = peq, V = Veq, T = 1,

where neq = e−Veq and peq = eVeq are the thermal equilibrium particle densities. A
computation shows that the initial conditions are consistent for the coupled system
of PDAEs according to [28].
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Fig. 4.1. Energy density in a pn diode with lengths L = 0.1 µm (upper row), L = 0.6 µm (lower
row) and maximal doping concentrations C0 = 1022 m−3 (left column), C0 = 5 · 1023 m−3 (right
column).

In Figure 4.1 we present the electron density in pn diodes with different size L
and different maximal doping concentrations C0. We observe that a higher doping
profile gives a larger energy density as it provides more (high-energetic) electrons in
the device. The energy density also increases for smaller devices. This coincides with
the experience that smaller devices heat up stronger than larger ones.

In Figure 4.2 (left) the electron temperature in a 0.6µm diode with a maximal
doping level of 1022 m−3 at various times ti (and corresponding voltages v(ti)) is
shown. We observe hot electrons in the n-region and close to the p-doped terminal. At
the junction, cooling effects occur for moderate applied voltages. This thermoelectric
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effect is well known in pn diodes and it has important implications for the device
design in which heat management is needed (see, for instance, [36]).
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Fig. 4.2. Left: Electron temperature in a 0.6 µm diode with maximal doping level of 1022 m−3

for different times t and corresponding voltages v(t). Right: Zoom for the bias v(t) = 1V.

At the left p-doped terminal, there is a boundary layer which can be resolved only
in high resolution (see Figure 4.2 right). In fact, there are boundary layers also for the
electron density n as well as for the energy density w = 3

2nT (Figure 4.3). This seems
to indicate that the use of Dirichlet boundary conditions for n and w (or, equivalently,
for n and T ) is not appropriate. For the drift-diffusion equations, Yamnahakki [50]
has shown that Robin-type boundary conditions provide more accurate results than
Dirichlet conditions. This can be explained roughly by the fact that the Robin-type
conditions are derived in second order from the semiconductor Boltzmann equations,
whereas the Dirichlet conditions are only of order one. Thus, a different choice of the
boundary conditions might be more appropriate.
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Fig. 4.3. Logarithms of the electron density n (left) and energy density w (right) in a 0.6 µm
diode with a doping level of 1022m−3 biased with 1V employing Dirichlet boundary conditions for
n and w.

As a first step, we propose the following Robin conditions,

nx + α(n− nL) = 0, wx + β(w − wL) = 0 at x = 0, 1,

which interpolate between Dirichlet and Neumann conditions. Here, nL is given
by (2.14), wL = 3

2nLTL, TL is the lattice temperature (300 K), and α and β are
parameters. Notice that this implies Robin boundary conditions for T . Clearly, a
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derivation of suitable higher-order boundary conditions from the Boltzmann equation
in the energy-transport context would be necessary, but we postpone such an analysis
to a future work. Furthermore, the boundary condition for the temperature should
be compatible with the principle of local energy balance [49]. We do not analyze this
property since we are more interested in the numerical solution of the coupled system
of PDAEs.

Thanks to the new boundary conditions, the boundary layers for n and w disap-
pear for an appropriate choice of the parameters α and β (Figure 4.4). The dependence
of the temperature on these parameters is shown in Figure 4.5. These results indicate
that the choice of the parameters is crucial for the temperature profile at the bound-
ary. On the other hand, it can be seen that the current values are almost independent
of the choice of α and β.
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Fig. 4.4. Logarithms of the electron density n (left) and energy density w (right) in a 0.6 µm
diode with a doping level of 1022m−3 biased with 1V employing Robin boundary conditions for n
and w and the parameters α = −10, β = −15.
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Fig. 4.5. Electron temperature in a 0.6 µm diode with a doping level of 1022m−3 biased with
1V employing Robin boundary conditions for n and w for different choices of α and β.

4.2. Rectifying circuit. The second example is concerned with a rectifying
circuit containing four pn silicon diodes (Figure 4.6). Each of the diodes have the
length L = 0.1µm (and Ly = 0.1µm, Lz = 2µm) or L = 1µm (and Ly = 1µm,
Lz = 20µm) and a maximal doping of 1022 m−3. The remaining physical parameters
are listed in Table 4.1. The resistance in the circuit equals R = 100Ω and the voltage
source is given by v(t) = U0 sin(2πωt) with U0 = 5V and ω = 1GHz or ω = 10GHz.
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h/L RE(n) RE(w) RE(p) RE(V ) RE(T ) RE(jS) RE(circuit)

0.04 8.7 · 10−2 1.3 · 10−1 6.8 · 10−2 2.3 · 10−2 1.0 · 10−1 1.1 · 10−1 1.5 · 10−2

0.02 3.5 · 10−2 5.3 · 10−2 2.7 · 10−2 1.2 · 10−2 7.3 · 10−2 5.0 · 10−2 6.9 · 10−3

0.01 1.1 · 10−2 1.7 · 10−2 8.0 · 10−3 4.1 · 10−3 4.7 · 10−2 1.7 · 10−2 2.3 · 10−3

0.005 2.4 · 10−3 3.9 · 10−3 1.8 · 10−3 1.1 · 10−3 2.3 · 10−2 4.1 · 10−3 5.7 · 10−4

rate 1.73 1.67 1.75 1.47 0.72 1.60 1.59
Table 4.2

Relative error (RE) for different space step sizes. The time step size is △t = 10−12s.

△t RE(n) RE(ǫ) RE(p) RE(V ) RE(T ) RE(jS) RE(circuit)

10 2.0 · 10−3 1.6 · 10−3 1.9 · 10−3 6.0 · 10−4 5.6 · 10−3 2.1 · 10−3 3.6 · 10−4

8 1.5 · 10−3 1.1 · 10−3 1.4 · 10−3 5.2 · 10−4 4.5 · 10−3 1.6 · 10−3 3.0 · 10−4

5 7.3 · 10−4 5.7 · 10−4 6.8 · 10−4 3.5 · 10−4 2.8 · 10−3 1.5 · 10−3 2.2 · 10−4

4 5.5 · 10−4 4.1 · 10−4 5.1 · 10−4 3.1 · 10−4 2.7 · 10−3 1.4 · 10−3 1.8 · 10−4

rate 1.38 1.51 1.41 0.66 0.76 0.56 0.74
Table 4.3

Relative error (RE) for different time step sizes. The space step size is h = 0.0025L; △t is
measured in units of 10−13 s.

We use the same initial conditions as in the previous subsection. For the Graetz
bridge, we may employ Dirichlet or Robin boundary conditions as these conditions
effect the behavior of the temperature on the boundary but less the current values.
Only the profile of the electron density changes slightly. Here, for simplicity, we have
employed Robin conditions with large values for α and β, which almost gives Dirichlet
conditions.

Vin

Vout

Fig. 4.6. Rectifier circuit.

The numerical simulations are performed on a uniform grid with 51 nodes for
each diode. For simplification, we employed the constant time step 0.5 ps. This time
step is needed for accurate computations for the diodes at reverse bias and at the
switching point. The implementation of an time-adaptive grid would generally allow
to choose much larger time steps.

The numerical convergence is tested on a numerical solution on a fine grid with
401 nodes and time step △t = 5 · 10−14 s. The reference solution simulates the circuit
during one oscillation in the time interval [0, 10−10 s]. In Tables 4.2 and 4.3 the relative
errors with respect to the L2 norm and the numerical convergence orders are depicted.
Recall that w = 3

2nT denotes the thermal energy. The relative error RE(circuit) of
the circuit is the L2-error of the node potentials and the branch current.

The spatial convergence orders for the densities and the temperature are slightly
smaller than those obtained for the uncoupled energy-transport equations [23] which
shows that the coupling plays an important role. The temperature T is obtained from
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the electron density n and the energy density w by averaging the quantity T = 2w/3n,
which may explain the rather low convergence order of T . The temporal convergence
orders are smaller than those with respect to space discretization, probably due to
the coupling.

In Figure 4.7 the energy density in one of the diodes during one oscillation of the
circuit for two different device sizes and frequencies is presented. Here, we observe
that the energy density is higher for the larger device.
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Fig. 4.7. Energy density in a pn diode with size L = 0.1 µm and frequency 10GHz (left);
L = 1 µm and frequency 1GHz (right). The maximal doping is 1022 m−3.

Next, we investigate the behavior of the current through one diode and through
the circuit using the transient or stationary energy-transport equations (ET) and the
transient drift-diffusion model (DD). Figure 4.8 shows the current from simulations
of a 1µm diode in a 1 GHz circuit. The figure clearly shows the rectifying behavior
of the circuit. The largest current is obtained from the drift-diffusion model since
we have assumed a constant electron mobility such that the drift is unbounded with
respect to the modulus of the electric field. The stationary energy-transport model
is not able to catch the capacitive effect at the junction. Similar statements hold for
the output signal of the circuit.

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12

14

16
x 10

−3

time [ns]

cu
rr

en
t [

m
A

]

 

 

ET transient

ET stationary

DD transient

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [ns]

ou
tp

ut
 s

ig
na

l [
V

]

 

 

ET transient

ET stationary

DD transient

Fig. 4.8. Left: Current through a 1 µm diode in a 1GHz circuit. Right: Output signal of the
circuit.

Finally, we consider a Graetz bridge with a larger frequency of 10 GHz and smaller
device size of 0.1µm. The current through one of the diodes of the circuit and the
output signal of the circuit is presented in Figure 4.9. Here, the differences between
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the three models are more pronounced. Clearly, the capacitive effect is larger for
this rather high frequency. As in the previous example, the stationary model cannot
capture this effect. Moreover, we observe a slight time shift between the stationary
and the transient energy-transport equations.
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Fig. 4.9. Left: Current through a 0.1 µm diode in a 10GHz circuit. Right: Output signal of
the circuit.

5. Conclusion. In this paper we have presented for the first time the numerical
coupling of the transient energy-transport model for semiconductor devices with cir-
cuit equations from modified nodal analysis, leading to a system of partial differential-
algebraic equations. The numerical comparison with the drift-diffusion model shows
the strong influence of the carrier heating on the current density. In some physical
situations, the stationary energy-transport model seems to provide reasonable results,
compared to the other two models. However, in high-frequency circuits, the use of
the transient model seems to be necessary.

We have also compared the effect of the boundary conditions for the device.
Boundary layers which appear when standard Dirichlet conditions for the particle
density and energy density are employed disappear if appropriate Robin boundary
conditions for these variables are used.

Notice that we have only considered the heating of the electrons, and the lattice
temperature is assumed to be constant. Clearly, the hot-electron flow will influence
the lattice temperature and heat up the semiconductor device. This modeling is
important to identify hot spots in VLSI design. The transfer of thermal energy can
be modeled, for instance, by a heat equation for the lattice temperature which couples
through a relaxation-time term to the electron temperature (see, e.g. [49] or chapter
3.1.4. in [19]). The numerical solution of the corresponding coupled model will be
performed in a future work.
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