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Abstract. A structure-preserving implicit Euler finite-element scheme for a degenerate
cross-diffusion system for ion transport is analyzed. The scheme preserves the nonnegativ-
ity and upper bounds of the ion concentrations, the total relative mass, and it dissipates
the entropy (or free energy). The existence of discrete solutions to the scheme and their
convergence towards a solution to the continuous system is proved. Numerical simulations
of two-dimensional ion channels using the finite-element scheme with linear elements and
an alternative finite-volume scheme are presented. The advantages and drawbacks of both
schemes are discussed in detail.

1. Introduction

Ion channels are pore-forming proteins that create a pathway for charged ions to pass
through the cell membrane. They are of great biological importance since they contribute to
processes in the nervous system, the coordination of muscle contraction, and the regulation
of secretion of hormones, for instance. Ion-channel models range from simple systems of
differential equations [18] as well as Brownian and Langevin dynamics [20, 26] to the
widely used Poisson–Nernst–Planck model [11]. The latter model fails in narrow channels
since it neglects the finite size of the ions. Finite-size interactions can be approximately
captured by adding suitable chemical potential terms [16, 27], for instance. In this paper,
we follow another approach. Starting from a random walk on a lattice, one can derive in
the diffusion limit an extended Poisson–Nernst–Planck model, taking into account that ion
concentrations might saturate in the narrow channel. This leads to the appearance of cross-
diffusion terms in the evolution equations for the ion concentrations [3, 32]. These nonlinear
cross-diffusion terms are common in diffusive multicomponent systems [22, Chapter 4]. A
lattice-free approach, starting from stochastic Langevin equations, can be found in [2].
The scope of this paper is to present a new finite-element discretization of the degenerate
cross-diffusion system and to compare this scheme to a previously proposed finite-volume
method [5].
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The dynamics of the ion concentrations u = (u1, . . . , un) is governed by the evolution
equations

(1) ∂tui + divFi = 0, Fi = −Di

(
u0∇ui − ui∇u0 + u0uiβzi∇Φ

)
in Ω, t > 0,

where u0 = 1−
∑n

i=1 ui denotes the solvent concentration, Di > 0 is the diffusion constant,
zi the ion charge, and β a mobility parameter. To be precise, ui is the mass fraction of
the ith ion, and we refer to

∑n
i=0 ui = 1 as the total relative mass, just meaning that the

ion-solvent mixture is saturated. The electric potential Φ is self-consistently given by the
Poisson equation

(2) −λ2∆Φ =
n∑

i=1

ziui + f in Ω,

with the permanent charge density f = f(x) and the scaled permittivity constant λ2. The
equations are solved in a bounded domain Ω ⊂ R

d with smooth boundary ∂Ω. Equations
(1) are equipped with initial data u(0) = uI satisfying 0 <

∑n
i=1 u

I
i < 1. The boundary ∂Ω

consists of an insulating part ΓN and the union ΓD of contacts with external reservoirs:

Fi · ν = 0 on ΓN , ui = ui on ΓD, i = 1, . . . , n,(3)

∇Φ · ν = 0 on ΓN , Φ = Φ on ΓD.(4)

System (1)-(2) can be interpreted as a generalized Poisson–Nernst–Planck model. The
usual Poisson–Nernst–Planck equations [11] follow from (1) by setting u0 = const. In
the literature, there are several generalized versions of the standard model. For instance,
adding a term involving the relative velocity differences in the entropy production leads
to cross-diffusion expressions different from (1) [19]. This model, however, does not take
into account effects from the finite ion size. Thermodynamically consistent Nernst–Planck
models with cross-diffusion terms were suggested in [9], but the coefficients differ from
(1). The model at hand was derived in [3, 32] from a lattice model taking into account
finite-size effects.
Model (1)-(4) contains some mathematical difficulties. First, its diffusion matrix A(u) =

(Aij(u)) ∈ R
n×n, given by Aij(u) = Diui for i 6= j and Aii(u) = Di(u0+ui) for i = 1, . . . , n

is generally neither symmetric nor positive definite. Second, it degenerates in regions where
the concentrations vanish. Third, the standard maximum principle cannot be applied to
achieve 0 ≤ ui ≤ 1 for i = 1, . . . , n. In the following, we explain how these issues can be
solved.
The first difficulty can be overcome by introducing so-called entropy variables wi defined

from the entropy (or, more precisely, free energy) of the system,

(5) H(u) =

∫

Ω

h(u)dx, where h(u) =
n∑

i=0

∫ ui

ui

log
s

ui

ds+
βλ2

2
|∇(Φ− Φ)|2.

Indeed, writing equations (1) in terms of the entropy variables w1, . . . , wn, given by

∂h

∂ui

= wi − wi, where(6)
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wi = log
ui

u0

+ βziΦ, wi = log
ui

u0

+ βziΦ, i = 1, . . . , n,

it follows that

(7) ∂tui(w,Φ) = div

( n∑

j=1

Bij(w,Φ)∇wj

)
,

where the new diffusion matrix B = (Bij(w,Φ)) ∈ R
n×n with

Bij(w,Φ) = Diu0(w,Φ)ui(w,Φ)δij , i, j = 1, . . . , n,

is symmetric and positive semidefinite (in fact, it is even diagonal). This procedure has a
thermodynamical background: The quantities ∂h/∂ui are known as the chemical potentials,
and B is the so-called mobility or Onsager matrix [8].
The transformation to entropy variables also solves the third difficulty. Solving the

transformed system (7) for w = (w1, . . . , wn), the concentrations are given by

(8) ui(w,Φ) =
exp(wi − βziΦ)

1 +
∑n

j=1 exp(wj − βzjΦ)
, i = 1, . . . , n,

showing that ui is positive and bounded from above:

(9) u(w,Φ) ∈ D :=

{
u ∈ (0, 1)n :

n∑

i=1

ui < 1

}
.

Moreover, the entropy structure leads to gradient estimates via the entropy inequality

dH

dt
+

1

2

∫

Ω

n∑

i=1

Diu0ui|∇wi|
2dx ≤ C,

where the constant C > 0 depends on the Dirichlet boundary data.
Still, we have to deal with the second difficulty, the degeneracy. It is reflected in the

entropy inequality since we lose the gradient estimate if ui = 0 or u0 = 0. This problem is
overcome by using the “degenerate” Aubin-Lions lemma of [21, Appendix C] or its discrete
version in [5, Lemma 10].
These ideas were employed in [3] for n = 2 ion species and without electric potential

to show the global existence of weak solutions. The existence result was extended to an
arbitrary number of species in [21, 33], still excluding the potential. A global existence
result for the full problem (1)-(4) was established in [15].
We are interested in devising a numerical scheme which preserves the structure of the

continuous system, like nonnegativity, upper bounds, and the entropy structure, on the
discrete level. A first result in this direction was presented in [5], analyzing a finite-
volume scheme preserving the aforementioned properties. However, the scheme preserves
the nonnegativity and upper bounds only if the diffusion coefficients Di are all equal, and
the discrete entropy is dissipated only if additionally the potential term vanishes. In this
paper, we propose a finite-element scheme for which the structure preservation holds under
natural conditions.
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Before we proceed, we briefly discuss some related literature. While there are many
results for the classical Poisson–Nernst–Planck system, see for example [25, 29], there
seems to be no numerical analysis of the ion-transport model (1)-(4) apart from the finite-
volume scheme in [5] and simulations of the stationary equations in [4]. Let us mention
some other works on finite-element methods for related cross-diffusion models. In [1], a
convergent finite-element scheme for a cross-diffusion population model was presented. The
approximation is not based on entropy variables, but a regularization of the entropy itself
that is used to define a regularized system. The same technique was employed also in
[14]. A lumped finite-element method was analyzed in [13] for a reaction-cross-diffusion
equation on a stationary surface with positive definite diffusion matrix. In [23], an implicit
Euler Galerkin approximation in entropy variables for a Poisson–Maxwell–Stefan system
was shown to converge. Recently, an abstract framework for the numerical approximation
of evolution problems with entropy structure was presented in [10]. The discretization is
based on a discontinuous Galerkin method in time and a Galerkin approximation in space.
When applied to cross-diffusion systems, this approach also leads to an approximation in
entropy variables that preserves the entropy dissipation. However, neither the existence of
discrete solutions nor the convergence of the scheme are discussed.
Our main results are as follows:

• We propose an implicit Euler finite-element scheme for (1)-(4) in entropy variables
with linear finite elements (Section 2). The scheme preserves the nonnegativity
of the concentrations and the upper bounds, the total relative mass, and it dissi-
pates the discrete entropy associated to (5) if the boundary data are in thermal
equilibrium; see Fthe Remark 1.

• We prove the existence of discrete solutions (Lemma 1) and their convergence to
the solution to (1)-(4) when the approximation parameters tend to zero (Theorem
3). The convergence rate can be only computed numerically and is approximately
of second order (with respect to the L2 norm).

• The finite-element scheme and the finite-volume scheme of [5] (recalled in Section
3) are applied to two test cases in two space dimensions: a calcium-selective ion
channel and a bipolar ion channel (Section 4). Static current-voltage curves show
the rectifying behavior of the bipolar ion channel.

• The advantages and drawbacks of both schemes are discussed (Section 5). The
finite-element scheme allows for structure-preserving properties under natural as-
sumptions, while the finite-volume scheme can be analyzed only under restrictive
conditions. On the other hand, the finite-volume scheme allows for vanishing initial
concentrations and faster algorithms compared to the finite-element scheme due to
the highly nonlinear structure of the latter formulation.

2. The finite-element scheme

2.1. Notation and assumptions. Before we define the finite-element discretization, we
introduce our notation and make precise the conditions assumed throughout this section.
We assume:



COMPARISON OF A FINITE-ELEMENT AND FINITE-VOLUME SCHEME 5

(H1) Domain: Ω ⊂ R
d (d = 2 or d = 3) is an open, bounded, polygonal domain with

∂Ω = ΓD ∪ ΓN ∈ C0,1, ΓD ∩ ΓN = ∅, ΓN is open in ∂Ω, and meas(ΓD) > 0.
(H2) Parameters: T > 0, Di > 0, β > 0, and zi ∈ R, i = 1, . . . , n.
(H3) Background charge: f ∈ L∞(Ω).
(H4) Initial and boundary data: uI

i ∈ H2(Ω) and ui ∈ H2(Ω) satisfy uI
i > 0, ui > 0 for

i = 1, . . . , n, 1−
∑n

i=1 u
I
i > 0, 1−

∑n
i=1 ui > 0 in Ω, and Φ ∈ H2(Ω) ∩ L∞(Ω).

The H2 regularity of the initial and boundary data ensures that the standard interpola-
tion converges to the given data, see (10) below.
We consider equations (1) on a finite time interval (0, T ) with T > 0. For simplicity, we

use a uniform time discretization with time step τ > 0 and set tk = kτ for k = 1, . . . , N ,
where N ∈ N is given and τ = T/N .
For the space discretization, we introduce a family Th (h > 0) of triangulations of Ω,

consisting of open polygonal convex subsets of Ω (the so-called cells) such that Ω = ∪K∈Th
K

with maximal diameter h = maxK∈Th
diam(K). We assume that the corresponding family

of edges E can be split into internal and external edges, E = Eint ∪ Eext with Eint = {σ ∈
E : σ ⊂ Ω} and Eext = {σ ∈ E : σ ⊂ ∂Ω}. Each exterior edge is assumed to be an element
of either the Dirichlet or Neumann boundary, i.e. Eext = ED

ext ∪ EN
ext. For given K ∈ Th, we

define the set EK of the edges of K, which is the union of internal edges and edges on the
Dirichlet or Neumann boundary, and we set EK,int = EK ∩ Eint.
In the finite-element setting, the triangulation is completed by the set of nodes {pj : j ∈

J}. We impose the following regularity assumption on the mesh. There exists a constant
γ ≥ 1 such that

ρK ≤ hK ≤ γρK for all K ∈ Th,

where ρK is the radius of the incircle and hK is the diameter of K.
We associate with Th the usual conforming finite-element spaces

S(Th) := {ξ ∈ C0(Ω) : ξ|K is linear for all K ∈ Th} ⊂ H1(Ω),

SD(Th) := S(Th) ∩H1
D(Ω),

and H1
D(Ω) is the set of H

1(Ω) functions that vanish on ΓD in the weak sense. Let {χj}j∈J
be the standard basis functions for S(Th) with χj(pi) = δij for all i, j ∈ J . We define the
nodal interpolation operator Ih : C0(Ω) → S(Th) via (Ihv)(pj) = v(pj) for all v ∈ S(Th) and
j ∈ J . Due to the regularity assumptions on the mesh, Ih has the following approximation
property (see, e.g., [7, Chapter 3]):

(10) lim
h→0

‖φ− Ihφ‖H1(Ω) = 0 for all φ ∈ H2(Ω).

2.2. Definition of the scheme. To define the finite-element scheme, we need to approx-
imate the initial and boundary data. We set w0

i = Ih(log(u
I
i /u

I
0)) + βziΦ

0, where Φ0 is the
standard finite-element solution to the linear equation (2) with uI

i on the right-hand side.
Furthermore, we set wh = Ih(log(ui/u0) + βziΦ) and Φh = Ih(Φ).
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The finite-element scheme is now defined as follows. Given wk−1 ∈ S(Th)
n and Φk−1 ∈

S(Th), find wk − wh ∈ SD(Th)
n and Φk − Φh ∈ SD(Th) such that

1

τ

∫

Ω

(
u(wk,Φk)− u(wk−1,Φk−1)

)
· φ dx

+

∫

Ω

∇φ : B(wk,Φk)∇wkdx+ ε

∫

Ω

(wk − wh) · φ dx = 0,(11)

λ2

∫

Ω

∇Φk · ∇θdx =

∫

Ω

( n∑

i=1

ziui(w
k,Φk) + f

)
θdx(12)

for all φ ∈ SD(Th)
n and θ ∈ SD(Th). The symbol “:” signifies the Frobenius matrix

product; here, the expression reduces to

∇φ : B(wk,Φk)∇wk =
n∑

i=1

Diui(w
k,Φk)u0(w

k,Φk)∇φi · ∇wk
i .

The term involving the parameter ε > 0 is only needed to guarantee the coercivity of
(11)-(12). Indeed, the diffusion matrix B(wk,Φk) degenerates when wk

i → −∞, and the
corresponding bilinear form is only positive semidefinite. To emphasize the dependence
on the mesh and ε, we should rather write w(h,ε,k) instead of wk and similarly for Φk;
however, for the sake of presentation, we will mostly omit the additional superscripts. The
original variables are recovered by computing uk = u(wk,Φk) according to (8). Setting
u(τ)(x, t) = uk(x) for x ∈ Ω, t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N , and u(τ)(·, 0) = Ihu

I as well
as similarly for Φ(τ), we obtain piecewise constant in time functions.

2.3. Existence of discrete solutions. The first result concerns the existence of solutions
to the nonlinear finite-element scheme (11)-(12).

Lemma 1 (Existence of solutions and discrete entropy inequality). There exists a solution
to scheme (11)-(12) that satisfies the following discrete entropy inequality:

(13) H(uk) + τ

∫

Ω

∇(wk − wh) : B(wk,Φk)∇wkdx+ ετ‖wk − wh‖
2
L2(Ω) ≤ H(uk−1),

where H is defined in (5) and uk = u(wk,Φk), uk−1 = u(wk−1,Φk−1) are defined in (8).

The proof of the lemma is similar to the proof of Theorem 1 in [15]. The main difference
is that in [15], a regularization term of the type ε((−∆)mwk + wk) has been added to
achieve via Hm(Ω) →֒ L∞(Ω) for m > d/2 compactness and L∞ solutions. In the finite-
dimensional setting, this embedding is not necessary but we still need the regularization
εwk to conclude coercivity. We conjecture that this regularization is just technical but
currently, we are not able to remove it. Note, however, that we can use arbitrarily small
values of ε in the numerical simulations such that the additional term does not affect the
solution practically.
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Proof of Lemma 1. Let y ∈ S(Th)
n and δ ∈ [0, 1]. There exists a unique solution Φk to (12)

with wk replaced by y +wh, satisfying Φk −Φh ∈ SD(Th), since the function Φ 7→ ui(y,Φ)
is bounded. Moreover, the estimate

(14) ‖Φk‖H1(Ω) ≤ C(1 + ‖Φh‖H1(Ω))

holds for some constant C > 0.
Next, we consider the linear problem

(15) a(v, φ) = F (φ) for all φ ∈ SD(Th)
n,

where

a(v, φ) =

∫

Ω

∇φ : B(y + wh,Φ
k)∇v dx+ ε

∫

Ω

v · φ dx,

F (φ) = −
δ

τ

∫

Ω

(
u(y + wh,Φ

k)− u(wk−1,Φk−1)
)
· φdx

− δ

∫

Ω

∇φ : B(y + wh,Φ
k)∇whdx.

The bilinear form a and the linear form F are continuous on SD(Th)
n. The equivalence of

all norms on the finite-dimensional space SD(Th) implies the coercivity of a,

a(v, v) ≥ ε‖v‖2L2(Ω) ≥ εC‖v‖2H1(Ω).

By the Lax-Milgram lemma, there exists a unique solution v ∈ SD(Th)
n to this problem.

This defines the fixed-point operator S : SD(Th)
n × [0, 1] → SD(Th)

n, S(y, δ) = v. The
inequality

εC‖v‖2H1(Ω) ≤ a(v, v) = F (v) ≤ C(τ)‖v‖H1(Ω)

shows that all elements v are bounded independently of y and δ and thus, all fixed points
v = S(v, δ) are uniformly bounded. Furthermore, S(y, 0) = 0 for all y ∈ SD(Th)

n. The
continuity of S follows from standard arguments and the compactness comes from the
fact that SD(Th)

n is finite-dimensional. By the Leray-Schauder fixed-point theorem, there
exists vk ∈ SD(Th)

n such that S(vk, 1) = vk, and wk := vk + wh is a solution to (11).
The discrete entropy inequality (13) is proven by using τ(wk − wh) ∈ SD(Th)

n as a test
function in (11) and exploiting the convexity of H,

∫

Ω

(uk − uk−1) · (wk − wh)dx =

∫

Ω

(uk − uk−1) · ∇h(uk)dx ≥ H(uk)−H(uk−1),

which concludes the proof. �

Remark 1 (Structure-preservation of the scheme). Lemma 1 shows that if the boundary
data is in thermal equilibrium, i.e. ∇wh = 0, then the finite-element scheme (11)-(12)
dissipates the entropy (5), i.e. H(uk) ≤ H(uk−1). Moreover, it preserves the invariant
region D, i.e. uk ∈ D, and the mass fraction uk

i is nonnegative and bounded by one.
The scheme conserves the total relative mass, i.e.

∑n
i=0 ‖u

k
i ‖L1(Ω) = 1, which is a direct

consequence of the definition of uk
0. �
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2.4. Uniform estimates. The next step is the derivation of a priori estimates uniform in
the parameters ε, τ , and h. To this end, we transform back to the original variable uk and
exploit the discrete entropy inequality (13).

Lemma 2 (A priori estimates). For the solution to the finite-element scheme from Lemma
1, the following estimates hold:

‖uk
i ‖L∞(Ω) + ετ

k∑

j=1

‖wj
i − wi,h‖

2
L2(Ω) ≤ C,(16)

τ

k∑

j=1

(
‖(uj

0)
1/2‖2H1(Ω) + ‖uj

0‖
2
H1(Ω) + ‖(uj

0)
1/2∇(uj

i )
1/2‖2L2(Ω)

)
≤ C,(17)

for i = 1, . . . , n, where here and in the following, C > 0 is a generic constant independent
of ε, τ , and h.

Proof. As the proof is similar to that one in the continuous setting, we give only a sketch.
Observe that the definition of the entropy variables implies that 0 < uk

i < 1 in Ω for
i = 1, . . . , n and k = 1, . . . , N . It is shown in the proof of Lemma 6 of [15] that

∇(wk − wh) : B(wk,Φk)∇wk ≥
Dmin

4

n∑

i=1

uk
i u

k
0

∣∣∣∣∇ log
uk
i

uk
0

∣∣∣∣
2

−
Dmin

2

n∑

i=1

|βzi∇Φk|2

−
Dmax

2

n∑

i=1

|∇wi|
2,

where Dmin = mini=1,...,n Di and Dmax = maxi=1,...,n Di. Then (13) gives

H(uk) + τ
Dmin

4

∫

Ω

n∑

i=1

uk
i u

k
0

∣∣∣∣∇ log
uk
i

uk
0

∣∣∣∣
2

dx+ ετ‖wk − wh‖
2
L2(Ω)

≤ H(uk−1) + τ
Dmin

2

n∑

i=1

|βzi∇Φk|2dx+ τ
Dmax

2

∫

Ω

n∑

i=1

|∇wi,h|
2dx.

We resolve this recursion to find that

H(uk) + τ
Dmin

4

k∑

j=1

∫

Ω

n∑

i=1

uj
iu

j
0

∣∣∣∣∇ log
uj
i

uj
0

∣∣∣∣
2

dx+ ετ
k∑

j=1

‖wj − wh‖
2
L2(Ω)

≤ H(u0) + τ
Dmin

2

k∑

j=1

∫

Ω

n∑

i=1

|βzi∇Φj|2dx+ τk
Dmax

2

∫

Ω

n∑

i=1

|∇wi,h|
2dx.

The right-hand side is bounded because of (14), τk ≤ T , and the boundedness of the
interpolation operator. Inserting the identity

n∑

i=1

uj
iu

j
0

∣∣∣∣∇ log
uj
i

uj
0

∣∣∣∣
2

= 4uj
0

n∑

i=1

|∇(uj
i )

1/2|2 + |∇uj
0|

2 + 4|∇(uj
0)

1/2|2,
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the estimates follow. �

2.5. Convergence of the scheme. The a priori estimates from the previous lemma allow
us to formulate our main result, the convergence of the finite-element solutions to a solution
to the continuous model (1)-(4).

Theorem 3 (Convergence of the finite-element solution). Let (u(h,ε,τ),Φ(h,ε,τ)) be an ap-

proximate solution constructed from scheme (11)-(12). Set u
(h,ε,τ)
0 = 1−

∑
i u

(h,ε,τ)
i . Then

there exist functions u0, u = (u1, . . . , un), and Φ, satisfying u(x, t) ∈ D (D is defined in
(9)), u0 = 1−

∑n
i=1 ui in Ω, the regularity

u
1/2
0 , u

1/2
0 ui, Φ ∈ L2(0, T ;H1(Ω)), ∂tui ∈ L2(0, T ;H1

D(Ω)
′)

for i = 1, . . . , n, such that as (h, ε, τ) → 0,

(u
(h,ε,τ)
0 )1/2 → u

1/2
0 , (u

(h,ε,τ)
0 )1/2u

(h,ε,τ)
i → u

1/2
0 ui strongly in L2(Ω× (0, T )),

Φ(h,ε,τ) → Φ strongly in L2(Ω× (0, T )),

and (u,Φ) are a weak solution to (1)-(4). In particular, for all φ ∈ L2(0, T ;H1
D(Ω)) and

i = 1, . . . , n, it holds that
∫ T

0

〈∂tui, φ〉 dt+Di

∫ T

0

∫

Ω

u
1/2
0

(
∇(u

1/2
0 ui)− 3ui∇u

1/2
0

)
· ∇φ dxdt

+Di

∫ T

0

∫

Ω

uiu0βzi∇Φ · ∇φ dxdt = 0,(18)

λ2

∫ T

0

∫

Ω

∇Φ · ∇φ dxdt =

∫ T

0

∫

Ω

( n∑

i=1

ziui + f

)
φ dxdt,(19)

where 〈·, ·〉 is the duality pairing in H1
D(Ω)

′ and H1
D(Ω), and the boundary and initial

conditions are satisfied in a weak sense.

Proof. We pass first to the limit (ε, h) → 0 and then τ → 0, since the latter limit can be

performed as in the proof of Theorem 1 in [15]. Fix k ∈ {1, . . . , N} and let u
(ε,h)
i = u

(ε,h,k)
i

and Φ(ε,h) = Φ(ε,h,k) be the approximate solution from Lemma 1. We set u
(ε,h)
0 = 1 −∑n

i=1 u
(ε,h)
i . Using the compact embedding H1(Ω) →֒ L2(Ω) and the a priori estimates

from Lemma 2, it follows that there exists a subsequence which is not relabeled such that,
as (ε, h) → 0,

u
(ε,h)
i ⇀∗ uk

i weakly* in L∞(Ω), i = 1, . . . , n,(20)

(u
(ε,h)
0 )1/2 ⇀ (uk

0)
1/2, Φ(ε,h) ⇀ Φk weakly in H1(Ω),(21)

u
(ε,h)
0 → uk

0, Φ(ε,h) → Φk strongly in L2(Ω),(22)

ε(w
(ε,h)
i − wi,h) → 0 strongly in L2(Ω).(23)
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Combining (17) and (21), we infer that (up to a subsequence)

(24) u
(ε,h)
i (u

(ε,h)
0 )1/2 ⇀ uk

i (u
k
0)

1/2 weakly in H1(Ω) and strongly in L2(Ω).

Next, let φ ∈ (H2(Ω)∩H1
D(Ω))

n. As we cannot use φi directly as a test function in (11),
we take Ihφ ∈ SD(Th)

n, where Ih is the interpolation operator, see (10). In order to pass
to the limit in (11), we rewrite the integral involving the diffusion matrix:

∫

Ω

∇(Ihφ) : B(w(ε,h),Φ(ε,h))∇w(ε,h)dx =

∫

Ω

n∑

i=1

Diu
(ε,h)
i u

(ε,h)
0 ∇w

(ε,h)
i · ∇(Ihφi)dx

=

∫

Ω

n∑

i=1

Di

(
(u

(ε,h)
0 )1/2∇

(
u
(ε,h)
i (u

(ε,h)
0 )1/2

)
− 3u

(ε,h)
i (u

(ε,h)
0 )1/2∇(u

(ε,h)
0 )1/2

+ βziu
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h)

)
· ∇(Ihφi)dx.(25)

We estimate each of the above summands separately. For the last term, we proceed as
follows: ∣∣∣∣

∫

Ω

u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h) · ∇(Ihφi)dx−

∫

Ω

uk
i u

k
0∇Φk · ∇φidx

∣∣∣∣

≤

∣∣∣∣
∫

Ω

u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h) · ∇(Ihφi − φi)dx

∣∣∣∣

+

∣∣∣∣
∫

Ω

(u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h) − uk

i u
k
0∇Φk) · ∇φidx

∣∣∣∣

≤ ‖u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h)‖L2(Ω)‖∇(Ihφi − φi)‖L2(Ω)

+

∣∣∣∣
∫

Ω

(u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h) − uk

i u
k
0∇Φk) · ∇φidx

∣∣∣∣.(26)

Similarly as for (24), it follows that

u
(ε,h)
i u

(ε,h)
0 → uk

i u
k
0 strongly in L2(Ω).

Then, together with the weak convergence of ∇Φ(ε,h), we infer that

u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h) ⇀ uk

i u
k
0∇Φk weakly in L1(Ω).

Since (u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h)) is bounded in L2(Ω), this weak convergence also holds in L2(Ω).

Because of the interpolation property (10) and estimate (26),
∫

Ω

u
(ε,h)
i u

(ε,h)
0 ∇Φ(ε,h) · ∇(Ihφi)dx →

∫

Ω

uk
i u

k
0∇Φk · ∇φidx.

Following the arguments of Step 3 in [15, Section 2] (using (24)), we have

(u
(ε,h)
0 )1/2∇

(
u
(ε,h)
i (u

(ε,h)
0 )1/2

)
− 3u

(ε,h)
i (u

(ε,h)
0 )1/2∇

(
(u

(ε,h)
0 )1/2

)

⇀ (uk
0)

1/2∇
(
uk
0(u

k
0)

1/2
)
− 3uk

i (u
k
0)

1/2∇((uk
0)

1/2) weakly in L2(Ω).
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Thus, the limit (ε, h) → 0 in (25) gives

lim
(ε,h)→0

∫

Ω

∇(Ihφ) : B(w(ε,h),Φ(ε,h))∇w(ε,h)dx =

∫

Ω

n∑

i=1

Di

(
(uk

0)
1/2∇

(
uk
0(u

k
0)

1/2
)

− 3uk
i (u

k
0)

1/2∇((uk
0)

1/2) + βziu
k
i u

k
0∇Φk

)
· ∇φidx.

Furthermore, we deduce from (23) that
∣∣∣∣ε
∫

Ω

(w
(ε,h)
i − wi,h)(Ihφi)dx

∣∣∣∣ ≤ ε‖w
(ε,h)
i − wi,h‖L2(Ω)‖Ihφi‖L2(Ω) → 0.

Thus, passing to the limit (ε, h) → 0 in scheme (11)-(12) leads to

1

τ

∫

Ω

(uk − uk−1) · φdx+

∫

Ω

n∑

i=1

Di(u
k
0)

1/2
(
∇(uk

i (u
k
0)

1/2)− 3uk
i∇(uk

0)
1/2

)
· ∇φidx

+

∫

Ω

n∑

i=1

Diβziu
k
i u

k
0∇Φk · ∇φidx = 0,

λ2

∫

Ω

∇Φk · ∇θdx =

∫

Ω

( n∑

i=1

ziu
k
i + f

)
θdx,

for all φi, θ ∈ H2(Ω) ∩H1
D(Ω). A density argument shows that we can take test functions

φi, θ ∈ H1
D(Ω). The a priori estimates from Lemma 2 remain valid in the weak limit.

Now the limit τ → 0 can be done exactly as in [15, Theorem 1, Step 4], which concludes
the proof. �

3. The finite-volume scheme

We briefly recall the finite-volume scheme from [5] and summarize the assumptions and
results, as this is necessary for the comparison of the finite-element and finite-volume
scheme in Section 5.
We assume that Hypotheses (H1)-(H4) from the previous section hold and we use the

same notation for the time and space discretizations. For a two-point approximation of
the discrete gradients, we require additionally that the mesh is admissible in the sense of
[12, Definition 9.1]. This means that a family of points (xK)K∈T is associated to the cells
and that the line connecting the points xK and xL of two neighboring cells K and L is
perpendicular to the edge K|L. For σ ∈ Eint with σ = K|L, we denote by dσ = d(xK , xL)
the Euclidean distance between xK and xL, while for σ ∈ Eext, we set dσ = d(xK , σ). For a
given edge σ ∈ E , the transmissibility coefficient is defined by τσ = m(σ)/dσ, where m(σ)
denotes the Lebesgue measure of σ.
For the definition of the scheme, we approximate the initial, boundary, and given func-

tions on the elements K ∈ T and edges σ ∈ E :

uI
i,K =

1

m(K)

∫

K

uI
i (x)dx, fK =

1

m(K)

∫

K

f(x)dx,
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ui,σ =
1

m(σ)

∫

σ

uids, Φσ =
1

m(σ)

∫

σ

Φds,

and we set uI
0,K = 1−

∑n
i=1 u

I
i,K and u0,σ = 1−

∑n
i=1 ui,σ. Furthermore, we introduce the

discrete gradients

DK,σ(ui) = ui,K,σ − ui,K , where ui,K,σ =





ui,L for σ ∈ Eint, σ = K|L,

ui,σ for σ ∈ ED
ext,K ,

ui,K for σ ∈ EN
ext,K .

The numerical scheme is now defined as follows. Let K ∈ T , k ∈ {1, . . . , N}, i ∈
{1, . . . , n}, and uk−1

i,K ≥ 0 be given. Then the values uk
i,K are determined by the implicit

Euler scheme

(27) m(K)
uk
i,K − uk−1

i,K

∆t
+

∑

σ∈EK

Fk
i,K,σ = 0,

where the fluxes Fk
i,K,σ are given by the upwind scheme

Fk
i,K,σ = −τσDi

(
uk
0,σDK,σ(u

k
i )− uk

i,σ

(
DK,σ(u

k
0)− ûk

0,σ,iβziDK,σ(Φ
k)
))

.

Here, we have set

uk
0,K = 1−

n∑

i=1

uk
i,K , uk

0,σ = max{uk
0,K , u

k
0,L},

uk
i,σ =

{
uk
i,K if Vk

i,K,σ ≥ 0,

uk
i,K,σ if Vk

i,K,σ < 0,
, ûk

0,σ,i =

{
uk
0,K if ziDK,σ(Φ

k) ≥ 0,

uk
0,K,σ if ziDK,σ(Φ

k) < 0,
,

and Vk
i,K,σ is the “drift part” of the flux,

Vk
i,K,σ = DK,σ(u

k
0)− ûk

0,σ,iβziDK,σ(Φ
k)

for i = 1, . . . , n. Observe that we employed a double upwinding: one related to the electric
potential, defining ûk

0,σ,i, and another one related to the drift part of the flux, Vk
i,K,σ. The

potential is computed via

−λ2
∑

σ∈EK

τσDK,σ(Φ
k) = m(K)

( n∑

i=1

ziu
k
i,K + fK

)
.

The finite volume scheme preserves the structure of the continuous equations only under
certain assumptions:

(A1) ∂Ω = ΓN , i.e., we impose no-flux boundary conditions on the whole boundary.
(A2) The diffusion constants are equal, Di = D > 0 for i = 1, . . . , n.
(A3) The drift terms are set to zero, Φ ≡ 0.
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Without these assumptions, we can only assure the nonnegativity of the discrete concen-
trations ui, i = 1, . . . , n. Since we lack a maximum principle for cross-diffusion systems,
the upper bounds can only be proven if we assume equal diffusion constants (A2). Under
this assumption, the solvent concentration satisfies

∂tu0 = D div(∇u0 − u0w∇Φ), where w = β

n∑

i=1

ziui,

for which a discrete maximum principle can be applied. The L∞ bounds on the concen-
trations then ensure the existence of solutions for the scheme. If additionally the drift
term vanishes (A3), a discrete version of the entropy inequality, the uniqueness of discrete
solutions and most importantly, the convergence of the scheme can be proven (under an
additional regularity assumption on the mesh). For details, we refer to [5].

4. Numerical experiments

4.1. Implementation. The finite-element discretization is implemented within the finite-
element library NGSolve/Netgen, see [30, 31]. The nonlinear equations are solved in every
time step by Newton’s method in the variables wi and Φ. The Jacobi matrix is computed
using the NGSolve function AssembleLinearization. The finite-volume scheme is imple-
mented in Matlab. Also here, the nonlinear equations are solved by Newton’s method in
every time step, using the variables u, Φ, and u0.
We remark that the finite-volume scheme also performs well when we use a simpler

semi-implicit scheme, where we compute u from equation (27) with Φ taken from the
previous time step via Newton’s method and subsequently only need to solve a linear
equation to compute the update for the potential. It turned out that this approach is not
working for the finite-element discretization. Furthermore, the computationally cheaper
implementation used in [23] for a similar scheme in one space dimension, where a Newton
and Picard iteration are combined, did not work well in the two-dimensional test cases
presented in this paper.

4.2. Test case 1: calcium-selective ion channel. Our first test case models the basic
features of an L-type calcium channel (the letter L stands for “long-lasting”, referring to
the length of activation). This type of channel is of great biological importance, as it is
present in the cardiac muscle and responsible for coordinating the contractions of the heart
[6]. The selectivity for calcium in this channel protein is caused by the so-called EEEE-
locus made up of four glutamate residues. We follow the modeling approach of [28], where
the glutamate side chains are each treated as two half charged oxygen ions, accounting for
a total of eight O1/2− ions confined to the channel. In contrast to [28], where the oxygen
ions are described by hard spheres that are free to move inside the channel region, we make
a further reduction and simply consider a constant density of oxygen in the channel that
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decreases linearly to zero in the baths (see Figure 1),

uox(x, y) = uox,max ×





1 for 0.45 ≤ x ≤ 0.55,

10(x− 0.35) for 0.35 ≤ x ≤ 0.45,

10(0.65− x) for 0.55 ≤ x ≤ 0.65,

0 else,

where the scaled maximal oxygen concentration equals uox,max = (NA/utyp) · 52 mol/L.
Here, NA ≈ 6.022 · 1023 mol−1 is the Avogadro constant and utyp = 3.7037 · 1025L−1 the
typical concentration (taken from [4, Table 1]). In addition to the immobile oxygen ions,
we consider three different species of ions, whose concentrations evolve according to model
equations (1): calcium (Ca2+, u1), sodium (Na+, u2), and chloride (Cl−, u3). We assume
that the oxygen ions not only contribute to the permanent charge density f = −uox/2, but
also take up space in the channel, so that we have u0 = 1 −

∑3
i=1 ui − uox for the solvent

concentration.
For the simulation domain, we take a simple geometric setup resembling the form of a

channel; see Figure 1. The boundary conditions are as described in the introduction, with
constant values for the ion concentrations and the electric potential in the baths. The
physical parameters used in our simulations are taken from [4, Table 1]. The simulations
are performed with a constant (scaled) time step size τ = 2·10−4. The initial concentrations
are simply taken as linear functions connecting the boundary values. An admissible mesh
consisting of 74 triangles was created with Matlab’s initmesh command, which produces
Delauney triangulations. Four finer meshes were obtained by regular refinement, dividing
each triangle into four triangles of the same shape.

ΓD

ΓN

ΓD

ΓN

Figure 1. Schematic picture of the ion channel Ω used for the simulations.
Dirichlet boundary conditions are prescribed on ΓD (blue), homogeneous
Neumann boundary conditions are given on ΓN (black). The red color rep-
resents the density of confined O1/2− ions.

We remark that the same test case was already used in [5] to illustrate the efficiency of the
finite-volume approximation. Furthermore, numerical simulations for a one-dimensional
approximation of the calcium channel can be found in [4] for stationary solutions and in
[15] for transient solutions.
Figures 2 and 3 present the solution to the ion transport model in the original variables

u and Φ at two different times; the first one after only 600 time steps and the second
one after 6000 time steps, which is already close to the equilibrium state. The results are
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computed on the finest mesh with 18,944 elements. In the upper panel, the concentration
profiles and electric potential as computed with the finite-element scheme are depicted.
In the lower panel, the difference between the finite-volume and finite-element solutions is
plotted. We have omitted the plots for the third ion species (Cl−), since it vanishes almost
immediately from the channel due to its negative charge. While absolute differences are
relatively small, we can still observe that the electric potential in the finite-element case is
always smaller compared to the finite-volume solution, while the peaks of the concentration
profiles are more distinctive for the finite-element than for the finite-volume solution.

Figure 2. Solution after 600 time steps computed from the finite-element
scheme (top) and difference between the finite-volume (FV) and finite-
element (FE) solutions (bottom).

In order to compare the two numerical methods, we test the convergence of the schemes
with respect to the mesh diameter. Since an exact solution to our problem is not available,
we compute a reference solution both with the finite-volume and the finite-element scheme
on a very fine mesh with 18,944 elements and maximal cell diameter h ≈ 0.01. The
differences between these reference solutions in the discrete L1 and L∞ norms are given in
Table 1 for the various unknowns. Since the finite-element and finite-volume solutions are
found in different function spaces, one has to be careful how to compare them. The values in
Table 1 are obtained by projecting the finite-element solution onto the finite-volume space
of functions that are constant on each cell in NGSolve, thereby introducing an additional
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Figure 3. Solution after 6000 time steps (close to equilibrium) computed
from the finite-element scheme (top) and difference between the finite-volume
(FV) and finite-element (FE) solutions (bottom).

error. However, the difference between the reference solutions is still reasonably small,
especially when the simulations are already close to the equilibrium state.
To avoid the interpolation error in the convergence plots, we compare the approximate

finite-element or finite-volume solutions on coarser nested meshes with the reference solu-
tions computed with the corresponding method. In Figure 4, the errors in the discrete L1

norm between the reference solution and the solutions on the coarser meshes at the two
fixed time steps k = 600 and k = 6000 are plotted. For the finite-volume approximation,
we clearly observe the expected first-order convergence in space, whereas for the finite-
element method, the error decreases, again as expected, with h2. These results serve as a
validation for the theoretical convergence result proven for the finite-element scheme and
show the efficiency of the finite-volume method even in the general case of ion transport,
which is not covered by the convergence theorem in [5].
In Table 2, the average time needed to compute one time step with the finite-element or

finite-volume scheme for the five nested meshes is given. Clearly, the finite-volume scheme
is much faster than the finite-element method. This is mostly due to the computationally
expensive assembly of the finite-element matrices.
In addition to the convergence analysis, we also study the behavior of the discrete en-

tropy for both schemes. We consider in both cases the entropy relative to the steady
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u1 u2 u3 u0 Φ

L∞ norm, k = 600 2.2405e-02 2.0052e-02 1.0319e-04 1.6695e-02 1.0600e-01
L1 norm, k = 600 2.2642e-04 3.0275e-04 1.3776e-05 2.5983e-04 5.1029e-03
L∞ norm, k = 6000 1.0036e-02 2.3619e-03 1.3677e-04 9.1095e-03 9.5080e-02
L1 norm, k = 6000 1.4161e-04 7.0981e-05 1.5498e-05 1.5615e-04 4.6543e-03

Table 1. Difference between the finite-volume and finite-element reference
solutions after 600 and after 6000 time steps.

0.05 0.1 0.15
10 -5

10 -4

10 -3

10 -2
L1 -error u 1

2

1

0.05 0.1 0.15
10 -5

10 -4

10 -3

10 -2
L1 -error u 2

2

1

0.05 0.1 0.15
10 -6

10 -5

10 -4

10 -3

2

1

L1 -error u 3

0.05 0.1 0.15
10 -4

10 -3

10 -2

10 -1
L1 -error 

2

1

k=600 FV
k=6000 FV
k=600 FE
k=6000 FE

Figure 4. L1 error relative to the reference solution after 600 time steps
(black) and 6000 time steps (red) plotted over the mesh size h. Dashed lines
are used for the finite-element solution, full lines for the finite-volume solu-
tion.

state (u∞
i ,Φ∞), which is computed from the corresponding discretizations of the station-

ary equations with the same parameters and boundary data. Figure 5 shows the relative
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T1 T2 T3 T4 T5

FE 2.4065e-01 7.9982e-01 2.1125e+00 4.9844e+00 17.7788e+00
FV 6.7707e-03 2.2042e-02 3.0532e-01 1.7660e+00 2.2418e+00

Table 2. Average time needed to compute one time step (in seconds). FE
= finite-element scheme, FV = finite-volume scheme.

entropy (see [5, Section 6]) and the L1 error compared to the equilibrium state for the
finite-element and finite-volume solutions on different meshes. Whereas for the coarsest
mesh the convergence rates differ notably, we can observe a similar behavior when the
mesh is reasonably fine. In Figure 6, we investigate the convergence of the relative entropy
with respect to the mesh size. As before, we observe second-order convergence for the
finite-element scheme and a first-order rate for the finite-volume method.

0 0.5 1 1.5 2
10 -10

10 -8

10 -6

10 -4

10 -2

10 0
Entropy relative to equilibrium

0 0.5 1 1.5 2
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1
L1 -error compared to equilibrium

FV mesh 1
FV mesh 4
FE mesh 1
FE mesh 4
Reference

Figure 5. Relative entropy (left) and sum of L1 differences of u and Φ
relative to the equilibrium state (right) over time for various meshes. Mesh
1 has 74 triangles, mesh 4 has 18,944 elements.

4.3. Test case 2: bipolar ion channel. The second example models a pore with asym-
metric charge distribution, which occurs naturally in biological ion channels but also in
synthetic nanopores. Asymmetric pores typically rectify the ion current, meaning that
the current measured for applied voltages of positive sign is higher than the current for
the same absolute value of voltage with negative sign. The setup is similar to that of
an N-P semiconductor diode. The N-region is characterized by the fixed positive charge.
The anions are the counter-ions and thus the majority charge carriers, while the cations
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0.05 0.1 0.15
10 -4

10 -3

10 -2

10 -1

2

1

Error entropy

L2 error FV
L  error FV

L2 error FE
L  error FE

Figure 6. Error for the relative entropy with respect to mesh size.

are the co-ions and minority charge carriers. In the P-region, the situation is exactly the
other way around. In the on-state, the current is conducted by the majority carriers, while
in the off-state, the minority carriers are responsible for the current, which leads to the
rectification behavior.
Often, bipolar ion channels are modeled with asymmetric surface charge distributions

on the channel walls. However, to fit these channels into the framework of our model,
we follow the approach described in [17]. Similar to the first test case, we assume that
there are eight confined molecules inside the channel, but this time four molecules are
positively charged (+0.5e) and the other four molecules are negatively charged (−0.5e).
The simulation domain Ω ⊂ R

2 is depicted in Figure 7. The shape of the domain and the
parameters used for the simulations are taken from [17] and are summarized in Table 3.
The mesh (made up of 2080 triangles) was created with NGSolve/Netgen. We consider two
mobile species of ions, one cation (Na+, u1) and one anion (Cl−, u2). The confined ions
are modeled as eight fixed circles of radius 1.4, where the concentration c ≡ cmax is such
that the portion of the channel occupied by these ions is the same as in the simulations in
[17]. The solvent concentration then becomes u0 = 1− u1 − u2 − c.
By changing the boundary value Φright for the potential Φ on the right part of the

Dirichlet boundary (on the left side, it is fixed to zero), we can apply an electric field in
forward bias (on-state, Φright = 1) or reverse bias (off-state, Φright = −1). Figures 8 and
9 show the stationary state computed with the finite-element method in the on- and off-
state, respectively. Evidently, the ion concentrations in the on-state are much higher than
in the off-state. In comparison with the results from [17], where the Poisson–Nernst–Planck
equations with linear diffusion (referred to as the linear PNP model) were combined with
Local Equilibrium Monte–Carlo simulations, we find that with the Poisson–Nernst–Planck
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Figure 7. Simulation domain with triangulation for the bipolar ion channel.
The blue circles represent positively charged confined ions, the red circles
negatively charged ions. The black (blue) part of the boundary is equipped
with Neumann (Dirichlet) boundary conditions.

Meaning Value Unit

Diffusion coefficients D1, D2 1
Effective permittivity λ2 1.1713
Effective mobility β 3.8922
Bath concentrations u1, u2 0.0016
Confined ion concentration cmax 0.2971
Typical length Ltyp 1e-10 m
Typical concentration utyp 3.7037e+28 Nm−3

Typical voltage Φtyp 0.1 V
Typical diffusion Dtyp 1.3340e-9 m2s−1

Table 3. Dimensionless parameters used for the simulation of the bipolar
ion channel and values used for the scaling.

equations with cross-diffusion (referred to as the nonlinear PNP model), the charged ions
in the channel attract an amount of ions higher than the bath concentrations even in the
off-state.
From a modeling point of view, it is an important question whether the nonlinear PNP

model reproduces the rectification mechanism described above. For this purpose, we need
to calculate the electric current I flowing through the pore, given by

(28) I = −
∑

i

zi

∫

A

Fi · νds,

where A is the cross-section of the pore and ν the unit normal to A. In the finite-
element setting, we can use the representation of the fluxes in entropy variables, Fi =
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Figure 8. Stationary solution in the on-state (channel region).

Diui(w,Φ)u0(w,Φ)∇wi and compute the integrals in (28) using a quadrature formula along
the line x = 10.
Figure 10 shows the current-voltage curves obtained with the finite-element solutions.

In addition, the rectification is depicted, which is calculated for voltages U ≥ 0 according
to

r(U) =

∣∣∣∣
I(U)

I(−U)

∣∣∣∣.

We also compute the current-voltage curve for the linear PNP model, which is obtained
from the model equations by setting u0 ≡ 1, such that

∂tui = div
(
Di∇ui +Diβziui∇Φ

)
.

We expect from the simulations done in [4] for the calcium channel that the current of the
nonlinear PNP model is lower than that one from the linear PNP model. This expectation
is confirmed also in this case. As Figure 10 shows, the rectification is stronger in the
nonlinear PNP model. The difference between the two models is even more pronounced
when we increase the concentration of the confined ions to cmax = 0.7. In that case, the
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Figure 9. Stationary solution in the off-state (channel region).

channel gets more crowded and size exclusion has a bigger effect. We observe a significantly
lower current and higher rectification for the nonlinear PNP model.

5. Conclusions

In this work, we have presented a finite-element discretization of a cross-diffusion Poisson–
Nernst–Planck system and recalled a finite-volume scheme that was previously proposed
and analyzed [5]. In the following, we summarize the differences between both approaches
from a theoretical viewpoint and our findings from the numerical experiments.

• Structure of the scheme: The finite-element scheme strongly relies on the en-
tropy structure of the system and is formulated in the entropy variables. From a
thermodynamic viewpoint, the entropy variables are related to the chemical poten-
tials, which gives a clear connection to nonequilibrium thermodynamics. On the
other hand, the finite-volume scheme exploits the drift-diffusion structure that the
system displays in the original variables.

• L∞ bounds: Due to the formulation in entropy variables, the L∞ bounds for the
finite-element solutions follow immediately from (8) without the use of a maximum
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Figure 10. Current-voltage curves and rectification. First row: The pa-
rameters are as in Table 3; second row: with cmax = 0.7.

principle. In other words, the lower and upper bounds are inherent in the entropy
formulation. In the case of the finite-volume scheme, we can apply a discrete
maximum principle, but only under the (restrictive) assumption that the diffusion
coefficients Di are the same.

• Convergence analysis: The entropy structure used in the finite-element scheme
allows us to use the same mathematical techniques for the convergence proof as
for the continuous system, but a regularizing term has to be added to ensure the
existence of discrete solutions. The convergence of the finite-volume solution re-
quires more restrictive assumptions: In addition to the equal diffusion constants
necessary for proving the existence and L∞ bounds, we can only obtain the entropy
inequality and gradient estimates for vanishing potentials.

• Initial data: Since the initial concentrations have to be transformed to entropy
variables via (6), the finite-element scheme can only be applied for initial data
strictly greater than zero. The finite-volume scheme, on the other hand, can handle
exactly vanishing initial concentrations.
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• Experimental convergence rate: In the numerical experiments, both schemes
exhibit the expected order of convergence with respect to mesh size (even if we
cannot prove any rates analytically): first-order convergence for the finite-volume
scheme and second-order convergence for the finite-element scheme.

• Performance: The numerical experiments done for this work suggest that the
finite-element algorithm needs smaller time steps for the Newton iterations to con-
verge than for the finite-volume scheme, especially when the solvent concentration
is close to zero. Furthermore, the assembly of the finite-element matrices is com-
putationally quite expensive resulting in longer running times compared to the
finite-volume scheme.

• Mesh requirements: A finite-volume mesh needs to satisfy the admissibility
condition. This might be a disadvantage for simulations in three space dimensions.
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[24] A. Jüngel and I. V. Stelzer. Existence analysis of Maxwell–Stefan systems for multicomponent mix-
tures. SIAM J. Math. Anal. 45 (2013), 2421-2440.

[25] B. Lu, M. Holst, J. McCammon, and Y. C. Zhou. Poisson–Nernst–Planck equations for simulating
biomolecular diffusion-reaction processes I: Finite element solutions. J. Comput. Phys. 229 (2010),
6979-6994.

[26] B. Nadler, Z. Schuss, and A. Singer. Langevin trajectories between fixed concentrations. Phys. Rev.
Lett. 94 (2005), 218101, 5 pages.

[27] W. Nonner, L. Catacuzzeno, and R. S. Eisenberg. Binding and selectivity in L-type calcium channels:
a mean spherical approximation. Biophys. J. 79 (2000), 1976-1992.

[28] W. Nonner, D. Gillespie, D. Henderson, and B. Eisenberg. Ion accumulation in a biological calcium
channel: effects of solvent and confining pressure. J. Phys. Chem. B 105 (2001), 6427-6436.

[29] A. Prohl and M. Schmuck. Convergent discretizations for the Nernst–Planck–Poisson system. Numer.

Math. 111 (2009), 591-630.
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