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Summary. This review is concerned with three classes of quantum semiconductor
equations: Schrödinger models, Wigner models, and fluid-type models. For each
of these classes, some phenomena on various time and length scales are presented
and the connections between micro-scale and macro-scale models are explained. We
discuss Schrödinger-Poisson systems for the simulation of quantum waveguides and
illustrate the importance of using open boundary conditions. We present Wigner-
based semiconductor models and sketch their mathematical analysis. In particular
we discuss the Wigner-Poisson-Focker-Planck system, which is the starting point
of deriving subsequently the viscous quantum hydrodynamic model. Furthermore, a
unified approach to derive macroscopic quantum equations is presented. Two classes
of models are derived from a Wigner equation with elastic and inelastic collisions:
quantum hydrodynamic equations and their variants, as well as quantum diffusion
models.

1 Introduction

The modern computer and telecommunication industry relies heavily on the
use of semiconductor devices. A very important fact of the success of these
devices is that their size can be very small compared to previous electronic
devices (like the tube transistor). While the characteristic length of the first
semiconductor device (a germanium transistor) built by Bardeen, Brattain,
and Shockley in 1947 was 20µm, the characteristic size has been decreased up
to now to some deca-nanometers only. With decreasing device length quan-
tum mechanical effects are becoming more and more important in actual
devices. In fact, there are devices, for instance tunneling diodes or quantum
wave guides, whose function is based on quantum effects. The development
of such devices is usually supported by computer simulations to optimize the
desired operating features. Now, in order to perform the numerical simula-
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tions, mathematical equations are needed that are both physically accurate
and numerically solvable with low computational cost.

We wish to model the flow of electrons in a semiconductor crystal with the
goal to predict macroscopically measurable quantities by means of computer
simulations. Although the physical process is always the transport of charged
particles in a solid crystal, we need to devise different mathematical models
because of the wide range of operating conditions and the desired need of ac-
curacy. Moreover, since in some cases we are not interested in all the available
physical information, we also need simpler models which help to reduce the
computational cost in the numerical simulations.

We shall discuss three model classes: Schrödinger, Wigner, and fluid-type
models. Schrödinger models describe the purely ballistic transport of electrons
and holes, and they are employed for simulations of quantum waveguides and
nano-scale semiconductor heterostructures. As soon as scattering mechanisms
(between electrons and phonons, e.g.) become important, one has to resort
to Wigner function or the equivalent density matrix formalism. For practical
applications Wigner functions have the advantage to allow for a rather simple,
intuitive formulation of boundary conditions at device contacts or interfaces.
On the other hand, the Wigner equation is posed in a high dimensional phase
space which makes its numerical solution extremely costly. As a compromise,
fluid-type models can provide a reasonable approximation and is hence often
used. Since one only computes the measurable physical quantities in these
fluid models, they are computationable cheap. Moreover, classical boundary
conditions can also be employed here.

The multi-scale character in semiconductor device modeling becomes man-
ifest in a hierarchy of models that differ in mathematical and numerical com-
plexity and incorporate physical phenomena on various time and length scales.
The microscopic models clearly include the highest amount of information, but
they involve the highly oscilatory Schrödinger and Wigner functions. How-
ever, the macroscopic variables of interest for practitioners (like particle and
current densities) are typically much smoother. Hence, it is very attractive
(particularly with respect to reduce numerical costs) to settle for simplified
macroscopic quantum transport models. Scaling limits allow to relate these
models and to obtain important information for the range of validity (and
the limitations) of the reduced macro-scale models. Starting from Wigner-
Boltzmann-type equations it is indeed possible to obtain a unified derivation
of quantum hydrodynamic and quantum diffusion models.

2 Microscopic picture I: Schrödinger models

This section is concerned with Schrödinger-Poisson models for semiconductor
device simulations. Such models are only applicable in the ballistic regime,
i.e. to devices or subregions of devices, where the quantum mechanical trans-
port is the dominant phenomenon and scattering plays only a minor role.
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As particular examples we name interferences in quantum waveguides, the
tunneling through nano-scale semiconductor heterostructures (in a resonant
tunneling diode, e.g.), and the ballistic transport along nano-size channels of
MOSFETs. In all of these examples we are dealing with open quantum sys-
tems, refering to a model on a finite geometry along with open boundaries
(this contrasts with the situation in §3.1, where we shall consider collisional
open quantum systems). Here, the transport model (the Schrödinger equa-
tion, e.g.) is posed on a finite domain Ω ⊂ R

d (d being the space dimension).
At the device contacts or interfaces open boundary conditions are specified,
such that an incoming current can be prescribed and outgoing electron waves
will not be reflected at such boundaries.

2.1 Quantum waveguide simulations

In this subsection we discuss simulation models for quantum waveguides.
These are novel electronic switches of nanoscale dimensions. They are made of
several different layers of semiconductor materials such that the electron flow
is confined to small channels or waveguides. Due to their sandwiched structure
the relevant geometry for the electron current is essentially two dimensional.
Figure 2.1 shows the example of a T-shaped quantum interference transistor.
The actual structure can be realized as an etched layer of GaAs between two
layers of doped AlGaAs (cf. [69]). Applying an external potential at the gate
(i.e. above the shaded portion of the stub, the “allowed region” for the elec-
trons, and hence the geometry (in particular the stub length) can be modified.
This allows to control the current flow through such an electronic device. It
makes it a switch, which resambles a transistor – but on a nano-scale. Such
a device shows sharp peaks in conductance that are due to the presence of
bound states in the stub (see Figures 2.2, 2.3). It is expected that these novel
devices will operate at low power and high speed.

The electron transport through a quantum waveguide can be modeled
in good approximation by a two dimensional, time dependent Schrödinger-
Poisson system for the wave functions ψλ(x, t), indexed by the energy variable
λ ∈ Λ ⊂ R. The (possibly time-dependent) spatial domain Ω ⊂ R

2 consists
of (very long) leads and the active switching region (e.g. T-shaped as in Fig.
2.1). In typical applications electrons are continuously fed into the leads as
plane waves ψpw

λ . The Schrödinger model now reads

i
∂ψλ

∂t
= −1

2
∆ψλ + V (x, t)ψλ, x ∈ Ω, λ ∈ Λ, t > 0. (2.1)

The potential V = Ve+Vs consists of an external, applied potential Ve and the
selfconsistent potential satisfying the Poisson equation with Dirichlet bound-
ary conditions:

−∆Vs(x, t) = n(x, t) =

∫

Λ

|ψλ(x, t)|2g(λ) dλ, x ∈ Ω, (2.2)

Vs = 0, on ∂Ω.
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Fig. 2.1. T-shaped geometry Ω ⊂ R
2 of a quantum interference transistor with

source and drain contacts to the left and right of the channel. Applying a gate
voltage above the stub allows to modify the stub length from L1 to L2 and hence
to switch the transistor between the on- and off-states.

Here, n is the spatial electron density and g(λ) denotes the prescribed statis-
tics of the injected waves (Fermi-Dirac, e.g.). In the simplest case (i.e. a 1D
approximation) open or “transparent” boundary conditions at the contacts or
interfaces take the form

∂

∂η
(ψλ − ψpw

λ ) = −e−iπ/4
√
∂t (ψλ − ψpw

λ ), λ ∈ Λ, (2.3)

where η denotes the unit outward normal vector at each interface.
√
∂t is

the fractional time derivative of order 1
2 , and it can be rewritten as a time-

convolution of the boundary data with the kernel t−3/2. For the derivation of
the 2D-variant of such transparent boundary conditions and the mathematical
analysis of this coupled model (2.1)-(2.3) we refer to [15, 7].

The discretization of such a model poses several big numerical challenges,
both for stationary and for transient simulations: Firstly, the wave function is
highly oscillatory for larger energies, while the macroscopic variables of inter-
est (particle density n and potential V ) are rather smooth. Secondly, solutions
to (2.1)-(2.3) can exhibit sharp peaks in the curve of conductance versus injec-
tion energy (both in quantum waveguides and in resonant tunneling diodes).
To cope with these two problems, WKB-type discretization schemes for the
1D stationary analogue of the above model and adaptive energy grids (for
λ ∈ Λ) were devised in [16].



Multi-scale modeling of quantum semiconductor devices 5

Thirdly, the numerical discretization of the transparent boundary condi-
tion (2.3) is very delicate in the time dependent case, as it may easily ren-
der the initial-boundary value problem unstable and introduce hugh spurious
wave reflections. Based on a Crank-Nicolson finite difference discretization of
the Schrödinger equation, unconditionally stable discrete transparent bound-
ary conditions were developed in [5] for the one-dimensional and in [9, 11] for
the two-dimensional problem. An extension of such discrete open boundary
conditions for (multiband) kp-Schrödinger equations appearing in the simula-
tion of quantum heterostructures were developed in [75].
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Fig. 2.2. Stationary Schrödinger wave function for T-shaped waveguide with short
stub (i.e. L1 = 32 nm) – “off state”

To close this subsection we present some first simulations of the elec-
tron flow through the T-shaped waveguide from Figure 2.1 with the dimen-
sions X = 60 nm, Y1 = 20 nm. These calculations are based on the linear
Schrödinger equation for one wave function with V ≡ 0 and the injection of a
mono-energetic plane wave with 130 meV, entering in the transparent bound-
ary condition (2.3). The simulation was based on a compact forth order finite
difference scheme (“Numerov scheme”) and a Crank-Nicolson discretization
in time [11].

Important device data for practitioners are the current-voltage (I-V) char-
acteristics, the ratio between the on- and the (residual) off-current as well as
the switching time between these two stationary states. Depending on the size
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and shape of the stub, the electron current is either reflected (off-state of the
device, see Fig. 2.2) or it can flow through the device (on-state, see Fig. 2.3).
Starting from the stationary state in Fig. 2.2, the swiching of the device was
realized by an instantaneous extension of the stub length from L1 = 32 nm to
L2 = 40.5 nm. After a transient phase the new steady state Fig. 2.3 is reached
after about 4 ps.
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Fig. 2.3. Stationary Schrödinger wave function for T-shaped waveguide with long
stub (i.e. L2 = 40.5 nm) – “on state”

3 Microscopic picture II: Wigner models

In this section we shall present and discuss semiconductor models that are
based on the quantum-kinetic Wigner formalism. As mentioned before there
are two main reasons for using this framework in applications (indeed, mostly
for time dependent problems): In contrast to Schrödinger models the Wigner
picture allows to include the modeling of scattering phenomena in the form
of a quantum Boltzmann equation. Secondly, this quantum-kinetic framework
makes is easier to formulate reasonable boundary conditions at the device
contacts, using guidance and inspiration from classical kinetic theory [33].
This approach makes indeed sense, as quantum effects are not important close
to the (typically highly doped) contact regions.

The Wigner function f = f(x, v, t) is one of several equivalent formalisms
to describe the (mixed) state of a physical quantum system (cf. [74]). It is a
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real-valued quasi-distribution function in the position-momentum (x, p) phase
space at time t. In collision-free regimes, the quantum equivalent of the Li-
ouville equation of classical kinetic theory governs the time evolution of f . In
the d-dimensional whole space it reads

∂tf + p · ∇xf + θ[V ]f = 0, t > 0, (x, p) ∈ R
2d, (3.1)

where the (real-valued) potential V = V (x) enters through the pseudo-
differential operator θ[V ] defined by

(θ[V ]f)(x, p, t) =
i

(2π)d/2

∫

Rd

δV (x, η)Fp→ηf(x, η, t)eip·η dη

=
i

(2π)d

∫

Rd

∫

Rd

δV (x, η)f(x, p,, t)ei(p−p,)·η dp, dη. (3.2)

Here, δV (x, η) := 1
ε

[
V (x + εη

2 ) − V (x− εη
2 )
]
, and Fp→ηf denotes the Fourier

transform of f with respect to p, and ε > 0 is the scaled Planck constant.
For semiconductor device simulations it is crucial to include the self-

consistent potential. The electrostatic potential V (x, t) is hence time-dependent
and obtained as a solution to the Poisson equation

∆xV (x, t) = n(x, t) − C(x), (3.3)

with the particle density

n(x, t) =

∫

Rd

f(x, p, t) dp. (3.4)

Here, C(x) denotes the time-independent doping profile of the device, i.e. the
spatial density of the doping ions implanted into the semiconductor crystal.

3.1 Wigner models for open quantum systems

Until now we only considered the ballistic and hence reversible quantum trans-
port of the electrons in a one-particle (Hartree) approximation. Such purely
ballistic models (either in the Wigner or Schrödinger framework - cf. §2) are
useful semiconductor models for device lengths in the order of the electrons’
mean free path. For larger devices, however, scattering phenomena between
electrons and phonons (i.e. thermal vibrations of the crystal lattice) or among
the electrons have to be taken into account. In this case an appropriate colli-
sion operator Q(f) has to be added as a right hand side of (3.1). In contrast
to §2 the term open quantum system refers here to the interaction of our con-
sidered electron ensemble with some ‘environment’ (an external phonon bath,
e.g.) and not to the influence of the boundaries or contacts.

For the classical semiconductor Boltzmann equation excellent models for
the most important collisional mechanisms have been derived (cf. [66]) and
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are incorporated into today’s commercial simulation tools. In quantum kinetic
theory, however, realistic and numerically usable collison models are much less
developed. In contrast to classical kinetic theory, quantum collision operators
are actually non-local in time (cf. the Levinson equation [61] as one possible
model). However, since most of the current numerical simulations involve only
local in time approximations, we shall confine our discussion to such collision
operators. The three most used models are firstly relaxation time approxima-
tions of the form

Q(f) =
f0 − f

τ
, (3.5)

with some appropriate steady state f0 and the relaxation time τ > 0 [58, 3].
Secondly, many applications (cf. [73, 39, 67]) use quantum Fokker-Planck
models:

Q(f) = βdivp(pf) + σ∆pf + 2γdivp(∇xf) + α∆xf, (3.6)

(cf. [20, 23] for a derivation) with the friction parameter β ≥ 0. The non-
negative coefficients α, γ, σ constitute the phase-space diffusion matrix of the
system. We remark that one would have α = γ = 0 in the Fokker-Planck
equation of classical mechanics [71].
As a third option, the Wigner equation (3.1) is often augmented by a semiclas-
sical Boltzmann operator [59]. However, since this model is quantum mechan-
ically not consistent, we shall not discuss it any further. Finally, we mention
the quantum-BGK type models [27] that were recently introduced for deriving
quantum hydrodynamics (cf. §4.2 for details).

At the end of this section we briefly list the numerical methods developed
so far for Wigner function-based device simulations. Virtually all simulations
were carried out for one dimensional resonant tunneling diodes. The earli-
est approaches were based on finite difference schemes for the relaxation-time
Wigner-Poisson system [33, 58]. Spectral collocation methods were designed as
an efficient alternative to discretize the non-local pseudo-differential operator
θ[V ] (cf. [70]). In [13] this approach was combined with an operator split-
ting between the transport term p ·∇x and θ[V ] which has also been common
practice for Boltzmann type equations. This mixed operator splitting/spectral
collocation technique was recently extended to the Wigner-Fokker-Planck sys-
tem in [29]. In [59] the classical Monte Carlo method was extended to Wigner
models, and it has the potential to make multi-dimensional simulations feasi-
ble. Since the Wigner function takes both positive and negative values, novel
algorithms for particle creation and annihilation had to be developed within
this Monte Carlo approach.

3.2 Open quantum systems in Lindblad form

Since the Wigner function takes also negative values, it is a-priori not clear
why the macroscopic particle density satisfies n(x, t) :=

∫
f(x, p, t) dp ≥

0 ∀x, t. This physically important non-negativity is a consequence of the non-
negativity of the density matrix (operator) that is associated with a Wigner
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function: Let ρ̂ be an operator on L2(Rd) with integral kernel ρ(x, x′) = ρ ∈
L2(R2d), i.e.

(ρ̂φ)(x) =

∫

Rd

ρ(x, x′)φ(x′) dx′ ∀φ ∈ L2(Rd). (3.7)

The Wigner transform of the density matrix ρ̂ is now defined as the following
Wigner function f (cf. [74, 64]):

W (ρ̂)(x, p) := f(x, p) =
1

(2π)d

∫

Rd

ρ(x+
ε

2
η, x− ε

2
η)eiη·p dη. (3.8)

In terms of density matrices, a mixed quantum states is described as a
positive trace class operator on L2(Rd) (i.e. ρ̂ ∈ I1, ρ̂ ≥ 0), mostly with the
normalization Trρ̂ = 1, where Tr denotes the operator trace. The positivity
of ρ̂ as an operator then implies pointwise positivity of the particle density

n(x) := ρ(x, x) ≥ 0, x ∈ R
d, (3.9)

and of the corresponding kinetic energy

Ekin :=
1

2

∫

R2d

|p|2f(x, p) dxdp =
ε2

2
Tr(−∆ρ̂) =

ε2

2
Tr(

√
−∆ρ̂

√
−∆) ≥ 0.

(3.10)
The time evolution of a density matrix is given by the Heisenberg-von

Neumann equation, obtained by applying the Wigner transform (3.7), (3.8)
to the Wigner equation (3.1). It reads

iερ̂t = H(t)ρ̂− ρ̂H(t), t > 0,
ρ̂(t = 0) = ρ̂I ,

(3.11)

with the (possibly time dependent) Hamiltonian H(t) = − ε2

2 ∆+ V (x, t). For
an open quantum system the right hand side of (3.11) has to be augmented by
a non-Hamiltonian term iA(ρ̂). It is well known from [63] that such quantum
evolution equations preserve the positivity of ρ̂(t) (more precisely, it is actually
the complete positivity) if and only if the dissipative term A(ρ̂) satisfies the
following structural condition. It must be possible to represent it in the so-
called Lindblad form:

A(ρ̂) =
∑

j∈J

L∗
jLj ρ̂+ ρ̂L∗

jLj − 2Lj ρ̂L
∗
j , (3.12)

with some appropriate (but typically not uniquely defined) Lindblad operators
Lj , and a finite or infinite index set J ⊂ N. Furthermore, such models then
preserve the mass of the system, i.e. Tr ρ̂(t) = Tr ρ̂I , t ≥ 0.

For the relaxation time Wigner equation we have A(ρ̂) = bρ0−bρ
τ with some

steady state ρ̂0. Under the natural assumption Tr ρ̂I = Tr ρ̂0 = 1, and if the
relaxation time τ is constant, we have (cf. [4])
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A(ρ̂) =
1

τ
(ρ̂0 Tr ρ̂− ρ̂Tr ρ̂0) =

∑

j,k∈N

L∗
jkLjkρ̂+ ρ̂L∗

jkLjk − 2Ljkρ̂L
∗
jk,

with the Lindblad operators Ljk =
√
µk/τ |ϕk >< ϕj |. Here, (µk, ϕk)k∈N

denotes the eigenpairs of ρ̂0. Hence, the relaxation time Wigner equation
(possibly with a selfconsistent potential) is an admissible open quantum model
in Lindblad form.

For the Wigner-Fokker-Planck (WFP) equation with Q(f) from (3.6), the
Lindblad condition (3.12) holds iff

(
α γ + iε

4 β
γ − iε

4 β σ

)
≥ 0. (3.13)

Under this assumption the WFP model is also quantum mechanically correct.
Here, the Lindblad operators are linear combinations of xj and ∂xj

(cf. [10]).

3.3 Analysis of the Wigner-Poisson-Fokker-Planck system

In this section we will sketch the different approaches to the well-posedness
analysis for the Cauchy problem of the Wigner-Poisson-Fokker-Planck (WPFP)
system in three dimensions:

∂tf + p·∇xf + θ[V ]f = βdivp(pf) + σ∆pf + 2γdivp(∇xf) + α∆xf, t > 0,

f(x, p, t = 0) = fI(x, p), (x, p) ∈ R
6, (3.14)

∆xV (x, t) = n(x, t) =

∫

R3

w(x, p, t) dp.

For simplicity we set here all physical constants equal to 1, and we chose
C ≡ 0 as this would not change the subsequent analysis. Also, the Lindblad
condition (3.13) is assumed to hold in the sequel.

First we remark that the WPFP model cannot be writen as an equivalent
system of countably many Schrödinger equations coupled to the Poisson equa-
tion (and this is typical for open quantum systems). Therefore, the approach of
[19] employed in the well-posedness analysis of the (reversible) Wigner-Poisson
system cannot be adapted to WPFP. Hence, there are two remaining frame-
works for the analysis: the Wigner function and density matrix formalisms,
which we shall both briefly discuss here.

On the quantum kinetic level there are two main analytic difficulties for
the nonlinear WPFP system. Since the natural analytic setting for Wigner
functions is f(., ., t) ∈ L2(R6) we cannot expect that f(x, ., t) ∈ L1(R3) holds.
Hence, the definition of the particle density by n(x, t) =

∫
R3 f(x, p, t) dp is

purely formal. The second key problem is the lack of usable a-priori estimates
on the Wigner function which would be needed to prove global-in-time exis-
tence of WPFP-solutions: The only useful (and almost trivial) estimate is

||f(t)||L2(R6) ≤ e
3

2
βt||fI ||L2(R6), t ≥ 0. (3.15)
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The other physically obvious conservation laws
∫
f(x, p, t) dxdp = const (mass conservation),

and a simple energy balance involving the kinetic energy Ekin = 1
2

∫
|p|2

f(x, p, t) dxdp both include functionals of f that are, a-priori, not necessarily
positive and hence not useable on the quantum kinetic level.

Dispersive effects in quantum kinetic equations. Both of the described
analytic problems – proper definition of the particle density n (or, equivalently,
the electric field E = ∇xV ) and additional a-priori estimates – can be coped
with by exploiting dispersive effects of the free-streaming operator jointly with
the parabolic regularization of the Fokker-Planck term. Such dispersive tech-
niques for kinetic equations were first developed for the Vlasov-Poisson system
(cf. [68]) and then adapted to the Vlasov-Poisson-Fokker-Planck equation in
[22]. In [6, 8] these tools were extended to quantum kinetic theory. They yield
first of all an a-priori estimate for the field E(t) in terms of ‖f(t)‖L2(R6) only
(remember (3.15) !). This estimate allows a novel definition of the macroscopic
quantities (namely, the self-consistent field, the potential, and the density),
which, in contrast to the definition (3.3), (3.4) is now non-local in time. This
way, no p-integrability of f is needed.

Next we illustrate these dispersive tools in some more detail. With G(t) =
G(x, p, x′, p′, t) denoting the Green’s function of the linear part of (3.14)
(cf. [72]), the (linear) WFP equation can be rewritten as

f(x, p, t) =

∫∫
G(t)fI(x

′, p′)dx′dp′ (3.16)

+

∫ t

0

∫∫
G(s)(θ[V ]f)(x′, p′, t− s) dx′dp′ds, t ≥ 0.

According to the two terms on the r.h.s. we split the electric field

E(x, t) = ∇xV (x, t) =
x

4π|x|3 ∗ n(x, t)

into E = E0 + E1 with

E0(x, t) =
x

4π|x|3 ∗x

∫∫∫
G(t)fI(x

′, p′)dx′dp′dp, (3.17)

E1(x, t) =
x

4π|x|3 ∗x

∫ t

0

∫∫∫
G(s)(θ[V ]f)(x′, p′, t− s) dx′dp′dpds.

With some tricky reformulation this last equation can be rewritten as

(E1)j(x, t) (3.18)

=
1

4π

3∑

k=1

3xjxk − δjk|x|2
|x|5 ∗x

∫ t

0

ϑ(s)

R(s)3/2
N
(

x√
R(s)

)
∗x Fk[f ](x, t, s) ds,
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j = 1, 2, 3; with

Fk[f ](x, t, s) :=

∫
(Γk[E0 + E1]f) (x− ϑ(s)p, p, t− s) dp, k = 1, 2, 3,

N (x) := (2π)−3/2 exp

(
−|x|2

2

)
,

ϑ(t) :=
1 − e−βt

β
; ϑ(t) := t, if β = 0,

R(t) := 2αt+ σ

(
4e−βt − e−2βt + 2βt− 3

β3

)
+ 4γ

(
e−βt + βt− 1

β2

)
,

and the (vector valued) pseudo-differential operator Γ [E] is related to θ[V ] by

θ[V ]f(x, p) = divp (Γ [∇xV ]f) (x, p).

Notice that (3.18) is a closed equation (more precisely a linear Volterra inte-
gral equation of the second kind) for the self-consistent electric field E1 ∈ R

3,
for any given Wigner trajectory f ∈ C([0, T ];L2(R6)).

These motivations lead to our new definition of the Hartree-potential:
Definition 3.1 (New definition of mean-field quantities) To a Wigner
trajectory f ∈ C([0, T ];L2(R6)) we associate

• the field E[f ] := E0 +E1[f ], with E0 given by (3.17), and E1[f ] the unique
solution of (3.18),

• the potential V [f ] := V0 + V1[f ] with

V0(x, t) :=
1

4π

3∑

i=1

xi

|x|3 ∗x (E0)i(x, t), (3.19)

V1[f ](x, t) :=
1

4π

3∑

i=1

xi

|x|3 ∗x (E1[f ])i(x, t), (3.20)

• and the position density n[f ] := divE[f ] (at least in a distributional sense).

In contrast to the standard definitions (3.3), (3.4), these new definitions
are non-local in time. Also, the map f 7→ V [f ] is now non-linear. For a given
Wigner trajectory these two definitions clearly differ in general. However, they
coincide if f is the solution of the WPFP system. These new definitions of the
self-consistent field and potential have the advantage that they only require
f ∈ C([0, T ];L2(R6)) and not f(x, . , t) ∈ L1(R3). If f(t = 0) only lies in
L2(R6), the corresponding field and the potential will consequently only be
defined for t > 0.

The equation (3.18) now easily yields the announced ‖E(t)‖L2(R3)–estimate
for t ∈ (0,∞) in terms of fI and ‖f(t)‖L2(R6) only. The fixed-point map
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f 7→ V [f ] 7→ f̃ (where the last steps refers to solving the linear WFP equa-
tion (3.16) with given V (t), t ≥ 0) is now contractive in C([0, T ];L2(R6)) and
it yields the global mild solution for the WPFP system (3.14).

Without going into details we briefly list alternative kinetic approaches
for the WPFP system that were developed in the last few years: In [6] p-
weighted L2-spaces were used to make the definition of the particle density by
n =

∫
f dp meaningful. In [10, 21], instead, an L1-setting is chosen with the

same motivation. The pseudo-differential operator θ[V ] is rewritten there as a
convolution operator in the p-variable. We remark that such kinetic strategies
are valuable as they can, possibly, be extended to the WPFP boundary value
problems used for semiconductor device modeling.

The quantum Fokker-Planck system for density matrices. Using the
Wigner transforms we first rewrite the WPFP system (3.14) for the integral
kernel ρ(x, x′, t) from (3.7):

ρt = −iHxρ+ iHx′ρ− β

2
(x − x′) · (∇x −∇x′)ρ (3.21)

+ α|∇x + ∇x′ |2ρ− σ|x− x′|2ρ+ 2iγ(x− x′) · (∇x + ∇x′)ρ,

coupled to the Poisson equation for V , where Hx′ is a copy of the Hamiltonian
H = Hx = − 1

2∆x +V (x, t), but acting on the x′–variable. The corresponding
density matrix ρ̂ then satisfies the evolution equation (3.11), augmented with
a r.h.s. iA(ρ̂) in Lindblad form (3.12) and coupled to the Poisson equation.

For the whole space case the density matrix formalism provides the most
elegant analytic setup. Motivated by the kinetic energy Ekin(ρ̂) defined in
(3.10) we define the “energy space”

E := {ρ̂ ∈ I1 |
√

1 −∆ρ̂
√

1 −∆ ∈ I1}.

For physical quantum states (i.e. ρ̂ ≥ 0) we then have

‖ρ̂‖E = Tr ρ̂+ Ekin(ρ̂).

The simple estimate
‖n‖L1(R3) ≤ ‖ρ̂‖I1

gives a rigorous meaning (in L1) to the definition of the particle density (3.9),
and the Lieb-Thirring-type estimate (cf. [3, 64]) yields

‖n‖L3(R3) ≤ C‖ρ̂‖E .

Therefore the nonlinearity [V (x, t)−V (x′, t)]ρ(x, x′, t) in (3.21) is locally Lip-
schitz in E . Since the linear part of (3.21) generates a mass conserving semi-
group on E , standard semigroup theory yields a unique local-in-time solu-
tion to (3.21). A-priori estimates on the mass Tr (ρ̂) and the total energy
Etot(ρ̂) = Ekin(ρ̂) + 1

2‖∇xV [ρ̂]‖2
L2, due to the energy balance
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d

dt
Etot = 3σTr ρ̂I − 2βEkin(t) − α‖n(t)‖2

L2,

then shows that there exists a unique global mild solution of (3.21) in
C([0,∞); E) (cf. [12]).

4 Macroscopic picture: fluid-type models

The aim of this section is to derive macroscopic quantum models from the
following Wigner-Boltzmann equation for the distribution function f(x, p, t):

∂tf + p · ∇xf + θ[V ]f = Q(f), f(x, p, 0) = fI(x, p), (x, p) ∈ R
2d, t > 0.

(4.1)
Here, (x, p) denotes the position-momentum variables of the phase space, t > 0
is the time, d ≥ 1 the dimension, Q(f) a collision operator, and θ[V ]f is the
pseudo-differential operator defined by (3.2). Notice that in the semi-classical
limit ε → 0, the term θ[V ]f converges to ∇xV · ∇pf and thus, (4.1) reduces
to the semi-classical Vlasov equation [66]. The electric potential V = V (x, t)
is selfconsistently coupled to the Wigner function f via Poisson’s equation

λ2
L∆V =

∫

Rd

fdp− C, (4.2)

where λL is the scaled Debye length and C = C(x) the doping concentration
characterizing the semiconductor device [44].

In classical fluiddynamics, macroscopic models can be derived from the
Boltzmann equation by using a moment method. The idea is to multiply the
kinetic equation by some monomials κi(p) and to integrate the equation over
the momentum space. This yields the so-called moment equations. Usually,
not all integrals can be expressed in terms of the moments (which is called
the closure problem) and an additional procedure is necessary in order to
close the equations. Depending on the number of moments which are taken,
a variety of fluiddynamical models can be derived [14, 60]. The aim of this
section is to mimic this procedure in the quantum case. Figure 4.1 shows the
resulting models arising from special choices of the set of monomials. We will
discuss these models in detail in the following subsections. For this, we need to
specify the collision operator Q(f) in (4.1). First we introduce in the following
subsection the so-called quantum Maxwellian.

4.1 Definition of the quantum Maxwellian

In order to define the quantum Maxwellian, we use the Wigner transform
W (ρ̂) of an integral operator ρ̂ on L2(Rd) as defined in (3.7), (3.8). Its inverse
W−1, also called Weyl quantization, is defined as an operator on L2(Rd):
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Wigner-Boltzmann

quantum moment hydrodynamic 

models, k(p) = (k0(p),...,kN(p))

k(p) = (1,p,|p|2/2)

k(p) = (1,p)

quantum hydrodynamic 
equations

isothermal quantum hydrodynamic 
equations

quantum moment diffusion models

k (p) = (k0(p),...,kN(p)), ki(p) even

k(p) = (1,|p|2/2)

k(p) = (1)

quantum energy-transport 
equations

quantum drift-diffusion equations

moment method,
entropy minimization

moment method,
Chapman-Enskog

Fig. 4.1. Multiscale hierarchy of macroscopic quantum models.

(W−1(f)φ)(x) =

∫

R2d

f
(x+ y

2

)
φ(y)eip·(x−y)/εdpdy for all φ ∈ L2(Rd).

With these definitions we are able to introduce as in [27] the quantum expo-
nential and the quantum logarithm formally by Exp f = W (expW−1(f)) and
Log f = W (logW−1(f)), where exp and log are the operator exponential and
logarithm, respectively.

Inspired by Levermore’s moment method for the classical case [60], Degond
and Ringhofer [27] have defined the quantum Maxwellian by using the entropy
minimization principle. Let a quantum mechanical state be described by the
Wigner function f solving (4.1). Then its relative quantum (von Neumann)
entropy is given by

H(f) =

∫

R2d

f(x, p, ·)
(
(Log f)(x, p, ·) − 1 +

|p|2
2

+ V (x, ·)
)
dxdp.

Whereas the classical entropy is a function on the configuration space, the
above quantum entropy at given time is a real number, underlining the non-
local nature of quantum mechanics.

We define the quantum Maxwellian Mf for some given function f(x, p, t)
as the solution of the constrained minimization problem

H(Mf) = min

{
H(f̂) :

∫

Rd

f̂(x, p, t)κi(p)dp = mi(x, t) for all x, t, i

}
, (4.3)

where κi(p) are some monomials in p and mi(x, t) are the moments of f ,

mi(x, t) = 〈f(x, p, t)κi(p)〉, i = 0, . . . , N, (4.4)

where we have used the notation 〈g(p)〉 =
∫
g(p)dp for functions g(p). The

formal solution of this minimization problem (if it exists) is given by Mf =

Exp (λ̃ ·κ− 1
2 |p|2−V (x, ·)), where κ = (κ0, . . . , κN ), and λ̃ = (λ̃0, . . . , λ̃N ) are
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some Lagrange multipliers. If κ0(p) = 1 and κ2(p) = 1
2 |p|2, setting λ0 = λ̃0−V ,

λ2 = λ̃2 − 1 and λi = λ̃i otherwise, we can write

Mf = Exp (λ · κ(p)). (4.5)

4.2 Quantum moment hydrodynamic models

In this section we will derive the quantum moment hydrodynamic equations
from the Wigner-Boltzmann equation (4.1) with dominant elastic scattering
employing a moment method. For a special choice of the moments, the quan-
tum hydrodynamic equations are obtained. If a Fokker-Planck approach is
taken for the inelastic collision operator, viscous corrections to the quantum
hydrodynamic model are derived.

General quantum moment hydrodynamics. Introducing the hydrody-
namic scaling x′ = αx, t′ = αt, where 0 < α≪ 1 measures the typical energy
gain or loss during an electron-phonon collision, the Wigner-Boltzmann equa-
tion for (fα, Vα) becomes (omitting the primes)

α∂tfα + α(p · ∇xfα + θ[Vα]fα) = Q(fα), (x, p, t) ∈ R
2d × (0,∞), (4.6)

together with an initial condition for fα and the Poisson equation (4.2) for
Vα. The collision operator is assumed to split into two parts:

Q(fα) = Q0(fα) + αQ1(fα),

where the first (dominant) part models elastic collisions and the second part
models inelastic scattering processes. The operator Q0 is supposed to satisfy
the following properties:

(i) If Q0(f) = 0 then f = Mf , (ii) 〈Q0(f)κ(p)〉 = 0, (4.7)

where Mf is the quantum Maxwellian introduced in section 4.1 and κ(p) is a
vector of some monomials κi(p). If κ(p) = (1, p, |p|2/2), condition (ii) expresses
the conservation of mass, momentum, and energy, which is meaningful for
elastic collisions. An example fulfilling conditions (i) and (ii) is the BGK-type
operator [18] Q0(f) = (Mf −f)/τ with the relaxation time τ > 0. An example
of an inelastic collision operator Q1 will be given in the subsection “Viscous
quantum hydrodynamic equations” below.

In the following we proceed similarly as in [27]. The moment equations
are obtained by multiplying (4.6) by κ(p)/α, integrating over the momentum
space, and using condition (ii):

∂t〈κ(p)fα〉 + divx〈κ(p)pfα〉 + 〈κ(p)θ[Vα]fα〉 = 〈κ(p)Q1(fα)〉.

The second integral on the left-hand side of the moment equations cannot be
expressed in terms of the moments; this is called the closure problem. We can
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solve this problem by letting α → 0. Indeed, the formal limit α → 0 in (4.6)
gives Q0(f) = 0 where f = limα→0 fα. Hence, by condition (i), f = Mf . Then
the formal limit α→ 0 in the above moment equations yields

∂tm+ divx〈κ(p)pMf 〉 + 〈κ(p)θ[V ]Mf 〉 = 〈κ(p)Q1(Mf )〉, (4.8)

where m = 〈κ(p)Mf 〉 are the moments (see (4.4)) and V = limα→0 Vα solves
(4.2) with f = Mf . The above equations have to be solved for x ∈ R

d and
t > 0, and the initial condition becomes m(·, 0) = 〈κ(p)MfI

〉. In the classical
case, Levermore [60] has shown that the moment equations are symmetrizable
and hyperbolic. In the present situation, this concept of hyperbolicity cannot
be used since (4.8) is not a partial differential equation but a differential
equation with non-local operators of the type λ 7→ 〈Exp (λ · κ(p))〉.

The system (4.8) possesses the following (formal) property: If 1 and 1
2 |p|2

are included in the set of monomials and if the inelastic collision operator
conserves mass and dissipates energy, i.e. 〈Q1(f)〉 = 0 and 〈1

2 |p|2Q1(f)〉 ≤ 0
for all functions f , the total energy

E(t) =

∫

R2d

(〈1

2
|p|2Mf

〉
+
λ2

L

2
|∇xV |2

)
dxdp

is nonincreasing. To see this, we notice that for all (regular) functions f ,

〈θ[V ]f〉 = 0, 〈pθ[V ]f〉 = −〈f〉∇xV, 〈1
2 |p|2θ[V ]f〉 = −〈pf〉 · ∇xV. (4.9)

From the moment equations

∂t〈Mf 〉 + divx〈pMf 〉 = 0, ∂t〈1
2 |p|2Mf 〉 + divx〈1

2 |p|2pMf〉 ≤ 〈pMf 〉 · ∇xV

and the Poisson equation (4.2) we obtain formally

dE

dt
≤
∫

Rd

(〈pMf 〉 · ∇xV + λ2
L∇xV · ∂t∇xV )dx

=

∫

Rd

(〈pMf 〉 · ∇xV − V ∂t〈Mf 〉)dx

=

∫

Rd

(〈pMf 〉 · ∇xV + V divx〈pMf〉)dx = 0,

proving the monotonicity of the total energy.
In the following section we will specify the choice of the monomials, which

enables us to give a more explicit expression of the system (4.8).

Quantum hydrodynamic equations. In classical fluiddynamics, the Euler
equations are derived from the Boltzmann equation by using the monomials
κ(p) = (1, p, |p|2/2) in the moment equations. In this subsection, we derive the
quantum counterpart, the so-called quantum hydrodynamic (QHD) equations
(see [27, 51]).



18 A. Arnold, A. Jüngel

Let κ(p) = (1, p, |p|2/2). The moments n := m0, nu := m1, and ne := m2

are called the particle, current, and energy densities, respectively. We also
define the velocity u = nu/n and the energy e = ne/n. In this situation, the
quantum Maxwellian can be written as Mf = Exp (λ0 + λ1 · p + λ2|p|2) or,
equivalently, as

Mf (x, t) = Exp
(
A(x, t) − |p− w(x, t)|2

2T (x, t)

)
, (4.10)

where A, w, and T are defined in terms of λ0, λ1, and λ2. In the following we
will give a more explicit expression for the quantum moment equations (4.8).

Using (4.9) and observing that the second and third moments can be
written as

〈p⊗ pMf 〉 = P + nu⊗ u, where P = 〈(p− u) ⊗ (p− u)Mf 〉,
〈1
2p|p|2Mf 〉 = S + (P + neI)u, where S = 〈1

2 (p− u)|p− u|2Mf〉,
the quantum moment equations (4.8) become

∂tn+ div(nu) = 〈Q1(Mf)〉, (4.11)

∂t(nu) + div(nu⊗ u) + divP − n∇V = 〈pQ1(Mf )〉, (4.12)

∂t(ne) + div
(
(P + neI)u

)
+ divS − nu · ∇V = 〈1

2 |p|2Q1(Mf )〉, (4.13)

where u⊗u denotes the matrix with components ujuk, P is the stress tensor,
S the (quantum) heat flux, and I is the identity matrix in R

d×d. The electric
potential is given by (4.2) with f = Mf or, in the above notation, by

λ2
L∆V = n− C(x). (4.14)

The above system, which is solved for x ∈ R
d and t > 0 with initial conditions

for n(·, 0), nu(·, 0), and ne(·, 0), is called the quantum hydrodynamic equations.
The quantum correction only appears in the terms P and S. We can derive an
explicit expression in the O(ε4) approximation. For this, we need to expand
the quantum Maxwellian Mf in terms of ε2. As the computations are quite
involved, we only sketch the expansion and refer to [51] for details.

The quantum exponential can be expanded in terms of ε2 yielding Exp f =
ef − (ε2/8)efB + O(ε4), where B is a polynomial in the derivatives of f up
to second order. This allows for an expansion of the moments

(n, nu, ne) =

∫

Rd

Exp

(
A− |p− w|2

2T

)(
1, p,

1

2
|p|2
)
dp,

of the stress tensor

P = nTI +
ε2

12
n
{(d

2
+ 1
)
∇ logT ⊗∇ logT −∇ logT ⊗∇ logn

−∇ logn⊗∇ logT − (∇⊗∇) log(nT 2) +
R⊤R

T

}
(4.15)

+
ε2

12
Tdiv

(
n
∇ logT

T

)
I +O(ε4), (4.16)
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and of the quantum heat flux

S = − ε2

12
n
{(d

2
+ 1
)
R∇ log

( n
T

)
+
(d

2
+ 2
)
divR+

3

2
∆u
}

+
ε2

12

(
d

2
+ 1

)
n
{
R∇ log

( n
T 2

)
+ divR

}
+O(ε4), (4.17)

where the matrix R with components Rij = ∂ui/∂xj − ∂uj/∂xi is the anti-
symmetric part of the velocity gradient and R⊤ is the transpose of R. In the
semi-classical case ε = 0 the stress tensor reduces to the classical expression
P = nTI. The term S is purely quantum and vanishes if ε = 0. The energy
density is the sum of the thermal, kinetic, and quantum energy,

ne =
d

2
nT +

1

2
n|u|2 − ε2

24
n
{
∆ log n− 1

T
tr(R⊤R) +

d

2
|∇ logT |2 −∆ logT

−∇ logT · ∇ logn
}

+ O(ε4), (4.18)

where “tr” denotes the trace of a matrix.
A simplified quantum hydrodynamic model up to order O(ε4) can be ob-

tained under the assumptions that the inelastic collision part vanishes,Q1 = 0,
that the temperature is slowly varying, ∇ logT = O(ε2), and finally, that the
vorticity is small, R = O(ε2):

∂tn+ div(nu) = 0, (4.19)

∂t(nu) + div(nu⊗ u) + ∇(nT ) − ε2

12
div
(
n(∇⊗∇) logn

)
− n∇V = 0, (4.20)

∂t(ne) + div
(
(P + neI)u

)
− ε2

8
div(n∆u) − nu · ∇V = 0, (4.21)

with the stress tensor and energy density, respectively,

P = nTI − ε2

12
n(∇⊗∇) logn, ne =

d

2
nT +

1

2
n|u|2 − ε2

24
n∆ logn. (4.22)

We notice that if we choose κ(p) = (1, p), we obtain the isothermal quantum
hydrodynamic equations (4.19)-(4.20) with constant temperature T = 1.

The system (4.19)-(4.21) corresponds to Gardner’s QHD model except
for the dispersive velocity term (ε2/8)div(n∆u). The differences between our
QHD equations and Gardner’s model can be understood as follows. In both
approaches, closure is obtained by assuming that the Wigner function f is
in equilibrium. However, the notion of “equilibrium” is different. A quantum
system, which is characterized by its energy operator W−1(h), with the Weyl
quantization W−1 and the Hamiltonian h(p) = |p|2/2 + V (x), attains its
minimum of the relative (von Neumann) entropy in the mixed state with
Wigner function fQ = Exp (−h/T0). This state represents the unconstrained
quantum equilibrium. The expansion of fQ in terms of ε2 was first given in
[74],
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fQ(x, p) = exp(−h(x, p)/T0)(1 + ε2f2(x, p)) +O(ε4)

with an appropriate function f2. As a definition of the quantum equilibrium
with moment constraints, Gardner employed this expansion of fQ and modified
it mimicking the moment-shift of the Gibbs state in the classical situation:

f̃Q(x, p) = n(x) exp
(
− h(x, p− u(x))

T (x)

)(
1 + ε2f2(x, p− u(x))

)
+O(ε4).

In contrast to the classical case, f̃Q is not the constrained minimizer for the
relative von Neumann entropy. On the other hand, the equilibrium state Mf

used here is a genuine minimizer of the relative entropy with respect to the
given moments. It has been shown in [51] that both approaches coincide if
the temperature is constant and if only the particle density is prescribed as a
constraint.

Equations (4.19)-(4.22) are of hyperbolic-dispersive type, and the presence
of the nonlinear third-order differential operators in (4.20) and (4.21) makes
the analysis of the system quite difficult. In particular, it is not clear if the
electron density stays positive if it is positive initially. Since the total mass∫
ndx and the total energy,

E(t) =

∫

Rd

(d
2
nT +

1

2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇√

n|2 +
ε2d

48
n|∇ logT |2

+
ε2

24T
n tr(R⊤R)

)
dx, (4.23)

are conserved quantities of the quantum moment equations (4.11)-(4.18) (if
Q1 = 0) [51], this provides some Sobolev estimates. However, this estimate
seems to be not strong enough to prove the existence of weak solutions to the
system. Indeed, for a special model, a nonexistence result of weak solutions
to the QHD equations has been proved [35]. This result is valid for the one-
dimensional isothermal stationary equations, solved in a bounded interval
with Dirichlet boundary conditions for the electron density and boundary
conditions for the electric potential, the electric field, and the quantum Bohm
potential at the left interval point. Moreover, the term Tnx in (4.20) has
been replaced by a more general pressure function p(n) satisfying a growth
condition.

The nonexistence result is valid for sufficiently large current densities. On
the other hand, for “small” current densities fulfilling a subsonic condition
related to classical fluiddynamics, some existence results for the stationary
and transient equations have been achieved [42, 43, 45, 47].

The QHD equations contain two parameters: the (scaled) Planck constant
ε and the Debye length λL. In special regimes of the physical parameters, these
constants may be small compared to one, such that the semi-classical limit
ε→ 0 or the quasi-neutral limit λL → 0 may be of interest, leading to simpler
models. In fact, the QHD equations reduce in the semi-classical limit to the
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Euler equations. This limit has been proved in the one-dimensional isothermal
steady state for sufficiently small current densities in [41] and for arbitrary
large current densities (after adding an ultra-diffusive term in (4.20)) in [36].
The quasi-neutral limit in the isentropic QHD model has been performed in
[62], showing that the current density consists, for small Debye length, of a
divergence-free vector field connected with the incompressible Euler equations
and a highly oscillating gradient vector coming from high electric fields.

The nonisothermal QHD equations have been first solved numerically by
Gardner using a finite-difference upwind method, considering the third-order
term as a perturbation of the classical Euler equations [37]. However, hy-
perbolic schemes have the disadvantage that the numerical diffusion may
influence the numerical solution considerably [56]. This can be seen in Fig-
ure 4.2 (left). The figure shows the current-voltage characteristics of a one-
dimensional resonant tunneling diode, computed from the QHD equations
(4.19)-(4.21) without the dispersive velocity term but including heat conduc-
tivity and relaxation-time terms of Baccarani-Wordeman type. The tunneling
diode consists of three regions: the high-doped contact regions and a low-
doped channel region. In the channel, a double-potential barrier is included
(see [51] for the physical and numerical details).

Due to the numerical viscosity introduced by the upwind method, the
solution of Gardner’s model strongly depends on the mesh size. On the other
hand, the solution to the new QHD equations (4.19)-(4.21) presented in [51]
is much less mesh depending (see Figure 4.2 right).
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Fig. 4.2. Influence of the number of discretization points N on the current-voltage
characteristics for Gardner’s QHD equations (left) and for the new QHD model
(right).

Notice that the main physical effect of a tunneling diode is that there
exists a region in which the current density is decreasing although the voltage
is increasing. This effect is called negative differential resistance and it is
employed, for instance, to devise high-frequency oscillator devices.
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The effect of the dispersive velocity term is a “smoothing” of the current-
voltage curve. In order to study the influence of this term, we replace the factor
ε2/8 in (4.21) by δ2/8 and choose various values for δ. Clearly, only δ = ε
corresponds to the physical situation. Figure 4.3 shows that the characteristics
become “smoother” for larger values of δ.
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Fig. 4.3. Influence of the dispersive velocity term (δ2/8)(nuxx)x on the current-
voltage curve.

Viscous quantum hydrodynamic equations. We model the inelastic col-
lisions as electron interactions with a heat bath of oscillators in thermal equi-
librium (which models the semiconductor crystal). Castella et al. [23] derived
for such a situation the collision operator

Q1(w) = ν∆xw + ν1∆pf + ν2divx(∇pf) +
1

τ
divp(pf).

The parameters ν, ν1, ν2 ≥ 0 constitute the phase-space diffusion matrix, and
τ > 0 is a friction parameter, the relaxation time. If ν = 0 and ν2 = 0, this
gives the Caldeira-Leggett operator [20]. This model allows to incorporate
inelastic scattering in the quantum hydrodynamic equations. Indeed, using
the definition of the moments, we compute

〈Q1(Mf)〉 = ν∆xn, 〈pQ1(Mf )〉 = ν∆x(nu) − ν2∇xn− nu

τ
,

〈1
2 |p|2Q1(Mf )〉 = ν∆x(ne) + dν1n− ν2divx(nu) − 2ne

τ
.

For simplicity, we suppose in the following that ν1 = ν2 = 1/τ = 0. Assuming
as in the previous section that the temperature gradients and the vorticity
are of order ε2, we obtain the viscous quantum hydrodynamic equations:
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∂tn+ div(nu) = ν∆n,

∂t(nu) + div(nu⊗ u) + ∇(nT ) − ε2

12
div
(
n(∇⊗∇) logn

)
− n∇V = ν∆(nu),

∂t(ne) + div
(
(P + neI)u

)
− ε2

8
div(n∆u) − nu · ∇V = ν∆(ne),

where P and ne are defined in (4.22), and V is given by (4.14). Notice that ν
is of the same order as ε2 [40].

Due to the dissipative terms on the right-hand side of the above system,
the total energy

E(t) =

∫

Rd

(d
2
nT +

1

2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇√

n|2
)
dx

is no longer conserved but at least bounded:

dE

dt
+

ν

λ2
L

∫

Rd

n(n− C)dx = 0.

However, it is not clear how to prove the existence of weak solutions or the
positivity of the particle density from this equation.

A partial existence result, for sufficiently small current densities in the
isothermal stationary model, is presented in [40]. The main idea is the ob-
servation that, in the one-dimensional steady state, we can integrate (4.24)
yielding nu − νnx = J0 for some integration constant J0 which we call the
effective current density (since it satisfies (J0)x = 0). A computation now
shows that

( (nu)2

n

)

x
− ν(nu)xx = −ν2n

(
n(log n)xx

)
x

+
(J2

0

n

)

x
+ 2νJ0(log n)xx.

Hence, the coefficient of the quantum term becomes ε2/12+ν2, and the viscos-
ity term transforms to 2νJ0(log n)xx. The smallness condition on the current
density is needed in order to control the convective part (J2

0/n)x. Also in
[40], the inviscid limit ν → 0 and the semi-classical limit ε → 0 have been
performed.

The isothermal viscous model has been numerically solved in [53, 56]. The
viscosity ν has the effect to “smoothen” the current-voltage characteristics
for a tunneling diode, as can be seen from Figure 4.4 (left). We refer to [53]
for details of the employed parameters. The curves are computed from the
isothermal model. Their behavior is unphysical due to the jump from a low-
current to a high-current state. This effect can be explained by the constant
temperature assumption. Indeed, in Figure 4.4 (right) a curve computed from
the nonisothermal equations is presented. The characteristic shows the correct
physical behavior but the viscosity leads to rather small peak-to-valley ratios
(ratio of maximal to minimal current density).
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Fig. 4.4. Current voltage characteristics for a tunneling diode for the viscous QHD
model. Left: isothermal case for various values of the viscosity; right: non-isothermal
model.

4.3 Quantum moment diffusion models

In this section we derive quantum moment diffusion equations from a BGK-
type Wigner equation using a Chapman-Enskog method. For special choices of
the moments, the quantum energy-transport and the quantum drift-diffusion
equations in the O(ε4) approximation are obtained.

General quantum moment diffusion equations. We consider the Wigner-
Boltzmann equation (4.1) in the diffusion scaling x′ = αx, t′ = α2t, where
0 < α≪ 1 is as in the previous section (neglecting the primes):

α2∂tfα + α(p · ∇xfα + θ[Vα]fα) = Q(fα), (x, p, t) ∈ R
2d × (0,∞). (4.24)

Our aim is to perform a Chapman-Enskog expansion in the corresponding
moment equations and to perform the formal limit α→ 0. For this, we proceed
similarly as in [26] using only monomials of even order, for instance κ(p) =
(1, 1

2 |p|2, . . .). Then the quantum Maxwellian Mf is the formal solution of
the constrained minimization problem (4.3) with given moments m0(x, t), . . . ,
mN (x, t) with respect to the above set of monomials.

We assume that the collision operator can be written as

Q(fα) = Q0(fα) + α2Q1(fα),

withQ0(fα) modeling the elastic scattering andQ1(fα) the inelastic scattering
processes. In contrast to the previous section, we assume here that the elastic
collisions are modeled by a BGK-type operator [18],

Q0(f) =
1

τ
(Mf − f),

where τ = τ(x, t) > 0 is the relaxation time. Then Q0(f) satisfies the proper-
ties (4.7). Concerning inelastic scattering, we suppose only that it preserves
the mass, i.e. 〈Q1(f)〉 = 0 for all functions f .
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Multiplying (4.24) by κ(p)/α, integrating over the momentum space, and
using condition (ii) in (4.7), we obtain the moment equations

∂t〈κ(p)fα〉 + α−1(divx〈κ(p)pfα〉 + 〈κ(p)θ[V ]fα〉) = 〈κ(p)Q1(fα)〉.

In order to derive the diffusion models, we employ the Chapman-Enskog ex-
pansion fα = Mfα

+ αf1
α, which defines f1

α. The formal limit α→ 0 in (4.24)
gives Q0(f) = 0, where f = limα→0 fα and hence f = Mf , by condition (i)
in (4.7). Inserting the Chapman-Enkog expansion in the above moment equa-
tions, observing that the integrals 〈κ(p)pMfα

〉 and 〈κ(p)θ[Vα]Mfα
〉 vanish,

since κi(p) is even in p, and performing the limit α→ 0, we conclude that

∂t〈κ(p)Mf 〉 + divx〈κ(p)pf1〉 + 〈κ(p)θ[V ]f1〉 = 〈κ(p)Q1(Mf )〉, (4.25)

where f1 = limα→0 f
1
α. It remains to determine the limit f1. Since Q0 is a

BGK-type operator, it holds, using (4.24),

f1
α = − τ

α
Q0(fα) = −τ

(
α∂tfα + p · ∇xfα + θ[Vα]fα − αQ1(fα)

)
,

which implies in the limit α→ 0 that f1 = −τ(p ·∇xMf +θ[V ]Mf ). Inserting
this expression for f1 into (4.25) we obtain the general quantum diffusion
equations

∂tm− div
(
τdiv〈p⊗ pκ(p)Mf〉 + τ〈κ(p)pθ[V ]Mf 〉

)
+ 〈κ(p)θ[V ]f1〉

= 〈κ(p)Q1(Mf )〉, (4.26)

where we recall that m = 〈κ(p)Mf 〉. With the notation (4.5) we see that the
expression

div(τdiv〈p⊗ pκi(p)Mf 〉) =
∑

j,k,ℓ

∂

∂xj

(
τ
〈
pjpkκiκℓExp (λ · κ)

〉 ∂λℓ

∂xk

)

=: div(B : ∇λ)

can be interpreted as a diffusion term, and (4.26) can be formulated in a
compact form as

A∂tλ− div(B : ∇λ) = g(λ),

where A = 〈κ ⊗ κMf〉 and g(λ) denotes the lower-order terms in λ. A more
explicit expression can be derived in the cases N = 1 and N = 0 which will
be discussed in the following subsections.

Quantum energy-transport equations. Let N = 1 and κ(p) = (1, 1
2 |p|2).

For simplicity, we also assume that the relaxation time is constant, τ = 1.
Then we can simplify the quantum diffusion equations of the previous sub-
section. Indeed, employing the formulas (4.9) and

〈1
2p|p|2θ[V ]f〉 = −(P + neI)∇V + ε2

8 n∇∆V for all functions f,
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we obtain from (4.26) the evolution equations for the particle density m0 = n
and the energy density m2 = ne (see [26]):

∂tn− div J0 = 0, ∂t(ne) − div J2 − J0 · ∇V = 〈1
2 |p|2Q1(f)〉, (4.27)

J0 = divP − n∇V, J2 = divU − (P + neI)∇V +
ε2

8
n∇∆V, (4.28)

where P = 〈p⊗pMf〉 is the stress tensor, U = 〈1
2 |p|2p⊗pMf〉 is a fourth-order

moment, and V is given by (4.14). The variables J0 and J2 are the particle and
energy current densities, respectively. Noticing that the quantum Maxwellian
can be written here as

Mf (x, t) = Exp

(
A(x, t) − |p|2

2T (x, t)

)
,

one can show that the quantum fluid entropy

η(t) =

∫

Rd

Mf(LogMf − 1)dxdp =

∫

Rd

n(A− ne/T + 1)dx

is nonincreasing [26].
More explicit equations are obtained in the O(ε4) approximation. For this,

we need to expand the terms P , U and the energy ne =
∫

1
2 |p|2Exp (A −

|p|2/2T )dp in terms of ε2. If ∇ logT = O(ε2) and up to order O(ε4), some
tedious computations lead to the expressions

P = nTI − ε2

12
n(∇⊗∇) logn, ne =

d

2
nT − ε2

24
n∆ logn, (4.29)

U =
1

2
(d+ 2)nT 2I − ε2

24
nT (∆ lognI + (d+ 4)(∇⊗∇) logn),

Equations (4.27)-(4.28) with the above constitutive relations for P , U , and ne
are called the quantum energy-transport equations. Notice that the expressions
of P and U differ from those presented in [26]. We expect that this O(ε4) model
possesses an entropic formulation similar to the classical energy-transport
equations [24] but unfortunately, no entropic structure is currently known.

The quantum drift-diffusion equations. In this subsection we set N = 0
and choose κ0(p) = 1. Then the quantum Maxwellian reads as Mf (x, t) =
Exp (A(x, t) − |p|2/2), and similar as in the previous subsection, we obtain

∂tn− divJ = 0, J = divP − n∇V,

where n and P are defined by

n =

∫

Rd

Exp

(
A− |p|2

2

)
dp, P =

∫

Rd

p⊗ pExp

(
A− |p|2

2

)
dp.

Again, the electric potential V is given selfconsistently by (4.14). Some analyt-
ical properties and numerical results for this nonlocal equation can be found
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in [34]. In the O(ε4) approximation, we can simplify the above model. Indeed,
for T = 1, we obtain from (4.29) divP = ∇n − ε2n∇(∆

√
n/6

√
n) + O(ε4),

and up to order O(ε4) the quantum drift-diffusion equations

∂tn+
ε2

6
div
(
n∇
(∆

√
n√
n

))
− div(∇n− n∇V ) = 0.

This fourth-order equation is of parabolic type which simplifies the analysis
considerably, in particular compared to the third-order dispersive quantum
hydrodynamic equations (4.19)-(4.21). Notice that the quantum term can be
written as

div
(
n∇
(∆

√
n√
n

))
=

1

2
div div

(
n(∇⊗∇) logn

)
,

where ∇⊗∇ denotes the Hessian.
The quantum drift-diffusion equations can be also derived in the relaxation-

time limit from the isothermal QHD model including relaxation terms. This
limit has been made rigorous in [46], for solutions close to the equilibrium
state.

The main mathematical difficulty is to prove the nonnegativity of the solu-
tions. Since the equation is of fourth order, maximum principle arguments can-
not be applied. The main idea of the existence analysis in the one-dimensional
situation is the observation that the functional η0(t) =

∫
(n− logn)dx is non-

increasing [54]. More precisely, if the equations are considered on a bounded
interval such that n = 1 and nx = 0 on the boundary,

dη0
dt

+
ε2

12

∫

I

(logn)2xxdx +

∫

I

(logn)2xdx+
1

λ2
L

∫

I

(n− C) logndx = 0.

By Poincaré’s inequality, this provides an H2 bound (if C ∈ L∞(I)) and
hence an L∞ bound for w = logn, showing that n = ew is nonnegative (we
loose positivity due to an approximation procedure). Applying a fixed-point
argument, the existence of weak solutions has been proved in [54, 57]. The one-
dimensional equations are by now well understood and the regularity, long-
time behavior, and numerical approximation of nonnegative weak solutions
have been studied [30, 50, 55, 57].

Unfortunately, the above idea does not apply in the multi-dimensional case
since the functional

∫
(n − logn)dx seems not to be nonincreasing anymore.

The new idea is to show that the entropy η1(t) =
∫
n(logn−1)dx is bounded,

dη1
dt

+
ε2

12

∫

Rd

n|(∇⊗∇) logn|2dx+ 4

∫

Rd

|∇√
n|2dx+

1

λ2
L

∫

Rd

(n−C)ndx = 0,

where ∇⊗∇ denotes the Hessian. Since the entropy production integral can
be estimated as

∫

Rd

|(∇⊗∇)
√
n|2dx ≤ c

∫

Rd

n|(∇⊗∇) logn|2dx,
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for some constant c > 0 which depends on the space dimension d, this provides
estimates for

√
n in H2 and shows that n = (

√
n)2 ≥ 0. These estimates allow

for a fixed-point argument (see [38, 50] for a proof in the case of vanishing
second-order diffusion and vanishing electric fields).

Concerning the stationary equations, an existence analysis, even in several
space dimensions, can be found in [17]. When neglecting the second-order dif-
fusion (zero temperature case) and the electric field, we obtain the so-called
Derrida-Lebowitz-Speer-Spohn equation [28], for which additional nonincreas-
ing functionals have been found [49].

The current-voltage characteristics for a tunneling diode, computed from
the one-dimensional quantum drift-diffusion equations, are shown in Figure
4.5 (left) with the lattice temperature T = 300K. We see that the model
is not capable to reproduce negative differential differential effects at room
temperature. However, when using a smaller lattice temperature, negative
differential resistance can be observed (Figure 4.5 right).

The quantum drift-diffusion model produces good numerical results when
coupled to the Schrödinger-Poisson system employed in the channel re-
gion [31]. This can be seen from Figure 4.6 in which the coupled quantum
drift-diffusion Schrödinger-Poisson model is compared with the Schrödinger-
Poisson system and the coupled drift-diffusion Schrödinger-Poisson equations
(see [31] for details).
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Fig. 4.5. Current voltage characteristics for a tunneling diode from the quantum
drift-diffusion model for temperature T = 300 K (left) and T = 77K (right).
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Fig. 4.6. Current voltage characteristics for a tunneling diode from the Schrödinger-
Poisson system (SP), the coupled quantum drift-diffusion Schrödinger-Poisson model
(QDD-SP), and the coupled drift-diffusion Schrödinger-Poisson model (DD-SP) for
temperature T = 300 K.
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10. A. Arnold, J.L. López, P.A. Markowich and J. Soler. An analysis of quantum

Fokker-Planck models: A Wigner function approach. Rev. Mat. Iberoam. 20(3)
(2004), 771–814.

11. A. Arnold, M. Schulte. Discrete transparent boundary conditions for the
Schrödinger equatioon – a compact higher order scheme. in preparation 2006.



30 A. Arnold, A. Jüngel
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34. S. Gallego and F. Méhats. Entropic discretization of a quantum drift-diffusion
model. SIAM J. Numer. Anal. 43 (2005), 1828-1849.
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