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Abstract. A system of drift-diffusion equations for the electron, hole, and oxygene va-
cancy densities in a semiconductor, coupled to the Poisson equation for the electric po-
tential, is analyzed in a bounded domain with mixed Dirichlet–Neumann boundary con-
ditions. This system describes the dynamics of charge carriers in a memristor device.
Memristors can be seen as nonlinear resistors with memory, mimicking the conductance
response of biological synapses. In the fast-relaxation limit, the system reduces to a drift-
diffusion system for the oxygene vacancy density and electric potential, which is often used
in neuromorphic applications. The following results are proved: the global existence of
weak solutions to the full system in any space dimension; the uniform-in-time boundedness
of the solutions to the full system and the fast-relaxation limit in two space dimensions; the
global existence and weak-strong uniqueness analysis of the reduced system. Numerical
experiments in one space dimension illustrate the behavior of the solutions and reproduce
hysteresis effects in the current-voltage characteristics.

1. Introduction

The evolution of the microelectronics industry was influenced for more than 50 years
by Moore’s law that predicts a doubling of the number of transistors on a microchip
about every two years. As this observation is going to cease to apply because of physical
scaling limitations, novel technologies or computing approaches are needed. Neuromorphic
computing seems to be a promising avenue. It is a concept developed by C. Mead in the
late 1980s to implement aspects of (biological) neuronal networks as analog or digital copies
on electric circuits.

A promising device as technology enabler of neuromorphic computing is the memristor,
which was postulated in [6]. We understand a memristor as a nonlinear resistor with
memory showing a resistive switching behavior. For a historical debate of the memristor
definition, we refer to [25]. Artificial neurons and synapses can be built by using, e.g.,
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ferroelectric materials, phase-change materials, or memristive materials [16]. The oxide-
based memristor consists of a thin titanium dioxide film between two metal electrodes
[21]. The oxygen vacancies act as charge carriers. When an electric field is applied, the
oxygen vacancies drift and change the boundary between the low- and high-resistance
layers. In this way, memristors are able to mimic the conductance response of synapses.
Advantages of these devices are the low power consumption, short switching time, and
nano-size, allowing for high-density circuit architectures.

Memristor devices can be described by compact models, relating the charge and flux
and using the memristor Ohm law [21]. In this paper, we are interested in the internal
physical processes of an oxide-based memristor, and we focus on diffusive models like those
in [11, 23]. They consist of drift-diffusion equations for the electron, hole, and oxygen
vacancy densities and the Poisson equation for the electric potential.

Since the electron-lattice relaxation is much faster than the oxygen vacancy drift, it
is sufficient to determine the electron and hole densities from the stationary equations,
while the oxygen vacancy density still satisfies the transient equation. In this paper, we
make this limit rigorous. More precisely, we prove the global existence of weak solutions
to the full transient model in any space dimension and the fast-relaxation limit in two
space dimensions. Furthermore, we analyze the limiting model (existence, weak-strong
uniqueness) and present some finite-volume simulations in one space dimension. Up to
our knowledge, this is the first mathematical analysis of a charge transport model for
memristors.

1.1. Model equations and mathematical difficulties. The scaled equations for the
electron density n, hole density p, oxygen vacancy density D (or charged mobile n-type
dopant density), and electric potential V are given by

ε∂tn = div Jn, Jn = ∇n− n∇V,(1)

ε∂tp = − div Jp, Jp = −(∇p+ p∇V ),(2)

∂tD = − div JD, JD = −(∇D +D∇V ),(3)

λ2∆V = n− p−D + A(x) in Ω, t > 0,(4)

where ε > 0 is a small parameter describing the speed of relaxation to the steady state,
λ > 0 is the (scaled) Debye length, Jn, Jp, and JD are the current densities of the electrons,
holes, and oxygen vacancies, respectively, and A(x) is the given immobile p-type dopant
(acceptor) density. Following [23], we neglect recombination-generation terms. We use
initial and physically motivated mixed Dirichlet–Neumann boundary conditions:

n(·, 0) = nI , p(·, 0) = pI , D(·, 0) = DI in Ω,(5)

n = n, p = p, V = V on ΓD, t > 0,(6)

Jn · ν = Jp · ν = ∇V · ν = 0 on ΓN , t > 0,(7)

JD · ν = 0 on ∂Ω, t > 0.(8)

This means that we prescribe the electron and hole densities as well as the applied voltage
on the Ohmic contacts ΓD, while ΓN models the union of insulating boundary segments.
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The boundary is assumed to be not transparent to the oxygen vacancies, so we assume
no-flux conditions for D. This gives one of the mathematical difficulties of the model, since
we cannot perform certain partial integrations as for n and p.

Another difficulty comes from the fact that we consider three species instead two. In-
deed, the quadratic drift terms can be estimated in the two-species system for (n, p, V ) by
exploiting a monotonicity property. Assuming for simplicity that n = p = 0, using n and
p as test functions in the weak formulations of (1) and (2), respectively, and adding both
equations, we find from (4) that

ε

2

d

dt

∫
Ω

(n2 + p2)dx+

∫
Ω

(|∇n|2 + |∇p|2)dx =

∫
Ω

n∇V · ∇ndx−
∫

Ω

p∇V · ∇pdx(9)

=
1

2

∫
Ω

∇(n2 − p2) · ∇V dx = − 1

2λ2

∫
Ω

(n2 − p2)(n− p−D + A)dx

≤ −C(λ,D,A)

∫
Ω

(n2 + p2)dx,

since (n2 − p2)(n − p) ≥ 0 and D is fixed in the two-species model. This computation
reduces the cubic term to a quadratic one, which can be treated by Gronwall’s lemma.
This idea cannot be applied to the three-species model.

1.2. State of the art and strategy of our proofs. These difficulties explain why there
are only few analytical results in the literature on n-species drift-diffusion equations with
n > 2. They have been derived in [26] from a kinetic Vlasov–Poisson–Fokker–Planck
system in the diffusion limit. In [1], a three-species system similar to ours is considered,
in the context of corrosion models, but only a stability analysis of a finite-volume scheme
has been performed. The authors of [24] analyze a four-species system, but their model
includes drift terms only in the equations for the electrons and holes, which enables the
authors to use the monotonicity property explained above. General existence results for an
n-species model have been proved in [14] for an abstract drift operator imposing suitable
smoothing conditions. Estimates in Lebesgue and Hölder spaces for n-species systems have
been derived in [5] without an existence analysis. More general models involving positive
semidefinite, nondiagonal mobility matrices can be found in, e.g., [7]. A global existence
analysis for n-species models was performed in [3, 9, 10] (and the large-time asymptotics in
[8]) assuming at most two space dimensions. This restriction can be understood as follows.

Instead of integrating by parts as in (9), the idea is to use an elliptic estimate for V .
Because of the mixed boundary conditions, we cannot expect full elliptic regularity for the
Poisson equation, but there exists r0 > 2 such that [12]

(10) ‖∇V ‖Lr0 (Ω) ≤ C
(
1 + ‖n− p−D + A‖L2r0/(r0+2)(Ω)

)
;

see Lemma 20 in the Appendix for the precise statement. Using log n − log n as a test
function in the weak formulation of (1), we can derive a uniform estimate for n log n in
L∞(0, T ;L1(Ω)); see (12) below. Then the Hölder inequality with r′0 = 2r0/(r0 − 2) and a
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generalized Gagliardo–Nirenberg inequality (see Lemma 19 below) lead to∫
Ω

n∇V · ∇ndx ≤ ‖n‖
Lr
′
0 (Ω)
‖∇V ‖Lr0 (Ω)‖∇n‖L2(Ω)

≤ C‖n‖
Lr
′
0 (Ω)

(
1 + ‖n− p−D + A‖L2r0/(r0+2)(Ω)

)
‖∇n‖L2(Ω)

≤ δ‖∇n‖1+2d/(d+2)

L2(Ω) + C(n, p,D, δ),

where δ > 0, and C(n, p,D, δ) > 0 depends on the L1 logL1 norms of n, p, and D. The first
term on the left-hand side can be absorbed, for sufficiently small δ > 0, by the gradient
term coming from the diffusion part if the exponent is not larger than two, and this is the
case if and only if d ≤ 2.

Our strategy is different. As in [9], the key estimate comes from the free energy functional

H[n, p,D, V ] =

∫
Ω

{
n

(
log

n

n
− 1

)
+ p

(
log

p

p
− 1

)
+D(logD − 1 + V )

}
dx(11)

+
λ2

2

∫
Ω

|∇(V − V )|2dx.

The first integral models the thermodynamic entropy, while the second integral corresponds
to the electric energy. We prove in Theorem 1 that

(12)
dH

dt
+

∫
Ω

(
n

2ε
|∇(log n−V )|2+

p

2ε
|∇(log p+V )|2+

D

2
|∇(logD+V )|2

)
dx ≤ C(n, p, V ).

While the authors of [9] have used this free energy inequality as the starting point to derive
iteratively L∞ estimates in two space dimensions, we use another argument that allows us
to obtain a global existence result in any space dimension.

More precisely, we prove that (12) implies an L2(0, T ;W 1,1(Ω)) bound for
√
nk (as well

as
√
pk and

√
Dk), where (nk, pk, Dk, Vk) is a solution to an approximate problem with

k ∈ N. This bound is not sufficient to deduce strong compactness. By a cutoff argument,
we show that nk (as well as pk and Dk) are bounded in Lr(0, T ;W 1,r(Ωδ)), where Ωδ =
{x ∈ Ω : dist(x, ∂Ω) > δ} and r > 1. By the Aubin–Lions lemma, we conclude strong
Ls(Ωδ × (0, T )) convergence of nk for s < r, and by the Theorem of de la Vallée–Poussin,
weak L1(Ω× (0, T )) convergence of nk. Then we deduce from a Cantor diagonal argument
the strong L1(Ω×(0, T )) convergence of nk (as well as pk and Dk). This is the key argument
to prove the global existence of weak solutions to (1)–(8) in any space dimension. Our
strategy extends the results of [3, 9, 10].

The second main result of this paper is the fast-relaxation limit ε→ 0 for the solutions
(nε, pε, Dε, Vε) to (1)–(8). We expect that Jn = Jp = 0 holds in the limit, leading to
nε = cne

Vε and pε = cpe
−Vε , where cn, cp > 0 are constants determined by the Dirichlet

boundary data. The limit ε → 0 was already performed in a two-species drift-diffusion
system [19], exploiting a uniform lower positive bound for nε and pε. Unfortunately, this
argument cannot be used for our three-species system, and we need another idea.
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The starting point is again the free energy inequality (12), showing that
√
nε∇(log nε − Vε)→ 0,

√
pε∇(log pε + Vε)→ 0

strongly in L2(QT ) as ε → 0, where QT = Ω × (0, T ). Since equation (3) for Dε does not
contain ε, we obtain Dε → D0 strongly in L1(QT ) from the Aubin–Lions lemma. As in
[19], the key step is to prove the strong convergence of ∇Vε, but in contrast to that work,
we are lacking some estimates. We formulate the Poisson equation for Vε as

λ2∆Vε = cne
Vε − cpe−Vε −Dε + A(x) + Eε,

where Eε is an error term. Similar as in [19], we exploit the monotonicity of Vε 7→ cne
Vε −

cpe
−Vε to prove that (∇Vε) is a Cauchy sequence and hence convergent in L2(QT ). The

novelty is the proof of Eε → 0 as ε→ 0. Here, we need an L∞(QT ) bound for Vε, and this
is possible (only) in two space dimensions, according to [12]:

‖Vε‖L∞(Ω) ≤ C
(
1 + ‖(nε − pε −Dε + A) log |nε − pε −Dε + A|‖L1(Ω)

)
≤ C.

We infer that ∇Vε → ∇V0 strongly in L2(QT ), and V0 solves the limiting Poisson equation
λ2∆V0 = cne

V0− cpe−V0−D0 +A(x). Note that, in contrast to [19], we need the restriction
to two space dimensions.

1.3. Main results. We impose the following assumptions.

(A1) Domain: Ω ⊂ Rd (d ≥ 1) is a bounded domain with Lipschitz boundary ∂Ω =
ΓD ∪ ΓN , meas(ΓD) > 0, and ΓN is relatively open in ∂Ω.

(A2) Data: T > 0, ε > 0, λ > 0, A ∈ L∞(Ω).
(A3) Boundary data: n, p, V ∈ W 1,∞(Ω) satisfy n, p > 0 in Ω.
(A4) Initial data: nI , pI , DI ∈ L2(Ω) satisfy nI , pI , DI ≥ 0 in Ω.

We set QT = Ω × (0, T ), H1
D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}, and we introduce the

initial electric potential V I − V ∈ H1
D(Ω) as the unique solution to

λ2∆V I = nI − pI −DI + A in Ω,

V I = V on ΓD, ∇V I · ν = 0 on ΓN .

The boundary data in Assumption (A3) are supposed to be time-independent to simplify
the computations. In two space dimensions, it is sufficient to assume in Assumption (A4)
that nI log nI , pI log pI , DI logDI ∈ L1(Ω) since [13, Lemma 2.2] implies that nI − pI −
DI + A ∈ H1

D(Ω)′. The regularity conditions in Assumptions (A3) and (A4) are imposed
for simplicity; they can be slightly weakened.

Our first main result is the global existence of weak solutions in any space dimension.

Theorem 1 (Global existence). Let Assumptions (A1)–(A4) hold. Then there exists a
weak solution (n, p,D, V ) to (1)–(8) satisfying

n log n, p log p, D logD ∈ L∞(0, T ;L1(Ω)),
√
n,
√
p,
√
D ∈ L2(0, T ;W 1,1(Ω)), Jn, Jp, JD ∈ L1(QT ),

∂tn, ∂tp,∈ L1(0, T ;X ′), ∂tD ∈ L1(0, T ;Hs(Ω)′), V ∈ L∞(0, T ;H1(Ω)),
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where X := Hs(Ω) ∩ H1
D(Ω) and s > 1 + d/2. This solution satisfies the free energy

inequality

H[(n, p,D, V )(t)] +

∫ t

0

∫
Ω

(
n

2ε
|∇(log n− V )|2 +

p

2ε
|∇(log p+ V )|2(13)

+
D

2
|∇(logD + V )|2

)
dxds ≤ HI + C(HI ,Λε, T ),

where the initial free energy HI [n, p,D, V ] is defined in (11), HI := H[nI , pI , DI , V I ],

(14) Λε :=
1

2ε

(
‖∇(log n− V )‖2

L∞(QT ) + ‖∇(log p+ V )‖2
L∞(QT )

)
,

and it holds that C(HI ,Λε, T ) = 0 if Λε = 0.

The property Λε = 0 means that the boundary data are in thermal equilibrium. In
this case, the free energy is a nonincreasing function of time. The entropy production
in (13) is understood in the sense n|∇(log n − V )|2 = |2∇

√
n −
√
n∇V |2, i.e.. we have

2∇
√
n−
√
n∇V ∈ L2(QT ).

We approximate (1)–(4) by truncating the drift term and proving the existence of a
solution (nk, pk, Dk, Vk) to the approximate problem. Estimates uniform in the truncation
parameter k are obtained from an approximate free energy inequality, similar to (12). As
explained before, we also derive uniform estimates in the domain Ωδ, which are needed
to conclude the strong L1(QT ) convergence of the approximate solution. Because of low
regularity, the difficulty is to identify the weak limit of a truncated version of 2∇√nk −√
nk∇Vk. This is done by combining the free energy estimates and the Aubin–Lions lemma,

applied in the domain Ωδ × (0, T ).
Similarly, as in [9], we can prove, in the two-dimensional case, that the weak solution

from Theorem 1 is bounded uniformly in time.

Theorem 2 (Uniform L∞ bounds). Let (A1)–(A4) hold, let d ≤ 2, and let nI , pI ,
DI ∈ L∞(Ω). Furthermore, let (n, p,D, V ) be the weak solution to (1)–(8) constructed
in Theorem 1. Then there exists a constant C(ε) > 0 depending on ε such that for all
t > 0,

‖n(t)‖L∞(Ω) + ‖p(t)‖L∞(Ω) + ‖D(t)‖L∞(Ω) ≤ C(ε).

The theorem is proved by an Alikakos-type iteration method. The restriction to two
space dimensions comes from the regularity (10) for the electric potential. The rough idea
of the proof is to choose nq−1

k in the weak formulation of (1) (and similarly for pk and Dk)
and to derive an estimate in Lq(QT ), which is uniform in k and q. Then the limit k, q →∞
gives the desired L∞(QT ) bound. Since nq−1

k is generally not an H1(Ω) function for q > 2,

we prove first that a truncated version of nq−1
k lies in L∞(QT ), but possibly not uniformly

in k. Next, we choose et max{0, nk−M}q−1 for sufficiently large M > 0 as a test function,
show that nk ∈ Lq(QT ) uniformly in k, q, and T , and pass to the limit k, q → ∞. The
factor et is needed to obtain a time-uniform estimate.
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Next, we study the limit problem, which is formally obtained by setting ε = 0 in (1)–(4)
and taking into account the Dirichlet data:

∂tD0 = div(∇D0 +D0∇V0),(15)

λ2∆V0 = cne
V0 − cpe−V0 −D0 + A(x) in Ω, t > 0,(16)

(∇D0 +D0∇V0) · ν = 0 on ∂Ω, D0(·, 0) = DI in Ω,(17)

V0 = V on ΓD, ∇V0 · ν = 0 on ΓN ,(18)

where cn = n exp(−V ), cp = p exp(V ), and the electron and hole densities are determined
by n0 = cn exp(V0) and p0 = cp exp(−V0), respectively. We show the global existence of
weak solutions and verify a weak-strong uniqueness property.

Theorem 3 (Existence and weak-strong uniqueness for the limit problem). Let Assump-
tions (A1)–(A4) hold and let n ≥ c > 0, p ≥ c > 0 in Ω. Then there exists a bounded
weak solution (D0, V0) to (15)–(18). Moreover, if (D, V ) is a weak solution and (D0, V0) a
bounded strong solution to (15)–(16) satisfying

inf
QT

D0 > 0, D0,∇ logD0, V0,∇V0 ∈ L∞(QT ), ∂tD0, ∂tV0 ∈ L1(0, T ;L∞(Ω)),

then D = D0, V = V0 in Ω× (0, T ).

For the proof of the existence of a weak solution to (15)–(18), we use the techniques
of the proof of Theorem 1. Let (D0,k, V0,k) be a solution to a truncated problem. The
approximate free energy inequality gives us only the weak convergence of V0,k, which is
not sufficient to perform the limit k →∞ in the nonlinear Poisson equation. We need the
strong convergence of V0,k. Our idea is to derive first an L1(QT ) bound for V0,k exp(|V0,k|),
which follows from the free energy inequality for the reduced model or directly from the
nonlinear Poisson equation. Second, we prove that (V0,k) is a Cauchy sequence. This is
done by taking a particular nonlinear test function in the Poisson equation, satisfied by
the difference V0,k − V0,`, which leads to

λ2

∫ T

0

∫
Ω

2 + (V0,k − V0,`)
2

2(1 + (V0,k − V0,`)2)5/4
|∇(V0,k − V0,`)|2dxdt

+ C

∫ T

0

∫
Ω

(V0,k − V0,`)(sinh(V0,k)− sinh(V0,`))

(1 + (V0,k − V0,`)2)1/4
dxdt

≤
∫ T

0

∫
Ω

F (V0,k − V0,`, D0,k, D0,`)dxdt

for some constant C > 0, where F is some function; see Section 4.3 for details. Using
the Fenchel–Young inequality and the De la Valleé–Poussin theorem, the right-hand side
is shown to converge to zero as k, ` → ∞. Then the properties of the hyperbolic sine
function prove the claim.

The weak-strong uniqueness property is based on an estimation of the relative free energy

H[(D, V )|(D0, V0)] =

∫
Ω

(
λ2

2
|∇(V − V0)|2 + cne

V0f0(V − V0) + cpe
−V0f0(V0 − V )

)
dx
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+

∫
Ω

(
D log

D

D0

−D +D0

)
dx,

where f0(s) = (s− 1)es + 1 for s ∈ R. The idea is to show that

dH

dt
[(D, V )|(D0, V0)] +

1

2

∫
Ω

D

∣∣∣∣∇( log
D

D0

+ V − V0

)∣∣∣∣2dx ≤ γ(t)H[(D, V )|(D0, V0)]

for some γ ∈ L1(0, T ) depending on the regularity of (D0, V0). By Gronwall’s lemma,
H[(D, V )(t)|(D0, V0)(t)] = 0, proving that (D, V )(t) = (D0, V0)(t) for t ∈ (0, T ).

Our final main result is the fast-relaxation limit ε→ 0.

Theorem 4 (Limit ε → 0). Let d ≤ 2, n = cn exp(V ), and p = cp exp(−V ) in Ω for
some positive constants cn and cp. Let (nε, pε, Dε, Vε) be a weak solution to (1)–(8) and
(n0, p0, D0, V0) be a weak solution to (15)–(16). Then there exists a subsequence such that,
as ε′ → 0,

nε′ → n0, pε′ → p0, Dε′ → D0 strongly in L1(QT ),

∇Dε′ +Dε′∇Vε′ ⇀ ∇D0 +D0∇V0 weakly in L1(QT ),

∂tDε′ ⇀ ∂tD0 weakly in L1(0, T ;Hs(Ω)′),

Vε′ → V0 strongly in L2(0, T ;H1(Ω)),

where s > 1 + d/2, and (D0, V0) is a weak solution to (15)–(18).

If the limit problem (D0, V0) is uniquely solvable, we achieve the convergence of the
whole sequence. The uniqueness of bounded weak solutions can be proved under regularity
conditions on the electric potential (e.g. ∇V0 ∈ L∞; see [20]). However, this regularity
cannot generally be expected for mixed Dirichlet–Neumann boundary conditions.

The paper is organized as follows. Theorems 1, 2, 3, and 4 are proved in Sections 2, 3,
4, and 5, respectively. Some numerical experiments in one space dimension are performed
in Section 6. Finally, Appendix A is concerned with the proof of some properties for the
truncation functions, and we recall some auxiliary results used in this paper.

2. Proof of Theorem 1

In this section, we prove the global existence of weak solutions to (1)–(8). First, we show
the existence of solutions to an approximate problem, derive some uniform estimates, and
then pass to the de-regularization limit.

2.1. Approximate problem for (1)–(8). We define the approximate problem by trun-
cating the nonlinear drift terms. For this, we introduce the truncation

Tk(s) = max{0,min{k, s}} for s ∈ R, k ≥ 1,

and define the approximate problem

ε∂tnk = div(∇nk − Tk(nk)∇Vk),(19)

ε∂tpk = div(∇pk + Tk(pk)∇Vk),(20)
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∂tDk = div(∇Dk + Tk(Dk)∇Vk),(21)

λ2∆Vk = nk − pk −Dk + A in Ω, t > 0,(22)

supplemented by the initial and boundary conditions

nk(·, 0) = nI , pk(·, 0) = pI , Dk(·, 0) = DI in Ω,(23)

nk = n, pk = p, Vk = V on ΓD, t > 0,(24)

∇nk · ν = ∇pk · ν = ∇Vk · ν = 0 on ΓN , t > 0,(25)

(∇Dk + Tk(Dk)∇Vk) · ν = 0 on ∂Ω, t > 0.(26)

2.2. Existence of solutions to the approximate problem. We prove that the approx-
imate problem has a weak solution.

Lemma 5. Let Assumptions (A1)–(A4) hold. Then there exists a weak solution (nk, pk, Dk,
Vk) to (19)–(26) satisfying nk ≥ 0, pk ≥ 0, Dk ≥ 0 in QT = Ω× (0, T ) and

nk, pk, Dk, Vk ∈ L2(0, T ;H1(Ω)),

∂tnk, ∂tpk ∈ L2(0, T ;H1
D(Ω)′), ∂tDk ∈ L2(0, T ;H1(Ω)′).

As a consequence of the lemma, Tk(nk) = min{k, nk} and similarly for pk and Dk.

Proof. The existence of weak solutions can be proved in a standard way by the Leray–
Schauder fixed-point theorem. Therefore, we only sketch the proof. Let (n∗, p∗, D∗) ∈
L2(QT ;R3) and σ ∈ [0, 1]. The linear system

ε∂tn = div(∇n− σTk(n∗)∇V ),

ε∂tp = div(∇p+ σTk(p
∗)∇V ),

∂tD = div(∇D + σTk(D
∗)∇V ),

λ2∆V = n− p−D + A in Ω, t > 0,

together with initial and boundary conditions (7)–(8) and

n(·, 0) = σnI , p(·, 0) = σpI , D(·, 0) = σDI in Ω,

n = σn, p = σp, V = σV on ΓD, t > 0,

possesses a unique solution (n, p,D, V ) ∈ L2(QT ;R4). This defines the fixed-point op-
erator F : L2(QT ;R3) × [0, 1] → L2(QT ;R3), (n∗, p∗, D∗;σ) 7→ (n, p,D). It holds that
F (n, p,D; 0) = 0, and F is continuous. Both the compactness of F and a σ-uniform bound
on the set of fixed points F (n, p,D;σ) = (n, p,D) follow from energy-type estimates and
the Aubin–Lions lemma. Indeed, let (n, p,D;σ) be a fixed point of F (·;σ), i.e. a solution
to (19)–(26). We use the test function V − V in the weak formulation of (22) and apply
Young’s and Poincaré’s inequalities to find that for any δ > 0,

λ2

∫
Ω

|∇(V − V )|2dx = −λ2

∫
Ω

∇V · ∇(V − V )dx−
∫

Ω

(n− p−D + A)(V − V )dx
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≤ λ2

2

∫
Ω

|∇(V − V )|2dx+
λ2

2

∫
Ω

|∇V |2dx+ δC

∫
Ω

|∇(V − V )|2dx

+ C(δ)

∫
Ω

(n− p−D + A)2dx,

and choosing δ > 0 sufficiently small and integrating over (0, T ) gives∫ T

0

∫
Ω

|∇V |2dxds ≤ C + C

∫ T

0

∫
Ω

(n2 + p2 +D2)dxds,

where C > 0 denotes here and in the following a generic constant independent of ε with
values changing from line to line.

Next, we use the test function n−n in the weak formulation of (19) and use Tk(n) ≤ k:

ε

2

∫
Ω

(n(t)− n)2dx− ε

2

∫
Ω

(nI − n)2dx+

∫ t

0

∫
Ω

∇n · ∇(n− n)dxds

= σ

∫ t

0

∫
Ω

Tk(n)∇V · ∇(n− n)dxds

≤ δ

∫ t

0

∫
Ω

|∇(n− n)|2dxds+ C(δ)k2

∫ t

0

∫
Ω

|∇V |2dxds.

We deduce from the estimate for ∇V and some elementary manipulations that

ε

∫
Ω

n(t)2dx+

∫ t

0

∫
Ω

|∇n|2dxds ≤ C(k) + C(k)

∫ t

0

∫
Ω

(n2 + p2 +D2)dxds.

Using p−p and D as test functions in the weak formulations of (20) and (21), respectively,
and estimating as above, we conclude that∫

Ω

(
εn(t)2 + εp(t)2 +D(t)2

)
dx+

∫ t

0

∫
Ω

(
|∇n|2 + |∇p|2 + |∇D|2

)
dxds

≤ C(k) + C(k)

∫ t

0

∫
Ω

(n2 + p2 +D2)dxds.

Gronwall’s lemma yields σ-uniform bounds for n, p, D, V in L2(0, T ;H1(Ω)). From these
estimates, we can derive uniform bounds for ∂tn, ∂tp in L2(0, T ;H1

D(Ω)′) and for ∂tD in
L2(0, T ;H1(Ω)′). These estimates are sufficient to apply the Aubin–Lions lemma, which
yields the compactness of the fixed-point operator in L2(QT ;R3) and allows us to apply
the Leray–Schauder fixed-point theorem.

The nonnegativity of the densities follows directly after using (nk)− = min{0, nk} as a
test function in the weak formulation of (19), since Tk(nk)(nk)− = 0. The nonnegativity
of pk and Dk follows similarly. This finishes the proof. �

2.3. Uniform estimates. We wish to derive some k-uniform bounds using the free energy
(11). As the densities are only nonnegative, we cannot use log nk etc. as a test function,
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and we need to regularize (11). For this, we introduce the function

Gk,δ(s, s) = gk,δ(s)− gk,δ(s)− g′k,δ(s)(s− s), where gk,δ(s) =

∫ s

0

∫ y

1

dzdy

Tk(z) + δ
,

s, s ≥ 0, k ≥ 1, δ > 0, and the regularized free energy

Hk,δ[n, p,D, V ] =

∫
Ω

(
Gk,δ(n, n) +Gk,δ(p, p) +Gk,δ(D,D) +

λ2

2
|∇(V − V )|2

)
dx,

where D is uniquely defined by g′k,δ(D) = −V . The number D depends on k and δ, but a

computation shows that D can be uniformly bounded with respect to δ. The function gk,δ
is constructed in such a way that the chain rule (Tk(nk) + δ)∇g′k,δ(nk) = ∇nk is fulfilled.
An elementary computation shows that there exists c > 0, not depending on k and δ, such
that gk,δ(s) ≥ c(s− 1) for all s ≥ 0. This implies that

(27) Hk,δ[n, p,D, V ] ≥ −C + C

∫
Ω

(n+ p+D)dx.

For the next lemma, we define

Λε,k,δ =
1

2ε

(
‖∇(g′k,δ(n)− V )‖2

L∞(QT ) + ‖∇(g′k,δ(p) + V )‖2
L∞(QT )

)
,

hk,δ(s) =

∫ s

0

dy√
Tk(y) + δ

, s ∈ R,

HI
k,δ = Hk,δ[n

I , pI , DI , V I ].

The function hk,δ satisfies the chain rule
√
Tk(nk) + δ∇hk,δ(nk) = ∇nk.

Lemma 6 (Regularized free energy inequality I). Let (nk, pk, Dk, Vk) be a weak solution to
the approximate problem (19)–(26). Then there exists a constant C(HI

k,δ,Λε,k,δ, T, δ) > 0
such that for all 0 < t < T ,

Hk,δ[(nk, pk, Dk, Vk)(t)] +
1

2ε

∫ t

0

∫
Ω

∣∣∇hk,δ(nk)−√Tk(nk) + δ∇Vk
∣∣2dxds(28)

+
1

2ε

∫ t

0

∫
Ω

∣∣∇hk,δ(pk) +
√
Tk(pk) + δ∇Vk

∣∣2dxds
+

1

2

∫ t

0

∫
Ω

∣∣∇hk,δ(Dk) +
√
Tk(Dk) + δ∇Vk

∣∣2dxds ≤ HI
k,δ + C(HI

k,δ,Λε,k,δ, T, δ),

and the constant C(HI
k,δ,Λε,k,δ, T, δ) vanishes if Λε,k,δ = 0 and δ = 0.

Proof. We choose the test functions g′k,δ(nk) − g′k,δ(n), g′k,δ(pk) − g′k,δ(p), and g′k,δ(Dk) −
g′k,δ(D) in the weak formulations of (19), (20), and (21), respectively, add the equations,
and use the Poisson equation (22):

Hk,δ[(nk, pk, Dk, Vk)(t)]−HI
k,δ =

∫ t

0

〈∂tnk, g′k,δ(nk)− g′k,δ(n)〉ds
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+

∫ t

0

〈∂tpk, g′k,δ(pk)− g′k,δ(p)〉ds+

∫ t

0

〈∂tDk, g
′
k,δ(Dk)− g′k,δ(D)〉ds

−
∫ t

0

〈∂t(nk − pk −Dk), Vk − V 〉ds

= −1

ε

∫ t

0

∫
Ω

∇(g′k,δ(nk)− g′k,δ(n)− Vk + V ) · (∇nk − Tk(nk)∇Vk)dxds

− 1

ε

∫ t

0

∫
Ω

∇(g′k,δ(pk)− g′k,δ(p) + Vk − V ) · (∇pk + Tk(pk)∇Vk)dxds

−
∫ t

0

∫
Ω

∇(g′k,δ(Dk) + Vk) · (∇Dk + Tk(Dk)∇Vk)dxds,

where 〈·, ·〉 is the duality product between H1
D(Ω)′ and H1

D(Ω) or between H1(Ω)′ and
H1(Ω), depending on the context. Since

∇nk − Tk(nk)∇Vk =
√
Tk(nk) + δ

(
∇hk,δ(nk)−

√
Tk(nk) + δ∇Vk

)
+ δ∇Vk,

∇(g′k,δ(nk)− Vk) =
∇hk,δ(nk)−

√
Tk(nk) + δ∇Vk√

Tk(nk) + δ
,

we obtain

∇(g′k,δ(nk)− g′k,δ(n)− Vk + V ) · (∇nk − Tk(nk)∇Vk)

=
∣∣∇hk,δ(nk)−√Tk(nk) + δ∇Vk

∣∣2 +
δ∇Vk√
Tk(nk) + δ

·
(
∇hk,δ(nk)−

√
Tk(nk) + δ∇Vk

)
−
√
Tk(nk) + δ∇(g′k,δ(n)− V ) ·

(
∇hk,δ(nk)−

√
Tk(nk) + δ∇Vk

)
− δ∇(g′k,δ(n)− V ) · ∇Vk

≥ 1

2

∣∣∇hk,δ(nk)−√Tk(nk) + δ∇Vk
∣∣2 − 2(Tk(nk) + δ)|∇(g′k,δ(n)− V )|2 − 2δ|∇Vk|2.

The terms involving pk and Dk are estimated in a similar way. We infer that

Hk,δ[(nk, pk, Dk, Vk)(t)] +
1

2ε

∫ t

0

∫
Ω

∣∣∇hk,δ(nk)−√Tk(nk) + δ∇Vk
∣∣2dxds(29)

+
1

2ε

∫ t

0

∫
Ω

∣∣∇hk,δ(pk) +
√
Tk(pk) + δ∇Vk

∣∣2dxds
+

1

2

∫ t

0

∫
Ω

∣∣∇hk,δ(Dk) +
√
Tk(Dk) + δ∇Vk

∣∣2dxds
≤ HI

k,δ + CΛε,k,δ

∫ t

0

∫
Ω

(Tk(nk) + Tk(pk) + δ)dxds+ δC

∫ t

0

∫
Ω

|∇Vk|2dxds

≤ HI
k,δ + CΛε,k,δ + C(Λε,k,δ + δ)

∫ t

0

Hk,δ[(nk, pk, Dk, Vk)(s)]ds,
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using bound (27) for Hk,δ and inequality Tk(s) ≤ s for s ≥ 0. Then, by Gronwall’s lemma,

sup
0<t<T

Hk,δ[(nk, pk, Dk, Vk)(t)] ≤
(
HI
k,δ + CΛε,k,δ

)
eC(Λε,k,δ+δ)T .

Using this information in (29) then yields (28), and C(HI
k,δ,Λε,k,δ, T, δ) = 0 if Λε,k,δ = 0

and δ = 0. �

The next step is the limit δ → 0 in (28). To this end, we define

Λε,k =
1

2ε

(
‖∇(g′k(n)− V )‖2

L∞(QT ) + ‖∇(g′k(p) + V )‖2
L∞(QT )

)
,

Hk[n, p,D, V ] =

∫
Ω

(
Gk(n, n) +Gk(p, p) +Gk(D,D) +

λ2

2
|∇(V − V )|2

)
dx,

Gk(s, s) = gk(s)− gk(s)− g′k(s)(s− s),

gk(s) =

∫ s

0

∫ y

1

dz

Tk(z)
dy, hk(s) =

∫ s

0

dy√
Tk(y)

, s ≥ 0,

HI
k = Hk[n

I , pI , DI , V I ].

Lemma 7 (Regularized free energy inequality II). Let (nk, pk, Dk, Vk) be a weak solution
to the approximate problem (19)–(26). Then there exists a constant C(HI

k ,Λε,k, T ) > 0
such that for all 0 < t < T ,

Hk[nk(t), pk(t), Dk(t), Vk(t)] +
1

2ε

∫ t

0

∫
Ω

|∇hk(nk)−
√
Tk(nk)∇Vk)|2dxds(30)

+
1

2ε

∫ t

0

∫
Ω

|∇hk(pk) +
√
Tk(pk)∇Vk)|2dxds

+
1

2

∫ t

0

∫
Ω

|∇hk(Dk) +
√
Tk(Dk)∇Vk)|2dxds ≤ HI

k + C(HI
k ,Λε,k, T ),

and the constant C(HI
k ,Λε,k, T ) vanishes if Λε,k = 0.

Proof. The lemma follows after performing the limit δ → 0 in (28). We claim that

∇hk,δ(nk) −
√
Tk(nk) + δ∇Vk ⇀ ∇hk(nk) −

√
Tk(nk)∇Vk weakly in L2(QT ) as δ → 0.

Indeed, we know that∣∣√Tk(nk) + δ −
√
Tk(nk)

∣∣ =
δ

|
√
Tk(nk) + δ +

√
Tk(nk)|

≤
√
δ → 0

and, by monotone convergence, hk,δ(nk) → hk(nk) a.e. in QT . Since hk(s) ≤ C(k) for
s ≥ 0, we deduce from dominated convergence that hk,δ(nk)→ hk(nk) strongly in Lq(QT )

for any q <∞. Finally, ∇hk,δ(nk)−
√
Tk(nk) + δ∇Vk is bounded in L2(QT ) uniformly in δ,

and there exists a subsequence that converges weakly in L2(QT ). The previous arguments
show that we can identify the weak limit, showing the claim. The other terms in (28) can
be treated in a similar way. The limit δ → 0 proves (30). �
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The free energy inequality (30) implies some uniform bounds, which are collected in the
following lemma.

Lemma 8 (Global estimates for the approximate problem). Let (nk, pk, Dk, Vk) be a weak
solution to the approximate problem (19)–(26). Then there exists a constant C > 0, which
is independent of k and ε, such that

‖gk(nk)‖L∞(0,T ;L1(Ω)) + ‖gk(pk)‖L∞(0,T ;L1(Ω)) + ‖gk(Dk)‖L∞(0,T ;L1(Ω)) ≤ C,(31)

‖nk log nk‖L∞(0,T ;L1(Ω)) + ‖pk log pk‖L∞(0,T ;L1(Ω)) + ‖Dk logDk‖L∞(0,T ;L1(Ω)) ≤ C,(32) ∥∥√Tk(nk)∇Vk
∥∥
L∞(0,T ;L1(Ω))

+
∥∥√Tk(pk)∇Vk

∥∥
L∞(0,T ;L1(Ω))

(33)

+
∥∥√Tk(Dk)∇Vk

∥∥
L∞(0,T ;L1(Ω))

≤ C,

‖hk(nk)‖L2(0,T ;W 1,1(Ω)) + ‖hk(pk)‖L2(0,T ;W 1,1(Ω)) + ‖hk(Dk)‖L2(0,T ;W 1,1(Ω)) ≤ C.(34)

Proof. Estimate (31) is a consequence of the free energy inequality (30), and (32) follows
from (31) and

gk(s) ≥
∫ s

0

∫ y

1

dz

z
dy = s(log s− 1) ≥ 1

2
s log s

for sufficiently large s > 1. Lemma 17 in the Appendix shows that∥∥√Tk(nk)
∥∥
L∞(0,T ;L2(Ω))

≤ C + C‖gk(nk)‖1/2

L∞(0,T ;L1(Ω)) ≤ C.

Then the L∞(0, T ;L2(Ω)) bound for ∇Vk from the free energy inequality (30) implies that∥∥√Tk(nk)∇Vk
∥∥
L∞(0,T ;L1(Ω))

≤
∥∥√Tk(nk)

∥∥
L∞(0,T ;L2(Ω))

‖∇Vk‖L∞(0,T ;L2(Ω)) ≤ C,

which proves (33). Next, by the bound on the entropy production from (30),

‖∇hk(nk)‖L2(0,T ;L1(Ω)) =
∥∥∇hk(nk)−√Tk(nk)∇Vk

∥∥
L2(0,T ;L1(Ω))

+
∥∥√Tk(nk)∇Vk

∥∥
L2(0,T ;L1(Ω))

≤ C.

Finally, we deduce from the proof of Lemma 17 in the Appendix that

(35) ‖hk(nk)‖L∞(0,T ;L2(Ω)) ≤ C + C‖gk(nk)‖1/2

L∞(0,T ;L1(Ω)) ≤ C

such that (34) follows. Similar bounds hold for pk and Dk. �

The estimates of the previous lemma are not sufficient to show that the current density

∇nk − Tk(nk)∇Vk =
√
Tk(nk)

(
∇hk(nk)−

√
Tk(nk)∇Vk

)
is uniformly bounded. Therefore, we prove stronger estimates in Ωδ := {x ∈ Ω : dist(x, ∂Ω) >
δ}, which allow us to apply the Aubin–Lions lemma.

Lemma 9 (Local estimates for the approximate problem). Let (nk, pk, Dk, Vk) be a weak
solution to the approximate problem (19)–(26) and let r = (2 + 2d)/(1 + 2d), r′ = 2d + 2.
Then there exists a constant C(δ) > 0, depending on δ but not on k or ε, such that

‖nk‖Lr(0,T ;W 1,r(Ωδ)) + ‖pk‖Lr(0,T ;W 1,r(Ωδ)) + ‖Dk‖Lr(0,T ;W 1,r(Ωδ)) ≤ C(δ),(36)
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‖∂tnk‖Lr(0,T ;W−1,r(Ωδ)) + ‖∂tpk‖Lr(0,T ;W−1,r(Ωδ)) + ‖∂tDk‖Lr(0,T ;W 1,r′ (Ωδ)′)
≤ C(δ).(37)

Proof. We define the cutoff function ξδ ∈ C1
0(Rd) such that 0 ≤ ξδ ≤ 1 in Rd, ξδ = 1 in Ωδ,

ξδ = 0 in Ω\Ωδ/2, and ‖∇ξδ‖L∞(Rd) ≤ Cξ/δ. The bound for the entropy production in (30)

and the property ∇hk(nk) = Tk(nk)
−1/2∇nk imply that∫ T

0

∫
Ω

(
|∇hk(nk)|2 + Tk(nk)|∇Vk|2

)
ξ2
δdxdt =

∫ T

0

∣∣∇hk(nk)−√Tk(nk)∇Vk
∣∣2ξ2

δdxdt

+ 2

∫ T

0

∫
Ω

∇nk · ∇Vkξ2
δdxdt ≤ C + 2

∫ T

0

∫
Ω

∇nk · ∇Vkξ2
δdxdt.

Similar computations for pk and Dk lead to∫ T

0

∫
Ω

(
|∇hk(nk)|2 + |∇hk(pk)|2 + |∇hk(Dk)|2

)
ξ2
δdxdt(38)

+

∫ T

0

∫
Ω

(
Tk(nk) + Tk(pk) + Tk(Dk)

)
|∇Vk|2ξ2

δdxdt

≤ C + 2

∫ T

0

∫
Ω

∇(nk − pk −Dk) · ∇Vkξ2
δdxdt.

By the Poisson equation (22) and Young’s inequality, we find for the last integral that∫ T

0

∫
Ω

∇(nk − pk −Dk) · ∇Vkξ2
δdxdt

= − 1

λ2

∫ T

0

∫
Ω

(nk − pk −Dk)(nk − pk −Dk + A)ξ2
δdxdt

− 2

∫ T

0

∫
Ω

(nk − pk −Dk)ξδ∇Vk · ∇ξδdxdt

≤ − 1

2λ2

∫ T

0

∫
Ω

(nk − pk −Dk)
2ξ2
δdxdt+

1

λ2

∫ T

0

∫
Ω

A2ξ2
δdxdt

+ 4λ2

∫ T

0

∫
Ω

|∇Vk|2|∇ξδ|2dxdt.

The free energy inequality (30) shows that∇Vk is uniformly bounded in L2(QT ). Therefore,
using |∇ξδ|2 ≤ C2

ξ δ
−2, (38) becomes∫ T

0

∫
Ω

(
|∇hk(nk)|2 + |∇hk(pk)|2 + |∇hk(Dk)|2

)
ξ2
δdxdt(39)

+

∫ T

0

∫
Ω

(
Tk(nk) + Tk(pk) + Tk(Dk)

)
|∇Vk|2ξ2

δdxdt

+
1

2λ2

∫ T

0

∫
Ω

(nk − pk −Dk)
2ξ2
δdxdt ≤ C + Cδ−2.
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This leads, together with (35), to the bound

‖hk(nk)‖L2(0,T ;H1(Ωδ)) +
∥∥√Tk(nk)∇Vk

∥∥
L2(0,T ;L2(Ωδ))

≤ Cδ−1,

and similarly for pk and Dk.
Next, we use the Gagliardo–Nirenberg inequality with q = 2 + 2/d [18, p. 95] and (35):

‖hk(nk)‖Lq(0,T ;Lq(Ωδ)) ≤ C‖hk(nk)‖d/(d+1)

L2(0,T ;H1(Ωδ))
‖hk(nk)‖1/(d+1)

L∞(0,T ;L1(Ωδ))
≤ Cδ−d/(d+1).

We deduce from Lemma 17 in the Appendix that

(40)
∥∥√Tk(nk)

∥∥
Lq(Ωδ×(0,T ))

≤ C‖hk(nk)‖Lq(Ωδ×(0,T )) ≤ C(δ).

It follows from these estimates and Hölder’s inequality that

‖∇nk‖Lr(0,T ;Lr(Ωδ)) =
∥∥√Tk(nk)∇hk(nk)

∥∥
Lr(0,T ;Lr(Ωδ))

≤
∥∥√Tk(nk)

∥∥
Lq(0,T ;Lq(Ωδ))

‖∇hk(nk)‖L2(0,T ;L2(Ωδ)) ≤ C(δ),

recalling that r = (2 + 2d)/(1 + 2d) > 1. Similar estimates are derived for ∇pk and
∇Dk. Thanks to the Poincaré–Wirtinger inequality and (32), this shows (36). Because

of the Lq(Ωδ × (0, T )) bound for
√
Tk(nk) from (40) and the L2(Ωδ × (0, T )) bound for√

Tk(nk)∇Vk from (39),

∇nk − Tk(nk)∇Vk = ∇nk −
√
Tk(nk) ·

√
Tk(nk)∇Vk

is uniformly bounded in Lr(Ωδ× (0, T )) (depending on δ). Consequently, ∂tnk is uniformly
bounded in Lr(0, T ;W−1,r(Ωδ)). The uniform bounds for pk and Dk are proved in an
analogous way. �

The proof shows that the current density ∇nk − Tk(nk)∇Vk (and similar for pk and Dk)
is bounded in Lr(Ωδ × (0, T )) uniformly in k. This improves the estimates of Lemma 8.

2.4. The limit k → ∞. Thanks to estimates (36) and (37), the Aubin–Lions lemma
implies, for any fixed δ > 0, the existence of a subsequence of (nk, pk, Dk), which is not
relabeled, such that

nk → n, pk → p, Dk → D strongly in Lr(Ωδ × (0, T )) as k →∞.

By the Theorem of De la Vallée–Poussin, applied to (32), the limit functions are uniquely
determined in QT by the weak convergence of (nk, pk, Dk) in L1(QT ). We choose δ = 1/m
for m ∈ N, m ≥ 1 and apply a Cantor diagonal argument to deduce the existence of
δ-independent subsequences of (nk, pk, Dk), which are strongly converging to (n, p,D) in
Ls(Ωδ × (0, T )) for 1 < s < r and every δ = 1/m and consequently also for any 0 < δ < 1,
since Ωδ ⊂ Ωδ′ for δ > δ′. This convergence and the weak convergence nk ⇀ n in L1(QT )
as k →∞ imply that

(41) lim sup
k→∞

∫ T

0

∫
Ω

|nk−n|dxdt ≤ lim sup
k→∞

∫ T

0

∫
Ω\Ωδ
|nk−n|dxdt ≤ 2 sup

k∈N

∫ T

0

∫
Ω\Ωδ

nkdxdt.
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By the Theorem of De la Vallée–Poussin again, estimate (32) implies the uniform integra-
bility of (nk)k∈N, such that we conclude from (41) that

lim sup
k→∞

∫ T

0

∫
Ω

|nk − n|dxdt ≤ C(δ)→ 0 as δ → 0.

This means that

nk → n, pk → p, Dk → D strongly in L1(QT ).

We claim that this convergence implies that Tk(nk)→ n strongly in L1(QT ) and similarly
for pk and Dk. Indeed, we infer from bound (32) that, as k →∞,∫ T

0

∫
Ω

|Tk(nk)− nk|dxdt ≤
∫ T

0

∫
{nk≥k}

|k − nk|dxdt

≤
∫ T

0

∫
{nk≥k}

nk
log nk
log k

dxdt ≤ C

log k
→ 0.

Then the convergence nk → n strongly in L1(QT ) shows the claim.
Now, the limit k →∞ in the approximate equations is rather standard except the limit

in the flux term. For this, we observe that the bound on the entropy production in (30)
yields, possibly for a subsequence, that for k →∞,

(42) ∇hk(nk)−
√
Tk(nk)∇Vk ⇀ ξ weakly in L2(QT ).

We wish to identify ξ. For this, we claim that hk(nk)−2
√
nk → 0 in L2(QT ). An elementary

computation shows that hk(s) = 2
√
s for 0 ≤ s ≤ k and hk(s) = s/

√
k +
√
k for s ≥ k.

Therefore,

sup
0<t<T

∫
Ω

|hk(nk)− 2
√
nk|dx =

1√
k

sup
0<t<T

∫
{nk>k}

(√
nk −

√
k
)2
dx ≤ C√

k
→ 0,

where the constant C > 0 depends on the L∞(0, T ;L1(Ω)) norm of nk. We infer from√
nk →

√
n strongly in L2(QT ) that hk(nk)→ 2

√
n strongly in L1(QT ) and consequently,

‖∇(hk(nk)− 2
√
n)‖L2(0,T ;W 1,∞(Ω)′) ≤ ‖hk(nk)− 2

√
n‖L∞(0,T ;L1(Ω)) → 0

or ∇hk(nk) → 2∇
√
n strongly in L2(0, T ;W 1,∞(Ω)′). The free energy inequality (30)

implies, possibly for a subsequence, that∇Vk ⇀ ∇V weakly* in L∞(0, T ;L2(Ω)). The limit√
Tk(nk) →

√
n strongly in L2(QT ) leads to

√
Tk(nk)∇Vk ⇀

√
n∇V weakly in L1(QT ).

These convergences imply that ξ = 2∇
√
n −
√
n∇V and, using (42) and

√
nk →

√
n in

L2(QT ) again,

∇nk − nk∇Vk =
√
nk
(
2∇
√
nk −

√
nk∇Vk

)
⇀ ∇n− n∇V weakly in L1(QT ).

This estimate shows that for all χ ∈ L∞(0, T ) and φ ∈ Hs(Ω) ∩H1
D(Ω) with s > 1 + d/2,

ε

∫ T

0

χ〈∂tnk, φ〉dt = −
∫ T

0

∫
Ω

χ(∇nk − nk∇Vk) · ∇φdxdt
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→ −
∫ T

0

∫
Ω

χ(∇n− n∇V ) · ∇φdxdt,

since Hs(Ω) ↪→ W 1,∞(Ω). The space X = Hs(Ω)∩H1
D(Ω) is reflexive and so does its dual.

Thus, we can apply [4, Lemma 6] to conclude that ∂tnk ⇀ w weakly in L1(0, T ;X ′) for
some w. We can identify w = ∂tn since nk → n strongly in L1(QT ) and so, ∂tnk ⇀ ∂tn in
the sense of distributions. Then the limit k →∞ in the weak formulation

ε

∫ T

0

〈∂tnk, φ〉dt+

∫ T

0

∫
Ω

(∇nk − nk∇Vk) · ∇φdxdt = 0

leads to

ε

∫ T

0

〈∂tn, φ〉dt+

∫ T

0

∫
Ω

(∇n− n∇V ) · ∇φdxdt = 0

for all φ ∈ L∞(0, T ;X). The limit k →∞ for pk and Dk is performed in a similar way.

3. Proof of Theorem 2

We show that a weak solution to (1)–(8) is bounded in the case of two space dimensions.
First, we prove an L∞(0, T ;L2(Ω)) bound.

Lemma 10. Let d ≤ 2. Then there exists C > 0, depending on the L∞(0, T ;L1(Ω)) bounds
of nk log nk, pk log pk, and Dk logDk but independent of k and ε, such that

√
ε‖nk‖L∞(0,T ;L2(Ω)) +

√
ε‖pk‖L∞(0,T ;L2(Ω)) + ‖Dk‖L∞(0,T ;L2(Ω)) ≤ C.

Proof. We use the test function Dk in the weak formulation of (21), the inequality Tk(Dk) ≤
Dk, and apply Hölder’s inequality:

1

2

∫
Ω

(Dk(t)
2 − (DI)2)dx+

∫ t

0

∫
Ω

|∇Dk|2dxds = −
∫ t

0

∫
Ω

Tk(Dk)∇Vk · ∇Dkdxds(43)

≤
∫ t

0

‖Dk‖L2r0/(r0−2)(Ω)‖∇Vk‖Lr0 (Ω)‖∇Dk‖L2(Ω)ds,

where r0 > 2 is from Lemma 20 in the Appendix. The second term on the left-hand side
is estimated by using the Poincaré–Wirtinger inequality:∫ t

0

∫
Ω

|∇Dk|2dxds ≥ C

∫ t

0

‖Dk‖2
H1(Ω)ds− C

∫ t

0

‖Dk‖2
L1(Ω)ds

≥ C1

∫ t

0

‖Dk‖2
H1(Ω)ds− C2,

where C2 > 0 depends on T and the L∞(0, T ;L1(Ω)) norm of Dk. For the right-hand side
of (43), we use Lemma 19 with q = 2r0/(r0 + 2) and Lemma 20:

‖Dk‖L2r0/(r0+2)(Ω) ≤ δ‖Dk‖(r0−2)/(2r0)

H1(Ω) ‖Dk logDk‖(r0+2)/(2r0)

L1(Ω) + C(δ)‖Dk‖L1(Ω)

≤ δC‖Dk‖(r0−2)/(2r0)

H1(Ω) + C(δ),

‖∇Vk‖Lr0 (Ω) ≤ C(1 + ‖nk − pk −Dk + A‖L2r0/(r0+2)(Ω))
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≤ C
(
1 + ‖nk‖(r0−2)/(2r0)

H1(Ω) + ‖pk‖(r0−2)/(2r0)

H1(Ω) + ‖Dk‖(r0−2)/(2r0)

H1(Ω)

)
,

where C > 0 and C(δ) > 0 depend on the L∞(0, T ;L1(Ω)) norms of nk log nk, pk log pk,
and Dk logDk. We conclude from (43) that

‖Dk(t)‖2
L2(Ω) + C

∫ t

0

‖Dk‖2
H1(Ω)ds ≤ ‖DI‖2

L2(Ω) + C(δ)

+ δC

∫ t

0

‖Dk‖1+(r0−2)/(2r0)

H1(Ω) C
(
1 + ‖nk‖(r0−2)/(2r0)

H1(Ω) + ‖pk‖(r0−2)/(2r0)

H1(Ω) + ‖Dk‖(r0−2)/(2r0)

H1(Ω)

)
ds

≤ ‖DI‖2
L2(Ω) + C(δ) + δC

∫ t

0

(
1 + ‖nk‖2

H1(Ω) + ‖pk‖2
H1(Ω) + ‖Dk‖2

H1(Ω)

)
ds.

We can apply Young’s inequality in the last step since 1 + (r0− 2)/(2r0) = 3/2− 1/r0 < 2.
Similar inequalities can be derived for nk and pk (using the test functions nk−n and pk−p).
Adding these inequalities and choosing δ > 0 sufficiently small leads to

ε‖nk(t)‖2
L2(Ω) + ε‖pk(t)‖2

L2(Ω) + ‖Dk(t)‖2
L2(Ω)

+ C

∫ t

0

(
‖nk‖2

H1(Ω) + ‖pk‖2
H1(Ω) + ‖Dk‖2

H1(Ω)

)
ds ≤ C,

and the constant C > 0 depends on the initial data and the L∞(0, T ;L1(Ω)) norms of
nk log nk, pk log pk, and Dk logDk. �

Lemma 11. Let d ≤ 2. Then there exists C(ε) > 0, independent of k, such that

‖Vk‖L∞(0,T ;W 1,r0 (Ω)) ≤ C(ε),

where r0 > 2 is from Lemma 20 in the Appendix.

Proof. The free energy inequality implies that Vk is uniformly bounded in L∞(0, T ;H1(Ω)).
Then the estimate for Vk is a consequence of Lemma 20 and Lemma 10:

‖Vk‖L∞(0,T ;W 1,r0 (Ω)) ≤ C
(
‖nk − pk −Dk + A‖L∞(0,T ;L2r0/(r0+2)(Ω)) + 1

)
≤ C(ε),

since 2r0/(r0 + 2) < 2. �

The following lemma provides L∞ bounds depending on the truncation parameter k.
This result is used to prove uniform L∞ bounds later.

Lemma 12. Let d ≤ 2 and nI , pI , DI ∈ L∞(Ω). Then there exists C > 0, depending on
the L∞(0, T ;L1(Ω)) bounds of nk log nk, pk log pk, Dk logDk and on ε, k (and possibly on
T ), such that

‖nk‖L∞(QT ) + ‖pk‖L∞(QT ) + ‖Dk‖L∞(QT ) ≤ C(ε, k).

Proof. Let q ≥ 2 and ‖DI‖L∞(Ω) < M < L. We set [z]L = min{L, z}, z+ = max{0, z}, and
φL(z) = ([z]L −M)+ for z ∈ R. Then∫ z

0

φL(s)q−1ds ≥ 1

q
φL(z)q for z ≥ 0.



20 C. JOURDANA, A. JÜNGEL, AND N. ZAMPONI

Because of the truncation, φL(Dk)
q−1 is an admissible test function in the weak formulation

of (21). Observing that the definition of M shows that∫ t

0

〈∂tDk, φL(Dk)
q−1〉ds ≥ 1

q

∫
Ω

φL(Dk(t))
qdx,

we obtain from (21), Hölder’s inequality, and Tk(Dk) ≤ k:

1

q

∫
Ω

φL(Dk(t))
qdx+

4

q2
(q − 1)

∫ t

0

∫
Ω

|∇φL(Dk)
q/2|2dxds(44)

= −
∫ t

0

∫
Ω

Tk(Dk)∇Vk · ∇φL(Dk)
q−1dxds

≤ Ck

∫ t

0

‖∇Vk‖Lr0 (Ω)‖∇φL(Dk)
q/2‖L2(Ω)‖φL(Dk)

q/2−1‖
Lr
′
0 (Ω)

ds,

where r0 > 2 is from Lemma 20 and r′0 = 2r0/(r0 − 2) > 2. By definition of the H1(Ω)
norm, ∫ t

0

∫
Ω

|∇φL(Dk)
q/2|2dxds ≥

∫ t

0

(
‖φL(Dk)

q/2‖2
H1(Ω) − ‖φL(Dk)

q/2‖2
L2(Ω)

)
ds.

By Lemma 11, the L∞(0, T ;Lr0(Ω)) norm of ∇Vk is bounded uniformly in k. Then, by the
Gagliardo–Nirenberg inequality (70), setting s = (1− 2/q)r′0:

‖φL(Dk)
q/2−1‖

Lr
′
0 (Ω)

= ‖φL(Dk)
q/2‖1−2/q

Ls(Ω)

≤ C‖φL(Dk)
q/2‖(1−1/s)(1−2/q)

H1(Ω) ‖φL(Dk)
q/2‖(1/s)(1−2/q)

L1(Ω)

≤ C + C‖φL(Dk)
q/2‖1−1/s

H1(Ω)‖φL(Dk)
q/2‖1/s

L1(Ω).

Inserting these estimates into (44) and using Young’s inequality for an arbitrary δ > 0, we
arrive at

‖φL(Dk(t))‖qLq(Ω) + C

∫ t

0

‖φL(Dk)
q/2‖2

H1(Ω)ds

≤ Ckq + C(k)q

∫ t

0

‖φL(Dk)
q/2‖2

L2(Ω)ds+ Ckq

∫ t

0

‖φL(Dk)
q/2‖2−1/s

H1(Ω)‖φL(Dk)
q/2‖1/s

L1(Ω)ds

≤ Ckq + C(δ, k)qmax{1,2s}
∫ t

0

‖φL(Dk)
q/2‖2

L2(Ω)ds+ δ

∫ t

0

‖φL(Dk)
q/2‖2

H1(Ω)ds.

It remains to choose a sufficiently small δ > 0 to absorb the last term on the right-hand
side and to apply Lemma 21, which yields

‖φL(Dk(t))‖L∞(Ω) ≤ C, t ∈ (0, T ),

where C > 0 does not depend on L. The limit L → ∞ then shows that (Dk(t) −
M)+ ≤ C and consequently, Dk(t) ≤ C + M in QT . The L∞ bounds for nk and
pk are proved in an analogous way by choosing M > max{‖n‖L∞(ΓD), ‖nI‖L∞(Ω)} and
M > max{‖p‖L∞(ΓD), ‖pI‖L∞(Ω)}, respectively. �



DRIFT-DIFFUSION MODELS FOR MEMRISTORS 21

We proceed with the proof of Theorem 2, which is technically similar to the previous
proof. Let q ≥ 2 and M > ‖DI‖L∞(Ω). We set φ(z) = (z −M)+ for z ≥ 0. Lemma 12
guarantees that etφ(Dk)

q−1 is an admissible test function in the weak formulation of (21).
(The factor et allows us to derive time-uniform bounds.) Using Tk(Dk) ≤ (Dk−M)++M =
φ(Dk) +M and computing similarly as in the proof of Lemma 12, we find that

‖etφ(Dk(t))‖qLq(Ω) + C

∫ t

0

es‖φ(Dk)
q/2‖2

H1(Ω)ds− C
∫ t

0

es‖φ(Dk)
q/2‖2

L2(Ω)ds

≤ Cq

∫ t

0

es‖∇Vk‖Lr0 (Ω)‖∇φ(Dk)
q/2‖L2(Ω)‖φ(Dk)

q/2−1(φ(Dk) +M)‖
Lr
′
0 (Ω)

ds.

recalling that r′0 = 2r0/(r0 − 2) > 2. Taking into account the L∞(0, T ;W 1,r0(Ω) bound for
Vk, independent of k, and the Gagliardo–Nirenberg inequality, we compute

‖etφ(Dk(t))‖qLq(Ω) + C

∫ t

0

es‖φ(Dk)
q/2‖2

H1(Ω)ds− C
∫ t

0

es‖φ(Dk)
q/2‖2

L2(Ω)ds

≤ Cq

∫ t

0

es‖∇φ(Dk)
q/2‖L2(Ω)

(
‖φ(Dk)

q/2‖
Lr
′
0 (Ω)

+M‖φ(Dk)
q/2−1‖

Lr
′
0 (Ω)

)
ds

≤ Cq

∫ t

0

es‖φ(Dk)
q/2‖H1(Ω)

(
‖φ(Dk)

q/2‖1−1/r′0
H1(Ω) ‖φ(Dk)

q/2‖1/r′0
L1(Ω)

+MC
(
1 + ‖φ(Dk)

q/2‖1−1/s

H1(Ω)‖φ(Dk)
q/2‖1/s

L1(Ω)

))
ds,

where s = (1− 2/q)r′0. Then it follows from Young’s inequality for an arbitrary δ > 0 that

‖etφ(Dk(t))‖qLq(Ω) + C

∫ t

0

es‖φ(Dk)
q/2‖2

H1(Ω)ds− C
∫ t

0

es‖φ(Dk)
q/2‖2

L2(Ω)ds

≤ Cqet + Cδ

∫ t

0

es‖φ(Dk)
q/2‖2

H1(Ω)ds+ C(δ)qmax{1,2r′0}
∫ t

0

es‖φ(Dk)
q/2‖2

L2(Ω)ds.

Choosing δ > 0 sufficiently small, the second term on the right-hand side is absorbed from
the left-hand side, and Lemma 21 implies that

‖φ(Dk(t))‖L∞(Ω) ≤ C, t > 0,

where C > 0 is independent of k and T (but depending on ε). This shows that Dk(t) ≤
C +M in Ω, t > 0. The L∞ bounds for nk and pk are proved in a similar way.

4. Proof of Theorem 3

We start with the proof of some estimates.

4.1. A priori estimates. The free energy of the limit problem is defined as

H0[D0, V0] =

∫
Ω

(
D0 log

D0

D
−D0 + nf0(V0 − V ) + pf0(V − V0) +

λ2

2
|∇(V0 − V )|2

)
dx,

where D := exp(−V ) and the function f0 is given by f0(s) = (s− 1)es + 1 for s ∈ R.
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Lemma 13 (Free energy inequality for the limit problem). Let (D0, V0) be a smooth solu-
tion to (15)–(18). Then there exists a constant C > 0, only depending on H0[DI , V I ] and
T , such that

H0[D0(t), V0(t)] +
1

2

∫ t

0

∫
Ω

D0|∇(logD0 + V0)|2dxds ≤ C, 0 < t < T.

Proof. We calculate the time derivative of the free energy, using the definitions n0 =
n exp(V0 − V ), p0 = p exp(V − V0):

dH0

dt
[D0, V0] =

∫
Ω

(
∂tD0 log

D0

D
+ (V0 − V )∂t

(
neV0−V − peV−V0

)
+ λ2∇(V0 − V ) · ∇∂tV0

)
dx

=

∫
Ω

(
∂tD0 log

D0

D
+ (V0 − V )∂t

(
neV0−V − peV−V0

)
− (V0 − V )∂t(n0 − p0 −D0 + A(x))

)
dx

=

∫
Ω

(
log

D0

D
+ V0 − V

)
∂tD0dx.

Inserting the equation for D0 and integrating by parts gives

dH0

dt
[D0, V0] = −

∫
Ω

D0∇(logD0 + V0) · ∇
(
(logD0 + V0)− (logD + V )

)
dx

≤ −1

2

∫
Ω

D0|∇(logD0 + V0)|2dx+
1

2

∫
Ω

D0|∇(logD + V )|2dx.

The last term can be estimated from above by CH0[D0, V0]. Then Gronwall’s lemma
completes the proof. �

The free energy inequality yields the following uniform bounds:

‖D0 logD0‖L∞(0,T ;L1(Ω)) + ‖V0‖L∞(0,T ;H1(Ω)) ≤ C,

‖V0 exp |V0|‖L∞(0,T ;L1(Ω)) +
∥∥2∇

√
D0 +

√
D0∇V0

∥∥
L2(QT )

≤ C,

since 2∇
√
D0 +

√
D0∇V0 =

√
D0∇(logD0 + V0) is uniformly bounded in L2(QT ).

4.2. Approximate problem. Recalling Tk(s) = max{0,min{k, s}} for s ∈ R, we intro-
duce the approximate problem

∂tD0,k = div(∇D0,k + Tk(D0,k)∇V0,k),(45)

λ2∆V0,k = cne
V0,k − cpe−V0,k − Tk(D0,k) + A(x) in Ω, t > 0,(46)

V0,k = V on ΓD, ∇V0,k · ν = 0 on ΓN ,(47)

(∇D0,k + Tk(D0,k)∇V0,k) · ν = 0 on ∂Ω, t > 0, D0,k(0) = DI in Ω.(48)

The existence of weak solutions to this problem can be proved similarly as in Section 2.
The only difference is the derivation of an estimate for Vk in the Lax–Milgram argument
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because of the nonlinear Poisson equation. As the nonlinearity is monotone, the L2 norm
of ∇Vk can be bounded in terms of the L2 norm of D0,k, like in the proof of Lemma 5.

To pass to the limit k → ∞, we need additional estimates. First, the free energy
inequality gives the following bound, which can be also directly proved from the Poisson
equation using the test function V0,k − V :

(49) ‖V0,k exp(|V0,k|)‖L1(QT ) ≤ C.

Second, we introduce the following function and its convex conjugate:

(50) g(s) = exp(s2/4), g∗(t) = sup
s>0

(st− g(s)) for s, t > 0.

Lemma 14. Let Φ(u) := u
√

log u for u ≥ 1. Then there exists C > 0 such that Φ(g∗(t)) ≤
Ct log t as t→∞.

Proof. It holds that g∗(t) = stt − exp(s2
t/4), where st > 0 is uniquely determined by

st exp(s2
t/4) = 2t for t > 0. Thus, for sufficiently large t > 0, there exists C > 0 such

that st ≤ C
√

log t, which implies that g∗(t) ≤ stt ≤ Ct
√

log t for “large” values of t. By
definition of Φ, we have

Φ(g∗(t)) ≤ Ct
√

log t
[

log
(
Ct
√

log t
)]1/2

as t→∞,

and consequently,

Φ(g∗(t))

t log t
≤
(

log(Ct
√

log t)

log t

)1/2

≤ C as t→∞,

which proves the lemma. �

Lemma 14 and the L∞(0, T ;L1(Ω)) bound for D0,k logD0,k from Lemma 13 show that

(51)

∫ T

0

∫
Ω

Φ(g∗(D0,k))dxdt ≤ C + C

∫ T

0

∫
Ω

D0,k logD0,kdxdt ≤ C.

Since Φ(u)/u → ∞ as u → ∞, we conclude from the De la Vallée–Poussin lemma that
g∗(D0,k) is uniformly integrable in QT .

4.3. Limit k → ∞. The weak convergence of the potential, proved in Section 2.4, does
not allow us to conclude the convergence exp(V0,k) → exp(V0) as k → ∞. By exploiting
the L1(QT ) bound for V0,k exp(|V0,k|) and the monotonicity of the nonlinear terms in the
Poisson equation, we are able to prove the strong convergence of (V0,k).

Lemma 15. It holds that V0,k → V0 strongly in Lp(QT ) for any 1 ≤ p <∞.

Proof. We take the difference of the Poisson equation (46), satisfied by V0,k and V0,` for
some k, ` ∈ N:

−λ2∆(V0,k − V0,`) + cn(eV0,k − eV0,`) + cp(−e−V0,k + e−V0,`) = Tk(D0,k)− T`(D0,`).



24 C. JOURDANA, A. JÜNGEL, AND N. ZAMPONI

Then we choose the test function (1+(V0,k−V0,`)
2)−1/4(V0,k−V0,`) in the weak formulation

of the previous equation:

λ2

∫ T

0

∫
Ω

2 + (V0,k − V0,`)
2

2(1 + (V0,k − V0,`)2)5/4
|∇(V0,k − V0,`)|2dxdt

+ cn

∫ T

0

∫
Ω

(V0,k − V0,`)(e
V0,k − eV0,`)

(1 + (V0,k − V0,`)2)1/4
dxdt

+ cp

∫ T

0

∫
Ω

(V0,k − V0,`)(−e−V0,k + e−V0,`)

(1 + (V0,k − V0,`)2)1/4
dxdt

=

∫ T

0

∫
Ω

(V0,k − V0,`)

(1 + (V0,k − V0,`)2)1/4
(Tk(D0,k)− T`(D0,`))dxdt.

Using

cn(V0,k − V0,`)(e
V0,k − eV0,`) + cp(V0,k − V0,`)(−e−V0,k + e−V0,`)

≥ min{cn, cp}(V0,k − V0,`)
(
(eV0,k − eV0,`) + (−e−V0,k + e−V0,`)

)
= 2 min{cn, cp}(V0,k − V0,`)(sinh(V0,k)− sinh(V0,`)),

we find that

λ2

∫ T

0

∫
Ω

2 + (V0,k − V0,`)
2

2(1 + (V0,k − V0,`)2)5/4
|∇(V0,k − V0,`)|2dxdt(52)

+ 2 min{cn, cp}
∫ T

0

∫
Ω

(V0,k − V0,`)(sinh(V0,k)− sinh(V0,`))

(1 + (V0,k − V0,`)2)1/4
dxdt

≤
∫ T

0

∫
Ω

|V0,k − V0,`|
(1 + (V0,k − V0,`)2)1/4

|Tk(D0,k)− T`(D0,`)|dxdt.

We claim that the right-hand side converges to zero if k, `→∞. For this, we decompose
the right-hand side for some L > 1 into two parts:

J1 :=

∫ T

0

∫
{|V0,k|+|V0,`|≤L}

|V0,k − V0,`|
(1 + (V0,k − V0,`)2)1/4

|Tk(D0,k)− T`(D0,`)|dxdt,

J2 :=

∫ T

0

∫
{|V0,k|+|V0,`|>L}

|V0,k − V0,`|
(1 + (V0,k − V0,`)2)1/4

|Tk(D0,k)− T`(D0,`)|dxdt.

The integral J1 converges to zero as k, `→∞, since

J1 ≤
∫ T

0

∫
{|V0,k|+|V0,`|≤L}

|V0,k − V0,`||Tk(D0,k)− T`(D0,`)|dxdt(53)

≤ L

∫ T

0

∫
Ω

|Tk(D0,k)− T`(D0,`)|dxdt,

and the strong convergence D0,k → D0 strongly in L1(QT ) implies that (D0,k) and also
(Tk(D0,k)) is a Cauchy sequence. The difficult part is the limit k, `→∞ in J2.
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We infer from the Fenchel–Young inequality that

J2 ≤
∫ T

0

∫
{|V0,k|+|V0,`|>L}

(
1 + |V0,k − V0,`|1/2

)(
Tk(D0,k) + T`(D0,`)

)
dxdt

≤ 2

∫ T

0

∫
{|V0,k|+|V0,`|>L}

g(1 + |V0,k − V0,`|1/2)dxdt

+

∫ T

0

∫
{|V0,k|+|V0,`|>L}

g∗(Tk(D0,k))dxdt+

∫ T

0

∫
{|V0,k|+|V0,`|>L}

g∗(T`(D0,`))dxdt

=: J21 + J22 + J23,

where g and g∗ are defined in (50). Elementary inequalities lead to

J21 ≤ 2

∫ T

0

∫
{|V0,k|+|V0,`|>L}

exp

(
1

2
(1 + |V0,k − V0,`|)

)
dxdt

≤ 2e1/2

∫ T

0

∫
max{|V0,k|,|V0,`|}>L/2

emax{|V0,k|,|V0,`|}dxdt

≤ 4e1/2

L

∫ T

0

∫
max{|V0,k|,|V0,`|}>L/2

max{|V0,k|, |V0,`|}emax{|V0,k|,|V0,`|}dxdt ≤ C

L
,

taking into account estimate (49) in the last step.
Since (V0,k) is bounded in L1(QT ), there exists C > 0 such that for all k, ` ≥ 1,

meas{|V0,k| + |V0,`| > L} ≤ C/L. We have already shown that (51) implies the uniform
integrability of g∗(Dk) in QT . Thus, for any η > 0, there exists Lη > 1 such that for all
L > Lη,

sup
k,`∈N

∫ T

0

∫
{|V0,k|+|V0,`|>L}

g∗(Tk(D0,k))dxdt ≤ η,

which means that J22 + J23 ≤ 2η for all k, ` ∈ N. This information as well as the estimate
for J21 yield J2 ≤ 3η for sufficiently large L > 1. Then, together with estimate (53) for J1,
we obtain

lim sup
k,`→∞

∫ T

0

∫
Ω

|V0,k − V0,`|
(1 + (V0,k − V0,`)2)1/4

|Tk(D0,k)− T`(D0,`)|dxdt ≤ 4η

for all L > Lη. Since η > 0 is arbitrary, we conclude that

lim
k,`→∞

∫ T

0

∫
Ω

|V0,k − V0,`|
(1 + (V0,k − V0,`)2)1/4

|Tk(D0,k)− T`(D0,`)|dxdt = 0.

We perform the limit k, `→∞ in (52), which shows that

lim
k,`→∞

∫ T

0

∫
Ω

(V0,k − V0,`)(sinh(V0,k)− sinh(V0,`))

(1 + (V0,k − V0,`)2)1/4
dxdt = 0.
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We deduce from the trigonometric addition formula

sinh(a)− sinh(b) = 2 sinh
a− b

2
cosh

a+ b

2
for a, b ∈ R

that

lim
k,`→∞

∫ T

0

∫
Ω

sinh((V0,k − V0,`)/2)

V0,k − V0,`

cosh((V0,k + V0,`)/2)

(1 + (V0,k − V0,`)2)1/4
(V0,k − V0,`)

2dxdt = 0.

Taking into account that cosh(a) ≥ 1 for a ∈ R and that for every 0 < p <∞, there exists
cp > 0 such that sinh(a)/a ≥ cp|a|p for a ∈ R, we conclude that (V0,k) is a Cauchy sequence
in Lp(QT ) for every p <∞ and consequently, (V0,k) is convergent in that space. �

We proceed with the proof of Theorem 3. Estimate (49) shows that∫ T

0

∫
Ω

Ψ(e±V0,k)dxdt ≤ C,

where Ψ(u) = u log u for u ≥ 0. By the De la Vallée–Poussin theorem, (exp(±V0,k))
is uniformly integrable. The strong convergence V0,k → V0 in Lp(QT ) implies, up to a
subsequence, that exp(±V0,k)→ exp(±V0) a.e. in QT . Thus,

exp(±V0,k)→ exp(±V0) strongly in L1(QT ).

The proof in Section 2.4 shows that D0,k → D0 strongly in L1(QT ), ∇V0,k ⇀ ∇V0 and
∇D0,k + Tk(D0,k)∇V0,k ⇀ ∇D0 + D0∇V0 weakly in L1(QT ). These convergence allows
us to perform the limit k → ∞ in (45)–(48), showing that (D0, V0) is a weak solution to
(15)–(18).

4.4. Weak-strong uniqueness for the limit problem. We continue by proving the
weak-strong uniqueness property. Let (D0, V0) be a bounded strong solution and (D, V )
be a weak solution to (15)–(18) satisfying the assumptions of Theorem 3. The proof is
based on the relative free energy

H[(D, V )|(D0, V0)] = H1[D|D0] +H2[V |V0], where

H1[D|D0] =

∫
Ω

(
D log

D

D0

−D +D0

)
dx,

H2[V |V0] =

∫
Ω

(
λ2

2
|∇(V − V0)|2 + cne

V0f0(V − V0) + cpe
−V0f0(V0 − V )

)
dx,

recalling that f0(s) = (s− 1)es + 1 for s ∈ R. The proof is divided into several steps.
Step 1: Estimates for the potential V − V0. We wish to derive a bound for V − V0 in

terms of the relative free energy H1[D|D0]. To this end, we use the test function V −V0 in
the weak formulation of the difference of the equations satisfied by V and V0, respectively:

λ2

∫
Ω

|∇(V − V0)|2dx+

∫
Ω

(
cn(eV − eV0)− cp(e−V − e−V0)

)
(V − V0)dx

=

∫
Ω

(V − V0)(D −D0)dx.
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Since V0 is bounded by assumption, we can estimate the second integral on the left-hand
side according to(

cn(eV − eV0)− cp(e−V − e−V0)
)
(V − V0)

= cne
V0(eV−V0 − 1)(V − V0) + cpe

−V0(eV0−V − 1)(V0 − V )

≥ c|V − V0|(e|V−V0| − 1),

where c > 0 depends on the L∞(QT ) norm of V0. We infer that

(54)

∫
Ω

|∇(V − V0)|2dx+

∫
Ω

|V − V0|(e|V−V0| − 1)dx ≤ C

∫
Ω

|V − V0||D −D0|dx.

Let gξ(s) = ξs(es − 1) for ξ > 0, s ≥ 0 and g∗ξ be its convex conjugate. We deduce from
the Fenchel–Young inequality and Lemma 18 in the Appendix that∫

Ω

|V − V0||D −D0|dx ≤
∫

Ω

gξ(|V0 − V |)dx+

∫
Ω

g∗ξ (|D −D0|)dx

≤ ξ

∫
Ω

|V − V0|(e|V−V0| − 1)dx+ ξ

∫
Ω

(log(1 + |D −D0|/ξ))2

1 + log(1 + |D −D0|/ξ)

(
1 +
|D −D0|

ξ

)
dx.

For 0 < ξ < 1, the first term on the right-hand side can be absorbed by the left-hand side
of (54), leading to∫

Ω

|∇(V − V0)|2dx+

∫
Ω

|V − V0|(e|V−V0| − 1)dx

≤ Cξ

∫
Ω

(log(1 + |D −D0|/ξ))2

1 + log(1 + |D −D0|/ξ)

(
1 +
|D −D0|

ξ

)
dx.

We claim that the right-hand side can be controlled by H1[D|D0]. In fact, we claim that
for 0 < γ0 ≤ D0 ≤ γ1 and D ≥ 0,

(55)
(log(1 + |D −D0|/ξ))2

1 + log(1 + |D −D0|/ξ)

(
1 +
|D −D0|

ξ

)
≤ C(ξ, γ0, γ1)

(
D log

D

D0

−D +D0

)
.

This can be seen by analyzing the behavior of both sides of (55) for D → 0, D → D0, and
D →∞. For D → 0, the left-hand side of (55) remains bounded, while the right-hand side
is uniformly positive. For D → ∞, both sides diverge like D logD. Finally, for D → D0,
a Taylor expansion shows that both sides tend to zero quadratically in |D − D0|. We
conclude that

(56)

∫
Ω

|∇(V − V0)|2dx+

∫
Ω

|V − V0|(e|V−V0| − 1)dx ≤ CH1[D|D0].

Step 2: Estimate for (dH1/dt)[D|D0]. We differentiate H1[D|D0] with respect to time:

dH1

dt
[D|D0] =

〈
∂tD, log

D

D0

〉
+

〈
∂tD0, 1−

D

D0

〉
= −

∫
Ω

∇ log
D

D0

· (∇D +D∇V )dx−
∫

Ω

∇
(

1− D

D0

)
· (∇D0 +D0∇V0)dx,
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Elementary computations lead to

(57)
dH1

dt
[D|D0] = −

∫
Ω

D

∣∣∣∣∇ log
D

D0

∣∣∣∣2dx− ∫
Ω

D∇ log
D

D0

· ∇(V − V0)dx.

To reformulate the last integral, we use V −V0 as a test function in the weak formulation
of the difference of the equations satisfied by D and D0, respectively:

〈∂t(D −D0), V − V0〉+

∫
Ω

∇(V − V0) · ∇(D −D0)dx+

∫
Ω

D|∇(V − V0)|2dx

= −
∫

Ω

(D −D0)∇V0 · ∇(V − V0)dx.

Rewriting the second term on the left-hand side,∫
Ω

∇(V − V0) · ∇(D −D0)dx =

∫
Ω

∇(V − V0) ·
((

D

D0

− 1

)
∇D0 +D∇ log

D

D0

)
dx

=

∫
Ω

(D −D0)
∇D0

D0

· ∇(V − V0)dx+

∫
Ω

D∇(V − V0) · ∇ log
D

D0

dx,

we find that

〈∂t(D −D0), V − V0〉+

∫
Ω

D|∇(V − V0)|2dx

= −
∫

Ω

(D −D0)∇(V − V0) ·
(
∇D0

D0

+∇V0

)
dx−

∫
Ω

D∇(V − V0) · ∇ log
D

D0

dx.

We add this expression to (57):

dH1

dt
[D|D0] + 〈∂t(D −D0), V − V0〉+

∫
Ω

D

∣∣∣∣∇ log
D

D0

∣∣∣∣2dx+

∫
Ω

D|∇(V − V0)|2dx

+ 2

∫
Ω

D∇(V − V0) · ∇ log
D

D0

dx = −
∫

Ω

(D −D0)∇(V − V0) ·
(
∇D0

D0

+∇V0

)
dx.

The last three terms of the left-hand side can be written as a square, leading to

dH1

dt
[D|D0] + 〈∂t(D −D0), V − V0〉+

∫
Ω

D

∣∣∣∣∇( log
D

D0

+ V − V0

)∣∣∣∣2dx(58)

= −
∫

Ω

(D −D0)∇(V − V0) ·
(
∇D0

D0

+∇V0

)
dx

We estimate the right-hand side by decomposing the integral in two terms,

I± := −
∫

Ω

(D −D0)±∇(V − V0) ·
(
∇D0

D0

+∇V0

)
dx,

recalling that z+ = max{0, z} and z− = min{0, z}. In the integral I+, we consider “large”
values of D, i.e. D > c := infQT D0 > 0, while “small” values of D, i.e. 0 ≤ D ≤ c, are
taken into account in I−.
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First, using Young’s inequality and the assumptions ∇ logD0, ∇V0 ∈ L∞(QT ):

I+ = −
∫

Ω

(D −D0)+∇
(

log
D

D0

+ V − V0

)
·
(
∇D0

D0

+∇V0

)
dx(59)

+

∫
Ω

(D −D0)+∇ log
D

D0

·
(
∇D0

D0

+∇V0

)
dx

≤ 1

2

∫
Ω

D

∣∣∣∣∇( log
D

D0

+ V − V0

)∣∣∣∣2dx+ C(D0, V0)

∫
Ω

1

D
(D −D0)2

+dx

+

∫
Ω

(D −D0)+∇ log
D

D0

·
(
∇D0

D0

+∇V0

)
dx.

Observe that the positive part avoids the singularity since (D − D0)2
+/D = 0 if D ≤ c.

Taylor’s formula yields

D log
D

D0

−D +D0 = D0

(
D

D0

(
log

D

D0

− 1

)
+ 1

)
=
D0

2ξ

(
D

D0

− 1

)2

≥ D2
0

2D

(
D

D0

− 1

)2

for some 1 ≤ ξ ≤ D/D0. Then the second integral on the right-hand side of (59) becomes∫
Ω

1

D
(D −D0)2

+dx =

∫
{D>D0}

D2
0

D

(
D

D0

− 1

)2

dx ≤ 2H1[D|D0].

The last integral in (59) is formulated as

I1 :=

∫
Ω

(
1− D0

D

)
+

∇ D

D0

· (∇D0 +D0∇V0)dx

=

∫
Ω

∇F
(
D

D0

)
· (∇D0 +D0∇V0)dx,

where F (s) = (s − 1 − log s)1{s>1} ≥ 0 for s > 0. The no-flux boundary conditions allow
us to integrate by parts:

I1 = −
〈

div(∇D0 +D0∇V0), F (D/D0)
〉

= −〈∂tD0, F (D/D0)〉.

By our assumption ∂tD0 ∈ L1(0, T ;L∞(Ω)) and the property F (s) ≤ s(log s − 1) + 1 for
s ≥ 0, we conclude that there exists γ1 ∈ L1(0, T ) such that

I1 ≤ γ1(t)

∫
Ω

F (D/D0)dx ≤ γ1(t)H1[D|D0].

Therefore, setting γ2(t) = γ1(t) + 2C(D0, V0), we deduce from (59) that

(60) I+ ≤
1

2

∫
Ω

D

∣∣∣∣∇( log
D

D0

+ V − V0

)∣∣∣∣2dx+ γ2(t)H1[D,D0].

Now, we estimate I−. By our assumptions on D0 and V0, we compute

I− ≤ C(D0, V0)

∫
Ω

|(D −D0)−||∇(V − V0)|dx
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≤ C(D0, V0)

∫
Ω

(D −D0)2
−dx+ C(D0, V0)

∫
Ω

|∇(V − V0)|2dx.

The first integral can be bounded from above by CH1[D|D0] since D log(D/D0)−D+D0 ≥
(D−D0)2/(2D0) for D < D0. The second integral is estimated from above by CH2[V, V0].
We conclude that

(61) I− ≤ C(D0, V0)
(
H1[D|D0] +H2[V |V0]

)
.

Inserting estimates (60) for I+ and (61) for I− into (58), we obtain for some γ3 ∈ L1(0, T ),

dH1

dt
[D|D0] + 〈∂t(D −D0), V − V0〉+

1

2

∫
Ω

D

∣∣∣∣∇( log
D

D0

+ V − V0

)∣∣∣∣2dx(62)

≤ γ3(t)H[(D, V )|(D0, V0)].

Step 3: Estimate of 〈∂t(D − D0), V − V0〉. The difference V − V0 satisfies the Poisson
equation

D −D0 = −λ2∆(V − V0) + cn(eV − eV0)− cp(e−V − e−V0).
Thus, replacing D−D0 in 〈∂t(D−D0), V − V0〉 by the right-hand side and integrating by
parts in the term involving ∆(V − V0) leads to

〈∂t(D −D0), V − V0〉 =
λ2

2

d

dt

∫
Ω

|∇(V − V0)|2dx(63)

+ cn〈∂t(eV − eV0), V − V0〉 − cp〈∂t(e−V − e−V0), V − V0〉.

The second term on the right-hand side can be reformulated according to

〈∂t(eV − eV0), V − V0〉 = 〈∂tf0(V − V0), eV0〉+ 〈∂t(eV0), (V − V0)(eV−V0 − 1)〉

=
d

dt

∫
Ω

eV0f0(V − V0)dx+
〈
∂t(e

V0), (V − V0)(eV−V0 − 1)− f0(V − V0)
〉

=
d

dt

∫
Ω

eV0f0(V − V0)dx+
〈
∂t(e

V0), eV−V0 − (V − V0)− 1
〉
.

Our assumption on V0 implies that ∂t(e
V0) ∈ L1(0, T ;L∞(Ω)) such that

〈∂t(eV − eV0), V − V0〉 ≥
d

dt

∫
Ω

eV0f0(V − V0)dx− γ4(t)

∫
Ω

(eV−V0 − (V − V0)− 1)dx

for some nonnegative function γ4(t). It holds that

es − s− 1 ≤ C|s|(e|s| − 1) for s ∈ R,

since both sides behave like s2 as s → 0 and for |s| → ∞, the right-hand side tends to
infinity faster than the left-hand side. Therefore, we deduce from (56) that

〈∂t(eV − eV0), V − V0〉 ≥
d

dt

∫
Ω

eV0f0(V − V0)dx− (γ4(t) + C)H[(D, V )|(D0, V0)].
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In a similar way, it follows that

−〈∂t(e−V − e−V0), V − V0〉 ≥
d

dt

∫
Ω

e−V0f0(V0 − V )dx− (γ4(t) + C)H[(D, V )|(D0, V0)].

Inserting these inequalities into (63) and taking into account the definition H2 shows that,
for some γ5 ∈ L1(0, T ),

〈∂t(D −D0), V − V0〉 ≥
dH2

dt
[V |V0]− γ5(t)H[(D, V )|(D0, V0)].

Step 4: Conclusion. We infer from the previous inequality and (62) that

dH

dt
[(D, V )|(D0, V0)] ≤ (γ3(t) + γ5(t))H[(D, V )|(D0, V0)]

for 0 < t < T . As γ3 + γ5 ∈ L1(0, T ) and H[(D, V )|(D0, V0)] = 0 at t = 0, Gronwall’s
lemma implies that H[(D, V )|(D0, V0)](t) = 0 for 0 < t < T , which gives D = D0 and
V = V0 in QT and finishes the proof.

5. Proof of Theorem 4

Since there is no factor ε in the equation for Dε, we can proceed as in the existence proof
and show, using the Aubin–Lions lemma, that up to a subsequence,

(64) Dε → D0 strongly in L1(QT ) as ε→ 0.

The assumption on the boundary data n and p implies that Λε = 0 (see (14)). Therefore,
by the free energy inequality (13),∫ T

0

∫
Ω

(
nε|∇(log nε − Vε)|2 + pε|∇(log pε + Vε)|2

)
dxdt ≤ HIε.

It follows that

2∇
√
nε −

√
nε∇Vε =

√
nε∇(log nε − Vε)→ 0 strongly in L2(QT ).

Furthermore, since
√
nε is uniformly bounded in L∞(0, T ;L2(Ω)), we find that

∇nε − nε∇Vε =
√
nε
(
2∇
√
nε −

√
nε∇Vε

)
→ 0 strongly in L1(QT ).

By estimate (72), which holds in two space dimensions,

‖Vε‖L∞(Ω) ≤ C
(
1 + ‖(nε − pε −Dε + A(x)) log |nε − pε −Dε + A(x)|‖L1(Ω)

)
.

In view of inequality (13), this gives a uniform L∞(QT ) bound for Vε. We infer that

∇(nεe
−Vε) = e−Vε(∇nε − nε∇Vε)→ 0 strongly in L1(QT ).

By Poincaré’s inequality, since ne−V = cn = const.,

(65) ‖nεe−Vε − ne−V ‖L1(QT ) ≤ C‖∇(nεe
−Vε)‖L1(QT ) + C‖∇(ne−V )‖L1(QT ) → 0.

Similarly, it follows that

(66) pεe
Vε − peV → 0 strongly in L1(QT ).
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Next, we reformulate the Poisson equation as

λ2∆Vε = eVε(nεe
−Vε)− e−Vε(pεeVε)−Dε + A = eVε(ne−V )− e−Vε(peV )−Dε + A+ Eε,

where
Eε := eVε(nεe

−Vε − ne−V )− e−Vε(pεeVε − peV )

is an error term. Then Vε − Vε′ for some ε′ > 0 solves

λ2∆(Vε − Vε′) = ne−V (eVε − eVε′ )− peV (e−Vε − e−Vε′ )− (Dε −Dε′) + Eε − Eε′ ,
and choosing the test function Vε − Vε′ in the weak formulation, we have

λ2

∫
Ω

|∇(Vε − Vε′)|2dx = −
∫

Ω

ne−V (eVε − eVε′ )(Vε − Vε′)dx

−
∫

Ω

peV (−e−Vε + e−Vε′ )(Vε − Vε′)dx+

∫
Ω

(Dε −Dε′)(Vε − Vε′)dx

−
∫

Ω

(Eε − Eε′)(Vε − Vε′)dx

≤
∫

Ω

(Dε −Dε′)(Vε − Vε′)dx−
∫

Ω

(Eε − Eε′)(Vε − Vε′)dx,

because of the monotonicity of z 7→ ez and z 7→ −e−z. The strong convergences (65) and
(66) as well as the uniform L∞(QT ) bound of Vε imply that Eε → 0 strongly in L1(QT ) as
ε→ 0. Therefore, in view of (64),

λ2‖∇(Vε − Vε′)‖L2(QT ) ≤ ‖Vε − Vε′‖L∞(QT )

(
‖Dε −Dε′‖L1(QT ) + ‖Eε − Eε′‖L1(QT )

)
→ 0

as ε, ε′ → 0. Taking into account the Poincaré inequality, we obtain Vε−Vε′ → 0 strongly in
L2(0, T ;H1(Ω)) as ε, ε′ → 0. This means that (Vε) is a Cauchy sequence in L2(0, T ;H1(Ω))
and consequently, there exists a function V0 ∈ L2(0, T ;H1(Ω)) such that

(67) Vε → V0 strongly in L2(0, T ;H1(Ω)).

Thus, up to a subsequence, Vε → V0 and exp(Vε) → exp(V0) a.e. in QT . Because of the
uniform bound for (Vε) in L∞(QT ), this shows that exp(Vε) ⇀ exp(V0) weakly* in L∞(QT ).
Then we infer from (65) that

nε = eVε(nεe
−Vε)→ eV0(ne−V ) = neV0−V =: n0 a.e. in QT ,

nε = eVε(nεe
−Vε) ⇀ eV0(ne−V ) = n0 weakly in L1(QT ).

By the Dunford–Pettis theorem, (nε) is uniformly integrable. Thus, the a.e. convergence
of (nε) implies that

nε → n0 strongly in L1(QT )

and by similar arguments,

pε → p0 := peV−V0 strongly in L1(QT ).

Finally, we perform the limit ε → 0 in (1)–(4) and prove that (n0, p0, D0, V0) satisfies
the limit problem. The only delicate limit is in the flux term in the equation for Dε. The
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proof is similar as in Section 2.4. Indeed, the bound on the entropy production for Dε in
(13) shows that, up to a subsequence,

2∇
√
Dε +

√
Dε∇Vε ⇀ χ weakly in L2(QT )

for some χ ∈ L2(QT ). We deduce from (64) and (67) that√
Dε∇Vε →

√
D0∇V0 strongly in L1(QT ),∥∥∇(√Dε −

√
D0

)∥∥
L2(0,T ;H−1(Ω))

≤
∥∥√Dε −

√
D0

∥∥
L2(QT )

→ 0.

Thus, we can identify χ = 2∇
√
D0 +

√
D0∇V0. This relation, together with (64), yields

∇Dε +Dε∇Vε =
√
Dε

(
2∇
√
Dε +

√
Dε∇Vε

)
⇀
√
D0χ = ∇D0 +D0∇V0

weakly in L1(QT ). This implies, as at the end of Section 2.4, that ∂tDε ⇀ ∂tD0 weakly in
L1(0, T ;Hs(Ω)′) for s > 1 + d/2. The proof is finished.

6. Numerical illustrations

We present numerical simulations of the full model (1)–(8) and the reduced model (15)–
(18) in one space dimension to illustrate the behavior of the solutions and to compare the
results with those from [23].

6.1. Numerical scheme. We assume that Ω = (0, L) for some L > 0 and we impose
Dirichlet boundary conditions for n, p, and V . For the numerical discretization, we formu-
late the reduced model in terms of the quasi-Fermi potentials

φn = − log n0 + V0, φp = log p0 + V0, φD = logD0 + V0.

The reduced system reads as

∂xJn,0 = ∂xJp,0 = 0, ∂tD0 + ∂xJD,0 = 0, λ2∂xxV0 = n0 − p0 −D0 + A(x),(68)

Jn,0 = −eV0−φn∂xφn, Jp,0 = −eφp−V0∂xφp, JD,0 = −eφD−V0∂xφD,(69)

in (0, L), t > 0, with the initial and boundary conditions

φn(0, t) = φp(0, t) = U0, φn(L, t) = φp(L, t) = UL,

∂xφD(0, t) = ∂xφD(L, t) = 0,

V0(0, t) = Vbi + U0, V0(L, t) = Vbi + UL for t > 0,

D0(x, 0) = DI(x) for x ∈ (0, L).

Here, U0 and UL are two (possibly time-dependent) applied potentials at the electrodes,
and Vbi is the built-in potential, which is the potential that corresponds to the thermal-
equilibrium densities [17]:

Vbi = log

(
1

2

(
De − A+

√
(De − A)2 + 4

))
,
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where De is the dopant concentration at the electrodes. Moreover, the initial data for
the electrons and holes are given by nI = exp(V I) and pI = exp(−V I), where V I is the
solution to the Poisson equation with the above boundary conditions.

The scaled Debye length is given by λ2 = εsUT/(qL
2ni), where the meaning and the

values of the physical parameters are as follows:

• semiconductor permittivity of silicon: εs = 8.85 · 10−13 As/Vcm;
• thermal voltage at 300 K: UT = 0.026 V;
• elementary charge: q = 1.6 · 10−19 As;
• device length: L = 50 nm;
• (reference) intrinsic density: ni = 2 · 1019 cm−3;
• reference current density J0 = 400 Acm−2.

These values are similar to those in [23], and they lead to λ2 = 2.86 ·10−4. Furthermore, we
choose as in [23] constant scaled doping concentrations, DI = 2.5, A = 0.25, and De = 25.

Equations (68)–(69) are discretized by the finite-volume method. More precisely, the
continuity equations are approximated by a Scharfetter–Gummel scheme introduced in
[22]. For instance, discretizing (0, L) by x1 = 0 < x2 < · · · < xN = L, the continuity
equation for the electrons becomes Jn,k+1/2 − Jn,k−1/2 = 0 on the control volume ωk =
((xk−1 + xk)/2, (xk + xk+1)/2), where

Jn,k+1/2 =
1

xk+1 − xk
(
B(Vk − Vk+1)eVk−φn,k −B(Vk+1 − Vk)eVk+1−φn,k+1

)
,

B(s) = s/(es − 1) is the Bernoulli function, Jk+1/2 approximates Jn in ωk, and (φn,k, Vk)
approximates (φn, V )(xk). The continuity equation for D is discretized by the implicit
Euler method. At each time step, we use Newton’s method to solve the discrete nonlinear
system of 4N variables, using the solution from the previous time step as the initial guess.

6.2. Limit ε→ 0. The first numerical test is concerned with the behavior of the solutions
to the full system (1)–(8) when ε → 0. We consider only the equilibrium case when the
applied voltage vanishes, U0 = UL = 0. Figure 1 illustrates the charge densities at times
t = Tf/10 and t = Tf , where Tf = 0.1 corresponds to approximately 100 ps. The time Tf
is chosen in such a way that the solution at t = Tf is close to the steady state. Note that
we present the densities in the interval [0.1, 0.9] to avoid the boundary layers (e.g., Figure
2 left shows the boundary layers for the oxygene vacancy density).

We see that the densities converge for ε→ 0 to the densities associated with the reduced
system (15)–(18), confirming the results from Theorem 3. The values for the densities do
not vary much in space since we have chosen constant doping concentrations. Figure 2
(right) shows that the convergence is linear, i.e., ‖Dε − D0‖L1 ≤ Cε. This is expected
since the parameter ε appears in (1) and (2) with first order. A rigorous proof, however,
is delicate as the regularity of solutions to the full model is rather low.

6.3. Reduced system. In the following, we focus on the reduced system (68)–(69). First,
we choose a vanishing applied voltage (U0 = UL = 0) and consider different values for the
dopant concentration at the electrode De. Figure 3 (left) shows the spatial distribution of
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Figure 1. Oxygen vacancy density (top row), electron density (middle row),
and hole density (bottom row) versus space at time t = Tf/10 (left column)
and t = Tf (right column) for various values of ε and the reduced problem.

the quotient D0(x, Tf )/De, where D0(x, Tf ) is close to the steady state. We observe a U -
shape distribution with a boundary layer near the electrodes. According to [23], the layer
comes from the fact that a large vacancy density gradient near the electrode interfaces is
required to compensate the strong electrostatic attraction of ions to the image charge on
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Figure 2. Left: Oxygen vacancy density versus space at time t = Tf for
various values of ε. Right: Difference of the oxygen vacancy densities Dε

and D0 in the L1(Ω× (0, Tf )) norm versus ε.

both electrodes. When De/D
I < 1, the vacancy density decreases away from the electrodes

and meet in the center of the device with a vanishing slope, and the shape is inversed when
De/D

I > 1.

Figure 3. Left: Rescaled vacancy density D0(x, T )/De for different val-
ues of De/D

I . Right: Current-voltage characteristics for three periods of a
sinuoidal applied voltage.

For the following figure, we fix De/D
I = 10. Figure 4 shows the zero-bias poten-

tial V (x, Tf ) − Vbi − Vapplied(x) and vacancy density at final time t = Tf for various ap-
plied voltages UL − U0, scaled with the thermal voltage UT = 26 mV. Here, we have set
Vapplied(x) = (UL − U0)(x/L) − U0. The applied voltage produces a potential barrier for
the electrons; it causes the mobile vacancies to drift and results in a complete vacancy
depletion at the right side of the device. Similar results have been obtained in [23, Figure
1].
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Figure 4. Zero-bias potential V (x, Tf ) − Vbi − Vapplied (left) and oxygen
vacancy density D0(x, Tf ) (right) for various applied voltages.

Finally, we consider a sinusoidal applied voltage with U0 = 0, UL(t) = 100 sin(6πt/Tf ),
and Tf = 0.03. The resulting dynamic current-voltage characteristics (Jn(0) +Jp(0) versus
UL − U0) are shown in Figure 3 (right). As in [23], we observe a pinched hysteresis loop.
This loop is a well-known fingerprint of the ideal memristor introduced in [6]. The same
applied potential leads to different current values at different times, which indicates that
the device has a memory. This confirms that the drift-diffusion model is able to represent
a memristive device.

Appendix A. Auxiliary lemmas

Introduce the functions Tk(s) = min{k, s} for s ≥ 0, k ≥ 1 and

gk(s) =

∫ s

0

∫ y

1

dz

Tk(z)
dy, hk(s) =

∫ s

0

dz√
Tk(z)

, s ≥ 0.

Lemma 16. It holds that gk(s) = s(log s − 1) for 0 ≤ s < k and gk(s) ≥ k(log k − 1) +
(s− k)2/(2k) for s ≥ k.

Proof. We estimate for 0 ≤ s ≤ k,

gk(s) = −
∫ s

0

∫ 1

y

dz

Tk(z)
dy = −

∫ s

0

∫ 1

y

dz

z
dy = s(log s− 1);

and for s ≥ k,

gk(s) =

∫ k

0

∫ y

1

dz

Tk(z)
dy +

∫ s

k

∫ y

1

dz

Tk(z)
dy ≥ k(log k − 1) +

1

2k
(s− k)2,

ending the proof. �

Lemma 17. There exists C > 0 such that for all k > 1,√
Tk(s) ≤ C

(
1 +

√
|gk(s)|

)
,
√
Tk(s) ≤ Chk(s) for s ≥ 0.



38 C. JOURDANA, A. JÜNGEL, AND N. ZAMPONI

Proof. We first prove the inequality hk(s)
2 ≤ C(1 + |gk(s)|) and then

√
Tk(s) ≤ hk(s)/2

for s ≥ 0. Combining both inequalities shows the lemma. The second inequality follows
from

hk(s) =

∫ s

0

dy
√
y

= 2
√
s = 2

√
Tk(s) for 0 < s < k,

hk(s) =

∫ k

0

dy
√
y

+

∫ s

k

dy√
k
≥ 2
√
k = 2

√
Tk(s) for s ≥ k.

If 0 < s < k, we have shown in Lemma 16 that gk(s) = s(log s − 1), and then hk(s)
2 ≤

C(1 + |gk(s)|) is equivalent to 4s ≤ C(1 + s| log s − 1|) for 0 < s < k, and this inequality
is true for a suitable C > 0. If s ≥ k, again by Lemma 16, hk(s)

2 ≤ C(1 + |gk(s)|) follows
from (

2
√
k +

s− k√
k

)2

≤ C

(
k(log k − 1) +

(s− k)2

2k

)
,

and this inequality is valid for a suitably chosen C > 0 independent of k. �

Let ξ > 0 and define gξ(x) = ξx(ex − 1) for x ≥ 0 and its convex conjugate g∗ξ (y) =
supx>0(xy − gξ(x)) for y ≥ 0. The following lemma provides an upper bound for g∗ξ .

Lemma 18. The convex conjugate function of gξ can be estimated as

g∗ξ (y) ≤ ξ
(log(1 + y/ξ))2

1 + log(1 + y/ξ)

(
1 +

y

ξ

)
for y ≥ 0.

Proof. For given y ≥ 0, let x(y) ≥ 0 be the unique solution to y = g′ξ(x(y)) = ξ(1 +

x(y))ex(y) − ξ. Then

g∗ξ (y) =

{
x(y)y − gξ(x(y)) for y > g′ξ(0) = 0,
0 for y = g′ξ(0) = 0.

Furthermore, it follows from the definition of x(y) that y/ξ ≥ ex(y) − 1 and hence, x(y) ≤
log(1 + y/ξ). Therefore, since (1 + x(y))ex(y) = 1 + y/ξ by the definition of x(y), we have
for y ≥ 0,

g∗ξ (y) = x(y)y − ξx(y)(ex(y) − 1) = ξx(y)

(
1 +

y

ξ
− ex(y)

)
= ξx(y)

(
1 +

y

ξ
− 1 + y/ξ

1 + x(y)

)
=

x(y)2

1 + x(y)
(y + ξ) ≤ (log(1 + y/ξ))2

1 + log(1 + y/ξ)
(y + ξ),

which shows the lemma. �

We continue with some Gagliardo–Nirenberg (type) inequalities.

Lemma 19 (Gagliardo–Nirenberg). Let Ω ⊂ Rd (d ≥ 1) be a bounded domain with Lip-
schitz boundary and let q ≤ 2d/(d − 2) if d > 2 and q < ∞ if d = 2. Then for all δ > 0,
there exist C > 0 and C(δ) > 0 such that for all u ∈ H1(Ω),

‖u‖Lq(Ω) ≤ C‖u‖θH1(Ω)‖u‖1−θ
L1(Ω),(70)
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‖u‖Lq(Ω) ≤ δ‖u‖θH1(Ω)‖u log |u|‖1−θ
L1(Ω) + C(δ)‖u‖L1(Ω),(71)

where θ = 2d(q − 1)/((d+ 2)q). In two space dimensions, we have θ = 1− 1/q.

Proof. Inequality (70) is the standard Gagliardo–Nirenberg inequality. Using this inequal-
ity, inequality (71) can be proved as in [2, (22)], where the inequality was shown for q = 3;
also see [9, (1.9)]. �

We recall the following regularity result, valid in two space dimensions and proved in
[12]; also see [9, Lemma 3.1].

Lemma 20 (Regularity for the Poisson equation). Let Ω ⊂ R2 satisfy Assumption (A1),
and let v ∈ H1(Ω) be the unique solution to ∆v = f in Ω, v = v on ΓD, and ∇v · ν = 0 on
ΓN . There exist r0 > 2 and C > 0 such that

‖v‖L∞(Ω) ≤ C
(
‖f log |f |‖L1(Ω) + g(‖v‖H1(Ω)) + 1

)
,(72)

‖v‖W 1,r0 (Ω) ≤ C
(
‖f‖L2r0/(r0+2)(Ω) + g(‖v‖H1(Ω)) + 1

)
,

where g is a continuous increasing function.

The following lemma follows from the Alikakos iteration method. A proof can be found
in [15] for homogeneous boundary conditions. The proof is the same for no-flux and mixed
boundary conditions.

Lemma 21. Let Ω ⊂ Rd (d ≥ 1) satisfy Assumption (A1) and let uq/2 ∈ L2(0, T ;H1(Ω))∩
L∞(0, T ;L2(Ω)) for all q ∈ N with q ≥ 2 with u ≥ 0 in Ω × (0, T ), u(0) = 0 in Ω, and
either u = 0 on ΓD, ∇u · ν = 0 on ΓN , or u = 0 on ∂Ω, or ∇u · ν = 0 on ∂Ω. Assume
that there are constants K0, K1, K2 > 0 and α, β ≥ 0 such that for all q ≥ 2, t ∈ (0, T ),∫

Ω

etu(t)qdx+K0

∫ t

0

∫
Ω

es|∇uq/2|2dxds ≤ K1q
α

∫ t

0

∫
Ω

esuqdxds+K2q
βet.

Then

u(t) ≤ K3

(
‖u‖L∞(0,T ;L1(Ω)) + 1

)
in Ω, t ∈ (0, T ),

where K3 depends only on α, β, d, Ω, K0, K1, and K2.
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[20] A. Jüngel. A nonlinear drift-diffusion system with electric convection arising in semiconductor and

electrophoretic modeling. Math. Nachr. 185 (1997), 85–110.
[21] V. Mladenov. Advanced Memristor Modeling. MDPI, Basel, 2019.
[22] D. Scharfetter and H. Gummel. Large-signal analysis of a silicon Read diode oscillator. IEEE Trans.

Electron Devices 16 (1969), 64–77.
[23] D. Strukov, J. Borghetti, and S. Williams. Coupled ionic and electronic transport model of thin-film

semiconductor memristive behavior. Small 5 (2009), 1058–1063.
[24] M. Verri, M. Porro, R. Sacco, and S. Salsa. Solution map analysis of a multiscale drift-diffusion model

for organic solar cells. Computer Meth. Appl. Mech. Engin. 331 (2018), 281–308.
[25] S. Vongehr and X. Meng. The missing memristor has not been found. Sci. Rep. 5 (2015), 11657, 7

pages.
[26] H. Wu, T.-C. Lin, and C. Liu. Diffusion limit of kinetic equations for multiple species charged particles.

Arch. Ration. Mech. Anal. 215 (2015), 419–441.



DRIFT-DIFFUSION MODELS FOR MEMRISTORS 41

Laboratoire Jean Kuntzmann, 700 avenue centrale, 38400 Saint Martin d’Hères, France
E-mail address: clement.jourdana@univ-grenoble-alpes.fr

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: nicola.zamponi@tuwien.ac.at


