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Abstract. A fully discrete Galerkin scheme for a thermodynamically consistent transient
Maxwell–Stefan system for the mass particle densities, coupled to the Poisson equation
for the electric potential, is investigated. The system models the diffusive dynamics of
an isothermal ionized fluid mixture with vanishing barycentric velocity. The equations
are studied in a bounded domain, and different molar masses are allowed. The Galerkin
scheme preserves the total mass, the nonnegativity of the particle densities, their bound-
edness, and satisfies the second law of thermodynamics in the sense that the discrete
entropy production is nonnegative. The existence of solutions to the Galerkin scheme and
the convergence of a subsequence to a solution to the continuous system is proved. Com-
pared to previous works, the novelty consists in the treatment of the drift terms involving
the electric field. Numerical experiments show the sensitive dependence of the particle
densities and the equilibration rate on the molar masses.

1. Introduction

The Maxwell–Stefan equations describe the dynamics of a fluid mixture in the diffusive
regime. They have numerous applications, for instance, in sedimentation, dialysis, electrol-
ysis, and ion exchange. While Maxwell–Stefan models have been investigated since several
decades from a modeling and simulation viewpoint in the engineering literature (e.g. [13]),
the mathematical and numerical analysis started more recently [1, 16]. The global exis-
tence of weak solutions under natural conditions was proved in [6, 21] for neutral mixtures.
In case of ion transport, the electric charges and the self-consistent electric potential need
to be taken into account. To our knowledge, no mathematical results are available in the
literature for such Poisson–Maxwell–Stefan models. In this paper, we prove the existence
of a weak solution to a structure-preserving fully discrete Galerkin scheme and its conver-
gence to the continuous problem. This provides, for the first time, a global existence result
for Poisson–Maxwell–Stefan systems.

1.1. Model equations. We consider an ionized fluid mixture consisting of n components
with the partial mass density ρi, partial flux Ji, and molar mass Mi of the ith species. The
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evolution of the particle densities ρi is governed by the partial mass balance equations

(1) ∂tρi + div Ji = ri(x), i = 1, . . . , N,

where ri are the production rates satisfying
∑n

i=1 ri(x) = 0 and
∑n

i=1 Ji = 0. The molar
concentrations are defined by ci = ρi/Mi and xi = ci/c are the molar fractions, where
ctot =

∑n
i=1 ci denotes the total concentration and we have set x = (x1, . . . , xn). The

partial fluxes Ji and the gradients of the molar fractions xi are related by the (scaled)
Maxwell–Stefan equations

(2) −
N∑

j=1

kij(ρjJi − ρiJj) = Di := ∇xi + (zixi − (ρ · x)ρi)∇Φ, i = 1, . . . , n.

where kij = kji are the rescaled (reciprocal) Maxwell–Stefan diffusivities, Di is the driving
force, zi the electric charge of the ith component, and Φ the electric potential. We refer to
Section 2 for details on the modeling. These equations are coupled to the (scaled) Poisson
equation

(3) −λ∆Φ =
n∑

i=1

zici + f(y),

where λ is the scaled permittivity and f(y) is a fixed background charge. The equations
are solved in a bounded domain Ω ⊂ R

d (d ≥ 1) and supplemented by the boundary
conditions

Ji · ν = 0 on ∂Ω, i = 1, . . . , n,(4)

Φ = ΦD on ΓD, ∇Φ · ν = 0 on ΓN,(5)

where ΓD models the electric contacts, ΓN = ∂Ω\ΓD is the union of insulating boundary
segments, and ν denotes the exterior unit normal vector to ∂Ω. This means that the
mixture cannot leave the container Ω and an electric field is applied at the contacts ΓN.
The initial conditions are given by

(6) ρi(·, 0) = ρ0i in Ω, i = 1, . . . , n.

We assume that the total mass is constant initially,
∑n

i=1 ρ
0
i = 1, which implies from

(1) that the total mass is constant for all times,
∑n

i=1 ρi(t) = 1, expressing total mass
conservation.
Observe that (2) defines a linear system in the diffusion fluxes. Since

∑n
i=1 Di = 0,

the kernel of that system is nontrivial, and we need to invert the relation between the
fluxes Ji and the driving forces Di on the orthogonal component of the kernel. It was
shown in [21, Section 2] that we can write (2) as D′ = −A0J

′, where D′ = (D1, . . . , Dn−1),
J ′ = (J1, . . . , Jn−1), and A0 ∈ R

(n−1)×(n−1) is invertible; see Section 3.1 for details. The
nth components are recovered from Dn = −

∑n−1
i=1 Di and Jn = −

∑n−1
i=1 Ji. Thus, (1) can

be written compactly as the cross-diffusion system [1, 21]

∂tρ
′ − div(A−1

0 D′) = r′(x),
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where ρ′ = (ρ1, . . . , ρn−1). However, A−1
0 is not positive definite. To obtain a positive

definite diffusion matrix, we need to transform the system. With the so-called entropy
variables

(7) wi =
log xi

Mi

−
log xn

Mn

+

(
zi
Mi

−
zn
Mn

)
Φ, i = 1, . . . , n− 1,

we may formulate (1) as

(8) ∂tρ
′ − div(B∇w) = r′(x),

where B = (Bij) ∈ R
(n−1)×(n−1) is symmetric and positive definite; see Section 3.1 for

details. Here, ρ′ and x are interpreted as (invertible) functions of w and Φ. This transfor-
mation is well known in nonequilibrium thermodynamics, where wi is called the electro-
chemical potential and B is the mobility or Onsager matrix.
The transformation to entropy variables has two important advantages. First, introduc-

ing the entropy

(9) H(ρ) =

∫

Ω

h(ρ)dy, h(ρ) = ctot

n∑

i=1

xi log xi +
λ

2
|∇(Φ− ΦD)|

2,

a formal computation shows that

(10)
dH

dt
+

∫

Ω

∇w : B∇wdy =

∫

Ω

n∑

i=1

ri(x)
∂h

∂ρi
dy,

if ΦD is constant, where A : B denotes the Frobenius matrix product between matrices
A and B. (A discrete analog is shown in Theorem 1 below.) Thus, if the right-hand
side is nonpositive, the entropy t 7→ H(ρ(t)) is a Lyapunov functional and we may obtain
suitable estimates for wi. The entropy production (the diffusion term) is nonnegative,
which expresses the second law of thermodynamics. This technique has been used in [6, 21]
but without electric force terms. The derivation of gradient estimates is more delicate in
the presence of the electric potential; see Lemma 8. Second, the densities ρi = ρi(w) are
automatically positive and bounded and it holds that

∑n
i=1 ρi(w) = 1; see Corollary 7.

This property is inherent of the transformation and it holds without the use of a maximum
principle and independent of the functional setting.
The aim of this paper is to extend the global existence result of [6, 21] to Maxwell–Stefan

systems with electric forces and to suggest a fully discrete Galerkin scheme that preserves
the structure of the system, namely the nonnegativity of the particle densities, the L∞

bound
∑n

i=1 ρi = 1, and a discrete analog of the entropy production inequality (10).

1.2. State of the art. Before presenting our main results, we briefly review the state
of the art of Maxwell–Stefan models. They were already derived in the 19th century by
Maxwell using kinetic gas theory [25] and Stefan using continuum mechanics [32]. A more
mathematical derivation from the Boltzmann equation can be found in [4, 15], including
a non-isothermal setting [19]. An advantage of the Maxwell–Stefan approach is that the
definition of the driving forces can be adapted to the present physical situation, leading to
very general and thermodynamically consistent models [2].
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When electrolytes are considered, we need to take into account the electric force. Usually,
this is done in the context of Nernst–Planck models [27, 29], where the diffusion flux
Ji only depends on the density gradient of the ith component, thus without any cross-
diffusion effects. Duncan and Toor [12] showed that cross-diffusion terms need to be taken
into account in a ternary gas. Dreyer et al. [11] outline some deficiencies of Nernst–
Planck models and propose thermodynamically consistent Maxwell–Stefan type models.
A numerical comparison between Nernst–Planck and Maxwell–Stefan models can be found
in [30].
The first global-in-time existence result to the Maxwell–Stefan equations (1)-(2) without

Poisson equation was proved by Giovangigli and Massot [16] for initial data around the
constant equilibrium state. The local-in-time existence of classical solutions was shown
by Bothe [1]. The entropy structure of the Maxwell–Stefan system was revealed in [21],
and a general global existence theorem could be shown. Further global existence results
can be found in [18, 24]. The Maxwell–Stefan system was coupled to the heat equation
[20] and to the incompressible Navier–Stokes equations [6]. In [15, Theorem 9.7.4] and [18,
Theorem 4.3], the large-time asymptotics for initial data close to equilibrium was analyzed.
The convergence to equilibrium for any initial data was investigated in [6, 21] without
production terms and in [7] with production terms for reversible reactions. Salvarani and
Soares proved a relaxation limit of the Maxwell–Stefan system to a system of linear heat
equations [31].
Surprisingly, there are not many papers concerned with numerical schemes which pre-

serve the properties of the solution like conservation of total mass, nonnegativity, and
entropy production. Many approximation schemes can be found in the engineering lit-
erature, for instance finite-difference [22, 23] or finite-element [5] discretizations. In the
mathematical literature, finite-volume [28] and mixed finite-element [26] schemes as well
as explicit finite-difference schemes with fast solvers [14] were proposed. The existence of
discrete solutions was shown in [26], but only for ternary systems and under restrictions
on the diffusion coefficients. The schemes of [3, 28] conserve the total mass, while those
of [3, 8] also preserve the L∞ bounds. The result of [8] is based on maximum principle
arguments. Note that we are able to show the L∞ bounds without the use of a maximum
principle, as a result of the formulation in terms of entropy variables, and that we do not
impose any restrictions on the diffusivities (except positivity).
All the cited results are concerned with the Maxwell–Stefan equations for neutral fluids,

i.e. without electric effects. In this paper, we analyze for the first time Poisson–Maxwell–
Stefan systems and show a discrete entropy production inequality. The cross-diffusion
terms cause some mathematical difficulties which are not present in Nernst–Planck models.

1.3. Main results. Let (θ(k)) be an orthonormal basis of H1
D(Ω) and (v(k)) be an or-

thonormal basis of H1(Ω;Rn−1) such that v(k) ∈ L∞(Ω;Rn−1). We introduce the Galerkin
spaces

PN = span{u(1), . . . , u(N)}, VN = span{v(1), . . . , v(N)}.

Furthermore, let T > 0 and N ∈ N and set τ = T/N > 0. We impose the following
assumptions:
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(A1) Domain: Ω ⊂ R
d is a bounded domain with Lipschitz boundary ∂Ω = ΓD∪ΓN, where

ΓD ∩ ΓN = ∅, ΓN is open in ∂Ω, and meas(ΓD) > 0.
(A2) Given functions: The initial datum ρ0 = (ρ01, . . . , ρ

0
n) is nonnegative and measurable

satisfying
∫
Ω

∑n
i=1 ρi log ρidy < ∞, ρ0n = 1 −

∑n−1
i=1 ρ0i ≥ 0. The boundary data

ΦD ∈ H1(Ω)∩L∞(Ω) solves −λ∆ΦD = f in Ω and ∇ΦD ·ν = 0 on ΓN. Furthermore,
let f ∈ L∞(Ω).

(A3) Diffusion matrix: For any given ρ ∈ [0,∞)n, the transpose of the matrix A = (Aij) ∈
R

n×n, defined by

(11) Aij =

{ ∑n
ℓ=1, ℓ6=i kiℓρℓ for i = j,

−kijρi for i 6= j,

has the kernel ker(A⊤) = span{1}, where 1 = (1, . . . , 1) ∈ R
n.

(A4) Production rates: The functions ri ∈ C0([0, 1]n;R) satisfy
∑n

i=1 ri(x) log xi/Mi ≤ 0
for all x ∈ (0, 1]n, i = 1, . . . , n.

Assumptions (A1) and (A2) are rather natural. The condition ρi log ρi ∈ L1(Ω) is
needed to apply the entropy method. By definition of A, it holds that ker(A⊤) ⊂ span{1}.
If kij > 0 (and ρj > 0), a computation shows that span{1} = ker(A⊤). For the general
case kij ≥ 0, this property cannot be guaranteed and needs to be assumed. This explains
Assumption (A3). Assumption (A4) is needed to derive the entropy production inequality
(10). It is satisfied for reversible reactions; see [7, Lemma 6].
We consider the implicit Euler Galerkin scheme

1

τ

∫

Ω

(
ρ′(uk + wD,Φ

k)− ρ′(uk−1 + wD,Φ
k−1)

)
· φdy + ε

∫

Ω

uk · φdy

+

∫

Ω

∇φ : B(uk + wD,Φ
k)∇(uk + wD)dy =

∫

Ω

r′(x(uk + wD,Φ
k)) · φdy,(12)

λ

∫

Ω

∇Φk · ∇θdy =

∫

Ω

( n∑

i=1

zici(u
k + wD,Φ

k) + f(y)

)
dy(13)

for φ ∈ VN , θ ∈ PN , ε > 0, and we have defined

(14) wD = (wD,1, . . . , wD,n−1), wD,i =

(
zi
Mi

−
zn
Mn

)
ΦD.

The discrete entropy variables are given by wk = uk + wD, and we used the notation
ci(w

k,Φk) = ρi(w
k,Φk)/Mi, xi(w

k,Φk) = ci(w
k,Φk)/cktot for i = 1, . . . , n, and cktot =∑n

i=1 ρi(w
k,Φk)/Mi.

At time k = 0, we assume that ρ0i ≥ η > 0 in Ω. This allows us to define w0 via definition
(7). The condition can be removed by performing the limit η → 0 in the proof; see [6] for
details. Furthermore, let Φ0 ∈ H1(Ω) ∩ L∞(Ω) be the unique solution to

−λ∆Φ0 =
n∑

i=1

zi
ρ0i
Mi

+ f(y) in Ω, ∇Φ0 · ν = 0 on ΓN, Φ0 = ΦD on ΓD.

This defines (w0,Φ0).
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Theorem 1 (Existence for the Galerkin scheme). Let Assumptions (A1)-(A4) hold. Then
there exists a weak solution (wk,Φk) ∈ VN ×PN to (12)-(13) with wk = uk+wD, satisfying

• preservation of L∞ bounds: 0 < ρki < 1 for i = 1, . . . , n;
• conservation of total mass:

∑n
i=1 ρ

k
i = 1 in Ω;

• discrete entropy production inequality:

H(ρk) + τ

∫

Ω

∇(wk − wD) : B(wk,Φk)∇wkdy + ετ

∫

Ω

|wk − wD|
2dy

≤ τ

∫

Ω

n∑

i=1

zi
Mi

ri(x
k)(Φk − ΦD)dy +H(ρk−1),(15)

where ρk = ρ(wk,Φk).

Theorem 1 is proved by using a fixed-point argument in the entropy variables. Using
wk − wD as a test function in the fully discrete version of (8), we show in Section 4 that

H(ρk) + τK

∫

Ω

n∑

i=1

|∇(xk
i )

1/2|2dy + ετ

∫

Ω

|wk − wD|
2dy ≤ τK +H(ρk−1),

where K > 0 only depends on the given data. This is an estimated version of (10). The
term involving ε is needed to conclude a uniform L2 estimate for wk, which is sufficient
to apply the Leray-Schauder fixed-point theorem in the finite-dimensional Galerkin space.
The ε-independent gradient estimate for xk

i cannot be used since it does not give an estimate
for wk

i (see (7)). It is possible to analyze system (12)-(13) for ε = 0 – see Step 2 of the
proof of Theorem 3 –, but we lose the information about wk and obtain a solution in terms
of ρk. The term involving ε is technical and not essential for the numerical simulations (or
the structure preservation). However, we are not able to prove an existence result in terms
of the entropy variable without such a regularization.

Remark 2 (Conservation of partial mass). When ri = 0, we have from (1) conservation
of the partial mass ‖ρi‖L1(Ω). This conservation property does not hold exactly on the
discrete level because of the ε-regularization. It holds that for any δ > 0, there exists
ε0 > 0 such that for any 0 < ε < ε0 (ε is the value in (12)),

∣∣‖ρki ‖L1(Ω) − ‖ρ
0
i ‖L1(Ω)

∣∣ ≤ δ‖ρ0i ‖L1(Ω), i = 1, . . . , n− 1,

∣∣‖ρkn‖L1(Ω) − ‖ρ
0
n‖L1(Ω)

∣∣ ≤ δ
n−1∑

i=1

‖ρ0i ‖L1(Ω).

The proof is the same as in [21, Theorem 4.1]. As δ > 0 can be chosen arbitrarily small,
this shows that the numerical scheme preverses the partial mass approximately. �

Theorem 3 (Convergence of the Galerkin solution). Let Assumptions (A1)-(A4) hold.
Let (ρk,Φk) be a solution to (12)-(13) and set

ρτi (y, t) = ρki (y), xτ
i (y, t) = xk

i (y), cτi (y, t) = cki (y), Φτ (y, t) = Φk(y)
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for y ∈ Ω, t ∈ ((k − 1)τ, kτ ], i = 1, . . . , n and introduce the shift operator (στρ
τ
i )(y, t) =

ρk−1
i (y) for y ∈ Ω and t ∈ ((k−1)τ, kτ ]. Then there exist subsequences (not relabeled) such

that, as ε→ 0, N →∞, and τ → 0,

ρτi → ρi strongly in Lp(0, T ;Lp(Ω)) for any p <∞,

xτ
i ⇀ xi, Φτ ⇀ Φ weakly in L2(0, T ;H1(Ω)),

τ−1(ρτi − στ (ρ
τ
i )) ⇀ ∂tρ weakly in L2(0, T ;H1(Ω)′), i = 1, . . . , n,

and the limit (ρ,Φ) satisfies for all φ ∈ L2(0, T ;H1(Ω;Rn−1)) and θ ∈ H1
D(Ω),

∫ T

0

〈∂tρ
′, φ〉dt+

∫ T

0

∫

Ω

∇φ : A−1
0 (ρ)D′dydt =

∫ T

0

∫

Ω

r′(x) · φdydt,(16)

λ

∫

Ω

∇Φ · ∇θdy =

∫

Ω

( n∑

i=1

zi
ρi
Mi

+ f(y)

)
θdy,(17)

where Di = ∇xi + (zixi − (z · x)ρi)∇Φ, ρi = ctotMixi, and ctot =
∑n

i=1 ρi/Mi. Moreover,

ρn = 1−
∑n−1

i=1 ρi.

In Theorem 3, 〈·, ·〉 denotes the duality bracket between H1(Ω;Rn−1)′ and H1(Ω;Rn−1).
The difficult part of the proof is the estimate of the diffusion term because of the contri-
bution of the electric field. We show in Lemma 8 that

∫

Ω

∇wk : B∇wkdy ≥ K

∫

Ω

n∑

i=1

M
1/2
i

|Dk
i |

2

xk
i

dy ≥ K1

∫

Ω

n∑

i=1

|∇(xk
i )

1/2|2dy −K2

holds for some constants K, K1, K2 > 0, which are independent of ε, N , and τ . Then the
uniform L∞ bound for xk

i gives a uniform H1(Ω) bound for xk
i and consequently for ρki .

Weak compactness allows us to pass to the limits ε→ 0 and N →∞, and the limit τ → 0
is performed by means of the Aubin-Lions lemma.
The paper is organized as follows. In Section 2, we detail the thermodynamic modeling of

system (1)-(3). Some auxiliary results on the formulation of the fluxes Ji and the inversion
of the map ρ 7→ w are presented in Section 3. Sections 4 and 5 are devoted to the proof of
the main theorems. Finally, some numerical experiments are shown in Section 6.

2. Modeling

We consider an isothermal electrolytic mixture of n fluid components in the bounded
domain Ω ⊂ R

d (d ≥ 1) with boundary ∂Ω. We assume that the mixture is not moving,
so the barycentric velocity vanishes. The thermodynamic state of the mixture is described
by the partial mass densities ρ1, . . . , ρn and the electric field E. We suppose the quasi-
static approximation E = −∇Φ, where Φ is the electric potential. The evolution of the
mass densities ρi = Mici with the molar masses Mi and molar concentrations (or number
densities) ci is governed by the partial mass balances [10, (4)]

∂tρi + div Ji = ri(x) in Ω, t > 0, i = 1, . . . , n,
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where x = (x1, . . . , xn) is the vector of molar fractions xi = ρi/(ctotMi), ctot =
∑n

i=1 ci is
the total concentration, Ji the diffusion flux, and ri(x) the mass production rate of the ith
species. We assume that the total flux and the total production vanishes,

n∑

i=1

Ji = 0,
n∑

i=1

ri(x) = 0,

which are necessary constraints to achieve total mass conservation, ∂t
∑n

i=1 ρi = 0. We
suppose that the total initial mass is constant in space,

∑n
i=1 ρ

0
i = ρtot > 0, which implies

that the total mass is constant in space and time,
∑n

i=1 ρi(t) = ρtot for t > 0.
The electric potential Φ is given by the Poisson equation [11, (3) and (25)]

−ε0(1 + χ)∆Φ = F
n∑

i=1

zici + f(y) in Ω,

where ε0 is the dielectric constant, χ the dielectric susceptibility, F the Faraday constant,
zi the charge number of the ith species, and f(y) with y ∈ Ω models the charge of fixed
background ions.
The basic assumption of the Maxwell–Stefan theory is that the difference in speed and

molar fractions leads to a diffusion flux. They are implicitly given by the driving forces di
according to [2, (200)]

−
n∑

j=1

xj(Ji/Mi)− xi(Jj/Mj)

ctotDij

= di, i = 1, . . . , n,

where the numbers Dij = Dji are the Maxwell–Stefan diffusivities. Inserting the definition
xi = ρi/(ctotMi), we find that

(18) −
n∑

j=1

ρjJi − ρiJj
c2totMiMjDij

= di.

In the present situation, the driving force is given by two components, the variation of the
chemical potential µi and the contribution of the body forces bi [2, (211)]:

di =
ciMi

RT
∇µi −

ρi
RT

(bi − btot), i = 1, . . . , n,

where R is the gas constant and T the (constant) temperature. Since (Dij) is symmetric,
summing (18) from i = 1, . . . , n leads to

∑n
i=1 di = 0. Furthermore,

∑n
i=1∇µi vanishes

too; see below. This shows that btot = ρ−1
tot

∑n
i=1 ρibi. We assume that the only force is due

to the electric field (i.e., we neglect effects of gravity), bi = −(zi/Mi)F∇Φ [30, (3)].
It remains to determine the chemical potential. We define it by µi = ∂hmix/∂ρi, where

hmix(ρ) = ctotRT (
∑n

i=1 xi log xi + 1) is the mixing free energy density [10, (23)]. Then

µi =
1

ctotMi

∂hmix

∂xi

=
RT

Mi

(log xi + 1),
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and the driving force becomes

di = ci∇ log xi +
ρiF

RTMi

(
zi −

1

ρtot

n∑

j=1

zjρj
Mj

)
∇Φ

= ctot

(
∇xi +

F

RT

(
zixi − (z · x)

ρi
ρtot

)
∇Φ

)
,(19)

where z = (z1, . . . , zn) and x = (x1, . . . , xn). The Gibbs-Duhem equation

n∑

i=1

ρi
∂hmix

∂ρi
− hmix(ρ) = RT

n∑

i=1

ρi
log xi + 1

Mi

− ctotRT

( n∑

i=1

xi log xi + 1

)
= 0

shows that the pressure vanishes, which is consistent with our choice of the driving force (see
[2, (211)]). The driving force in [30, (7)] contains a non-vanishing pressure that is related
to our expression for the total body force. The resulting driving force (19), however, is the
same.
We summarize the model equations:

∂tρi + div Ji = ri(x), i = 1, . . . , n,(20)

−ε0(1 + χ)∆Φ = F

n∑

i=1

zici + f(y),(21)

−
n∑

j=1

ρjJi − ρiJj
c3totMiMjDij

=
di
ctot

= ∇xi +
F

RT

(
zixi − (z · x)

ρi
ρtot

)
∇Φ,(22)

and the relations

ci =
ρi
Mi

, xi =
ρi

ctotMi

, ctot =
n∑

i=1

ci.

Equations (1)-(3) are obtained from (20)-(22) after setting λ = ε0(1 + χ)/F , kij =
1/(c3totMiMjDij), and Di = di/ctot and after nondimensionalization. In particular, we
scale the particle densities by ρtot (then the scaled quantities satisfy

∑n
i=1 ρi = 1) and the

electric potential by F/(RT ).

3. Auxiliary results

We collect some auxiliary results needed for the existence analysis. The starting point is
the relation (2) below. Observe that the coefficients kij depend on ρi via ctot =

∑n
i=1 ρi/Mi.

This dependency does not complicates the analysis since the results in Section 3 hold
pointwise for any given ρi and ctot is uniformly bounded from above and below by

1

maxi=1,...,n Mi

≤ ctot =
n∑

i=1

ρi
Mi

≤
1

mini=1,...,n Mi

.
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3.1. Expressions for the diffusion fluxes. We review three different expressions for
the diffusion fluxes following [6, 21] and extend the formulas to electro-chemical potentials.
We reformulate (2):

(23) Di = −
∑

j 6=i

kij(ρjJi − ρiJj) =
∑

j 6=i

kijρiρj

(
Ji
ρi
−

Jj
ρj

)
.

The symmetry of (kij) implies that
∑n

i=1 Di = 0. Compactly, we may write D = −AJ ,
where D = (D1, . . . , Dn)

⊤, J = (J1, . . . , Jn)
⊤, and A = (Aij) with

(24) Aij =

{ ∑n
ℓ=1, ℓ6=i kiℓρℓ for i = j,

−kijρi for i 6= j.

By Assumption (A3), it holds that im(A) = ker(A⊤)⊥ = span{1}⊥, where 1 = (1, . . . , 1)⊤

∈ R
n. We conclude from [21, Lemma 2.2] that all eigenvalues of Ã := A|im(A) are positive

uniformly in ρ ∈ [0, 1]n and that Ã is invertible. Since
∑n

i=1 Ji = 0, each row of J =

(J1, . . . , Jn) is an element of im(A), so the linear system D = −ÃJ can be inverted,

yielding J = −Ã−1D.
We obtain another formulation by inverting the system in the first n−1 variables. Setting

D′ = (D1, . . . , Dn−1) and J ′ = (J1, . . . , Jn−1), we can write D′ = −A0J
′, where the matrix

A0 = (A0
ij) ∈ R

(n−1)×(n−1) is defined by

A0
ij =

{ ∑n−1
ℓ=1, ℓ6=i(kiℓ − kin)ρℓ + kin if i = j,

−(kij − kin)ρi if i 6= j.

It is shown in [6, Lemma 4] that A0 is invertible and A−1
0 is bounded uniformly in ρ ∈ [0, 1]n.

Thus, J ′ = −A−1
0 D′.

Finally, we invert the relations (23). Using Jn = −
∑n−1

i=1 Ji, these relations (or the
equivalent form Di = −

∑n
j=1 AijJj) can be written as

(25)
Di

ρi
−

Dn

ρn
= −

n−1∑

j=1

CijJj,

where

Cij =
Aij

ρi
−

Ain

ρi
−

Anj

ρn
+

Ann

ρn
= −

Yij

ρiρj
+

Yin

ρiρn
+

Ynj

ρnρj
−

Ynn

ρ2n
,

Yij =

{ ∑n
ℓ=1, ℓ6=i kiℓρiρℓ for i = j,

−kijρiρj for i 6= j.

The matrix −Y = (−Yij) ∈ R
n×n is symmetric (since (kij) is symmetric), quasi-positive,

irreducible, and it has the strictly positive eigenvector 1 with eigenvalue zero. Hence, by
the Perron-Frobenius theorem, the spectral bound of (−Yij) is a simple eigenvalue (with
value zero) and the spectrum of (Yij) consists of numbers with positive real part and zero.
Thus, Y is positive semidefinite.
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We claim that the matrix C = (Cij) ∈ R
(n−1)×(n−1) is positive definite on span{1}⊥.

Indeed, let y ∈ span{ρ}⊥. Then y·ρ = 0. Since 1·ρ = 1, we have y 6∈ span{1} = ker(Y ) and
consequently, span{ρ}⊥ ⊂ ker(Y )c. This means that −Y is negative definite on span{ρ}⊥.
A computation shows that for any vector w = (w1, . . . , wn−1) ∈ R

n−1, it holds that

n−1∑

i,j=1

Cijwiwj = −
n∑

i,j=1

Yij

ρiρj
w̃iw̃j

where w̃i = wi for i = 1, . . . , n − 1 and w̃n = −
∑n−1

i=1 wi. Then w̃ = (w̃1, . . . , w̃n) ∈
span{1}⊥. Since −Y is negative definite on span{ρ}⊥, we infer that (−Yij/(ρiρj)) is neg-
ative definite on span{1}⊥. Therefore, C is positive definite on span{1}⊥. Its inverse
B := ctotC

−1 with B = (Bij) exists, only depends on the mass density vector ρ, and is
positive definite uniformly for all ρ ∈ [0, 1]n satisfying

∑n
i=1 ρi = 1 [6, Lemma 10]. We

deduce from (25) and (2) that

Ji = −
n−1∑

j=1

Bij

(
Dj

ρj
−

Dn

ρn

)

= −
n−1∑

j=1

Bij

(
∇ log xj

Mj

−
∇ log xn

Mn

+

(
zj
Mj

−
zn
Mn

)
∇Φ

)

= −
n−1∑

j=1

Bij∇wj(26)

for i = 1, . . . , n− 1 and Jn = −
∑n−1

i=1 Ji, recalling definition (7) of wi. We summarize:

Lemma 4 (Formulations of Ji). Equations (23) can be written equivalently as

J = −Ã−1D, J ′ = −A−1
0 D′, J ′ = −B∇w.

The last expression for Ji shows that the partial mass balances (1) can be formulated as

∂tρ
′ − div(B∇w) = r′(ρ),

where ρ = ρ(w) and B = B(ρ(w)). By Definition (7), w is a function of ρ (and Φ). The
inverse relation ρ(w) is discussed in the following subsection.

3.2. Inversion of ρ 7→ w. Definition (7) defines, for given Φ ∈ R, a mapping x 7→ w. We
claim that this mapping can be inverted. If the molar masses are all the same, M := Mi,
this can be done explicitly:

(27) ρi(w) =
exp(Mwi − (zi − zn)Φ)

1 +
∑n−1

j=1 exp(Mwj − (zj − zn)Φ)
, i = 1, . . . , n− 1,

and ρn = 1 −
∑n−1

i=1 ρi. Unfortunately, when the molar masses are different, we cannot
derive an explicit formula. Instead we adapt first Lemma 6 in [6].
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Lemma 5 (Inversion of w and x). Let Φ ∈ R and define the function

WΦ :

{
x = (x1, . . . , xn) ∈ (0, 1)n :

n∑

i=1

xi = 1

}
→ R

n−1

by WΦ(x) = (w1(x), . . . , wn−1(x)), where

wi(x) =
log xi

Mi

−
log xn

Mn

+

(
zi
Mi

−
zn
Mn

)
Φ, i = 1, . . . , n− 1.

Then WΦ is invertible and we can define x′(w,Φ) := W−1
Φ (w) and xn(w,Φ) := 1−

∑n−1
i=1 xi,

where x′(w,Φ) = (x1, . . . , xn−1).

Proof. The proof is similar to that one of [6, Lemma 6]. Let w = (w1, . . . , wn−1) ∈ R
n−1

and Φ ∈ R be given. Define the function f : [0, 1]→ [0,∞) by

f(s) =
n−1∑

i=1

(1− s)Mi/Mn exp

[
Miwi −Mi

(
zi
Mi

−
zn
Mn

)
Φ

]
, s ∈ [0, 1].

Then f is continuous, strictly decreasing, and 0 = f(1) < f(s) < f(0) for s ∈ (0, 1).
Hence, there exists a unique fixed point s0 ∈ (0, 1) such that f(s0) = s0. We define

(28) xi = (1− s0)
Mi/Mn exp

[
Miwi −Mi

(
zi
Mi

−
zn
Mn

)
Φ

]
> 0, i = 1, . . . , n− 1.

By definition, we have
∑n−1

i=1 xi = f(s0) = s0 < 1. We set xn = 1 − s0 > 0 such that∑n
i=1 xi = 1. Moreover, (28) can be written equivalently as

log xi

Mi

+
log(1− s0)

Mn

+

(
zi
Mi

−
zn
Mn

)
Φ = wi,

and since 1− s0 = xn, this shows that W
−1
Φ (w) = x′ is the inverse mapping. �

Given ρ ∈ [0, 1]n, we know that xi = ρi/(ctotMi) for i = 1, . . . , n and
∑n

i=1 xi = 1. This
relation can be inverted too. We recall [6, Lemma 7]:

Lemma 6 (Inversion of ρ and x). Let x′ ∈ (0, 1)n−1 and xn = 1 −
∑n−1

i=1 xi > 0 be given
and define for i = 1, . . . , n,

ρi(x
′) = ρi := ctotMixi, where ctot =

( n∑

j=1

Mjxj

)−1

.

Then ρ = (ρ1, . . . , ρn) is the unique vector satisfying ρn = 1−
∑n−1

i=1 ρi > 0, xi = ρi/(ctotMi)
for i = 1, . . . , n, and ctot =

∑n
i=1 ρi/Mi.

Combining Lemmas 5 and 6, we conclude as in [6] that the mapping ρ 7→ w can be
inverted. In fact, we just have to define ρ′ = ρ′(x′(w,Φ)).
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Corollary 7 (Inversion of ρ and w). Let w = (w1, . . . , wn−1) ∈ R
n−1 and Φ ∈ R be given.

Then there exists a unique vector ρ = (ρ1, . . . , ρn) ∈ (0, 1)n satisfying
∑n

i=1 ρi = 1 such

that (7) holds for ρn = 1 −
∑n−1

i=1 ρi and xi = ρi/(ctotMi) with ctot =
∑n

i=1 ρi/Mi. The
mapping ρ′ : Rn−1 → (0, 1)n−1, ρ′(w,Φ) = (ρ1, . . . , ρn−1), is bounded.

4. Proof of Theorem 1

Step 1: existence of solutions. The idea is to apply the Leray-Schauder fixed-point
theorem. We need to define the fixed-point operator. For this, let χ ∈ L∞(Ω;Rn−1) and
σ ∈ [0, 1]. There exists a unique solution Φk − ΦD ∈ PN to the linear finite-dimensional
problem

λ

∫

Ω

∇Φk · ∇θdy =

∫

Ω

( n∑

i=1

zici(χ+ wD,Φ
k) + f(y)

)
θdy

for all θ ∈ PN . In particular, Φk ∈ L∞(Ω). Next, we wish to solve the linear finite-
dimensional problem

(29) a(u, φ) = σF (φ) for all φ ∈ VN ,

where

a(u, φ) =

∫

Ω

∇φ : B(χ+ wD,Φ
k)∇udy + ε

∫

Ω

u · φdy,

F (φ) = −
1

τ

∫

Ω

(
ρ′(χ+ wD,Φ

k)− ρ′(uk−1 + wD,Φ
k−1)

)
dy

+

∫

Ω

r′(x(χ+ wD,Φ
k)) · φdy −

∫

Ω

∇φ : B(χ+ wD,Φ
k)∇wDdy

for u, φ ∈ VN . Since χ + wD ∈ L∞(Ω;Rn−1) and Φk ∈ L∞(Ω), Corollary 7 shows that
ρ(χ+wD,Φ

k) is bounded. We know from Section 3.1 that the matrix B = B(χ+wD,Φ
k)

is positive definite and its elements are bounded. We deduce that the forms a and F are
continuous on VN . Exploiting the equivalence of the norms in the finite-dimensional space
VN , we find that

a(u, u) ≥ ε‖u‖2L2(Ω) ≥ εKN‖u‖
2
H1(Ω)

for some constant KN > 0, which implies that a is coercive on VN . By the Lax–Milgram
lemma, there exists a unique solution u ∈ VN ⊂ L∞(Ω;Rn−1) to (29) satisfying

(30) εKN‖u‖2L∞(Ω) ≤ a(u, u) = σF (u) ≤ KF‖u‖H1(Ω),

and the constants KN and KF are independent of τ and σ. This defines the fixed-point
operator S : L∞(Ω;Rn−1)× [0, 1]→ L∞(Ω;Rn−1), S(χ, σ) = u. Standard arguments show
that S is continuous. Since VN is finite-dimensional, S is also compact. Furthermore,
S(χ, 0) = 0. Estimate (30) provides a uniform bound for all fixed points of S(·, σ). Thus,
by the Leray-Schauder fixed-point theorem, there exists uk ∈ VN such that S(uk, 1) = uk,
and wk := uk + wD, Φ

k solve (12)-(13).
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Step 2: proof of the discrete entropy production inequality (15). We use the test function
τ(wk − wD) ∈ VN in (12) and set ρk := ρ′(wk,Φk):

∫

Ω

(ρk − ρk−1) · (wk − wD)dy + τ

∫

Ω

∇(wk − wD) : B(wk,Φk)∇wkdy

+ ετ

∫

Ω

|wk − wD|
2dy ≤ τ

∫

Ω

r′(xk) · (wk − wD)dy.

We claim that the first term on the left-hand side is the difference of the entropies at time
steps k and k − 1. To show this, we split the entropy density into two parts, h(ρk) =
h1(ρ

k) + h2(ρ
k), where

h1(ρ
k) = cktot

n∑

i=1

xk
i log x

k
i , h2(Φ

k) =
λ

2
|∇(Φk − ΦD)|

2,

where we recall that xk
i = ρki /(c

k
totMi) and cktot =

∑n
i=1 ρ

k
i /Mi. By the convexity of h1, we

have

h1(ρ
k)− h1(ρ

k−1) ≤
∂h1

∂ρ′
(ρk) · (ρk − ρk−1) =

n∑

i=1

(ρki − ρk−1
i )

log xk
i

Mi

.

Therefore, using ρkn − ρk−1
n = −

∑n−1
i=1 (ρ

k
i − ρk−1

i ),

∫

Ω

(
h1(ρ

k)− h1(ρ
k−1)

)
dx ≤

∫

Ω

( n−1∑

i=1

(ρki − ρk−1
i )

log xk
i

Mi

+ (ρkn − ρk−1
n )

log xk
n

Mn

)
dy

=

∫

Ω

n−1∑

i=1

(ρki − ρk−1
i )

(
log xk

i

Mi

−
log xk

n

Mn

)
dy.(31)

For the estimate of h2, we first observe that

n−1∑

i=1

(ρki − ρk−1
i )

(
zi
Mi

−
zn
Mn

)
=

n−1∑

i=1

(ρki − ρk−1
i )

zi
Mi

+ (ρkn − ρk−1
n )

zn
Mn

=
n∑

n=1

(ρki − ρk−1
i )

zi
Mi

.

We infer from the Poisson equation (13) and Young’s inequality that

∫

Ω

n−1∑

i=1

(ρki − ρk−1
i )

(
zi
Mi

−
zn
Mn

)
(Φk − ΦD)dy

=

∫

Ω

n∑

i=1

(ρki − ρk−1
i )

zi
Mi

(Φk − ΦD)dy =

∫

Ω

n∑

i=1

zi(c
k
i − ck−1

i )(Φk − ΦD)dy

= λ

∫

Ω

∇
(
(Φk − ΦD)− (Φk−1 − ΦD)

)
(Φk − ΦD)dy
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≥
λ

2

∫

Ω

|∇(Φk − ΦD)|
2dy −

λ

2

∫

Ω

|∇(Φk−1 − ΦD)|
2dy

=

∫

Ω

(
h2(Φ

k)− h2(Φ
k−1)

)
dy.(32)

Taking into account the property rn(ρ
k) = −

∑n−1
i=1 ri(ρ

k), definition (7) of wk
i , and As-

sumption (A4), we compute
∫

Ω

r′(xk) · (wk − wD)dy =

∫

Ω

n−1∑

i=1

ri(x
k)

(
log xk

i

Mi

−
log xk

n

Mn

)
dy

+

∫

Ω

n−1∑

i=1

ri(x
k)

(
zi
Mi

−
zn
Mn

)
(Φk − ΦD)dy

=

∫

Ω

n∑

i=1

ri(x
k)
log xk

i

Mi

dy +

∫

Ω

n∑

i=1

ri(x
k)

zi
Mi

(Φk − ΦD)dy

≤

∫

Ω

n∑

i=1

ri(x
k)

zi
Mi

(Φk − ΦD)dy,(33)

Combining (31)-(33) gives the conclusion.

5. Proof of Theorem 3

Let (wk,Φk) be a weak solution to scheme (12)-(13) and define ρk = ρ(wk,Φk).
Step 1: uniform estimates. We derive estimates for ρk and Φk independent of ε, τ , and

N . The starting point is the discrete entropy production inequality (15), and the main
task is to estimate the diffusion part.

Lemma 8 (Estimate of the diffusion part). There exist constants K1 > 0 and K2 > 0,
both independent of ε, τ , and N , such that

∫

Ω

∇(wk − wD) : B∇w
kdy ≥ K1

n∑

i=1

‖∇(xk
i )

1/2‖2L2(Ω) −K2.

Proof. We drop the superindex k in the proof to simplify the notation. Recall that

Ã = A|im(A), where im(A) = span{1}⊥. We introduce as in the proof of Lemma 12 in [6]

the symmetrization ÃS = P−1/2ÃP 1/2, where P 1/2 = M1/2X1/2 and M1/2 := diag(M
1/2
1 ,

. . . ,M
1/2
n ), X1/2 := diag(x

1/2
1 , . . . , x

1/2
n ). Then Ã−1

S = P−1/2Ã−1P 1/2 is a self-adjoint en-
domorphism whose smallest eigenvalue is bounded from below by some positive constant
which depends only on (kij).
Since 0 =

∑n
i=1 Ji =

∑n
i=1(B∇w)i, we can express the last component in terms of the

other components, (B∇w)n = −
∑n−1

i=1 (B∇w)i. Then

∇w : B∇w =
n−1∑

i=1

{
∇ log xi

Mi

−
∇ log xn

Mn

+

(
zi
Mi

−
zn
Mn

)
∇Φ

}
· (B∇w)i
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=
n−1∑

i=1

1

Mi

∇(log xi + ziΦ) · (B∇w)i −
1

Mn

∇(log xn + znΦ)
n−1∑

i=1

(B∇w)i

=
n∑

i=1

1

Mi

∇(log xi + ziΦ) · (B∇w)i.

To simplify the notation, we set Ψi = ∇(log xi + ziΦ)/Mi, and Ψ = (Ψ1, . . . ,Ψn). By

Lemma 4, B∇w = Ã−1D = P 1/2Ã−1
S P−1/2D. Hence,

∇w : B∇w = Ψ : B∇w = Ψ : M1/2X1/2Ã−1
S X−1/2M−1/2D

=
n∑

i,j=1

ΨiM
1/2
i x

1/2
i (Ã−1

S )ijx
−1/2
j M

−1/2
j Di

=
n∑

i,j=1

(
2∇x

1/2
i + zix

1/2
i ∇Φ

)
M

−1/2
i (Ã−1

S )ijM
−1/2
j

×
(
2∇x

1/2
j + (zjx

1/2
j − (x · z)ρjx

−1/2
j )∇Φ

)
.(34)

In view of
∑n

i=1(B∇w)i = 0, it follows that

n∑

i,j=1

(
M

−1/2
i x

−1/2
i (z · x)ρi∇Φ

)
(ÃS)

−1
ij M

−1/2
j

(
2∇x

1/2
j + (zjx

1/2
j − (x · z)ρjx

−1/2
j )∇Φ

)

=
n∑

i,j=1

(
c(z · x)∇Φ

)
Ã−1

ij

(
∇xj + (zjxj − (x · z)ρj∇Φ

)

=
(
c(z · x)∇Φ

)
·

n∑

i=1

(B∇w)i = 0.

Adding this expression to (34), we find that

∇w : B∇w =
n∑

i,j=1

M
−1/2
i

(
2∇x

1/2
i + (zix

1/2
i − (z · x)ρix

−1/2
i ∇Φ

)
(ÃS)

−1
ij M

−1/2
j

×
(
2∇x

1/2
j + (zjx

1/2
j − (z · x)ρjx

−1/2
j ∇Φ

)
.

The matrix Ã−1
S is positive definite on im(ÃS) = span{ρ1/2}. As the vector (2∇x

1/2
i +

(zix
1/2
i − (x · z)ρix

−1/2
i ∇Φ)ni=1 lies in span{ρ1/2}, we obtain

∇w : B∇w ≥ KB

n∑

i=1

M−1
i

∣∣2∇x1/2
i + (zix

1/2
i − (x · z)ρix

−1/2
i ∇Φ

∣∣2

≥ K1

n∑

i=1

|∇x
1/2
i |

2 −K2

n∑

i=1

∣∣(zix1/2
i − (x · z)ρix

−1/2
i ∇Φ

∣∣2,



A GALERKIN SCHEME FOR POISSON–MAXWELL–STEFAN SYSTEMS 17

where K1 > 0 and K2 > 0 depend on M1, . . . ,Mn. Since xi and ρix
−1/2
i = ρ

1/2
i /(ctotMi)

are bounded, the previous inequality becomes

(35) ∇w : B∇w ≥ K1

n∑

i=1

|∇x
1/2
i |

2 −K3|∇Φ|
2,

where K3 depends on K2 and zi.
In the following, let K > 0 be a generic constant independent of ε, n, and τ . We estimate

the expression involving the boundary term

∇wD : B∇w = ∇wD : A−1
0 D′

=
n−1∑

i,j=1

(A−1
0 )ij

(
zi
Mi

−
zn
Mn

)
∇ΦD ·

(
∇xi + (zixi − (z · x)ρi)∇Φ

)

≤
K

δ
+ δ

n−1∑

i=1

∣∣∇xi + (zixi − (z · x)ρi)∇Φ
∣∣2,

where K > 0 depends on ∇ΦD, zi, Mi, and A−1
0 . Since 0 ≤ xi ≤ 1, we have |∇xi|

2 =

4xi|∇x
1/2
i |

2 ≤ 4|∇x
1/2
i |

2 and therefore,

(36) ∇wD : B∇w ≤
K

δ
+ 4δ|∇x

1/2
i |

2 + δK|∇Φ|2.

We infer from (35) and (36) that
∫

Ω

∇(w − wD) : B∇wdy ≥ (K1 − 4δ)
n∑

i=1

‖∇x
1/2
i ‖

2
L2(Ω) −K3‖∇Φ‖

2
L2(Ω) −

K

δ
.

By the boundedness of ci, the elliptic estimate for the Poisson equation gives

(37) ‖Φ‖H1(Ω) ≤ K(1 + ‖ci‖L2(Ω)) ≤ K.

This proves the lemma. �

Combining the discrete entropy inequality (15) and the estimate of Lemma 8 and sum-
mation over k leads to the following result.

Corollary 9. There exist constants K1 > 0 and K2 > 0, both independent of ε, n, and τ ,
such that

(38) H(ρk) + τK1

k∑

j=1

n∑

i=1

‖∇(xk
i )

1/2‖2L2(Ω) + ετ
k∑

j=1

‖wj − wD‖
2
L2(Ω) ≤ τkK2 +H(ρ0).

Step 2: limit ε→ 0. For a fixed time step k, let (wε,Φε) be a solution to (12)-(13) with
ρε = ρ(wε,Φε) and xε

i = ρεi/(c
ε
totMi). Estimates (37) and (38) yield the following uniform

bounds:

‖ρεi‖L∞(Ω) + ‖x
ε
i‖L∞(Ω) ≤ 1, i = 1, . . . , n,(39)

‖xε
i‖H1(Ω) + ‖Φ

ε‖H1(Ω) + ε1/2‖wε
i ‖L2(Ω) ≤ K,(40)
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where K > 0 is independent of ε and N . The bound for xε
i in H1(Ω) is a consequence of the

bound for (xε
i )

1/2 in H1(Ω) from (38) and the uniform L∞ bound for xε
i from (39). It follows

that cεtot =
∑n

i=1 ρ
ε
i/Mi is uniformly bounded in L∞(Ω). Moreover, because of

∑n
i=1 ρ

ε
i = 1,

cεtot ≥ (maxi Mi)
−1 > 0 is uniformly positive. This shows that ρεi = cεtotMix

ε
i is uniformly

bounded in H1(Ω). Oberserving that the embedding H1(Ω) →֒ L2(Ω) is compact, there
exist subsequences, which are not relabeled, such that as ε→ 0,

xε
i → xi, ρεi → ρi, Φε → Φ strongly in L2(Ω),

xε
i ⇀ xi, ρεi ⇀ ρi, Φε ⇀ Φ weakly in H1(Ω),

εwε
i → 0 strongly in L2(Ω).

In view of the L∞ bounds for (xε
i ) and (ρεi ), the strong convergences for these (sub-)

sequences hold in Lp(Ω) for any p <∞. Consequently, cεtot → ctot :=
∑n

i=1 ρi/Mi strongly
in L2(Ω), and we can identify ρi = ctotMixi for i = 1, . . . , n. Furthermore,

cεi = ρεi/Mi → ci := ρi/Mi strongly in L2(Ω), i = 1, . . . , n.

Recalling definition (2) of Di, we have

(41) Dε
i = ∇x

ε
i + (zix

ε
i − (z · xε)ρεi )∇Φ

ε ⇀ Di := ∇xi + (zixi − (z · x)ρi)∇Φ

weakly in Lq(Ω) for any q < 2 and i = 1, . . . , n. Since (Dε
i ) is bounded in L2(Ω), there exists

a subsequence which converges to some function D̃i weakly in L2(Ω). By the uniqueness

of the weak limits, we can identify D̃i = Di. This shows that the convergence (41) holds in
L2(Ω). We deduce from the strong convergence of (xε

i ), the boundedness of (x
ε
i ) in L∞(Ω),

and the continuity of ri that ri(x
ε)→ ri(x) strongly in L2(Ω).

We know from Lemma 4 that B(wε)∇wε = A−1
0 (ρε)(Dε)′. As A−1

0 (ρ) is uniformly
bounded for ρ ∈ [0, 1]n and (ρε) converges strongly to ρ, we infer that A−1

0 (ρε) → A−1
0 (ρ)

strongly in L2(Ω); the convergence holds even in every Lp(Ω) for p < ∞. Then, because
of (41),

(42) A−1
0 (ρε)(Dε)′ ⇀ A−1

0 (ρ)D′ weakly in Lq(Ω) for all q < 2.

In fact, since A−1
0 (ρε)(Dε)′) is bounded in L2(Ω) and thus (up to a subsequence) weakly

converging in L2(Ω), the convergence holds in L2(Ω).
These convergences are sufficient to perform the limit ε → 0 in (12)-(13). We conclude

that (ρk,Φk) := (ρ,Φ) solves

1

τ

∫

Ω

(
(ρk)′ − (ρk−1)′

)
· φdy +

∫

Ω

∇φ : A−1
0 (ρk)∇ρkdy =

∫

Ω

r′(xk) · φdy,(43)

λ

∫

Ω

∇Φk · ∇θdy =

∫

Ω

( n∑

i=1

zic
k
i + f(y)

)
θdy(44)

for all φ ∈ VN , θ ∈ PN .
Step 3: limit N → ∞. Let (ρN ,ΦN ) be a solution to (43)-(44). Estimates (39)-(40)

are independent of N . Thus, we can exactly argue as in step 2 and obtain limit functions
(x, ρ,Φ) and ci = ctotMixi for i = 1, . . . , n as N → ∞. These functions satisfy (43)-(44)
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for all φ ∈ VN and θ ∈ PN and for all N ∈ N. The union of all VN is dense in H1(Ω;Rn−1)
and the union of all PN is dense in H1

D(Ω). Thus, by a density argument, system (43)-(44)
holds for all test functions φ ∈ H1(Ω;Rn−1) and θ ∈ H1

D(Ω).
Step 4: limit τ → 0. Let (ρk,Φk) be a solution to (43)-(44) with test functions φ ∈

H1(Ω;Rn−1) and θ ∈ H1
D(Ω). Then ρki = cktotMix

k
i and cki = ρki /Mi for i = 1, . . . , n. We set

ρτi (y, t) = ρki (y), xτ
i (y, t) = xk

i (y), cτi (y, t) = cki (y), Φτ (y, t) = Φk(y)

for y ∈ Ω, t ∈ ((k − 1)τ, kτ ], i = 1, . . . , n and introduce the shift operator (στρ
τ )(y, t) =

ρτ (y) for y ∈ Ω and t ∈ ((k − 1)τ, kτ ]. Finally, we set Dτ
i = ∇xτ

i + (zix
τ
i − (z · xτ )ρτi )∇Φ

τ

and T = mτ for some fixed m ∈ N. Then we can write system (43)-(44) as

1

τ

∫ T

0

∫

Ω

(
(ρτ )′ − στ (ρ

τ )′
)
· φdydt+

∫ T

0

∫

Ω

∇φ : A−1
0 (ρτ )(Dτ )′dydt

=

∫ t

0

∫

Ω

r′(xτ ) · φdydt,(45)

λ

∫

Ω

∇Φτ · ∇θdy =

∫

Ω

( n∑

i=1

zic
τ
i + f(y)

)
θdy(46)

for all piecewise constant functions φ : (0, T )→ H1(Ω;Rn−1) and θ : (0, T )→ H1
D(Ω). The

entropy inequality (38), formulated in terms of (ρτ ,Φτ ), provides us with further uniform
bounds since the right-hand side of (38) does not depend on τ :

‖ρτi ‖L∞(ΩT ) + ‖x
τ
i ‖L∞(ΩT ) ≤ K,(47)

‖ρτi ‖L2(0,T ;H1(Ω)) + ‖x
τ
i ‖L2(0,T ;H1(Ω)) + ‖Φ

τ‖L2(0,T ;H1(Ω)) ≤ K,(48)

where we have set ΩT = Ω× (0, T ). As a consequence, (Dτ
i ) is bounded in L2(0, T ;H1(Ω)).

It remains to derive a uniform estimate for the discrete time derivative of ρτ . Taking
into account the uniform bound for A−1

0 (ρτ ), it follows that

1

τ

∣∣∣∣
∫ t

0

∫

Ω

(
(ρτ )′ − στ (ρ

τ )′
)
· φdydt

∣∣∣∣ ≤
∫ T

0

‖∇φ‖L2(Ω)‖A
−1
0 (ρτ )‖L∞(Ω)‖(D

τ )′‖L2(Ω)dt

+

∫ T

0

‖r′(xτ )‖L2(Ω)‖φ‖L2(Ω)dt ≤ C‖φ‖L2(0,T ;H1(Ω)).

As the piecewise constant functions φ : (0, T ) → H1(Ω;Rn−1) are dense in L2(0, T ;
H1(Ω;Rn−1)), this estimate also holds for all φ ∈ L2(0, T ;H1(Ω;Rn−1)), and we conclude
that

τ−1
∥∥(ρτ )′ − στ (ρ

τ )′
∥∥
L2(0,T ;H1(Ω)′)

≤ K, i = 1, . . . , n− 1.

This estimate also holds for i = n since ρτn = 1−
∑n−1

i=1 ρτi .
By the Aubin-Lions lemma in the version of [9], there exists a subsequence of (ρτ ) which

is not relabeled such that, as τ → 0,

ρτi → ρi strongly in L2(ΩT ), i = 1, . . . , n.
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In view of the L∞ bound (47) for ρτ , this convergence also holds in Lp(ΩT ) for any p <∞.
Furthermore, by (48), we have up to subsequences,

xτ
i ⇀ xi, Φτ ⇀ Φ weakly in L2(0, T ;H1(Ω)),

τ−1(ρτi − στ (ρ
τ
i )) ⇀ ∂tρi weakly in L2(0, T ;H1(Ω)′).

In particular, Dτ
i ⇀ Di weakly in L2(ΩT ), and we can identify Di = ∇xi + (zixi − (z ·

x)ρi)∇Φ. The strong convergence of (ρτ ) and the weak convergence of (Dτ
i ) imply that

A−1
0 (ρτ )(Dτ )′ ⇀ A−1

0 (ρ)D′ weakly in Lq(ΩT ), q < 2.

Again, since (A−1
0 (ρτ )(Dτ )′) is bounded in L2(ΩT ), this convergence holds in L2(ΩT ). Fur-

thermore, r′(xτ )→ r′(x) strongly in L2(ΩT ). Therefore, we can pass to the limit τ → 0 in
(45)-(46) yielding (16)-(17).
Finally, the assumption ρ0i ≥ η > 0 can be relaxed to ρ0i ≥ 0 by passing to the limit

η → 0. This is carried out in [6, Section 3.2] and we refer to this reference for details.

6. Numerical experiments

In this section, some numerical experiments based on scheme (12)-(13) in one space
dimension are presented.

6.1. Discretization and iteration procedure. Let Ω = (0, 1) be divided into np ∈ N

uniform subintervals of length h = 1/np. We use uniform time steps with time step size
τ > 0 and linear finite elements. We impose Dirichlet boundary condition for the electric
potential Φ. Given the variables (w,Φ), the molar fractions xi are computed from the
fixed-point problem (see the proof of Lemma 5)

(49) f(s) =
n−1∑

i=1

(1− s)Mi/Mn exp

[
Miwi −Mi

(
zi
Mi

−
zn
Mn

)
Φ0

]
, s ∈ [0, 1],

with unique solution s0 ∈ (0, 1). The molar fractions are recovered froms (28),

xi = (1− s0)
Mi/Mn exp

[
Miwi −Mi

(
zi
Mi

−
zn
Mn

)
Φ

]
, i = 1, . . . , n− 1,

and xn = 1 − s0. Then we set (see Lemma 6) ctot =
∑n

i=1(Mixi)
−1 and ρi = ctotMixi for

i = 1, . . . , n.
Instead of solving the nonlinear discrete system (12)-(13) by a full Newton method, we

employ a linearized semi-implicit approach, i.e., we linearize ρ(w,Φ) and use the previous
time step in the diffusion matrix B(w). More precisely, let w ∈ VN and Φ ∈ PN be given.
We linearize ρ(w,Φ) by

ρ(w,Φ) +∇(w,Φ)ρ
′(w,Φ) · (w − w,Φ− Φ).

This leads to the problem in the variable ζ = (w − w,Φ− Φ):

(50) L(ζ, φ) = F (φ), K(ζn, θ) = G(θ) for all φ ∈ VN , θ ∈ PN ,
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where

L(ζ, φ) =

∫

Ω

∇(w,Φ)ρ
′(w,Φ) · (ζ, φ)dy + τ

∫

Ω

∂xφ ·B(w,Φ)∂xζdy + ετ

∫

Ω

(ζ − wD) · φdy,

F (φ) = −

∫

Ω

(
ρ′(w,Φ)− ρ′(wk−1,Φk−1)

)
· φdy − τ

∫

Ω

∂xφ ·B(w,Φ)∂xwdy,

K(ζn, θ) = λ

∫

Ω

∂xζn∂xφdy −

∫

Ω

n∑

i=1

zi
Mi

∇(w,Φ)ρi(w,Φ) · ζθdy,

G(θ) = −λ

∫

Ω

∂xΦ∂xθdy +

∫

Ω

( n∑

i=1

zi
ρi(w,Φ)

Mi

+ f(y)

)
θdy.

The iteration with starting point (w
(0)
h ,Φ

(0)
h ) := (wk−1,Φk−1) is then defined by (w

(m+1)
h ,

Φ
(m+1)
h ) := (w,Φ)+ ζ for m ≥ 0. The iteration stops when ‖ζ‖ℓ∞ < εtol for some tolerance

εtol > 0 or if m ≥ mmax for a maximal number of iterations. We summarize the scheme in
Algorithm 1.

Algorithm 1 (Pseudo-code for the finite-element scheme in entropy variables.)

1: procedure Maxwell-Stefan system in entropy variables

2: Set (w
(0)
h ,Φ

(0)

h ) = (wk−1,Φk−1), ρ
(0)
h = ρ′(w0

h,Φ
0

h), x
(0)
h = ρ

(0)
h /(Mic

(0)
h ), c

(0)
h =∑n

i=1(ρ
(0)
h )i/Mi, m = 0, ε > 0, and mmax.

3: while err > ε do

4: Solve linear system (50) with solution ζ.

5: Set (w
(m+1)
h ,Φ

(m+1)

h ) := (wm
h ,Φ

m

h ) + ζ.
6: Solve the fixed-point problem (49) with solution s0.

7: Compute x
(m+1)
h and ρ

(m+1)
h .

8: Set err := ‖(w
(m+1)
h ,Φ

(m+1)

h )− (w
(m)
h ,Φ

(m)

h )‖ℓ∞ .
9: (m+ 1)← (m).

10: if m > mmax or err < ε then

11: Break

12: end if

13: end while

14: end procedure

The linear system (50) and the fixed-point problem (49) are solved using MATLAB.
We choose the numerical parameters h = 10−2, τ = 10−3, εtol = 10−10, and ε = 2−52 ≈
2.2204 · 10−16 (the scheme works also for ε = 0).
We have compared our results with the solutions from a finite-element scheme de-

rived from the original system in the variables ρi and a Picard iteration procedure for
the nonlinear discrete system. It turned out that the results are basically the same, i.e.
‖ρi − ρi(w,Φ)‖L∞(Ω) ≤ 10−10.
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6.2. Numerical examples. In all numerical examples, we neglect reaction terms and
choose the diffusivities according to [3, 13]: D12 = 0.833, D13 = 0.680, and D23 = 0.168
for n = 3. The charges are given by z1 = z2 = 1 and z3 = 0 and the initial data is defined
as in [3]:

ρ01(y) =





0.7 for y < 0.25,
−2(0.7− η)y − 2(0.25η − (0.7 · 0.75)) for 0.25 ≤ y < 0.75,
η for 0.75 ≤ y ≤ 1

for η = 10−5, ρ02(y) = 0.2, and ρ03(y) = (1− ρ01 − ρ02)(y) for y ∈ Ω = (0, 1).
For the first example, the boundary conditions for the electric potential are supposed

to be in equilibrium, i.e. Φ(y) = 0 for y ∈ {0, 1}. The dynamics of the particle densities
and the electric potential are shown in Figure 1. The solution at time t = 17 is essentially
stationary and, in fact, in equilibrium. Because of the choice of the parameters, the
stationary solution is symmetric around x = 1

2
.

The situation changes drastically when the molar masses are different (example 2). Fig-
ure 2 shows the stationary solutions with the same parameters as in the previous example
except M1 = 6. Here, the discrete relative entropy is defined by

H∗(ρkh) =

∫ 1

0

(
cktot,h

n∑

i=1

(xk
h)i log

(xk
h)i

(x∞
h )i

+
λ

2
|∇(Φk

h − Φ∞
h )|2

)
dy,

where (ρkh,Φ
k
h) is the finite-element solution at time kτ and (x∞

h ,Φ∞
h ) is the stationary

solution. The integral and gradients are computed by the trapezoidal and gradient routines
of MATLAB. The semi-logarithmic plot of the relative entropy shows that the entropy
converges to zero exponentially fast.
For example 3, we choose the same initial conditions and parameters as before, but

we take non-equilibrium boundary data Φ(0) = 10, Φ(1) = 0. The solutions at time
t = 8 for various molar masses M1 are displayed in Figure 3. Since ρ1 and ρ2 have both
positive charge and the potential on the left boundary is positive, both species avoid the
left boundary and move to the right.
In example 4, we interchange the roles of M1 and M2, i.e., we choose M1 = 1 and

M2 ∈ {2, 4, 6}. We observe in Figure 4 that the first species is more concentrated at the
right boundary while in the previous example, this holds true for the second species.
The previous examples show that the convergence rate to equilibrium strongly depends

on the ratio of the molar masses. It turns out that this effect is triggered by the drift term,
and without electric field, the convergence rates are similar for different molar masses. This
behavior can be observed in Figure 5 (example 5), where we have taken the same parameters
as in the previous example but neglect the electric field. In this situation, the steady state
is constant in space and explicitly computable; indeed, we have ρ∞i = mean(Ω)−1‖ρ0i ‖L1(Ω).
Note that the steady state in the previous examples is not constant.
Finally, we compute the numerical convergence rate when the grid size tends to zero for

the situation of example 3 (non-equilibrium boundary conditions for the potential). We
choose the time t = 0.01 and the time step size τ = 10−4. The solutions are computed on
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Figure 1. Example 1: Particle densities ρi and electric potential for molar
masses M1 = M2 = M3 = 1 versus position at various times. The boundary
conditions for the electric potential are in equilibrium.

nested meshes with grid sizes h ∈ {0.01, 0.005, 0.0025, 0.0006, 0.0001} and compared to the
reference solution, computed on a very fine mesh with 25601 elements (h ≈ 4 · 10−5). As
expected, we observe a second-order convergence in space; see Figure 6.
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Figure 6. Discrete L2-error relative to the reference solution for the densi-
ties and the potential (bottom right) at time t = 0.01.


