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Abstract. A cross-diffusion system describing ion transport through biological mem-
branes or nanopores in a bounded domain with mixed Dirichlet-Neumann boundary con-
ditions is analyzed. The ion concentrations solve strongly coupled diffusion equations
with a drift term involving the electric potential which is coupled to the concentrations
through a Poisson equation. The global-in-time existence of bounded weak solutions
and the uniqueness of weak solutions under moderate regularity assumptions are shown.
The main difficulties of the analysis are the cross-diffusion terms and the degeneracy of
the diffusion matrix, preventing the use of standard tools. The proofs are based on the
boundedness-by-entropy method, extended to nonhomogeneous boundary conditions, and
the uniqueness technique of Gajewski. A finite-volume discretization in one space di-
mension illustrates the large-time behavior of the numerical solutions and shows that the
equilibration rates may be very small.

1. Introduction

The transport of ions through membranes or nanopores can be described on the macro-
scopic level by the Poisson-Nernst-Planck equations, modeling ionic species and an electro-
neutral solvent in the self-consistent field [19]. The equations can be derived in the mean-
field limit from microscopic particle models [18] and lead to diffusion equations, satisfying
Fick’s law for the fluxes. This ansatz breaks down in narrow ion channels if the finite size of
the ions is taken into account. Including size exclusion, the mean-field model, derived from
an on-lattice model in the diffusion limit [4, 21] or taking into account the combined ef-
fect of the excess chemical potentials [17], leads to parabolic equations with cross-diffusion
terms. The aim of this paper is to analyze the cross-diffusion system of [4].

1.1. Model equations. The evolution of the ion concentrations (volume fractions) ui and
fluxes Ji of the ith species is governed by the equations

(1) ∂tui = div Ji, Ji = Di

(

u0∇ui − ui∇u0 + u0ui(βzi∇Φ +∇Wi)
)
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for i = 1, . . . , n, where u0 = 1 − ∑n
i=1 ui is the concentration (volume fraction) of the

solvent. We have assumed that the molar masses are the same for all species. Varying
molar masses are considered in, e.g., [6, 8] in the context of the Maxwell-Stefan theory.
The classical Nernst-Planck equations are obtained after setting u0 = 1 [5]. They can be
also coupled with fluiddynamical equations; see, e.g., [24]. Modified Nernst-Planck models
without volume filling, but including cross-diffusion terms, were suggested and analyzed in
[13, 16].
In equations (1), Di > 0 denotes the diffusion coefficients, β = q/(kBθ) > 0 is the inverse

thermal voltage (or inverse thermal energy) with the elementary charge q, the Boltzmann
constant kB, and the temperature θ, zi ∈ R is the valence of the ith species, andWi = Wi(x)
is an external potential. Note that Einstein’s relation between the diffusivity Di and the
mobility µi = qDi/(kBθ) = Diβ holds. The electrical potential Φ is determined by the
Poisson equation

(2) −λ2∆Φ =
n

∑

i=1

ziui + f,

where λ > 0 is the (scaled) permittivity,
∑n

i=1 ziui is the total charge density, and f = f(x)
is a permanent charge density.
Equations (1)-(2) are solved in the bounded domain Ω ⊂ R

d (d ≥ 1). Its boundary is
supposed to consist of an insulating part ΓN , on which no-flux boundary conditions are
prescribed, and the union ΓD of boundary contacts with external reservoirs, on which the
concentrations are fixed. The electric potential is influenced by the voltage at ΓE between
two electrodes, and we assume for simplicity that ΓE = ΓD. This leads to the mixed
Dirichlet-Neumann boundary conditions

Ji · ν = 0 on ΓN , ui = uD
i on ΓD, i = 1, . . . , n,(3)

∇Φ · ν = 0 on ΓN , Φ = ΦD on ΓD.(4)

Finally, we prescribe the initial conditions

(5) ui(·, 0) = u0
i in Ω, i = 1, . . . , n.

Equations (1) can be written as the cross-diffusion system

(6) ∂tui = div

( n
∑

j=1

Aij(u)∇uj +Diu0ui∇Fi

)

,

where Fi = βziΦ+Wi is the effective potential and the diffusion matrix (Aij(u)) is defined
by

Aii(u) = Diui, Aij(u) = Di(u0 + ui), j 6= i.

Mathematically, this system is strongly coupled with a nonsymmetric and generally not
positive semidefinite diffusion matrix such that the existence of solutions to (6) is not
trivial. A second difficulty is the fact that a maximum principle is generally not available
for cross-diffusion systems, and the proof of nonnegativity of u0 = 1−∑n

i=1 ui is unclear.
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The third problem arises due to the degenerate structure hidden in the equations (see
below for details).
For vanishing potentials Fi = 0, the global existence of bounded weak solutions to (6)

with no-flux boundary conditions has been shown in [25], based on the boundedness-by-
entropy method [14, 15]. The existence of weak solutions to the (easier) stationary problem
was proved in [4]. Related models were analyzed recently in [2]. No existence or uniqueness
results for solutions to the full transient model (1)-(5) seem to be available in the literature
and in this paper, we fill this gap. Compared to the works [14, 25], the novelty here is the
inclusion of the electric potential and the mixed Dirichlet-Neumann boundary conditions,
which need to be treated in a careful way.

1.2. Key idea of the analysis. We extend the boundedness-by-entropy method [14]
to the case of nonconstant potentials and nonhomogeneous boundary conditions. The
key observation, already stated in [4], is that (1) possesses an entropy or gradient-flow
structure. The entropy or, more precisely, free energy is given by

H(u) =

∫

Ω

h(u)dx, where u = (u1, . . . , un),(7)

h(u) =
n

∑

i=0

∫ ui

uD
i

log
s

uD
i

ds+
βλ2

2
|∇(Φ− ΦD)|2 +

n
∑

i=1

uiWi

and uD
0 = 1 − ∑n

i=1 u
D
i . The free energy is bounded from below if ui ∈ L∞(Ω) and

Wi ∈ L1(Ω). Equations (6) can be written as a formal gradient flow in the sense

(8) ∂tui = div

( n
∑

j=1

Bij∇wj

)

, i = 1, . . . , n,

where Bii = Diu0ui, Bij = 0 if i 6= j provide a diagonal positive semidefinite matrix (Bij),
and wj are the entropy variables, defined by

∂h

∂ui

= wi − wD
i , where

wi = log
ui

u0

+ βziΦ +Wi, wD
i = log

uD
i

uD
0

+ βziΦ
D, i = 1, . . . , n.(9)

We refer to Lemma 7 below for the computation of ∂h/∂ui. In thermodynamics ∂h/∂ui is
called the chemical potential of the ith species. The advantage of formulation (8) is that
the drift terms are eliminated and, in this special case, the new diffusion matrix (Bij) is
diagonal. Note that we have not included the boundary data into the formulation (8). In
fact, the free energy is nonincreasing along trajectories to (1)-(5) only if the boundary data
are in equilibrium, i.e. if ∇wD

i = 0. In the general case, the free energy is bounded only;
see (12) below.
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There is another important benefit of formulation (8). Observing that the relation
between w = (w1, . . . , wn) and u = (u1, . . . , un) can be inverted explicitly according to

ui = ui(w) =
exp(wi − βziΦ−Wi)

1 +
∑n

j=1 exp(wj − βzjΦ−Wj)
, i = 1, . . . , n,

we see that, if (w1, . . . , wn,Φ) is a solution to (2) and (8),

ui(w) ∈ D :=

{

u = (u1, . . . , un) ∈ (0, 1)n :
n

∑

i=1

ui < 1

}

.

This provides positive lower and upper bounds for the concentrations u0, . . . , un without
the use of a maximum principle.

1.3. Main results. We prove (i) the global-in-time existence of bounded weak solutions,
(ii) the uniqueness of weak solutions under additional regularity assumptions, and (iii)
some numerical results on the large-time behavior of solutions in one space dimension. In
the following, we detail these results. First, we specify the technical assumptions.

(A1) Domain: Ω ⊂ R
d (d ≥ 1) is a bounded domain with ∂Ω = ΓD ∪ ΓN ∈ C0,1,

ΓD ∩ ΓN = ∅, ΓN is open in ∂Ω, and meas(ΓD) > 0.
(A2) Parameters: T > 0, Di, β > 0, and zi ∈ R, i = 1, . . . , n.
(A3) Given functions: f ∈ L∞(Ω), Wi ∈ H1(Ω)∩L∞(Ω), and Wi = 0 on ΓD, ∇Wi ·ν = 0

on ΓN , i = 1, . . . , n.
(A4) Initial and boundary data: u0

i ∈ L∞(Ω), uD
i ∈ H1(Ω), u0

i > 0, uD
i > 0, 1−∑n

i=1 u
0
i >

0, 1−∑n
i=1 u

D
i > 0 in Ω for i = 1, . . . , n, and ΦD ∈ H1(Ω) ∩ L∞(Ω) satisfies

−λ2∆ΦD = f in Ω, ∇ΦD · ν = 0 on ΓN .

Clearly, it is sufficient to define the functions uD
i , Φ

D on ΓD. By the extension property,
they can be extended to Ω, and we assume in (A4) that the extension of ΦD is done in a
special way. This extension is needed to be consistent with the definition of the free energy
(entropy) and the entropy variables; see Lemma 7. We denote these extensions again by
uD
i , Φ

D. Furthermore, we introduce the space [23]

H1
D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

The first result concerns the existence of bounded weak solutions.

Theorem 1 (Global existence of weak solutions). Let Assumptions (A1)-(A4) hold. Then
there exists a bounded weak solution u1, . . . , un : Ω× (0, T ) → D to (1)-(5) satisfying

uiu
1/2
0 , u

1/2
0 ∈ L2(0, T ;H1(Ω)), ∂tui ∈ L2(0, T ;H1

D(Ω)
′),

Φ ∈ L2(0, T ;H1(Ω)), i = 1, . . . , n,

and the weak formulation
∫ T

0

〈∂tui, φi〉dt+Di

∫ T

0

∫

Ω

u
1/2
0

(

∇(u
1/2
0 ui)− 3ui∇u

1/2
0

)

· ∇φidxdt
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+Di

∫ T

0

∫

Ω

uiu0(βzi∇Φ +∇Wi) · ∇φidxdt = 0,(10)

λ2

∫ T

0

∫

Ω

∇Φ · ∇θdxdt =

∫ T

0

∫

Ω

( n
∑

i=1

ziui + f

)

θdxdt,(11)

for all φi, θ ∈ L2(0, T ;H1
D(Ω)), i = 1, . . . , n. The initial condition is satisfied in the sense

of H1
D(Ω)

′, and the Dirichlet boundary conditions are given by

u0 = uD
0 := 1−

n
∑

i=1

uD
i , uiu

1/2
0 = uD

i (u
D
0 )

1/2 on ΓD, i = 1, . . . , n,

in the sense of traces in L2(ΓD).

The proof is based on an approximation procedure, i.e., we prove first the existence of

solutions u
(τ)
0 , u

(τ)
i to a regularized problem with approximation parameter τ > 0 and then

pass to the limit τ → 0. The estimates needed for the compactness argument are coming
from a discrete version of the entropy-production inequality (for simplicity, we omit the
superindex τ)

dH

dt
=

∫

Ω

n
∑

i=1

∂tui(wi − wD
i )dx = −

∫

Ω

n
∑

i=1

Diu0ui∇wi · ∇(wi − wD
i )dx

≤ −1

2

∫

Ω

n
∑

i=1

Diu0ui|∇wi|2dx+ C(wD),(12)

where the constant C(wD) > 0 depends on the H1(Ω) norm of wD. We show in (23) below
that

n
∑

i=1

uiu0∇ log
ui

u0

= 4u0

n
∑

i=1

|∇u
1/2
i |2 + |∇u0|2 + 4|∇u

1/2
0 |2,

which yields an H1(Ω) estimate for u
1/2
0 but not for ui because of the factor u0 ≥ 0. This

reflects the degenerate nature of the equations which is more apparent in the component-
wise formulation ∂tui = div(Diu0ui∇wi) (see (8)).
To overcome this degeneracy, we employ the technique developed in [3, 25]. We show

that (u
(τ)
0 u

(τ)
i ) is bounded in H1(Ω) and that the (approximative) time derivative of u

(τ)
i is

bounded in H1
D(Ω)

′. If u
(τ)
0 was strictly positive, we could apply the Aubin-Lions lemma

to conclude strong convergence of (a subsequence of) (u
(τ)
i ) to some ui which solves (1).

However, since u
(τ)
0 may vanish in the limit, this lemma cannot be used. The idea is to

compensate the lack of the gradient estimates for u
(τ)
i by exploiting the uniform estimates

for u
(τ)
0 . Then, by the “degenerate” Aubin-Lions lemma (see, e.g., [14, Appendix C]), (a

subsequence of) (u
(τ)
0 u

(τ)
i ) converges strongly to u0ui, and u0, ui solve (1). For details, see

Section 2.
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Remark 2. 1. Theorem 1 also holds when reaction terms fi(u) are introduced on the
right-hand side of (1). As in [14], we need that fi is continuous and

∑n
i=1 fi(u)(∂h/∂ui) ≤

C(1 + h(u)) holds for some C > 0 and all u ∈ D.
2. The approximate solution satisfies a discrete version of the entropy-production in-

equality; see (17). As explained above, the sequence (u
(τ)
i ) may not converge strongly, such

that we are unable to perform the limit τ → 0 in (17). As a consequence, we cannot prove
that the free energy (7) is nonincreasing along trajectories of (1)-(2), and the analysis of
the large-time behavior seems to be inaccessible. Therefore, we investigate the decay of
H(u) numerically; see Section 4.
3. Since the Neumann boundary condition does not appear explicitly in the weak for-

mulation (10)-(11), we do not need to make expressions like ∇Φ · ν = 0 on ΓN precise. We
only mention along the way that terms like ∇Φ · ν on ΓN have to be understood in the

sense of H
1/2
00 (ΓN)

′ which is the dual space of H
1/2
00 (ΓN) consisting of all functions v on ΓN

such that v ∈ H1
D(Ω). This space is larger than H−1/2(ΓN). We refer to [1, Chapter 18]

for details. �

The second result is the uniqueness of weak solutions.

Theorem 3 (Uniqueness of weak solutions). Let Assumptions (A1)-(A4) hold,
∑n

i=1 Wi ∈
L∞(0, T ;W 1,d(Ω)), and let Di = 1 and zi = z ∈ R for i = 1, . . . , n. Then there exists at
most one bounded weak solution to (1)-(5) in the class of functions ui ∈ H1(0, T ;H1

D(Ω)
′)∩

L2(0, T ;H1(Ω)), Φ ∈ L∞(0, T ;W 1,q(Ω)) with q > d.

The proof is a combination of standard L2(Ω)-type estimates and the entropy method of
Gajewski [9]. In fact, equations (1) partially decouple because of the assumptions Di = 1
and zi = z. Summing (1) over i = 1, . . . , n, we find that (u0,Φ) solves

(13) ∂tu0 = div
(

∇u0 − u0(1− u0)(βz∇Φ +∇W )
)

, −λ2∆Φ = z(1− u0) + f(x),

where W =
∑n

i=1 Wi. The uniqueness of solutions is shown by taking two solutions (u0,Φ)
and (v0,Ψ) and using u0 − v0 as a test function in the first equation of (13). Then, with
the Gagliardo-Nirenberg inequality and the hypothesis ∇Φ ∈ Lq(Ω), we show that

d

dt

∫

Ω

(u0 − v0)(t)
2dx ≤ C(Φ)

∫

Ω

(u0 − v0)
2dx,

where C(Φ) > 0 depends on the W 1,q(Ω) norm of Φ. Hence, Gronwall’s lemma yields
u0 = v0 and consequently, Φ = Ψ.
The next step is to show, for given u0 and Φ, that ui is the unique solution to (1). Since

we cannot expect that ∇ui ∈ Lq(Ω), q > d, for d ≥ 3, we employ the technique of Gajewski
[9] which avoids this regularity. The method seems to work only for linear mobilities ui,
which is the reason why we cannot apply it to (13). The idea is to introduce the semimetric

d(u, v) =

∫

Ω

n
∑

i=1

(

h(ui) + h(vi)− 2h

(

ui + vi
2

))

dx ≥ 0,

where h(s) = s(log s− 1) + 1, and to show that ∂td(u, v) ≤ 0. Since d(u(0), v(0)) = 0, this
implies that d(u(t), v(t)) = 0 for t > 0 and consequently, u(t) = v(t). Since expressions
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like log ui are undefined when ui = 0, we need to regularize the semimetric. For details,
we refer to Section 3.

Remark 4. 1. The regularity ui ∈ L2(0, T ;H1(Ω)) holds if u0 is strictly positive. A
standard idea for the proof is to employ min{0, u0 −me−λt}p as a test function in the first
equation of (13), where infΓD

uD
0 ≥ m > 0 and λ > 0 is sufficiently large, and to pass after

some estimations to the limit p → ∞. We leave the details to the reader; see, e.g., [12] for
a proof in a related situation.
2. The regularity condition Φ(t) ∈ W 1,q(Ω) with q > d is satisfied if d ≤ 3, ∂Ω ∈ C1,1,

and the Dirichlet and Neumann boundary do not meet, ΓD ∩ ΓN = ∅ [23, Theorem 3.29].
It is also satisfied in up to three space dimensions if ∂Ω ∈ C3, ΓD ∩ ΓN ∈ C3, and
ΦD ∈ W 1−1/q,q(ΓD), q > d [20]. �

The paper is organized as follows. The existence theorem is proved in Section 2, while
the uniqueness result is shown in Section 3. The numerical solution in one space dimension
and its large-time behavior is illustrated in Section 4. The entropy variables ∂h/∂ui are
computed in the Appendix.

2. Existence of solutions

We consider first the nonlinear Poisson equation

−λ2∆Φ =
n

∑

i=1

ziui(w,Φ) + f, ui(w,Φ) =
exp(wi − βziΦ−Wi)

1 +
∑n

j=1 exp(wj − βzjΦ−Wj)

in Ω with the boundary conditions (4) for given wi ∈ L∞(Ω). Then (x,Φ) 7→ ui(w(x),Φ) is
a bounded function with values in (0, 1) and a standard fixed-point argument shows that
this problem has a weak solution Φ ∈ H1(Ω). Since Φ 7→ ui(w,Φ) is Lipschitz continuous,
this solution is unique. By the maximum principle and f ∈ L∞(Ω), we have Φ ∈ L∞(Ω).
Note that u(w(x),Φ(x)) ∈ D for x ∈ Ω. Therefore, the following estimate holds:

(14) ‖Φ‖H1(Ω) ≤ C(1 + ‖ΦD‖H1(Ω)),

where C > 0 depends on λ, zi, and ‖f‖L2(Ω).
Step 1: Solution to an approximate problem. Let T > 0, N ∈ N, τ = T/N > 0, and

m ∈ N such that m > d/2. Then the embedding Hm(Ω) →֒ L∞(Ω) is compact. Let
vk−1 := wk−1 − wD ∈ H1

D(Ω;R
n) ∩ L∞(Ω;Rn), Φk−1 − ΦD ∈ H1

D(Ω) be given. If k = 1,
we set v0 = h′(u0) − wD and let Φ0 be the weak solution to −λ2∆Φ0 =

∑n
i=1 ziu

0
i + f(x)

in Ω with boundary conditions (4). Our aim is to find vk ∈ H1
D(Ω;R

n) ∩ Hm(Ω;Rn),
Φk − ΦD ∈ H1

D(Ω) such that

1

τ

∫

Ω

(

u(vk + wD,Φk)− u(vk−1 + wD,Φk−1)
)

· φdx

+

∫

Ω

∇φ : B(vk + wD,Φk)∇(vk + wD)dx
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+ ε

∫

Ω

(

∑

|α|=m

Dαvk ·Dαφ+ vk · φ
)

dx = 0,(15)

λ2

∫

Ω

∇Φk · ∇θdx =

∫

Ω

( n
∑

i=1

ziui(v
k + wD,Φk) + f

)

θdx(16)

for all φ ∈ H1
D(Ω;R

n) and θ ∈ H1
D(Ω). Here, α = (α1, . . . , αn) ∈ N

n
0 is a multi-index,

|α| = α1 + · · · + αn, D
α = ∂|α|/∂xα1

1 · · · ∂xαn
n is a partial derivative, and “:” denotes the

matrix product with summation over both indices. Since the matrix B is diagonal, we may
write the second integral in (15) as

∫

Ω

∇φ : B(vk + wD,Φk)∇(vk + wD)dx

=

∫

Ω

n
∑

i=1

Diu0(v
k + wD,Φk)ui(v

k + wD,Φk)∇φi · ∇(vki + wD
i )dx.

Lemma 5 (Existence of weak solutions to the time-discrete problem). Let the assumptions
of Theorem 1 hold and let wD ∈ Hm(Ω;Rn). Then there exists a weak solution vk =
wk − wD ∈ H1

D(Ω;R
n) ∩ Hm(Ω;Rn), Φk − ΦD ∈ H1

D(Ω) to (15)-(16), and the following
discrete entropy production inequality holds:

H(uk) + τ

∫

Ω

∇(wk − wD) : B(wk,Φk)∇wkdx

+ ετCP‖wk − wD‖2Hm(Ω) ≤ H(uk−1),(17)

where H is defined in (7), uk = u(wk,Φk), uk−1 = u(wk−1,Φk−1), and CP > 0 is the
constant of the generalized Poincaré inequality [22, Chap. II.1.4, Formula (1.39)].

Proof. We employ the Leray-Schauder fixed-point theorem. For this, let y ∈ L∞(Ω) and
δ ∈ [0, 1]. Let Φk − ΦD ∈ H1

D(Ω) be the unique weak solution to the nonlinear problem

λ2

∫

Ω

∇Φk · ∇θdx =

∫

Ω

( n
∑

i=1

ziui(y + wD,Φk) + f

)

θdx

for θ ∈ H1
D(Ω). Since y ∈ L∞(Ω), the expression ui(y + wD,Φk) is well-defined. Next, let

X = H1
D(Ω;R

n) ∩Hm(Ω;Rn) and consider the linear problem

(18) a(v, φ) = F (φ) for all φ ∈ X,

where

a(v, φ) =

∫

Ω

∇φ : B(y + wD,Φk)∇vdx+ ε

∫

Ω

(

∑

|α|=m

Dαv ·Dαφ+ v · φ
)

dx,

F (φ) = − δ

τ

∫

Ω

(

u(y + wD,Φk)− u(vk−1 + wD,Φk−1)
)

· φdx

− δ

∫

Ω

∇φ : B(y + wD,Φk)∇wDdx.
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The bilinear form a and the linear form F are continuous on X. Furthermore, using the
positive semi-definiteness of the matrix B and the generalized Poincaré inequality with
constant CP > 0 [22, Chap. II.1.4, Formula (1.39)], a is coercive:

a(v, v) ≥ ε

∫

Ω

(

∑

|α|=m

|Dαv|2 + |v|2
)

dx ≥ εCP‖v‖2Hm(Ω).

By the lemma of Lax-Milgram, there exists a unique solution v ∈ X ⊂ L∞(Ω;Rn) to (18).
For later reference, we observe that, since the continuity constant for F does not depend
on y,

(19) C(ε)‖v‖2Hm(Ω) ≤ a(v, v) = F (v) ≤ C(τ)‖v‖Hm(Ω),

which gives a bound for v in Hm(Ω) which is independent of y and δ.
This defines the fixed-point operator S : L∞(Ω;Rn) × [0, 1] → L∞(Ω;Rn), S(y, δ) = v.

It clearly holds that S(y, 0) = 0 for all y ∈ L∞(Ω;Rn). The continuity of S follows from
standard arguments; see, e.g., the proof of Lemma 5 in [14]. In view of the compact
embedding Hm(Ω) →֒ L∞(Ω), S is also compact. The uniform estimate for all fixed points
of S(·, δ) follows from (19). Thus, by the Leray-Schauder fixed-point theorem, there exists
vk ∈ X such that S(vk, 1) = vk and wk := vk + wD, Φk solve (15)-(16).
It remains to prove inequality (17). To this end, we employ τ(wk − wD) ∈ X as a

test function in the weak formulation of (15). Again, we set uk = u(wk,Φk), uk−1 =
u(wk−1,Φk−1). Then

∫

Ω

(uk − uk−1) · (wk − wD)dx+ τ

∫

Ω

∇(wk − wD) : B(wk,Φk)∇wk

+ ετ‖wk − wD‖2Hm(Ω) ≤ 0.(20)

To estimate the first integral, we take x ∈ Ω and set

g(u) =
n

∑

i=0

∫ ui

uD
i
(x)

log
s

uD
i (x)

ds, u ∈ R
n,

where we recall that uD
0 = 1−∑n

i=1 u
D
i . Then (∂g/∂ui)(u) = log(ui/u

D
i )− log(u0/u

D
0 ) and

g is convex. Hence, g(uk)− g(uk−1) ≤ g′(uk) · (uk − uk−1) or
∫

Ω

(g(uk)− g(uk−1))dx ≤
∫

Ω

n
∑

i=1

(uk
i − uk−1

i )

(

log
uk
i

uk
0

− log
uD
i

uD
0

)

dx.

Moreover, we infer from the Poisson equation that

β

∫

Ω

n
∑

i=1

zi(u
k
i − uk−1

i )(Φk − ΦD)dx = −βλ2

∫

Ω

∆(Φk − Φk−1)(Φk − ΦD)dx

= βλ2

∫

Ω

∇
(

(Φk − ΦD)− (Φk−1 − ΦD)
)

· ∇(Φk − ΦD)dx

≥ βλ2

2

∫

Ω

|∇(Φk − ΦD)|2dx− βλ2

2

∫

Ω

|∇(Φk−1 − ΦD)|2dx.
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In view of these estimates, the first term in (20) becomes
∫

Ω

(uk − uk−1) · (wk − wD)dx

=

∫

Ω

n
∑

i=1

(uk
i − uk−1

i )

(

log
uk
i

uk
0

− log
uD
i

uD
0

+ βzi(Φ
k − ΦD) +Wi

)

dx

≥ H(uk)−H(uk−1).

We infer from (20) that (17) holds. �

Step 2: A priori estimates. Let (wk,Φk) be a weak solution to (15)-(16). Then uk(x) =
u(wk(x),Φk(x)) ∈ D for x ∈ Ω, so (uk) is bounded uniformly in (ε, τ).

Lemma 6 (A priori estimates). The following estimates hold:

‖uk
i ‖L∞(Ω) + ετ

k
∑

j=1

‖wj
i ‖2Hm(Ω) ≤ C,(21)

τ
k

∑

j=1

(

‖(uj
0)

1/2‖2H1(Ω) + ‖uj
0‖2H1(Ω) + ‖(uj

0)
1/2∇(uj

i )
1/2‖2L2(Ω)

)

≤ C,(22)

where here and in the following, C > 0 is a generic constant independent of ε and τ .

Proof. We need to estimate the second term on the left-hand side of the entropy-production
inequality (17). Since B(wk,Φk) = diag(Diu

k
i u

k
0), we obtain

∇(wk − wD) : B(wk,Φk)∇wk =
n

∑

i=1

Diu
k
i u

k
0|∇wk

i |2 −
n

∑

i=1

Diu
k
i u

k
0∇wD

i · ∇wk
i

≥ Dmin

2

n
∑

i=1

uk
i u

k
0|∇wk

i |2 −
Dmax

2

n
∑

i=1

|∇wD
i |2,

where Dmin = mini=1,...,n Di, Dmax = maxi=1,...,n Di, and we used the fact that 0 ≤ uk
0, u

k
i ≤

1 in Ω. Furthermore, by definition (9) of the entropy variables,

|∇wk
i |2 =

∣

∣

∣

∣

∇ log
uk
i

uk
0

+∇(βziΦ
k +Wi)

∣

∣

∣

∣

2

≥ 1

2

∣

∣

∣

∣

∇ log
uk
i

uk
0

∣

∣

∣

∣

2

− |∇(βziΦ +Wi)|2.

Inserting these inequalities into (17), it follows that

H(uk) + τ
Dmin

4

∫

Ω

n
∑

i=1

uk
i u

k
0

∣

∣

∣

∣

∇ log
uk
i

uk
0

∣

∣

∣

∣

2

dx+ ετCP‖wk − wD‖2Hm(Ω)

≤ H(uk−1) + τ
Dmin

2

∫

Ω

n
∑

i=1

|∇(βziΦ
k +Wi)|2dx+ τ

Dmax

2

∫

Ω

n
∑

i=1

|∇wD
i |2dx.
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We resolve this recursion to find that

H(uk) + τ
Dmin

4

k
∑

j=1

∫

Ω

n
∑

i=1

uj
iu

j
0

∣

∣

∣

∣

∇ log
uj
i

uj
0

∣

∣

∣

∣

2

dx+ ετCP

k
∑

j=1

‖wj − wD‖2Hm(Ω)

≤ H(u0) + τ
Dmin

2

k
∑

j=1

∫

Ω

n
∑

i=1

|∇(βziΦ
j +Wi)|2dx+ τk

Dmax

2

∫

Ω

n
∑

i=1

|∇wD
i |2dx.

Because of the H1(Ω) estimate (14) for the electric potential and τk ≤ T , the right-hand
side is uniformly bounded. Furthermore, using

∑n
i=1 u

j
i = 1− uj

0,

n
∑

i=1

uj
iu

j
0

∣

∣

∣

∣

∇ log
uj
i

uj
0

∣

∣

∣

∣

2

= 4uj
0

n
∑

i=1

|∇(uj
i )

1/2|2 − 2∇uj
0

n
∑

i=1

∇uj
i + 4|∇(uj

0)
1/2|2

n
∑

i=1

uj
i

= 4uj
0

n
∑

i=1

|∇(uj
i )

1/2|2 + 2|∇uj
0|2 + 4|∇(uj

0)
1/2|2 − 4uj

0|∇(uj
0)

1/2|2

= 4uj
0

n
∑

i=1

|∇(uj
i )

1/2|2 + |∇uj
0|2 + 4|∇(uj

0)
1/2|2.(23)

This finishes the proof. �

Step 3: Limit ε → 0. We cannot perform the simultaneous limit (ε, τ) → 0 since
we need an Aubin-Lions compactness result, which requires a uniform estimate for the
discrete time derivative of the concentrations in H1

D(Ω;R
n)′ and not in the larger space

X ′ = (H1
D(Ω;R

n) ∩ Hm(Ω;Rn))′. Let k ∈ {1, . . . , N} be fixed and let u
(ε)
i = uk

i and

Φ(ε) = Φk be a weak solution to (15)-(16). Set u
(ε)
0 = 1 −∑n

i=1 u
(ε)
i . By Lemma 6, there

exist subsequences of (u
(ε)
i ) and (Φ(ε)), which are not relabeled, such that, as ε → 0,

u
(ε)
i ⇀∗ ui weakly* in L∞(Ω),(24)

(u
(ε)
0 )1/2 ⇀ u

1/2
0 , Φ(ε) ⇀ Φ weakly in H1(Ω), i = 1, . . . , n,(25)

u
(ε)
0 → u0, Φ(ε) → Φ strongly in L2(Ω),(26)

εw
(ε)
i → 0 strongly in Hm(Ω).(27)

We have to pass to the limit ε → 0 in
∫

Ω

∇φ : B(w(ε),Φ(ε))∇w(ε)dx =

∫

Ω

n
∑

i=1

Diu
(ε)
i u

(ε)
0 ∇w

(ε)
i · ∇φidx

=

∫

Ω

n
∑

i=1

Di

(

u
(ε)
0 ∇u

(ε)
i − u

(ε)
i ∇u

(ε)
0 + u

(ε)
i u

(ε)
0 (βzi∇Φ(ε) +∇Wi)

)

· ∇φidx

=

∫

Ω

n
∑

i=1

Di

(

(u
(ε)
0 )1/2∇

(

u
(ε)
i (u

(ε)
0 )1/2

)

− 3u
(ε)
i (u

(ε)
0 )1/2∇(u

(ε)
0 )1/2
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+ βziu
(ε)
i u

(ε)
0 (βzi∇Φ(ε) +∇Wi)

)

· ∇φidx.

We claim that u
(ε)
i (u

(ε)
0 )1/2 ⇀ uiu

1/2
0 weakly in H1(Ω). First, we observe that, because

of (24) and (26), u
(ε)
i (u

(ε)
0 )1/2 ⇀ uiu

1/2
0 weakly in L2(Ω). Then the claim follows from the

bound
∥

∥∇
(

u
(ε)
i (u

(ε)
0 )1/2

)∥

∥

L2(Ω)
≤ ‖u(ε)

i ‖L∞(Ω)‖∇(u
(ε)
0 )1/2‖L2(Ω)

+ 2‖(u(ε)
i )1/2‖L∞(Ω)‖(u(ε)

0 )1/2∇(u
(ε)
i )1/2‖L2(Ω) ≤ C,(28)

using (22). The compact embedding H1(Ω) →֒ L2(Ω) implies that

u
(ε)
i (u

(ε)
0 )1/2 → uiu

1/2
0 strongly in L2(Ω),

and by the L∞(Ω) bounds, this convergence also holds in Lp(Ω) for p < ∞. This shows
that, taking into account (25),

(u
(ε)
0 )1/2∇

(

u
(ε)
i (u

(ε)
0 )1/2

)

− 3u
(ε)
i (u

(ε)
0 )1/2∇(u

(ε)
0 )1/2

⇀ u
1/2
0 ∇(uiu

1/2
0 )− 3uiu

1/2
0 ∇u

1/2
0 weakly in L1(Ω).

In fact, since this sequence is bounded in L2(Ω), the weak convergence also holds in L2(Ω).
Furthermore, by (26), possibly for a subsequence,

u
(ε)
i u

(ε)
0 ∇Φ(ε) ⇀ uiu0∇Φ weakly in L1(Ω),

and this convergence holds also in L2(Ω).
Then, performing the limit ε → 0 in (15)-(16) leads to

1

τ

∫

Ω

(uk − uk−1) · φdx+

∫

Ω

n
∑

i=1

Di(u
k
0)

1/2
(

∇(uk
i (u

k
0)

1/2)− 3uk
i∇(uk

0)
1/2

)

· ∇φidx

+

∫

Ω

n
∑

i=1

Diu
k
i u

k
0

(

βzi∇Φk +∇Wi

)

· ∇φidx,(29)

λ2

∫

Ω

∇Φk · ∇θdx =

∫

Ω

( n
∑

i=1

ziu
k
i + f

)

θdx,(30)

for all φ = (φ1, . . . , φn) ∈ X and θ ∈ H1
D(Ω), where uk := u and Φk := Φ. A density

argument shows that we may take φ ∈ H1
D(Ω;R

n).
By the trace theorem, Φk−ΦD ∈ H1

D(Ω). To show that also uk
i−ui(w

D,ΦD) ∈ H1
D(Ω;R

n)

holds, we observe that w(ε) = wD on ΓD and therefore, u
(ε)
0 = uD

0 on ΓD in the sense of

traces, where uD
0 = 1−∑n

i=1 u
D
i and uD

i := ui(w
D,ΦD). Since u

(ε)
i (u

(ε)
0 )1/2 = uD

i (u
D
0 )

1/2 on

ΓD and ∇(u
(ε)
i (u

(ε)
0 )1/2) ⇀ ∇(uiu

1/2
0 ) weakly in L2(Ω) (see (28)), the trace theorem implies

that uiu
1/2
0 = uD

i (u
D
0 )

1/2 on ΓD.
In Lemma 5, we have assumed that wD ∈ Hm(Ω;Rn) since we have taken wk −wD ∈ X

as a test function. We may take a sequence of functions (wD
δ ) in Hm(Ω;Rn) approximating

wD and then pass to the limit δ → 0 to achieve the result for wD ∈ H1(Ω;Rn).
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Step 4: Limit τ → 0. Let u(τ)(x, t) = uk(x) and Φ(τ)(x, t) = Φk(x) for x ∈ Ω and
t ∈ ((k− 1)τ, kτ ], k = 1, . . . , N , be piecewise in time constant functions. At time t = 0, we
set u(τ)(·, 0) = u0. We introduce the shift operator (στu

(τ))(·, t) = uk−1 for t ∈ ((k−1)τ, kτ ].
Then, in view of (29)-(30), (u(τ),Φ(τ)) solves

1

τ

∫

Ω

(u(τ) − στu
(τ)) · φdxdt

+

∫ T

0

∫

Ω

n
∑

i=1

Di

(

(u
(τ)
0 )1/2∇

(

u
(τ)
i (u

(τ)
0 )1/2

)

− 3u
(τ)
i (u

(τ)
0 )1/2∇(u

(τ)
0 )1/2

)

· ∇φidxdt

+

∫ T

0

∫

Ω

n
∑

i=1

Diu
(τ)
i u

(τ)
0

(

βzi∇Φ(τ) +∇Wi

)

· ∇φidxdt = 0,(31)

λ2

∫ T

0

∫

Ω

∇Φ(τ) · ∇θdxdt =

∫ T

0

∫

Ω

( n
∑

i=1

ziu
(τ)
i + f

)

θdxdt(32)

for all piecewise constant functions φi, θ : (0, T ) → H1
D(Ω).

Lemma 6 provides the following uniform bounds:

‖u(τ)
i ‖L∞(QT ) + ‖(u(τ)

0 )1/2‖L2(0,T ;H1(Ω)) + ‖u(τ)
0 ‖L2(0,T ;H1(Ω)) ≤ C,(33)

‖u(τ)
i (u

(τ)
0 )1/2‖L2(0,T ;H1(Ω)) ≤ C,(34)

where QT = Ω× (0, T ) and C > 0 is independent of τ . Moreover,

‖Φ(τ)‖2L2(0,T ;H1(Ω)) = τ
N
∑

k=1

‖Φk‖2H1(Ω) ≤ τNC ≤ TC.

We wish to derive a uniform bound for the discrete time derivative of (u
(τ)
i ). To this

end, we estimate

1

τ

∣

∣

∣

∣

∫

Ω

(u(τ) − στu
(τ)) · φdxdt

∣

∣

∣

∣

≤
∫ T

0

n
∑

i=1

Di‖u(τ)
0 ‖1/2L∞(Ω)

×
(

‖∇(u
(τ)
i (u

(τ)
0 )1/2)‖L2(Ω) + 3‖u(τ)

i ‖L∞(Ω)‖∇(u
(τ)
0 )1/2‖L2(Ω)

)

‖∇φi‖L2(Ω)dt

+

∫ T

0

n
∑

i=1

Di‖u(τ)
i u

(τ)
0 ‖L∞(Ω)

(

β|zi|‖∇Φ(τ)‖L2(Ω) + ‖∇Wi‖L2(Ω)

)

‖∇φi‖L2(Ω)dt

≤ C.

This holds for all piecewise constant functions φi : (0, T ) → H1
D(Ω). By a density argument,

we obtain

(35) τ−1‖u(τ)
i − στu

(τ)
i ‖L2(0,T ;H1

D
(Ω)′) ≤ C, i = 1, . . . , n.

Summing these estimates for i = 1, . . . , n, we also have

(36) τ−1‖u(τ)
0 − στu

(τ)
0 ‖L2(0,T ;H1

D
(Ω)′) ≤ C.
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From these estimates, we conclude that, as τ → 0, up to a subsequence,

u
(τ)
i ⇀∗ ui weakly* in L∞(QT ),

Φ(τ) ⇀ Φ weakly in L2(0, T ;H1(Ω)),

τ−1(u
(τ)
i − στu

(τ)
i ) ⇀ ∂tui weakly in L2(0, T ;H1

D(Ω)
′), i = 1, . . . , n.

Taking into account (33) and (36), we can apply the Aubin-Lions lemma in the version

of [7] to (u
(τ)
0 ) to obtain the existence of a subsequence, which is not relabeled, such that

u
(τ)
0 → u0 strongly in L2(QT ), and this convergence even holds in Lp(QT ) for p < ∞. As

a consequence,

(37) (u
(τ)
0 )1/2 → u

1/2
0 strongly in Lp(QT ), p < ∞.

Thus, by (33), up to a subsequence,

∇(u
(τ)
0 )1/2 ⇀ ∇u

1/2
0 weakly in L2(QT ).

We cannot infer the strong convergence of (u
(τ)
i ) because of the degeneracy occurring in

estimate (34). The idea is to employ the Aubin-Lions lemma in the “degenerate” version
of [3, 14] (also see the Appendix in [15]). In view of (37), the L2(0, T ;H1(Ω)) estimates

for (u
(τ)
i (u

(τ)
0 )1/2) and ((u

(τ)
0 )1/2) (see (33)-(34)), as well as estimate (35), there exists a

subsequence (not relabeled) such that

(38) u
(τ)
i (u

(τ)
0 )1/2 → uiu

1/2
0 strongly in L2(QT ).

Taking into account the uniform bound (34), we also have

∇
(

u
(τ)
i (u

(τ)
0 )1/2

)

⇀ ∇(uiu
1/2
0 ) weakly in L2(QT ).

This shows that

(u
(τ)
0 )1/2∇

(

u
(τ)
i (u

(τ)
0 )1/2

)

− 3u
(τ)
i (u

(τ)
0 )1/2∇(u

(τ)
0 )1/2 ⇀ u

1/2
0 ∇(uiu

1/2
0 )− 3uiu

1/2
0 ∇u

1/2
0

weakly in L1(QT ). Furthermore, by (37) and (38),

u
(τ)
i u

(τ)
0 = u

(τ)
i (u

(τ)
0 )1/2 · (u(τ)

0 )1/2 → uiu0 strongly in L2(QT ).

These convergences allow us to perform the limit τ → 0 in (31)-(32) to find that (ui,Φ)
solves (10)-(11) for all smooth test functions. By a density argument, we may take test
functions from L2(0, T ;H1

D(Ω)). We can show as in Step 3 that the Dirichlet boundary
conditions are satisfied, and the initial condition ui(·, 0) = u0

i in Ω follows from arguments
similar as at the end of the proof of Theorem 2 in [14].

3. Uniqueness of weak solutions

We prove Theorem 3. For this, we proceed in two steps.
Step 1. Adding (1) from i = 1, . . . , n and taking into account the assumptions Di = 1

and zi = z, we find that u0 = 1−∑n
i=1 ui solves

(39) ∂tu0 = div
(

∇u0 − u0(1− u0)(βz∇Φ +∇W )
)

, −λ2∆Φ = z(1− u0) + f(x)
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in Ω, t > 0, where W =
∑n

i=1 Wi, together with the initial conditions u0(·, 0) = 1−∑n
i=1 u

0
i

and boundary conditions (4) and

(

∇u0 − u0(1− u0)(βz∇Φ +∇W )
)

· ν = 0 on ΓN , u0 = 1−
n

∑

i=1

uD
i on ΓD.

We show that this problem has a unique weak solution (u0,Φ) in the class of functions
Φ ∈ L∞(0, T ;W 1,q(Ω)).
Let (u0,Φ) and (v0,Ψ) be two weak solutions to (39) with the corresponding initial and

boundary conditions such that Φ, Ψ ∈ L∞(0, T ;W 1,q(Ω)). We take u0−v0 as a test function
in the weak formulation of the difference of (39) satisfied by u0 and v0, respectively. Then

1

2

∫

Ω

(u0 − v0)
2(t)dx+

∫ t

0

∫

Ω

|∇(u0 − v0)|2dxds

=

∫ t

0

∫

Ω

(

u0(1− u0)(βz∇Φ +∇W )
)

− v0(1− v0)(βz∇Ψ+∇W )
)

)

×∇(u0 − v0)dxds

=

∫ t

0

∫

Ω

(

u0(1− u0)− v0(1− v0)
)

(βz∇Φ +∇W ) · ∇(u0 − v0)dxds

+ βz

∫ t

0

∫

Ω

v0(1− v0)∇(Φ−Ψ) · ∇(u0 − v0)dxds

=: I1 + I2.(40)

The first integral is estimated using the identity u0(1−u0)−v0(1−v0) = (1−u0−v0)(u0−v0)
and Hölder’s inequality with 1/p+ 1/q + 1/2 = 1, where q > d (and 2 < p < ∞ if d ≤ 2):

I1 ≤ ‖1− u0 − v0‖L∞(Qt)‖u0 − v0‖L2(0,t;Lp(Ω))‖βz∇Φ +∇W‖L∞(0,t;Lq(Ω))

× ‖∇(u0 − v0)‖L2(0,t;L2(Ω))

≤ 1

4
‖∇(u0 − v0)‖2L2(Qt)

+ C‖u0 − v0‖2L2(0,t;Lp(Ω)).

By the Gagliardo-Nirenberg inequality with θ = d/2− d/p ∈ (0, 1),
∫ t

0

‖u0 − v0‖2Lp(Ω)ds ≤ C

∫ t

0

‖u0 − v0‖2θH1(Ω)‖u0 − v0‖2(1−θ)

L2(Ω) ds

≤ C

∫ t

0

(

‖∇(u0 − v0)‖2θL2(Ω) + ‖u0 − v0‖2θL2(Ω)

)

‖u0 − v0‖2(1−θ)

L2(Ω) ds

≤ 1

4

∫ t

0

‖∇(u0 − v0)‖2L2(Ω)ds+ C

∫ t

0

‖u0 − v0‖2L2(Ω)ds.

This shows that

I1 ≤
1

2
‖∇(u0 − v0)‖2L2(Qt)

+ C‖u0 − v0‖2L2(Qt)
.
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For the remaining integral, we employ the following elliptic estimate

‖∇(Φ−Ψ)‖L2(Ω) ≤ C‖(1− u0)− (1− v0)‖L2(Ω) = C‖u0 − v0‖L2(Ω),

such that

I2 ≤ β|z|‖v0(1− v0)‖L∞(Qt)‖∇(Φ−Ψ)‖L2(Qt)‖∇(u0 − v0)‖L2(Qt)

≤ C‖u0 − v0‖L2(Qt)‖∇(u0 − v0)‖L2(Qt) ≤
1

2
‖∇(u0 − v0)‖2L2(Qt)

+
C

2
‖u0 − v0‖2L2(Qt)

.

Then, inserting the estimates for I1 and I2 into (40) leads to

1

2

∫

Ω

(u0 − v0)
2(t)dx ≤ C

∫ t

0

∫

Ω

(u0 − v0)
2dxds,

and we conclude with Gronwall’s lemma that u0 = v0. Consequently, by the Poisson
equation in (39), Φ = Ψ.
Step 2. Next, we show that u1, . . . , un is the unique weak solution to (1), written in the

form

(41) ∂tui = div(u0∇ui − ui∇Fi), i = 1, . . . , n,

where Fi = u0 + βzΦ + Wi, and (u0,Φ) is the unique solution to (39), together with
the corresponding initial and boundary conditions. Since we have assumed that ui ∈
L2(0, T ;H1(Ω)), the formulation (1) can be used instead of (10). The classical uniqueness
proof requires that ∇Fi ∈ L∞(0, T ;Lq(Ω)); see the first step of this proof. To avoid this
condition, we use the entropy method of Gajewski [9, 10].
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two weak solutions to (41) with initial and

boundary conditions (3) and (5). We introduce the semimetric

dε(u, v) =

∫

Ω

n
∑

i=1

(

hε(ui) + hε(vi)− 2hε

(

ui + vi
2

))

dx,

where hε(s) = (s+ ε)(log(s+ ε)− 1)+1 for s ≥ 0. The regularization with ε > 0 is needed
to avoid that expressions like log(ui) are undefined if ui = 0. Since hε is convex, we have
hε(ui) + hε(vi) − 2hε((ui + vi)/2) ≥ 0 in Ω and hence, dε(u, v) ≥ 0. Now, using (41), we
compute, similarly as in [25],

d

dt
dε(u, v) =

n
∑

i=1

{〈

∂tui, h
′
ε(ui)− h′

ε

(

ui + vi
2

)〉

+

〈

∂tvi, h
′
ε(vi)− h′

ε

(

ui + vi
2

)〉}

= −
∫

Ω

n
∑

i=1

{

(

u0∇ui − ui∇Fi) ·
(

h′′
ε(ui)∇ui −

1

2
h′′
ε

(

ui + vi
2

)

∇(ui + vi)

)

+
(

u0∇vi − vi∇Fi) ·
(

h′′
ε(vi)∇vi −

1

2
h′′
ε

(

ui + vi
2

)

∇(ui + vi)

)}

dx.
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Rearranging these terms, we arrive at

d

dt
dε(u, v) = −4

∫

Ω

u0

n
∑

i=1

(

|∇√
ui + ε|2 + |∇√

vi + ε|2 − 2|∇
√
ui + vi + 2ε|2

)

dx

−
∫

Ω

n
∑

i=1

(

ui + vi
ui + vi + 2ε

− ui

ui + ε

)

∇Fi · ∇uidx

−
∫

Ω

n
∑

i=1

(

ui + vi
ui + vi + 2ε

− vi
vi + ε

)

∇Fi · ∇vidx.

Lemma 10 in [25] shows that the first integral is nonnegative. Therefore, integrating the
above identity in time and observing that dε(u(0), v(0)) = 0, we obtain

dε(u(t), v(t)) ≤ −
∫ t

0

∫

Ω

n
∑

i=1

(

ui + vi
ui + vi + 2ε

− ui

ui + ε

)

∇Fi · ∇uidxds

−
∫ t

0

∫

Ω

n
∑

i=1

(

ui + vi
ui + vi + 2ε

− vi
vi + ε

)

∇Fi · ∇vidxds.

Arguing as in [25, Section 6], the dominated convergence theorem shows that dε(u(t), v(t))
→ 0 as ε → 0 (here, we use ∇Fi ∈ L2(QT )). Then, since a Taylor expansion of hε gives

dε(u(t), v(v)) ≥
1

8

n
∑

i=1

‖ui(t)− vi(t)‖2L2(Ω),

we infer that ui(t) = vi(t) in Ω for t > 0, i = 1, . . . , n, which finishes the proof.

4. Numerical simulations

We illustrate numerically the behavior of the solutions to (1)-(2) for a specific type of
ion channel modeled in [11]. First, our numerical scheme is verified by comparing our
stationary solutions to the profiles obtained in [4]. Second, we explore the large-time
behavior of the numerical solutions.

4.1. Numerical method. The equations are discretized in time by an implicit Euler
method and in space by a finite-volume scheme. We suppose that Ω = (0, 1) and impose
Dirichlet boundary conditions.
For the finite volume discretization, the domain is divided into uniform cells of size

h > 0. The concentrations and the potential are piecewise constant in each cell with values
uk
i,m and Φk

m, respectively, where i = 1, . . . , n, m = 1, . . . ,M , at time k△t, k = 1, . . . , K.
These values are determined by the following system of nonlinear equations:

h
uk
i,m − uk−1

i,m

∆t
= Jk

i,m+1/2 − Jk
i,m−1/2,(42)

−λ2

h
(Φk

m+1 − 2Φk
m + Φk

m−1) = h

( n
∑

i=1

ziu
k
i,m + fm

)

,(43)
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for i = 1, . . . , n, m = 1, . . . ,M , and k = 1, . . . , K. The Dirichlet boundary conditions are
accounted for by setting Φk

0 = ΦD(0) and Φk
M+1 = ΦD(1), and similarly for the concentra-

tions. Furthermore, we set fm = 1
h

∫ mh

(m−1)h
f dx, and the fluxes Jk

i,m±1/2 from cell m to cell

m± 1 are given by

Jk
i,m±1/2 = ±Di

h

(

uk
0,m±1/2(u

k
i,m±1 − uk

i,m)− uk
i,m±1/2(u

k
0,m±1 − uk

0,m)

+ βziu
k
i,m±1/2u

k
0,m±1/2(Φ

k
m±1 − Φk

m)
)

.

The concentrations at the cell borders are determined by the logarithmic mean of the cell
values:

uk
i,m±1/2 =



















uk
i,m±1 − uk

i,m

log uk
i,m±1 − log uk

i,m

if uk
i,m±1 > 0 and uk

i,m > 0,

uk
i,m if uk

i,m±1 = uk
i,m > 0,

0 else

for i = 0, . . . , n. An advantage of this choice is that the fluxes can be reformulated in terms
of the entropy variables

Jk
i,m±1/2 = ±Di

h
uk
i,m±1/2u

k
0,m±1/2(w

k
i,m±1 − wk

i,m),

at least if the concentrations are strictly positive. (We do not use this formulation in the
numerical approximation.) The above scheme is implemented using MATLAB, version
R2015a. The nonlinear discrete system (42)-(43) is solved by a full Newton method in the
variables uk

i and Φk.

4.2. Simulation of a calcium-selective ion channel. We consider a model for an L-
type calcium channel described in [11] and used for numerical simulations also in [4]. We
choose a simple geometry, where the channel is made of an impermeable cylinder opening
up symmetrically into two baths, where Dirichlet boundary conditions are prescribed. For
the simulations, three different types of ions are taken into account: calcium (Ca2+, u1),
sodium (Na+, u2), and chloride (Cl−, u3). The selectivity filter of the channel consists
in eight confined oxygen ions (O−1/2), which contribute to the permanent charge density
f = −uO/2 as well as to the sum of concentrations in the channel, so that u0 = 1 −
∑3

i=1 ui − uO. Since these ions are confined, their concentration is assumed to be constant
in time. The concentration profile used in our simulations is a simple piecewise constant
function, uO(x) = 0.89 for 0.45 < x < 0.55 and zero else.
In order to obtain results comparable to [4], we use the same one-dimensional approxima-

tion of the three-dimensional model that is based on the assumption that the longitudinal
extension of the considered domain is much larger than the cross section of the channel.
This leads to the reduced system of equations

a(x)∂tui = div
(

a(x)Diuiu0∇wi

)

,(44)
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−λ2 div(a(x)∇Φ) = a(x)

( n
∑

i=1

ziui + f

)

,(45)

where a(x) is the cross-sectional area of the domain at x ∈ (0, 1). It is given by a(x) =
πr(x)2, where the radius r(x) is determined by the piecewise linear function

r(x) =











0.48− x for x < 0.4 ,

0.08 for 0.4 ≤ x ≤ 0.6 ,

x− 0.52 for x > 0.6 .

For our simulations, we use the parameters given in [4, Section 5.1, Table 1]. The
initial concentrations are linear functions connecting the Dirichlet boundary conditions.
The initial potential is then computed from the corresponding Poisson equation. The
simulations are carried out until the stationary state is reached approximately, which we
determine by computing the L2 error between the solution at two consecutive time steps:

errk =
3

∑

i=1

( M
∑

m=1

h(uk
i,m − uk−1

i,m )2
)1/2

+

( M
∑

m=1

h(Φk
m − Φk−1

m )2
)1/2

.

The simulation is terminated as soon as errk < 10−13. We use the time step size △t = 0.001
and the mesh size h = 0.01.
Figure 1 shows the three ion concentrations and the electric potential at various time

instances. The scaled concentration values are multiplied by 61.5 mol/liter to obtain phys-
ical values. For small times, there is more sodium than calcium present inside the channel
region, due to the higher bath and initial concentration of sodium. After some time, the
sodium inside the channel is replaced by the stronger positively charged calcium. For higher
initial calcium concentrations, the calcium selectivity of the channel acts immediately. The
steady-state solution from our simulation coincides with the stationary profile computed
in [4, Figure 5], which confirms our numerical scheme. The steady state is reached after
749 time steps, which corresponds to about 23.7 nanoseconds.

4.3. Numerical study of the large-time behavior of the solutions. We investigate
numerically the large-time behavior of the solutions and their decay rates to the equilibrium
state. First, we consider the setup of the previous subsection. Figure 2 (left) shows the
evolution of the relative entropy (7), where the boundary data is replaced by the steady-
state solution (u∞,Φ∞) (see the previous subsection). The right figure displays the L1

errors ‖uk
i − u∞

i ‖L1 and ‖Φk − Φ∞‖L1 versus the number of time steps k. We observe
that the relative entropy converges exponentially fast to the equilibrium state. By the
Csiszár-Kullback inequality (see, e.g., [15] and references therein), the convergence rate in
the L1 norm is expected to half of that one for the relative entropy, and this is confirmed
by Figure 2 (right).
Because of the degeneracy at u0 = 0 in the entropy-production inequality (12), a general

proof of exponential convergence rates seems to be not feasible when the solvent concen-
tration u0 vanishes locally. Our second numerical example confirms this statement. For
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Figure 1. Concentrations of calcium, sodium, and chloride ions in mol/l
and electric potential in mV at different times.

this, we choose the oxygen concentration

(46) uO(x) =

{

0.81 for 0.35 < x < 0.65,
0 else.

All other parameters are kept unchanged. This choice leads to a solvent concentration
u0 that nearly vanishes in a large part of the computational domain. Consequently, the
entropy production in (12) becomes “small” and we may expect a rather slow convergence
to equilibrium. Figure 3 illustrates this behavior. After a short initial phase and for the
first 20 000 time steps, the convergence rate is very small. This comes from the fact that the
values of u0 are of the order 10−6 in the channel region x ∈ [0.4, 0.6], causing the solution
to remain nearly unchanged. After about 20 000 time steps, the values of u0 increase up to
approximately 10−3 inside the channel region, which initiates the strong exponential decay
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Figure 2. Relative entropy (left) and L1 error relative to the steady state
(right) over the number of time steps for the setup of Subsection 4.2.

to equilibrium. These results indicate that exponential decay rates cannot be expected
when the solvent concentration vanishes.

Appendix A. Entropy variables

The appendix is devoted to a (formal) computation of the entropy variables.

Lemma 7. Let

h(u) =
n

∑

i=0

∫ ui

uD
i

log
s

uD
i

ds+
βλ2

2
|∇(Φ− ΦD)|2 +

n
∑

i=1

uiWi.

Then
∂h

∂ui

= log
ui

u0

− log
uD
i

uD
0

+ βzi(Φ− ΦD) +Wi, i = 1, . . . , n.

Proof. It is clear that

∂

∂ui

( n
∑

i=0

∫ ui

uD
i

log
s

uD
i

ds+
n

∑

i=1

uiWi

)

= log
ui

uD
i

− log
u0

uD
0

+Wi.

Set Hel(u) = (βλ2/2)
∫

Ω
|∇Ψ[u]|2dx, where Ψ[u] = Φ− ΦD. Recall that ΦD solves

−λ2∆ΦD = f in Ω, ∇ΦD · ν = 0 on ΓN . Then Ψ[u] satisfies −λ2∆Ψ[u] =
∑n

i=1 ziui in Ω
together with homogeneous mixed boundary conditions and, by the Poisson equation (2),

Hel(u) = −βλ2

2

∫

Ω

∆Ψ[u]Ψ[u]dx =
β

2

∫

Ω

n
∑

i=1

ziuiΨ[u]dx.
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Figure 3. Relative entropy (left) and L1 error relative to the steady state
(right) over the number of time steps, computed with the oxygen concentra-
tion (46).

Set hel(u) = (β/2)
∑n

i=1 ziuiΨ[u]. It remains to show that ∂hel/∂ui = βziΨ[u]. For this,
we observe that for any (smooth) functions u = (ui), v = (vi),

∫

Ω

n
∑

i=1

ziuiΨ[v]dx = −λ2

∫

Ω

∆Ψ[u]Ψ[v]dx = λ2

∫

Ω

∇Ψ[u] · ∇Ψ[v]dx

=

∫

Ω

n
∑

i=1

ziviΨ[u]dx.(47)

Let ei be the ith unit vector in R
n and w be a smooth scalar function. Then, using the

linearity of u 7→ Ψ[u] and (47),

lim
ε→0

1

ε

∫

Ω

(

hel(u+ εeiw)− hel(u)− εβziwΨ[u]

)

dx

=
β

2

∫

Ω

( n
∑

j=1

zjδijwΨ[u] +
n

∑

j=1

zjujΨ[eiw]− 2ziwΨ[u]

)

=
β

2

∫

Ω

(

ziwΨ[u] +
n

∑

j=1

zjδijwΨ[u]− 2ziwΨ[u]

)

dx = 0,

which shows the claim. �
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[7] M. Dreher and A. Jüngel. Compact families of piecewise constant functions in Lp(0, T ;B). Nonlin.

Anal. 75 (2012), 3072-3077.
[8] W. Dreyer, C. Guhlke, and R. Müller. Overcoming the shortcomings of the Nernst-Planck-Poisson

model. Phys. Chem. Chem. Phys. 15 (2013), 7075-7086.
[9] H. Gajewski. On a variant of monotonicity and its application to differential equations. Nonlin. Anal.

TMA 22 (1994), 73-80.
[10] H. Gajewski and I. Skrypnik. On the uniqueness problem for nonlinear parabolic equations. Discr.

Cont. Dynam. Sys. 10 (2004), 315-336.
[11] D. Gillespie, W. Nonner, and R. Eisenberg. Coupling Poisson-Nernst-Planck and density functional

theory to calculate ion flux. J. Phys.: Condens. Matter 14 (2002), 12129-12145.
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