EXISTENCE AND WEAK-STRONG UNIQUENESS FOR
MAXWELL-STEFAN-CAHN-HILLIARD SYSTEMS
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ABSTRACT. A Maxwell-Stefan system for fluid mixtures with driving forces depending on
Cahn—Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-
diffusion equations contain fourth-order derivatives and are considered in a bounded do-
main with no-flux boundary conditions. The main difficulty of the analysis is the degen-
eracy of the diffusion matrix, which is overcome by proving the positive definiteness of the
matrix on a subspace and using the Bott—Duffin matrix inverse. The global existence of
weak solutions and a weak-strong uniqueness property are shown by a careful combination
of (relative) energy and entropy estimates, yielding H?(2) bounds for the densities, which
cannot be obtained from the energy or entropy inequalities alone.

1. INTRODUCTION

The evolution of fluid mixtures is important in many scientific fields like biology and
nanotechnology to understand the diffusion-driven transport of the species. The transport
can be modeled by the Maxwell-Stefan equations [29, 31|, which consist of the mass bal-
ance equations and the relations between the driving forces and the fluxes. The driving
forces involve the chemical potentials of the species, which in turn are determined by the
(free) energy. When the fluid is immiscible, the energy can be assumed to consist of the
thermodynamic entropy and the phase separation energy, given by a density gradient [6].
The gradient energetically penalizes the formation of an interface and restrains the segre-
gation. This leads to a system of cross-diffusion equations with fourth-order derivatives.
The aim of this paper is to provide a global existence and weak-strong uniqueness analysis
for the multicomponent Maxwell-Stefan-Cahn—Hilliard system.

1.1. Model equations and state of the art. The equations for the partial densities ¢;
and partial velocities u; are given by

(1) Oci +div(cu;)) =0, i=1,...,n,
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n

C; .
(2) ci Vi — Zn—c Z c;Vp; = — Z K;j(c)cjug,
k=1 Ck j=1

=1
(3) > cu; =0,
=1

supplemented by the initial and boundary conditions
(4) c(,0)=c" inQ, cu-v=Ve-v=0 ondQ, t>0,i=1,...,n,

where Q C R? (d = 1, 2, 3) is a bounded domain, v is the exterior unit normal vector on the

boundary 052, ¢ = (cy, ..., c,) is the density vector, and K;;(c) are the friction coefficients.

The left-hand side of (2) can be interpreted as the driving forces of the thermodynamic

system, and the right-hand side is the sum of the friction forces. The chemical potentials
o0&

(5) uizé—:logci—Aci, i=1,...,n,

)

are the variational derivatives of the (free) energy
1 n n
(6) E(c) =H(e) + 5 Z/ \Veil*dz, H(e) = Z/ (ci(loge; — 1) + 1)dz,
i=1 79 i=1 79

and H(c) is the thermodynamic entropy. We assume that Y | K;;(¢) =0for j =1,...,n,
meaning that the linear system in V; is invertible only on a subspace, and that Y i | ) =
1 in €2, which implies that >, ¢;(t) = 1 in Q for all time ¢ > 0. This means that the
mixture is saturated and ¢; can be interpreted as volume fraction. For simplicity, we have
normalized all physical constants.

Model (1)—(5) has been derived rigorously in [20] in the high-friction limit from a multi-
component Euler-Korteweg system for a general convex energy functional depending on ¢
and Ve. A thermodynamics-based derivation can be found in [30]. When the energy equals
E(c) = H(e), the model reduces to the classical Maxwell-Stefan equations, analyzed first
in [4, 17, 18] for local-in-time smooth solutions and later in [26] for global-in-time weak
solutions. In the single-species case, model (1)—(5) becomes the fourth-order Cahn-Hilliard
equation with potential ¢(c) = c¢(log ¢ — 1), which was analyzed in, e.g., [12, 23]. Only few
works are concerned with the multi-species situation, and all of them require additional
conditions. The mobility matrix in [5, 28] is assumed to be diagonal and that one in [27]
has constant entries, while the works [11, 13] suppose a particular (but nondiagonal) struc-
ture of the mobility matrix. We also mention the works [2, 3] on related models with free
energies of the type H.

The proof of the uniqueness of solutions to cross-diffusion or fourth-order systems is
quite delicate due to the lack of a maximum principle and regularity of the solutions.
The uniqueness of strong solutions to Maxwell-Stefan systems has been shown in [18, 22],
and uniqueness results for weak solutions in a very special case can be found in [8]. A
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weak-strong uniqueness result for Maxwell-Stefan systems was proved in [21]. Concern-
ing uniqueness results for fourth-order equations, we refer to [9] for single-species Cahn—
Hilliard equations, [24] for single-species thin-film equations, and [15] for the quantum
drift-diffusion equations. Up to our knowledge, there are no uniqueness results for multi-
component Cahn-Hilliard systems. In this paper, we analyze these equations in a general
setting for the first time.

1.2. Key ideas of the analysis. Before stating the main results, we explain the math-
ematical ideas needed to analyze model (1)—(5). First, we rewrite (2) by introducing the
matrix D(c) € R™™ with entries
1
Dij(e) = —=Kij(e)\/¢;

Ve
in the unknowns (\/ciuy, ..., /Crhtty):
VT = 3 Vi == 3 D),
1 j=1

k=1Ck %

(7) .
Z Vei(veu;) = 0.

We show in Lemma 3 that this linear system has a unique solution in the space L(c¢) :=
{zeR": 3" | \/cizi = 0}, and the solution reads as

n

Ve ==Y DEP(e)y/e Vi,

J=1

where DPP(c) is the so-called Bott-Duffin matrix inverse; see Lemmas 3 and 4 for the
definition and some properties. Then, defining the matrix B(c) € R™*" with elements

(8) Bij(c) = &DiP(e) /e, i,j=1,....n,

system (1)—(2) can be formulated as (see Section 2.1 for details)

The matrix B(c) is often called Onsager or mobility matrix in the literature. The major
difficulty of the analysis consists in the fact that the matrix B(¢) is singular and degenerates
when ¢; — 0 for some i € {1,...,n}. Computing formally the energy identity

dé &
E(c) + Z /QBZ»j(c)V,uZ- -Vpidr =0,
ij=1

the degeneracy at ¢; = 0 prevents uniform estimates for Vy; in L?(Q2). In some works, this
issue has been compensated. For instance, there exists an entropy equality for the model
of [13] yielding an L?(Q) bound for Ac;, and the decoupled mobilities in [7, 28] allow for
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decoupled entropy estimates. In our model, the energy identity does not provide a gradient
estimate for the full vector (Vuy, ..., Vu,) but only for a projection:

de - - ?
e+ Z/Q > (0 = @)\ /& V| da <0,
i=1 j=1

where d;; is the Kronecker delta; see Lemma 5. (The constant C; > 0 and all constants
that follow do not depend on ¢.) To address the degeneracy issue, we compute the time
derivative of the entropy:

dH -
%(c) + Z /QBl-j(c)Vlog ¢; - Vydr = 0.
ij=1

This does not provide a uniform estimate for Ac;, but we show (see Lemma 5) that

dH n n n 2
E(C) + CQ Z /Q(ACZ)2d$ S 03 Z/Q Z(él] — \/CiCj)\/C_jV,Uj dz.
i=1 i=1 j=1

Combining the energy and entropy inequalities in a suitable way, the last integral cancels:

9) %(H(C) + %5(0)) + Cy ZZ:; /Q(Aci)Qd:c <0.

This provides the desired H2(2) bound for ¢;. Note that the energy or entropy inequality
alone does not give estimates for ¢;. The combined energy-entropy inequality is the key
idea of the paper for both the existence and weak-strong uniqueness analysis.

1.3. Main results. We make the following assumptions:

(A1) Domain: Q C R? with d < 3 is a bounded domain. We set Qr = Q x (0,T) for
T > 0.
(A2) Initial data: ¢} € H'(Q) satisfies ¢ >0in Q,i=1,...,n,and >, ) =11in Q.
The assumption d < 3 is made for convenience, it can be relaxed for higher space dimen-
sion, by choosing another regularization in the existence proof; see (42). The constraint
S, ) =1 expresses the saturation of the mixture and it propagates to the solution. We

introduce the matrix Dy;(c) = (1//c;)Kij(c)/cj for i,j =1,...,n and set

(10) Lc)={x cR":c-x =0}, L*(c)=span{y/c},
where /e = (y/c1,...,/¢n). The projections Pr(c), Pri(c) € R™™ on L(c), L(e)*,
respectively, are given by
(11) PL(C)ij :51‘7—\/01‘6]‘, PLJ-<C)ij = V/CiCj for Z,j: 1,...,7’1,.
We impose for any given ¢ € [0, 1]" the following assumptions on D(c) = (D;;(c)) € R™*™:
(B1) D(e) is symmetric and ran D(¢) = L(c), ker(D(c)P;(c)) = Lt (c).
(B2) For all i,j = 1,...,n, D;; € C*([0,1]") is bounded.
(B3) The matrix D(c) is positive semidefinite, and there exists p > 0 such that all
eigenvalues A # 0 of D(c¢) satisfy A > p.
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(B4) For all4,j = 1,...,n, Ky(c) = \/¢;Dyj(c)/,/¢; is bounded in [0, 1]".
Examples of matrices D(c¢) satisfying these assumptions are presented in Section 5. Our
first main result is the global existence of weak solutions.

Theorem 1 (Global existence). Let Assumptions (A1)-(A2) and (B1)-(B4) hold. Then
there exists a weak solution ¢ to (1)—~(5) satisfying 0 <¢; <1, 3"  ¢; =1 in Q x (0,00),

ci € L (0,00, HY () N L} (0,00; H*(Q)), dyc; € Li (0, 00; H'(2)),

loc loc loc
the initial condition in (4) is satisfied in the sense of H'(Q)', and for all ¢; € C(Q X
(0,00)),

0 Q j=1 0 Q

+Z/ /div(Bij(c)ngi)chd:z:dt,
= Jo Ja
where B;j(c) is defined in (8). Furthermore,

(13) H(c(-. T)) + Cr& (el T)) + Cy /T/(W\/EP 1A dudt

T
+02/ /|C\2dxdt§7{(c0)+01€(c°),
0 Q

where Cy > 0 depends on p, n, ||D(c)||r and Cy > 0 depends on n, ||D(c)||r (|| - || is the
Frobenius matriz norm and p is introduced in Assumption (B3)). Moreover, { is the weak
L3() limit of an approzimating sequence of 2?21 Pr(e)ij\ /¢ V ;.

Some comments are in order. First, by Assumption (B2), the elements of the matrix D(c)
are bounded for any ¢ € [0, 1]™ and therefore, the quantity || D(c)||r is bounded uniformly
in ¢. Second, the weak formulation (12) makes sence since B;;(¢)V logc; € L*(Qr). Indeed,
by the definition of B(c), we have

1
BD

Bij(e)Vioge; = /i Dy (C)\/a
and the matrix \/¢;D["(¢)/,/¢ is bounded for all ¢ € [0,1]"; see Lemma 4 (iii) below.
However, note that the expression Y7, Bi;(¢)Vy; is generally not an element of L*(Qr).
In particular, we cannot expect that VAc; € L*(Qr). Third, we have not been able to
identify the weak limit ¢ because of low regularity. However, if Z?:l Pr(c)ij\ /e Vi, €
Li,.(0,00; L*(Q2)) holds for all i = 1,...,n, then we can identify {; = D77 Pr(€)ij\/c; V15
see Lemma 11.

To prove Theorem 1, we first introduce a truncation with parameter § € (0,1) as in [13]
to avoid the degeneracy. Then we reduce the cross-diffusion system to n — 1 equations by
replacing ¢, by 1 — Z?:_ll ¢;. The advantage is that the diffusion matrix of the reduced
system is positive definite (with a lower bound depending on ). The existence of solutions

VCJ',
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¢ to the truncated, reduced system is proved by an approximation as in [25] and the
Leray—Schauder fixed-point theorem; see Section 3.1. An approximate version of the free
energy estimate (13) (proved in Lemma 10 in Section 3.2) provides suitable uniform bounds
that allow us to perform the limit 6 — 0. The approximate densities ¢ may be negative
but, by exploiting the entropy bound for ¢!, its limit ¢; turns out to be nonnegative. The
lnmt 0 — 0 is then performed in Section 3. 3 using the uniform estimates and compactness
arguments.

Our second main result is concerned with the weak-strong uniqueness. For this, we
define the relative entropy and free energy in the spirit of [16] by, respectively,

(14)  H(ele) == H(c) — He) — ‘9;;( (c— &) Z/(cllog—— —ci))dx,

(15) E(cle) :=&(c) — &(e) — %(é) -(c—¢) =H(c|e) + 5 Z/Q IV (c; — ¢&)|*dx.

Theorem 2 (Weak-strong uniqueness). Let Assumptions (A1)-(A2), (B1)-(B/) hold, let
¢ be a weak solution to (1)~(5) with initial datum c°, and let € be a strong solution to
(1)~(5) with initial datum €°. We assume that the weak solution ¢ satisfies

(16) > Pu(e)ij /e Vi € L3 (0,005 L*(Q)) fori,j=1,...,n

j=1
(see (11) for the definition of PL(C)) and for all T > 0 the energy and entropy inequalities

(17) £(e(T)) + / / (O Vi - Vpdadt < E(),

i,7=1

(18) +Z// i(e)Vloge; - Vdrdt < H(c).
0

i,7=1

The strong solution ¢ is supposed to be strictly positive, i.e., there exists m > 0 such that
¢ > mn ), t >0, and satisfies the regularity

) 1
& € L2(0, 00, WH(Q)),  Vdiv ((E—Bij(e)wj) € L (0, 00; L2(9))

7

fori=1,...,n, as well as for any T > 0 the energy and entropy conservation identities
(19) Ny / | i@V Vigdadt = (@),
1,j=1

(20) —|—Z// .i(€)Vloge,; - Viidzdt = H(e),

i,7=1

where p; = logc; — Ac; and ji; = log¢; — Ac;. Then, for any T > 0, there exist constants
C1, only depending on ||D(c)||r, n, p, and Co(T) > 0, only depending on T, meas(Q2), n,
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p, such that
(21) H(e(T)|e(T)) + Cié(e(T)|e(T)) < Co(T) (H("|e") + Cre(c"le”)).
In particular, if ¥ = &° then the weak and strong solutions coincide.

Assumption (16) guarantees that the flux 377, Bij(e)Vyy lies in L?(Qr). Indeed, we
prove in Lemma 4 (i) in Section 2 that D”(c) is bounded for ¢ € [0,1]". Therefore, since
DBP(¢) = DPP(c)Py(c), assumption (16) and ¢; € L°°(Qr) imply that

(22) ZBz‘j(C)VM =@ Y DEP(e)PL(c)ij/GV iy € L*(Qr).

J,k=1

By the way, it follows from 7", Pp(c)i;,/GV1oge; = 2V \/c; € L*(Qr) that
(23) > Pu(e)ij /G VA = Pr(e)ij/GV (loge; — ;) € L*(Qr).
j=1 j=1

Since VA¢; may be not in L?(Q7), we interpret (23) in the sense of distributions, i.e. for
all d € C5°(QRY),

<ZPL(C)ij\/C_jVACj7 (I)> = — Z/ﬂ (V(PL<C>Z]\/E> - P4 PL(C)ij\/C_jdiV (I))chdl‘

For the proof of Theorem 2, we estimate first the time derivative of the relative entropy
(14):

dH, -
E(c|c) +Cy ZZI/Q

SCQ;/Q

where C; > 0 are some constants depending only on the data. The first term on the
right-hand side can be handled by estimating the time derivative of the relative energy
(15):

n 2 n
S Pu(e)yyGVlog 2| di+ S / (A(ci — &))2de
j=1 € i=1 /&

2
dx+C’3/€(c|é)da:,
Q

Z Pr(€)ijA/c;V (1j — fiy)

2

dx

e, -
aemrad |
<oy |

+05(e)/ﬂg(cyc)dx,

Z Pr(c)ij /e V (1 — i)

n 2 n
Z Pr(c)ij/c;V log f—J dx + 0 Z / (A(c; — &))*dx
=1 € i=1 79
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where # > 0 can be arbitrarily small. Choosing § = C,C,;/C5y, we can combine both
estimates leading to

%(H(dc) + %e(clc)) < (03 + Cé?)&clc),

and the theorem follows after applying Gronwall’s lemma. As the computations are quite
involved, we compute first in Section 4.1 the time derivative of the relative entropy and
energy for smooth solutions. The rigorous proof of the combined relative entropy-energy
inequality for weak solutions ¢ and strong solutions ¢ is then performed in Section 4.2.

The paper is organized as follows. The Bott—Duffin matrix inverse is introduced in
Section 2, some properties of the mobility matrix B(c¢) are proved, and the combined
energy-entropy inequality (9) is derived for smooth solutions. The global existence of
solutions (Theorem 1) is shown in Section 3, while Section 4 is concerned with the proof
of the weak-strong uniqueness property (Theorem 2). Finally, we present some examples
verifying Assumptions (B1)—(B4) in Section 5.

Notation. Elements of the matrix A € R"*" are denoted by A;;, ¢,7 = 1,...,n, and the
elements of a vector ¢ € R" are ¢y, ..., ¢,. We use the notation f(c¢) = (f(c1),..., f(c,)) for
c € R" and a function f : R — R. The expression |V f(c)|? is defined by Y " | [V f(¢;)]?
and | - | is the usual Euclidean norm. The matrix R(c) € R"*" is the diagonal matrix
with elements \/ci,...,\/Cn, 1. Rij(c) = /s for 4,5 = 1,...,n, where J;; denotes
the Kronecker delta. We understand by Vu the matrix with entries 0,,u;. Furthermore,
C > 0, C; > 0 are generic constants with values changing from line to line.

2. PROPERTIES OF THE MOBILITY MATRIX AND A PRIORI ESTIMATES

We wish to express the fluxes c;u; as a linear combination of the gradients of the chemical
potentials. Since K (c) has a nontrivial kernel, we need to use a generalized matrix inverse,
the Bott—Duffin inverse. This inverse and its properties are studied in Section 2.1. The
properties allow us to derive in Section 2.2 some a priori estimates for the Maxwell-Stefan—
Cahn—Hilliard system.

2.1. The Bott—Duffin inverse. We wish to invert (2) or, equivalently, (7). We recall
definition (11) of the projection matrices Pr(c) € R™™ on L(¢) and Ppi(c) € R™™ on
L*(c), where L(c) and L*(c) are defined in (10). Then (7) is equivalent to the problem:
(24) Solve D(e)z = —Pr(c)R(c)Vpu in the space z € L(e),

where z; = \/c;u;, recalling that R(c) = diag(y/c).

Lemma 3 (Solution of (24)). Suppose that D(c) satisfies Assumption (B1). The Bott-
Duffin inverse

DPP(¢) = Py(e)(D(c)Py(c) + Ppi(e)) ™
is well-defined, symmetric, and satisfies ker DPP(¢) = L*(c). Furthermore, for any y €

L(c), the linear problem D(c)z = y for z € L(c) has a unique solution given by z =
DBP(c)y.
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We refer to [21, Lemma 17] for the proof. The property for the kernel follows from
ker DPP(¢) = ker Pr(c) = L*(c). Since Pr(c)R(c)Vu € L(e) (this follows from the
definition of Py (c) and ), ¢; = 1), we infer from Lemma 3 that (24) has the unique
solution z = —DPP(¢)P(c)R(c)Vu € L(e) or, componentwise,

Citli = /Cizi = — Z Ve (DPP(e)Pi(e)) ;v/EV iy = — Z VaDPP(€)ijy /e V

for i = 1,...,n, where the last equality follows from D®P(c)Py(c) = DPP(c); see [21,
(81)]. Then we can formulate equation (1) as

(25) Oyci = divz Bij(e)Vu;, where Bij(c) = aDiP(e) /e, i,j=1,....n.

j=1
The boundary conditions c;u; - v = 0 on 0f) yield

(26) ZBij(c)Vuj-V:O ond, t>0,i=1,...,n
j=1

We recall some properties of the Bott—Duffin inverse.

Lemma 4 (Properties of DPP(c¢)). Suppose that D(c) € R™*™ satisfies Assumptions (B1)-
(B4). Then:
(i) The coefficients D" € C*([0,1]"*) are bounded fori,j =1,...,n.
(ii) Let M) be an eigenvalue of (D(c)Pr(c) + Pri(e))™. Then A\, < Ae) < Ay,
where
A= (L+nllD(e)lp)™",  Au = max{l,p~"},
| - ||F is the Frobenius matriz norm, and p > 0 is a lower bound for the eigenvalues
of D(c); see Assumption (B3).
(ili) The functions c — \/c;D]”(c)/\/; are bounded in [0,1]" fori,j=1,...,n.

A consequence of (ii) are the inequalities
(27) Am|Pr(e)z)? < 28 DPP(e)z < A\y|Pp(c)z|* for z € R™

Note that the Frobenius norm of D(e¢) is bounded uniformly in ¢ € [0,1]", since D;; is
bounded by Assumption (B1).

Proof. The points (i) and (ii) are proved in [21, Lemma 11] in an interval [m, 1] for some
m > 0. In fact, we can conclude (i)—(ii) in the full interval [0, 1]", since our Assumptions
(B2)-(B3) are stronger than those in [21].

For the proof of (iii), dropping the argument ¢ and observing that RDR™' = K, we
obtain

RDPPR™ = RPL(DP, + P,.) 'R = RP,(R"'R)(DP, + P;.) 'R~
— RP,R™(R(DP, + P,.)R™) ™
= RP,R'(RDR'RPLR™'+ RP,.R™")~

1
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= RPLR™'(KRP,R™' + RP,.R™") .
The determinant of the expression in the brackets equals
det (R(DPp, + Ppo)R™') = det(DPp, + Ppo).
Therefore, denoting by “adj” the adjugate matrix, it follows that

RP,R'adj(KRPLR™' + RP;,.R™")
det(DPp, + Pp1) '

(28) RDPPR™ =

By Assumption (B3), the eigenvalues of D are not smaller than p > 0. The proof of [21,
Lemma 11] shows that the eigenvalues of DPp, + P; . are not smaller than p > 0, too. This
implies that det(DPp, + Pr1) > p"~' > 0. The coefficients

(RPLR_I)z‘j = 0ij — i, (RPLJ_R_I)U =

are bounded for ¢ € [0, 1]" and, by Assumption (B4), the coefficients of K are also bounded.
Therefore, all elements of adj(K RP, R~ + RP;. R™') are bounded. We conclude from (28)
that the entries of RDPP R~ are bounded in [0,1]", i.e., point (iii) holds. O

The most important property is the positive definiteness of DBP(c) on L(e); see (27).
This property implies the a priori estimates proved in the following subsection.

2.2. A priori estimates. We show an energy inequality for smooth solutions.

Lemma 5 (Free energy inequality). Let ¢ € C(§2 x (0,00); R™) be a positive, bounded,
smooth solution to (1)—~(5). Then, for any 0 < X\ < A,

i(mc) 4 Mﬁ(c)) +2)\/ |V\/E|2dm+)\/ Aclda

dt AmA
AM N /|PL c)Vu|?dz < 0.

where the entropy H(c) and the free energy E(c) are given by (6) and \,,, Ay are defined
i Lemma 4.

Proof. We derive first the energy inequality. To this end, we multiply equation (25) for ¢;
by w; = (0€/0¢;)(e), integrate over €, integrate by parts (using the boundary conditions
(26)), and take into account the lower bound (27) for DBP(c):

(29) 2/80 VOycidr = — Z/ i (e) Vi - Vpd

1,j=1

=— Z DEP(e)(veiVi) - (V& Viy)dr < =\, /|PL (c)Vu|dz.

i,7=1
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The entropy inequality is derived by multiplying (25) by log ¢;, integrating over €2, and
integrating by parts (using the boundary conditions (26)):

d n n
d—?(C) = Z /Q(log c,;)@tcidx = — Z /QBZ](C)VIOg C; - V,LL]dZL'
=1

ij=1
To estimate the right-hand side, we set G = RP,R (omitting the argument ¢) and M :=
B — \G for A € (0, A,). Then

dH

(30) E(C) = — Z /QMZJVIOng . VM]dZE — A Z /QGZJVIOg C; - V/Ljdl’ = ]1 + .[2.
1,7=1

ij=1
Before estimating the integrals I and I, we start with some preparations. We use
Lemma 4 (ii) and P} Py, = Py, to obtain

2'Bz = (R2)' DPP Rz > \,|PLRz|* = M\ (PLR2)" (PLRz) = M\2' Gz for z € R™.

The matrix M is positive semidefinite since for any z € R",

(31) 2"'Mz =2"Bz — 227Gz > (\,, — \)2'Gz = (\, — \)|PLRz|*.
Furthermore, by Lemma 4 (ii) again, we have the upper bound
(32) 2'Mz =2"(B - A&z < Ay — N)2'Gz = My — \)|PLRz|%.

We are now in the position to estimate the integral I, using Young’s inequality for any
6 > 0:

0 < 1
< > /QMijVIOg i Vg e;da + > /QMUVM -V pyda

i,j=1 i,j=1
Av— A
20

6
< 0w =) / |PLRV log e%da +
Q

Mo — A
200y — )\)/ Ve + 2 / PRV 2,
Q Q

where the last step follows from > 7, (Pr);;R;V logc; = 2V/¢;, which is a consequence
of >77_, Ve; = 0. For the integral I, we use the definitions Gi; = ¢;0;; — cicj and p; =
logc; — Ac;:

12 = -\ Z /(CZ(SZ] - CiCj)% . V(log Cj — AC]')CZ.T
Q 1

ij=1

/ |PLRV p)*dx
0

= —)\Z /Q Ve - V(loge; — Ac;)dx + )\/QZ Ve - ZCJV(log c; — Acj)dx
i=1 i=1 j=1

= —)\Z/QVCZ- -V(log¢; — Ac;)dx = _)\/Q (4]V/el? + |Ac?) da,
=1

where we integrated by parts in the last step.
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Inserting the estimates for /; and I, into (30) yields

dH +4)\/]V\/_| d:l?—l—/\/|Ac| dx
A — A

< 2000 — )\)/ V/eldz +
Q

We set 8 = A\/(Ay — A) to conclude that

(33) dH +2>\/ V| d:l?—l—)\/|Ac| dr <

The right-hand side can be absorbed by the corresponding term in (29). Indeed, adding
the previous inequality to (29) times (Apy — A)?/(A\nA) finishes the proof. O

/ | PRV p|*da.
Q

MM A’ /|PLRVu| dz.

Note that the energy inequality (29) or the entropy inequality (33) alone are not sufficient
to control the derivatives of ¢ but only a suitable linear combination. We will prove these
inequalities rigorously in the following section for weak solutions; see Lemma 10.

3. PROOF OF THEOREM 1

We prove the existence of global weak solutions to (1)—(4). For this, we construct an
approximate system depending on a parameter 0 > 0, similarly as in [13], and then pass
to the limit 6 — 0.

3.1. An approximate system. In order to deal with the degeneracy of the matrix B(c)
when a component of ¢ vanishes, we introduce the cutoff function ys : R” — R™ by

0 for ¢; < 9,
(xse)i =14 i for 6 <¢; <1-9,
1—90 for ¢; > 1 -9,

and define the approximate matrix
(34) B’(e) := R(xs¢) D" (xs¢) R(xs0),
recalling that R(xsc) = diag(y/Xxs¢). We wish to solve the approximate problem

0&°

5 5\

(35) oyt —dIVE B V/LJ, uj:acj (c®) inQ, t>0,

(36) A(,0)=¢ inQ, E:B )Vl -v=0, V&) -v=0 on 09,

where i =1,...,n, >, ¢ =1 and the approximate energy is defined by

£(c) = Z/ Veltdr, He Z/fﬁ ¢)d
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rlogd —d6/2 +12/(20) for r < 0,
(37)  R(r)=< rlogr for 6 <r <1-4,
rlog(l—0)—(1—48)/2+7r*/(2(1—-4)) forr>1-4.

Observe that the solutions ¢ may be negative. We will show below that ¢! converges to a

nonnegative function as ¢ — 0. The approximate entropy density is chosen in such a way
that h? € C%(R). Indeed, we obtain

logd +¢;/0 for ¢; < 4, .
(h9)'(¢i) = { loge; +1 for 6 <c;<1—6, (h)'(c;) = .
log(1 —6) +¢;/(1—96) for ¢; > 1 — 9, (xs¢);

With these definitions, we obtain ul = (h9)'(c?) — Ac? fori =1,...,n.

Theorem 6 (Existence for the approximate system).  Let Assumptions (A1)-(A2) and
(B1)-(B4) hold and let 6 > 0. Then there exists a weak solution (c’,u’) to (35)—(36)
satisfying > r, 2(t) =1 1in Q, t >0,

¢} € Lix,(0,00; H'(2)) N L7,.(0, 003 H*(€2)),

loc

Oic; € Lfoc((), oo; H*(Q)), uf € LIQOC(O, oo HY(Q), i=1,...,n,

and the first equation in (35) as well as the initial condition in (36) are satisfied in the
sense of L2 (0, 00; H*(2)).

loc

Before we prove this theorem, we show some properties of the matrix B°(c). We intro-
duce the matrices Pp(xsc), Pri(xsc) € R™*™ with entries

(xsc)i(xsc); (xs¢)i(xs€); :
P 7,:51_ D y Py ij — n s 5 :17"'7 .
e A > cve= ol L R I e L "

Lemma 7 (Properties of B’(c)). Suppose that D(c) satisfies Assumptions (B1)-(B4).
Then Lemmas 3 and 4 hold with Pr(c), Pp,.(c), and DPP(c) replaced by Pr(xs¢), Ppi(xsc),
and DBP(xsc). As a consequence, the matriz B°(c), defined in (34), satisfies

(38) 2T BY(¢)z = Al PLOxsO)ROxs0)2[?  for any z,c € R",

and the first (n — 1) x (n — 1) submatriz B%(c) of B(¢) is positive definite and satisfies
for n(6) = Amd?/n,

(39) 2TB%(e)z > n(0)|Z]* for any Z € R* L.

Proof. 1t can be verified that Assumptions (B1)—(B2) hold for D(xsc), so Lemmas 3 and
4 still hold for the matrix D(xsc). Inequality (38) is a direct consequence of Lemma 4 (ii).
It remains to prove (39). We define for given z € R"™! the vector z € R" with z; = Z; for
i=1,...,n—1and z, =0. Then (38) becomes

(40)  ZTB%(€)Z > Au|Plxse) R(xs¢)2|” = A (R(x50)2)" Prlxse) (R(xs€)Z),
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where A denotes the first (n — 1) x (n — 1) submatrix of a given matrix A € R™". It
follows from the Cauchy-Schwarz inequality that for any ¢ € R* !,

CTﬁL<x5c><—§_j<f—<§_j zéﬁiﬁﬁc) ) o - szxfc cP

(Xéc) 2 2
=S uo (= !C! :

Therefore, (40) becomes
—1 —1 A 62
AJTBé ZLZ (xs¢); — ZXéC |Z7, 2_| |2
=1 =1

which proves (39). O

We proceed to the proof of Theorem 6. The proof is divided into four steps. First, we
reformulate (35) using the first n — 1 components. Second, a time-discretized regularized
system, similarly as in [25, Chapter 4], is constructed and the existence of weak solutions to
this system is proved. Third, we derive some uniform estimates from the energy inequality.
Finally, we perform the de-regularization limit.

Step 1: Reformulation in n — 1 components. We reformulate the approximate system in
terms of the n — 1 relative chemical potentials

It holds that

- (s Vxe0(xse); o) —
Z (PL(X(SC)R(XJC))M = Z (516] 22:1()(56)5 > (X5 )J =0.

Then, using DPP(c) = DBP(e)P(c) (which is a general property of the Bott-Duffin
inverse; see [21, (81)]),

ZBZ&J( Z \% X&C \/ X(;C)
_ Z vV (xs¢)iDEP (¢) (PL X(;C)R<X(sc))k, = 0.

J
k=1

Jj=1 Jj=1

This shows that

ZB )V = ZB )Vl + B (e) Vil = ZB — ).
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Consequently, we can rewrite the first equation in (35) as
n—1
(41) Gtc?:dinij(c‘s)Vw?, i=1,....n—1, & =1- &,

recalling that B? is the first (n — 1) x (n — 1) submatrix of B.
Step 2: Existence for a regularized system. We consider for given 6 > 0,7 >0, N € N,

and ("1, ..., c71) the regularized system

1
42 — ) =d B, Aw! in
(42) T(c cr IVZ — (A% 4 wk) in Q,
(43) wi = (b (Ci)_(h6)(c)_A(C§_CZ)7 i=1...,n—1,

where 7 = T/N and ¢ = 1 — 3" ¢k, Equation (42) is understood in the weak sense
1
/(c — N uda + Z/ "V, - Vwkd:v +e / (AwFAQ; +wFe)de =
Q

for test functions ¢; € H*().

The e-regularization ensures that w? € H?(Q2) < L>(Q) since d < 3. In higher space
dimensions, we can replace A2w! by (—A)™w? with m > d/2, which gives w¥ € H™(Q) <
L>(Q).

We prove the solvability of (42)—(43) in two steps.

Lemma 8 (Solvability of (43)). Let w € L*(;R™™1). Then there exists a unique strong
solution ¢ € H*(; R 1) to
(44) w; = (M) (¢;) — (h2) (cp) — Aci —¢,) i Q, Ve-v=0 ondQ
fori=1,...,n—1, wherec, =1— Z?;ll ¢;. This defines the operator L : L*(; R"™1) —
H2(Q;R™™ 1), L(w) =¢.
Proof. The system of equations can be written as

div(MVe); = (h) (¢;) — (h2)(cp) —w;  in Q,

where the entries of the diffusion matrix M are M;; = 2 and M;; = 1 for all i # j.
In particular, M is symmetric and positive definite. Thus, we can apply the theory for
elliptic systems with sublinear growth function and conclude the existence of a unique
weak solution ¢ € H*($; R”fl). It remains to verify that this solution lies in H?(Q; R"™1).
Summing (44) over i = 1,. — 1, we find that
n—1
8\/ n—1 5\’ 2
ZA@ Z (hi)'(ci)) + ——(hn)'(ca) € L7(Q)

=1

with the boundary condltlon Ven - v =10 on 0N2. We infer from elliptic regularity theory
that ¢, € H?(Q2). Consequently, Ac, € L*(Q) and elliptic regularity again implies that
c €H 2(9) O
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It follows from Lemma 8 that we can write (42) as

(45) l(E( )i — leZB —e(A%wfF+wf) mQ, i=1,...,n—1

T

Lemma 9 (Solvability of (45)) Let 8=t € H?(Q; R"1). Then there exists a weak solution
w* € H*(Q;R"1) to (45) such that for all ngz € L*(0,T; H*(Q)),

% /Q (L(w); — ¢ )iz + Z / w))Vo; - Vwhde

zjl

i=1 79

Proof. Given w € L>®(Q;R"!) and o € [0,1], we wish to find a solution to the linear
problem

(46) Alw, ¢) = F(¢) for ¢ € H*(GR™),

where

A(w, p) = Z/ L(w))Ve; - vw]dx+gz/ (Aw; Ad; + w;;)da

F(o) ———/Q(c(u-;) ") - gda.

T

We infer from the boundedness of éfj(ﬁ(w)) that the bilinear form A is continuous on

H?(Q; R 1). Furthermore, by the positive definiteness of Efj(ﬁ(w)), thanks to (39), A is
coercive. Moreover, F is a continuous linear form on H?(Q; R"™!). We conclude from the
Lax—Milgram theorem that there exists a unique solution w € H?(€2; R"™!) to (46). Since
d < 3 by Assumption (A1), we have H?(Q) < L°°(€) and therefore w € L>®(Q;R"™1).

This defines the fixed-point operator S : L>°(Q; R"™1) x [0,1] — L*(;R™), S(w, o) =
w. The operator S is continuous, and it satisfies S(w,0) = 0 for all w € L>*(Q;R"!). In
view of the compact embedding H?(Q2) < L>(Q), S is also compact. It remains to verify
that all fixed points of S(-, o) are uniformly bounded. To this end, let w € L>(Q;R"1)
be such a fixed point. Then w € H?(Q; R"!) solves (46) with w = w. We choose the test
function ¢ = w in (46) to find that

(47) g/ﬂ( — - fwdx—l—Z/ (&) Vw; - ijdxHZ/ ((Aw;)? + w?)dx = 0,

i,7=1
where ¢ = L(w) = (c1,...,¢,_1) and ¢; solves (43) with w! replaced by w;. Using the test

function ¢; — ¢! in the weak formulation of (43) leads to

Z/ = wzdx—Z/ =) Ve — ™

Q



MAXWELL-STEFAN-CAHN-HILLIARD SYSTEMS 17

+((h)(ci) = (h9) (ea))(es — &) ) d.

The convexity of the function h? and Zl | ¢i = 1 — ¢, imply that

n—1

N M@>ZW@ M),

Z h) () = (e — ) () (cn) = hip(ca) = P (™).

. n—1 _ n—1 k-1 _ k—1
Moreover, since > " Ve, = =V, and ) | Ve = =V !,

Z V(ci—cn) V(e — i) = z”: Vel — z”: Ve . Ve
; i=1 i=1

1 — 1
> 5 > Vel - 5 > VT
=1

i=1
This yields

n

n—1 n
Z/(CZ — cf_l)widx > Z/ (hf(cl) - hf(C dLU + ; Z/ |VC,L|2 k 1‘2) T
i=1 /& i=1 /9

> 8(@) - 8@,

where
%) =H(e) + Z/Q VePde,  HO(€) = Ho(c).

Inserting this inequality into (47) finally gives

(48)  ofY@) +7 Z/ (@Y - ijstT/(\Awm w[)dz < o8,

1,j=1

By the positive definiteness of BS (positive semidefiniteness is sufficient), this gives a
uniform H2(Q2) bound and consequently a uniform L*°(€) bound for w. The Leray—
Schauder fixed-point theorem now implies the existence of a solution to (42)—(43). 0

Step 3: Uniform estimates. We wish to derive estimates uniform in € and 7. The starting
point is the regularized energy estimate (48) and the positive definiteness estimate (39).
First, we introduce the piecewise constant in time functions w(™ (x,t) = w*(z), 7 (z,t) =
L(w"(z )) forz € Qandt € ((k—1)7, k7], k=1,...,N, and set w™(z,0) = (0€/9¢)(e°)
and ¢ (z,0) = ¢°. Introducing the shift operator (aTw( Nz, t) = w T (z,t—7) for v € Q
and t > 7, we can formulate (42)—(43) as

1 -
(49) — (@ — g,e") = div(B(e)Vw'™) — ¢(A?w™ 4+ w'™),
T
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(50) w™ = (R (™) = (W) () = A =), i=1,...n—1,

recalling that ¢ = £(w() is a function of w(™. Then (48) can be written after summa-
tion over k =1,..., N as

T T
E8(&(T)) + n(5) /0 /Q Ve 2dedt + =C /0 |2 0t < E3(20),

where we used (39) and the generalized Poincaré inequality with constant C' > 0. This
implies the estimates

(51) C() w2050 0y + VEIW™ || 207200y < C.

where C' > 0 denotes here and in the following a constant independent of ¢ and 7.

To derive a uniform estimate for ¢, we multiply (50) by —ACET), integrate over Qr =
Q x (0,T), integrate by parts, and sum over i = 1,...,n — 1:

Z/ /Vw VC d:lj'dt Z/ /V h5 ET (h(;) (CT )) 'VCZ('T)dZL'dt
+Z/ / ((ACZ(-T))Z . ACET)ACS-))dxdt = L+ I,
=170 JQ

Since V(R) () = (h2)Y(Y Vel = Vel / (yse™); and S Vel = =Vl the term

I35 can be written as
|Vc
I = / / d dt.

Using the property Z;:ll Ac; = —Ac]) , the remaining term I, becomes

n_T
I = Z/o /Q(Acl(-T))dedt.
i=1

Therefore, by Young’s inequality,

(T
My2 Ve
Z/ /Ac dmdt+2/ / ch(T) I dxdt = Z/ /Vw Vel dwdt
(7))2
s / / (]Vc | (5C(T))¢\V"w§ﬂ|2)dmdt
(xsc™

1< |Vc
<_
<5 / (e ddt—l— E / /|Vw |*daxdt.
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The first term on the right-hand side is absorbed by the left-hand side. Thus, we deduce
from (51) that

Z/ / A2 dadt + = Z/ WC d dt<—||Vw N7200 < C-

XaC
Since cg T ¢ L>®(Qr), we infer from the previous estimate that
(52) ||C§T)||L2(0,T;H2(Q)) <C, 1=1,...,n

Finally, we derive an estimate for the discrete time derivative. It follows from (45) that

n—1

1,
;||Cz( ) Ur ||L2 (0,15 H2(Q)) = Z ||B )HLOO(QT)va ||L2 (Qr)
7j=1

+ €||w,m | 2(0,7:02(02))-
The entries of BY(&™) are bounded since § < (ys¢™); <1 — 4. Thus, by (51),
(53) 7’71HC§T) _O-‘I‘Cng)HLQ(O,T;HQ(Q)/) < C, 1= 1,...,71— 1.

Step 4: Limit (e,7) — 0. In view of estimates (52) and (53), we can apply the Aubin—
Lions lemma in the version of [10, Theorem 1] to conclude the existence of a subsequence,
which is not relabeled, such that as (g, 7) — 0,

CET) — ¢; strongly in L*(0,T; H'(Q)), i=1,...,n — 1.
We deduce from (51)—(53) that, possibly for another subsequence,
NG weakly in L*(0,T; H*(Q)),

7 — 067 = 9y, weakly in L2(0,T; H(Q)),
wZ(T) —w;  weakly in L*(0,T; H'(2)),
gwET) — 0 strongly in L*(0,T; H*(Q)), i=1,...,n—1.

We define ¢, := 1 — 3" ' ¢;. Then ¢} — ¢, strongly in L2(0,T; H'(€)) and weakly in
L*(0,T; H*(Q)). Furthermore, (c (T)) converges, up to a subsequence, pointwise a.e., and its
limit satisfies 0 < (xs¢); <1—6,¢=1,...,n. The matrix éfj(E(T)) is uniformly bounded
and

Efj(gﬂ) — gfj(a strongly in LI(Qr) for any ¢ < 00, 4,5 =1,...,n
These convergence results allow us to pass to the limit (¢,7) — 0 in the weak formulation
of (49)—(50) to find that ¢ solves

dyc; = div Z BS.(&)Vw;, w; = (hd)(¢;) — (h8) (cn) — Ales — ¢n)

fori=1,....,n—1. Transformlng back to the chemical potential p via w; = pu; — p, and
¢, =1 =" ¢, we see that ¢ := ¢ solves system (35)-(36), where 1; = (h?)'(c;) — Ac;.
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3.2. Uniform estimates. We derive energy and entropy estimates for the solutions to
(35), being uniform in §.

Lemma 10 (Energy and entropy inequalities). Let ¢’ be a weak solution to (35)-(36),
constructed in Theorem 6. Then the following inequalities hold for any T > 0,

(54)  E°(c( / / )Vl - Vibdzdt < E°(c0),
(55) H'(c +Z / / Y (e)) - Vpddzdt < H(c"),
(AM )2 V|2
(56) H((-,T)) + 398 =2 &% +)\Z/ / ) L dxdt
—i—)\Z/ / (AC) dxdt + (A )\)\ / /’PL xs€)R(xse’) Vi’ ‘ dxdt
< () + QU= ),

where 0 < X\ < Ay, A, Ayr are introduced in Lemma 4, and R(xsc®) = diag(y/xs¢%).

Proof. Summing (48) with 0 =1 over k = 1,..., N, we find that

5 )+ Z / / -T) . ij(-T)da:dt

3,7=1
T
+52/ /((AwY’)2+(w§T>)Q)dwdtgsé(aﬂ).
=170 JQ

We know from (51) and the construction of x5 that (w(™) is bounded in L?(0,T; H'(9))

and (Ef](ﬁ)) is bounded in L*>(Q7) with respect to (¢, 7). Therefore, we can pass to the
limit (e,7) — 0 in the previous inequality, and weak lower semicontinuity of the integral
functionals leads to (54).

To show (55), we use (h%)'(c?) — (h?)'(c%) as a test function in the weak formulation of
(41) and sum over i =1,...,n — 1

+Z/ / BY(@)V () (c]) — (&) - Vuldudt < H(c).

This inequality can be rewritten as (55) using w¢ = ul — 8. Finally, we derive (56) by
combining (55) and (54) and proceeding as in the proof of Lemma 5. O
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3.3. Proof of Theorem 1. We perform the limit § — 0 to finish the proof of Theorem
1. It follows from [14, Lemma 2.1] that for sufficiently small § > 0, there exists C' > 0
(independent of ) such that for all rq,...,r, € R satistying >, r; = 1,

(57) zn: h(r;) > —C.

Therefore, estimate (56) implies that

n 2
Z/wcf \da:+2/ / |V65| dx dt+2/ /Ac )2dxdt
PEEEAY) (Xs

+/ /|PL<X506)R(X505)V/,L6‘2d$dtSC,
o Jo

and the constant C' > 0 depends on \,,, A\ys, and ¢”. Mass conservation (or using the test
function ¢; = 1 in the weak formulation of (35)) shows that [, (-, T)dz = [, cjdx for
any T > 0, i.e. ||| e (@) < C. We conclude from the Poincaré-Wirtinger inequality
that

(58)

(59) el st + 1€l 2ormzoy < C-
Next, we estimate d;c. Lemma 7 implies that the entries of
(D(xs€”) Prxs€’) + Pre(xse’) ™!
are uniformly bounded. Thus, by the definition of DPP(ysc®) and (27),

D

and the rlght—hand side is bounded by (58). Setting J? := > i BY(c’)V s, this means
that (J?) is bounded in L?(Qr). Therefore, there exists a subsequence that is not relabeled
such that, as § — 0,

Vuj

d:cdt < )\M/ / ‘PL Xs5C )R(X(;c vl ‘ dxdt,

J? — J; weakly in L*(Qr).
This implies that
(60) Hat0?||L2(O7T;H1(Q)/) S C

We conclude from (59) and (60), using the Aubin—Lions lemma, that, for a subsequence
(if necessary),

@On

> — ¢; strongly in L*(0,T; H'(2)),
X weakly-+ in L=(0,T; HY(Q)),
¢ —¢; weakly in L*(0,T; H*(Q)),

9,0 — Oyc;  weakly in L*(0,T; H'(Q)).

Performing the limit § — 0 in (35), we see that J,c; = divJ; holds in the sense of
L2(0,T; H'Y(Q)').

SO,

(61) “
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We prove that ¢; > 0in Qr, i = 1,...,n, following [14]. By definition (37) and the lower
bound (57), we have for 0 < § < 1,

50,0 5 5 ()
C> [ hi(c))de > —C + ctlogd — — + —— |dx
Q {ef<s} 2 20
> —C + / & log ddx + / & log ddx — C§
{c?<0} {0<c<d}
> —C’—i—log5/ dx + Célogd — OO,
{0 <0}

Hence, we obtain

C
/max{O,—cf}dx :/ 0 ]d < .
Q {cf<0} | log 4

The limit 6 — 0 leads to
/ max{0, —¢; }dx <0,

implying that ¢; > 0 in Q7. The limit § — 0 in >, & =1 gives >or ¢ = 1, hence
¢; <1 holds in Q7.

Next, we identify J; by showing that J; = > 7 | Bi;j(¢)V(logc; — Acj) in the sense of
distributions. Inserting the definition of x¢ and choosing a test function ¢; € L>(0, T}
W22 (Q)) satisfying V¢; - v = 0 on 99, we find that

/OT/QJE -V udvd = / / )W, V(W) () — A)dadt

(62) :Z / / &)V - V(R d:cdt+z / / Ac div(BS (€’ V) dudt

= I5 + I(,‘.
By definition (34) of BY;(c’), we have
&

Iy = Z/ /\/ (xs€?); D (xs€?)V; - : ————duxdt.

(Xac )i

Lemma 4 shows that \/c;D>P(c)/,/¢; is bounded in [0, 1]* and in particular when ¢; = 0
for some index k. The strong convergence ¢’ — ¢ implies that ysc® — ¢ in L9(0,T; L(Q))
for any ¢ < oo such that

n T 1 n T
I; — / / c:DEP (¢)——=V¢; - Vejdrdt = / /B, c)V¢; - Vlog cidxdt.
5 ; i Qf ; <>¢C_j : ; A i(c) j
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The limit in /g is more involved. We decompose I = Ig1 + Ig2, where

Iy _Z / / AB () Agidudt, Iy = Z / / AV B () - Vidzdt.

We deduce from the strong convergence of ¢’ and the weak convergence of Ac;S that

n T
I = Y / / Ac; By (e)Adidadt.
=170 JQ

To show the convergence of Iy, we consider

/OT /Q IV (B() — By(c)) | dudt

- OB?. OB, OBS.
ij 5y 9Dij ij (0 5
(G20 - 520 ) T 5 Vi - )

T
L
By Lemma 4 (i), D[P /dc;, exists and is bounded in [0,1]". Then, by the definition

of Bjj(c), we have (0BY;/dc;)(c’) — (0By;/dck)(e) strongly in L*(Qr). It follows from
V& — Ve strongly in L2(Qr) that the right-hand side of the previous identity converges

to zero. We infer that
n o aT
Ip = > / / Ac;VBy;(c) - Vdadt.
oo Je

2

dxzdt.

Consequently, we have

n T
le ﬁ; /0 /Q Ac;(Bij(e)A¢; + VBjj(c) - V) dwdt

noo.T

/o Ja

We have shown that (62) becomes in the limit § — 0
T noo.T
/ / J; - Vodzdt = Z/ / (Byj(e)V; - Viogc; + Ac; div(Bij(e) V) dadt
0 Jo o J0 Jo
and hence, in the sense of distributions,
Ji:ZBU(C)V(IOgCJ’—ACj), 1= 1,...,71.
=1

Step 2: Energy and entropy inequalities. The limit ¢! — ¢; weakly-x in L>(0,T; H*(Q))
(see (61)) and the weak lower semicontinuity of the energy and entropy show that

H(c(-,T)) < ligrl_}glfﬂé(c(s(-,T)), Ele(-, 1)) < hgl_}i(])nfé"s(cé(-,T)).
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Moreover, because of the weak convergence of Ac? in L?(Qr) from (61),

N2 < limi
;/0 /Q(ACZ) dxdt < hr(sn_}gle/ / AC 20 di.

The combined energy-entropy inequality (56) and the property |V(ysc®);| < |Vl give
1 Ve
Hv V (Xécé)iHLZ(Q ) =3 >~
o2 L2(@r)

which, together with (ys¢?); — ¢; strongly in L?(Qr) leads to

(xs€);
(63) Vv (xsed); = Vy/e; weakly in L*(Qr).

We conclude that

<,

IV Vel or < liminf |9/ 0iseD):| 2,

Finally, by (56), we observe that Pp(xsc?)R(xsc’)Vu? is uniformly bounded in L*(Qr)
such that, up to a subsequence,

Pr(xs¢’)R(xsc’ )V’ — ¢ weakly in L*(Qr).
Hence, again by weak lower semicontinuity of the norm,
€Iz < lminf [[(PLOxse’)ROGE)VE || L2 1,2

It remains to take the limit inferior § — 0 in (56) to conclude that the combined energy-
entropy inequality (13) holds.

Lemma 11 (Identification of ). Let (16) hold and let ¢ be the weak L*(Q7) limit of
Pr(xs€”)R(xsc’) V. Then ¢ = Pr(c)R(c)Vp.

Proof. Let ¢; € C5°(Qr) be a test function. Then, inserting the definition pf = (h3)'(c}) —
Ac‘s- and integrating by parts,

Z/ / PL (xs€)ijn/ (xs€?); VMJ Pr(c )z]\/_Vu]> - V;dxdt
(64) Z / / (PO (xse); V0ue), V(R () ~ Po(e)y/5V loa ;) - Voudds
+ Z_: /0 /Q aiv { (Pu(xse’ )i/ (0s€); = Pu(€)is /G ) Vo f Akt

n_o.r
= /o Ja
The bracket in the first integral on the right-hand side can be written as
Pr(xs€)ij\/ (xs€®);V (h3) () — Pp(e)ij /¥ log ¢
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)
Vg PL(C)Z-]-E.
(xs¢); VCi

Thanks to the convergences (61) and (63), we can pass to the limit § — 0 in (64):

= PL(Xéca)ij

limZ/ / PL (xsc?) (ch5) Vuj Pr(c )U\/_V,uj> - Voidxdt = 0.

§—0

By the uniqueness of the limit, the claim ¢ = Pr(¢)R(c)Vu follows.

4. PROOF OF THEOREM 2

25

In this section, we prove the weak-strong uniqueness property. First, we compute a com-
bined relative energy-entropy inequality. Then we use this inequality to derive a stability

estimate, which leads to the desired weak-strong uniqueness result.

4.1. Evolution of the relative energy and entropy. We start by calculating the time
evolution of the relative entropy (14) and the relative energy (15) for smooth solutions ¢

and €. Inserting (25) and integrating by parts leads to

Z / <log ~8yc; — (—1—1)8,501)(&

:_Z/ 4 ( Vlog— V,u]dx—i—Z/ i ( ( ) Vidx

4,j=1 1,j=1

Z—Z/ i ( Vlog—'v(ﬂj—ﬁj)dﬂf

1,7=1
ij—=1 z' )

Next, we compute
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We add and subtract the expression Y 7" | [, Bi;(¢)V (; — fi;) - Vijda:

1617 = =32 | eV )V —

(66) + zn: /Q {Bij(é) (Z—leogi—z ~ VA — cz-)) — Bij(e)V (1 — m)} Vida

7,7=1
2,7=1

n
C;

=3 [ (Bute) - 8400 Vo - ) Vo

. [ G _ _
+ Z / Bz'j(C) (C_Z — 1) VA(Cz — Ci) . V/LJdZL‘
We want to reformulate the expression ¢; ' (c; —&)VA(c; — &) in the last integral. For this,
we observe that for any smooth function f, it holds that

fVAf=V(fAf) = VIAf = V(div(fVf) = |Vf]*) =div(Vf@ V) + %Vlvf\2

= Vdiv(fVf) — %V|Vf|2 —div(Vf e V).
Therefore,
(ci — &)VA(e; — &) = Vdiv ((¢; — &)V(e; — &) — %V|V(Ci - &)
—div (V(e; — @) ® V(e — ).
Inserting this expression into the last term of (66) and integrating by parts, we find that

e, = _ _
ClD) == [ Bule)V(u = ) V(s =)o
i=1
n CZ - - -
N Z / <Bij(c) - _Bij(c>>V(Mi — i) - Vjijdzx
ij=17% Ci
2 1
ij=1"7% ‘
—i—li/ |V (c; — )| di lB~((‘:)V‘- dx
2 ij=174 L v & 1

+ i /QV(ci —)®V(G—¢):V® (CliBij(C)Vﬁde,

1,j=1
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where V @ (¢, ' B;;(€)V]i;) is a matrix with entries 0,, (¢; ' By;(€)0y,fi;) for k, 0 =1,...,n
and “.” denotes the Frobenius matrix product.

The following lemma states the rigorous result. Since we suppose that the weak solution
satisfies energy and entropy inequalities instead of equalities, we obtain also inequalities
for the relative energy and entropy.

Lemma 12 (Relative energy and entropy). Let ¢ and € be a weak and strong solution
to (1)~(5) with initial data c® and &°, respectively. Assume that c satisfies the regqularity
(16) and the energy and entropy inequalites (17)—(18). Furthermore, we suppose that € is
strictly positive and satisfies the reqularity

fi; = loge; — A¢ € L (0,00, HX(Q)), & € L.(0,00;W*®(Q)), i=1,...,n
Then the following relative energy and entropy inequalities hold for any T > 0:

67 Eemer) + 3 / [ Be)¥ s = ) Vi )

£(1e) Z/ /( €)= £59(0) ) Vs ) - Vs

[ / i)V (Lperve )an

+Z [ [ —era (5@ )a

s / / ) ®V(e—a): VE (CliBij(é)Vuj)dxdt,
68)  Hle(T >r:< 1>><H &le) Z / [ Boter 1o E Vs — s

—Z [ [ (8ot 5 (6) ) Vlon & Vo

The integrals in (67) and (68) are well defined because of the regularity properties for
weak solutions ¢ and the regularity assumptions on the strong solution ¢. Indeed, we have

Bij(e)Vh; € L*(Qr) (see (22)), Byj(c)Vloge; = 2D () /6;V /e € L*(Qr) (see (13)),
and using the definition (8), the assumption (16), and Lemma 4 (i), we have

Bij(e)Vu; - Vy = DIP () (2V/e; — VeV AG) - (2V,/¢; — \/¢;V Ac;) € LY(Qr).
Proof. The relative energy and entropy inequalities are proved from the weak formulation
of (1) by choosing suitable test functions. For this, we observe that, by (12), ¢; —¢; satisfies

(69) o_/ / &@m&+/(() &) (x))gi(w,0)dx

Q
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— Z/ / (BZ]<C)V log Cj — Bw(é)V IOg Ej) . ngldl'dt
=1 /0 Ja

By density, this formulation also holds for ¢; = [i;0(t), where

1 for 0 <t < T,
.(t) =< (T'—t))e+1 forT<t<T+e,
0 fort > T +e.
Then, passing to the limit ¢ — 0 and summing over ¢ = 1,...,n, we arrive at

Z/ &) fiidx :zn:/T(atm,ci—cht

_2/ / i (e)V1oge; - Vi + div(B;;(c )Vuz)ch)dxdt

i,7=1

+Z/ / (€)Vloge; - Vi + div(B;;(c )V,uz)Ac])dxdt

i,j=1

=: I+ Is + Iy,

where (-, ) is the duality bracket between H'(Q)" and H'(f2). This product is well defined
,since it holds in the sense of H'(2)" that

Oiii; = O(logé; — AG) = Z - div(B;;(¢)V i) Z Adiv(B;;(e)V ;).
: 3 j 1
Inserting this expression into I, the dual product can be written as an integral:

Z/O / ( i ( <— — 1> Vi + Al — ) div(Bij(C)Vﬂj)> dxdt

i,7=1

:_Z// ” (——1)-V,ujdxdt

’L]].

—Z / / B dw(; j(é)Vﬂj)d:ﬂdt

231

INES 1 Q CZ
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Replacing Ac; by logc; — p; in Ig and integrating by parts in the term involving the

divergence, some terms cancel and we find that

Iy = — / / i1(€) VI - Vlogej + div(Bij(e) Vi) (log ¢; — py))dudt
i,7=1

_—Z/ / i (e)V i - Vpdedt.

i,7=1

Assumption (16) guarantees that the flux has the regularity Y 7 | Byj(c)Vyu; € L*(Qr)
such that the last integral is defined. The remaining term Iy is reformulated in a similar

way, leading to
// i (€)V i - Videdt.

It follows from the definition of the relative energy, the inequality (17) for £(¢), and the
identity (19) for £(€) that

E(e(T)[e(T)) — ()

1,7=1

— (E(elT) ~ () ~ (E(e(T) ~ ) = [ - (e el
S—Zl/ Byj(e)Vii - Vi, — By(€) Vi - Vi) dadt — (I + Is + Iy)
le// 8 <>

Z [ /Cl ey (é p—

This inequality is just a reformulation of (65), which leads, by proceeding as in (66) and
the subsequent calculations, to (67).

Next, we verify the relative entropy inequality. Taking the test function ¢; = (log ¢;)0.(t)
n (69), passing to the limit ¢ — 0, and summing over i = 1,...,n leads to

Z / &) log czdx Z / / &;)0,(log &;)dadt
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= / / (Bij(€)Vlogc; — Byj(€e)Vlogé;) - Vlog &;dadt

— Z/ / (div (Byj(€)V1og ;) Ac; — div (By;(2)V log Ei)Aéj>dxdt.
= Jo Ja

This yields, together with (18), (20), an integration by parts, and regularity assumption
(16), that

H(e(T)le(T)) — H(c"|e")

= (H(C(T)) —H(c")) — (H(e(T)) — H(e")) — /Q(c —¢)-logedr

T

0

| /\
\
\

By(c)Viog e - Vi — By(€)V1og & - Vu])dxdt

—Z / / )0y (log &;)dadt

+ Z / /Q <sz<c)v,u] . V10g C; — BZJ(é)vﬁ] . V10g 52)>dxdt

:_Z/ / (V1 - <log§—j) —v(i—z—1> B,i(e)Vp; ) dud,

2,7=1

which readily gives (68). O

4.2. Proof of the weak-strong uniqueness property. We proceed with the proof of
Theorem 2. First, we estimate the relative entropy inequality (68) and then the relative
energy inequality (67). A combination of both estimates shows (21), which proves the
weak-strong uniqueness property.

Step 1: Estimating the relative entropy. As in the proof of Lemma 5, we decompose the
matrix B(c) by setting M(c) := B(c) — AG(c) such that B(e) = M(c) + AG(c), where
G(c) = R(c)Pr(c)R(c) has the entries Gyj(€) = ¢;0;; — c;c; and 0 < A < A,,. In terms of
these matrices, we can formulate (68) as

(70) H(e(T)|E(T)) — H(c|e) Z// v1og— V(p; — fij)dadt

2,7=1

—)\Z// i v1og— V(uj — fij)dxdt

2]1

/ /( ZJ f (C))VlOg%Vﬂdedt = 110+]11+112-
i,j=1 Ci i
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Step 1a: Estimate of I1y. We know from (31) and (32) that M (c) is positive semidefinite
and satisfies 27’ M (c)z < (Ay — N)|Pr(e)R(c)z|* for all z € R™. Therefore, using Young’s
inequality with 6 > 0,

(71) I < — / / Vlog— V log ]d:cdt
zg 1 J
+3 Z / / — i) - V(py — fij)dwdt
i,7=1 0
0 C; 2
< Z( C)ij\/c_jVIOgg dxdt
2
C)ij /G V (1 — [i;)| dadt.

Step 1b: Estimate of I11. In the term I, we replace p; — fi; by log(c;/¢;) —A(e; —¢;) and
compute both terms in the difference separately. The definition Gi;(c) = \/c;iPL(¢)ij/¢5
and the property PL( )2 = Pr(c) lead to

(72) // i ( Vlog— Vlog ]dxdt
i,7=1

_Z/ /pr U\/_Vlog— Vlog Jdmdt

1]1

dxdt.

c
)i/ V log

j
Furthermore, we use GZJ ) = ¢;0;; — ¢;c; and integration by parts to find that

//G” Vlog— VA(e; — ¢;)dzdt

=— Z/ /le ( c;0i; — ¢ic;)Vlog — )A(cj — ¢;)dxdt
0

i,7=1

T
— Z/ / div(Ve; — ¢;Vlogé;) A(e; — ¢;)dxdt

2,7=1

//le ¢;Ve; — cie;Vlog ¢;)A(cj — ¢;)dxdt

i,j=1

- Z/ /le (Vei — eiVioge)Ale; — ¢;)dxdt

1,j=1
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— Z/ /le cic;Vlog ¢;)A(c; — ¢;)dxdt,

1,7=1
where we used i, ¢;Ve; = 0 in the last step. We mention that > 7| Gij(c)VAc; €

L*(Qr) because of (23), so the first integral in the previous computation is well defined.
It follows from ACiA(Ci — (_Zz) = (A(Cl — EZ))Q —+ AEZA(C,L — E,L> that

(73) Z / / Gyi(c Vlog— VA(¢; — &)dadt = Z / / ¢ — &) dadt
i,7=1
n T
— Z/ /le(VCZ — ciV log EZ‘)A<CZ‘ — él)dl‘dt

- Z/ /le c;ic;V1og é;)A(cj — ¢j)dxdt.
0

7,7=1
We multiply (72) by —\ and (73) by A and sum both expressions to find that

n T n 2
(74) Ln=-A)_ / / ZPL(c)ij\/c—jwogf—J dxdt — A / / ¢; — Gi))2dudt
i=1 /0 JOl €
n_ T
— A Z / /le cic;V1og é;)A(cj — ¢;)dxdt.

i,7=1

We apply Young’s inequality to the last two terms. The third term in (74) becomes

nooar

—AZ/ / div(Ve; — ¢;Viog ¢;)A(e; — ¢;)dxdt
< - Z/ / — CZ d$dt—|—)\2/ / |d1V — G Vlogcl)’ dadt
)\
Z / / —G)) da:dt
T
+ )‘Z |V 1og G| oo (1) / / V(c; — &)|*dxdt
+AZ 1A log &z (an / / o) 2dudt

_42// :— &) dadt
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+ )\CZ;/O /Q ((CZ — Ei)g + |V(CZ - Ei)|2)dl‘dt,

where the constant C' > 0 depends on the L> norms of Vlogc and Aloge. Next, for the
fourth term in (74),

—)\Z/ /le c;ic;Vlog ;) A(c; — ¢j)dxdt
0

i,j=1

_42// ¢ - )

We estimate the integrand of the last term, takmg into account that VY "  &Vloge; =
Z?:l V@ =0:

Z div(c;c;Vlog ;) Z d1V ¢;)c;Vlog cz)

i=1

(cic;Vlogé;) d$dt

= ch div((¢; — ¢;)Vlog &) —1—2 —¢;)Vloge; - Ve
= Zc] div((¢; — ¢;)Vlogé;) + chVlogcz Vie; —¢5) + Z(C’ —¢;)Vloge; - V¢

=1 i=1

< C’Z (lei =&l + V(e —@)l),

i=1
where C' > 0 depends on the L* norms of Vlog ¢ and Aloge. This yields

/ /le cic;Vog ;) A(c; — ¢;)dxdt
1,7=1

_42// ¢ — G) da;dt+)\CZ// ¢ — &)+ V(e — &)|?) dadt.

Using these estimates in (74) we arrive at

(75) I3 <

dxdt——Z// ¢ — ¢))2dudt

C;/O /Q((ci —&)? + |V(e; — &)|?)dxdt.

Step 1c: Estimate of I;5. By definition of B;;(c) and Young’s inequality with 6’ > 0,

Iy = — Z/ /\/EZ(DBD c)\/¢j — ;—ZDgD(é)\/E_j)Vlog;—i-Vﬂjdxdt

2,7=1

)i /GV log
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S

2
C; B _ ~
0’ Z/O / (DBD C_DgD(c)\/c_]) |V,Uj|2d:)3dt.

i,j=1

d:zcdt

\Y% 1og
Ci

)

The bracket of the second term can be estimated according to

(76) ’DiBD €)\/Gj — 4 / DBD
wz

- 'DﬁD(a)@—DﬁD Nl ONG

n

S%Z(|Ci—ci|+|\/c_i Val) <C(m Zlcz cil,

=1

using the assumption ¢ > m > 0 and the boundedness of Df;D (see Lemma 4 (i)). It
follows that

(77) 112<_ //c

Step 1d: Combmmg the estimates. We deduce from (70), after inserting estimates (71),
(75), and (77) for I o, I11, and I35, respectively, that

H(e(T)le(T)) < H(c"|e")

(78) +(Z(AM \) >
JEYETY-

\Y% log

dacdt + C(m, 6’/ / / — &) dxdt.

c)ij\/G;V 1og dxdt

©)ij /G V (1 — [i5) dmdt

__Z// G —G) dxdt+>\C'Z// ¢; — &)+ |V, — &) *)dudt

dxdt+C’m 6" / / ¢ — G) dxdt

L

The last but one term on the right-hand side still needs to be estimated. To this end, we
decompose I = Pr(c) + Pr.(c):
2

23

=1

\Y% log

n

D

=1

V log ?
Ci

5>

=1

Z Ppi(€)ij\/GV log

7=1

Z Pr(c)ij\/6V log

7j=1

The first term on the right-hand side can be absorbed for sufficiently small ¢ > 0 by
the second term of the left-hand side of (78). For the other term, we use the definition



MAXWELL-STEFAN-CAHN-HILLIARD SYSTEMS 35
Ppi(e)ij = \/aicjand Y77 Ve; =377 Ve = 0
ZPLL ”\/_Vlog—:\/c_ichVIOg— \/C_ZZ ¢;)Vloge;.
j=1
This gives

(79) Z/ /

1\ log dxdt

ZJ\/_V log

4 Z ||v1ogcj||Loo(QT)/ /Q(ci _ &)2dudt.
j=1 0

Hence, choosing § = A/(Ay — A) and ¢ = A, we conclude from (78) that

T n
C
Z PL(C)ij\/CjV log _—]
ol Cj

+= Z// ¢ — ¢))>dadt

)\M)\

(80)  H(c(T)|&(T dedt

< H(|E) + ZPL )ij/GV (i — fiy)| dedt

+ Clz:;/o /Q ((ci — @)+ |V(c; — &)|)dadt.

We show in the next step that the second term on the right-hand side can be estimated by
the relative energy inequality.

Step 2: Estimating the relative energy. We start from the relative energy inequality (67).
Observing that due to Lemma 4 (ii),

Z Bij(e)V (i — i) - V(p; — fij) = Z DgD(C)(\/C_iV(Mz‘ — i) - (V& V(= i)

i,j=1 ij=1

>/\Z
=1

2

Y

Z P L z] \/_ v )
inequality (67) becomes

(81) E(e(T)[e(T)) €)in/&V (p; — )| dudt

E(c O‘C +I13+f14+115+116, where

I3 =— Z/ /< i ( _Z Z](é)>V(,ui—ﬂi)-Vﬂjdxdt,

i,7=1




36 X. HUO, A. JUNGEL, AND A. TZAVARAS

1
Il4 - Z / / - Cz - Ei) -V div (C—BZ](C)VM]) d[L‘dt7

()

1,7=1
s == Z/ /\V i — &) le(_ j(é)Vﬂj)dxdt,
2,J=1
1
g = Z/ /V ¢ —G) V(e —8): V(é—Bz'j(C)VﬁJ‘)dIdt-
i,7=1 ‘

The terms I4, I15, and I14 can be estimated directly by using the regularity assumption
Vdiv((1/¢)Bi;(e)Viy) € L*(Qr):

no T
(82) 114 + ]15 + ]16 < CZ/ / ((CZ — Ez'>2 —+ |V(CZ — EZ)|2)d$dt
i=1 70 7@

The estimate for ;3 is more involved. First, we use the definition of B(¢) and decompose
I = P(e) + Pri(c). Then

Lz = Z/ / VeiEii(e, )V (u; — i) - Vijdodt =: Is; + I132,  where

i,7=1

Eij(e,€) = D" (e)\/¢; — \/7 D" (e

L = Z / /PL c)iEuj(c, €) PL(C)i/ciV (i — fix) - V idadt,

zgké 1

T2 = Z / /PLL JiteEe; (e, €)Pri(C)in/ciV (1 — fir) - Viidadt.

1,5,k =1

For I3, it is sufficient to apply Young’s inequality and to use estimate (76) for E;;(c, €):

2
(83) Lis1 < om ZPL €)ij/GV (1; — fiy)| dwdt
Z/ /\En ¢, &) 2|V jis|2ddt
m i,7=1
2
C)ij /G V (1 — ;)| ddt

—Jo JaliH
n_oT

m) Z/ /(cz — &) dxdt,
i=1 70 JQ

where C'(m) > 0 depends on m, n, A, and the L>(Qr) norm of V.
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For I 3, we observe that the property ran DBP(c) = L(c), which follows from Lemma
3, implies that P,.(c)D?P(c)z = 0 for all z € R™. Hence,

ZPLL c)iEyj(c, €) ZPLL \/g DEP(&)\/5;.

We infer from the definitions Py 1 (€)s = /¢ic, and py, — iy, = log(cx/¢x) — A(cx, — &) that

C
(84) 1132 = Z / / PLJ_ ’Lk\/_PLJ-( )lg ZDZ] \/_V M — /,Lk V/L]dmdt

zng 1

= — Z / /Zczck “ Dg] )/ V (1 ) - Vidzdt

g,k l=1

= — Z DfD \/_Vlog - Viidzdt
1/ IR
—c
//le (Ck KDZD \/_V,u]> (e, — ¢ )dxdt
7,k 0=1

=:J1 + Jo,

where we added the expression — Y} | \/¢D/;P(€) = 0, which follows from ker D" (¢) =

Lt(e) = span{y/¢} (see Lemma 4) and the symmetry of DBP(¢) (see Lemma 3), and we
integrated by parts in the last integral.
To estimate .J;, we use Young’s inequality with # > 0, Lemma 4 (iii), and (79):

0~ [T
J1§12/ /Ck
+— / /Cg—Cg ijD( c)%e;|Vii;|*dxdt

]ké 1
n T
dxdtJrOQZ / / (¢; — &)2dxdt
i=1 /0 JQ

2
dxdt

Vlo fk
Ck

€)yy/5V log
J

i=1 70 JOI i

C - T —\2
+— Z (ce — ¢p)*dxdt,

0 =Jo Jo

where C' > 0 depends on the L*>°(Qr) norms of Vé and V.
Next, we use again Young’s inequality with ¢ > 0:

JQ<—Z/ (ck — Ck) dxdt+0/2/ /|d1v ce(ce — ¢)Qq(e )‘ dzdt,

k=1
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where we defined
~ 1 pp o

= ; ED@ (©)\/EVii;.

Estimating
‘ div (cx(ce — ) Qu(e )| = ‘ck (cg — C) div Qu(€) + cxV(co — ) - Qu(€)
+ (Cg — Cg)V(Ck — Ck) . Q@(C) (C@ — Eg)Vék . Qg(é)|
< Clee =l + V(e = &) + [V (e, — a)])

where C' > 0 depends on the L®(Qr) norm of Qy(¢), we deduce from (85) that

J2<—Z/ Ck — Cr) d:vdt+02// ci— &) +|V(a —cz)|)d:cdt

Inserting the estimates for J1 and Jy into (84) leads to

dacdt+ / / ¢ —G)) dxdt

+C’96’/ / / ¢ —G)? + V(e — &)|?)ddt.

Then, together with (83), we find that

(€)ij/6V log

[132

(€)ij\/GV log

da:dt —|— / / —G)) dxdt

Finally, we insert this estimate and estimate (82) for I 4, I15, and [ into (81), observing
that the first term on the right-hand side of (85) is absorbed by the second term on the
left-hand side of (81):

n 2
(36) E(e(T)|e(T |30 PV = )|
E(e”) + (€)ij\/¢V log dxdt

0’ "
// ¢ —Gi)) 2dxdt
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0(0, ‘9,) Z/O /Q ((CZ - Ei)Q + |V(CZ - Ei)|2)dl‘dt.

Step 3: Combining the relative energy and relative entropy inequalities. Next, multiply
(86) by 4(Axr — A)?/(AmA), choose 0" = A\, A%/ (4(Ayr — A)?), and add this expression to
(80) (which estimates H(c|¢)). Then some terms on the right-hand side can be absorbed
by the corresponding expressions on the left-hand side, leading to

H(eD)le(n) + * e emle(r)
+M y iPL(C)ij@V(Mj—ﬂj) dadt
m/—wog dmdt+ Z / / ¢; — &))*dxdt
(AM >\)

£(c’le’)

// ¢ — &)+ V(e — &) dedt,

The last term can be bounded in terms of the free energy, since ¢;log(c;/¢;) — (¢; — &) >
(c; —&)?/2 [21, Lemma 18]:

™ &(T Mg TVe(T)) < 0180y 4 MM = 7 (0150

Hie(T)e(r) + " Mg enyje(r)) < mied) + U g

m

< H(|e) +

+C /0 E(e(t)|e(t))dt.

Then the theorem follows after applying Gronwall’s lemma.

5. EXAMPLES

We present some models which satisfy Assumptions (B1)—(B4).

5.1. A phase separation model. Elliott and Garcke have studied in [13] equations (1)
(5), formulated in terms of the mobility matrix (8), where

b;(c))
Bi‘C :bicz‘ (51—7#—])7 i,jzl,...,n.
i0) =) (8 = s
The functions b; € C'([0,1]) are nonnegative and satisfy Bic; < b;(c;) < Bac; for ¢; € [0, 1]
and some constants 0 < 1 < 5. This model describes phase transitions in multicompo-
nent systems; it has been suggested in [1] to model the dynamics of polymer mixtures with
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bi(c;) = Bic; and B; > 0. The subspace L(c) becomes
L(C) = {Z S R"™ : Z \ bz(cz>zz = O},
i=1
and the matrix DPP(c) is determined directly from the mobility matrix:
B;j(c) o bi(ci)b;(c))

b(eby(c) 7 i beler)

Instead of checking Assumptions (B1)—(B4), it is more convenient to verify the statements
of Lemma 4 directly. This has been done in [21, Section 2]. Although the global existence
of weak solutions has been already proved in [13], we obtain the weak-strong uniqueness
property as a new result.

BD/ .\ _
Dij (c) =

5.2. Classical Maxwell-Stefan system. In the classical Maxwell-Stefan model, the
matrix K (¢) has the entries K;;(¢) = 0;; >, kieco—kijc; fori, j = 1, ..., n. The associated
matrix DM5(¢) is given by

1 - .
D%S(C) = %KZJ(C>\/C_] = (51']‘ Z ]CMC[ — kijw/cicjy 1,] = 1, coe, N
* =1
It is proved in [21, Sec. 5.4] that this matrix satisfies Assumptions (B1)—-(B4). Thus,
Theorems 1 and 2 hold for the model
oe; + div(cu;) = 0, Zciui =0, i=1,...,n,
i=1

C; -
GV — e Y ¢V = = > kijeici(ui — uy),
k1 Ch j=1

j=1

where p; = log ¢; — Ac;. Compared to [21], the mobility does not only depend on ¢; but also
on Ac;. This extends the existence and weak-strong uniqueness results to a more general
case.

5.3. A physical vapor decomposition model for solar cells. Thin-film crystalline
solar cells can be fabricated as thin coatings on a substrate by the physical vapor decom-
position process. The dynamics of the volume fractions of the process components can
be described by model (1)—(4) with the chemical potentials p; = loge¢; and the mobility
matrix

Bij(e) = by Z ki cico — kijeic;, 4,5 =1,...,n.
(=1

In this case, the Bott-Duffin matrix is given by D" (c) = By;(c)/,/éc; = D}®(c), where
DM5(¢) is the Maxwell-Stefan matrix of the previous subsection. Thus, Assumptions
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(B1)—(B4) are verified for this matrix. We infer that Theorems 1 and 2 hold for the model

Oic; = divz kijcic;V (i — 1), pi =loge; —Acy, i=1,...,n.

j=1

When p; = logc; for all i, the global existence of weak solutions was proved in [2] and
the weak-strong uniqueness of solutions was shown in [19]. A global existence result was
obtained in [11] for p; = log ¢y —dc+ (1 —2¢;) with 5> 0 and pu; = loge; fori =2,... n.
Our theorems extend these results to a more general case.
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