GLOBAL MARTINGALE SOLUTIONS FOR STOCHASTIC
SHIGESADA-KAWASAKI-TERAMOTO POPULATION MODELS

MARCEL BRAUKHOFF, FLORIAN HUBER, AND ANSGAR JUNGEL

ABSTRACT. The existence of global nonnegative martingale solutions to cross-diffusion
systems of Shigesada—Kawasaki—Teramoto type with multiplicative noise is proven. The
model describes the stochastic segregation dynamics of an arbitrary number of population
species in a bounded domain with no-flux boundary conditions. The diffusion matrix is
generally neither symmetric nor positive semidefinite, which excludes standard methods
for evolution equations. Instead, the existence proof is based on the entropy structure of
the model, a novel regularization of the entropy variable, higher-order moment estimates,
and fractional time regularity. The regularization technique is generic and is applied to
the population system with self-diffusion in any space dimension and without self-diffusion
in two space dimensions.

1. INTRODUCTION

Shigesada, Kawasaki, and Teramoto (SKT) suggested in their seminal paper [37] a de-
terministic cross-diffusion system for two competing species, which is able to describe the
segregation of the populations. A random influence of the environment or the lack of knowl-
edge of certain biological parameters motivate the introduction of noise terms, leading to
the stochastic system for n species with the population density u; of the ith species:

(1)  du; —div <Z Az-j(u)Vuj)dt = Zazj(u)de(t) in0,t>0,i=1,...,n,
j=1 Jj=1
with initial and no-flux boundary conditions

(2) u;(0) =) in O, ZAij(u)Vujm:O on 00, t>0,i=1,...,n,
j=1
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and diffusion coeflicients

(3) Aj(u) = 04 (aio + Zaikuk) +agug, 4,5=1,...,n,

k=1

where O C R? (d > 1) is a bounded domain, v is the exterior unit normal vector to 9O,
(Wy,...,W,) is an n-dimensional cylindrical Wiener process, and a;; > 0 fori =1,...,n,
j=0,...,n are parameters. The stochastic framework is detailed in Section 2.

The deterministic analog of (1)—(3) generalizes the two-species model of [37] to an arbi-
trary number of species. The deterministic model can be derived rigorously from nonlocal
population systems [19, 35], stochastic interacting particle systems [8], and finite-state
jump Markov models [2, 13]. The original system in [37] also contains a deterministic
environmental potential and Lotka—Volterra terms, which are neglected here for simplicity.

We call a;p the diffusion coefficients, a;; the self-diffusion coefficients, and a;; for i # j
the cross-diffusion coefficients. We say that system (1)-(3) is with self-diffusion if a;y > 0,
a; >0 forall i =1,... n, and without self-diffusion if a;g > 0, a;; =0 forallt=1,...,n.

The aim of this work is to prove the existence of global nonnegative martingale solutions
to system (1)—(3) allowing for large cross-diffusion coefficients. The existence of a local
pathwise mild solution to (1)—(3) with n = 2 was shown in [30, Theorem 4.3] under the
assumption that the diffusion matrix is positive definite. Global martingale solutions to a
SKT model with quadratic instead of linear coeflicients A;;(u) were found in [18]. Besides
detailed balance, this result needs a moderate smallness condition on the cross-diffusion
coefficients. We prove the existence of global martingale solutions to the SKT model for
general coefficients satisfying detailed balance. This result seems to be new.

There are two major difficulties in the analysis of system (1). The first difficulty is the
fact that the diffusion matrix associated to (1) is generally neither symmetric nor positive
semidefinite. In particular, standard semigroup theory is not applicable. These issues have
been overcome in [9, 10] in the deterministic case by revealing a formal gradient-flow or
entropy structure. The task is to extend this idea to the stochastic setting.

In the deterministic case, usually an implicit Euler time discretization is used [24]. In
the stochastic case, we need an explicit Euler scheme because of the stochastic 1t6 integral,
but this excludes entropy estimates. An alternative is the Galerkin scheme, which reduces
the infinite-dimensional stochastic system to a finite-dimensional one; see, e.g., the proof
of [32, Theorem 4.2.4]. This is possible only if energy-type (L?) estimates are available, i.e.
if u; can be used as a test function. In the present case, however, only entropy estimates
are available with the test function logu;, which is not an element of the Galerkin space.

In the following, we describe our strategy to overcome these difficulties. We say that
system (1) has an entropy structure if there exists a function h : [0,00)" — [0, 00), called
an entropy density, such that the deterministic analog of (1) can be written in terms of
the entropy variables (or chemical potentials) w; = 0h/0u; as

(4) Byui(w) — div ( iBij(w)ij) =0, i=1...,n,
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where w = (w1, ..., w,), u; is interpreted as a function of w, and B(w) = A(u(w))h” (u(w)) ™!
with B = (B;;) is positive semidefinite. For the deterministic analog of (1), it was shown
in [11] that the entropy density is given by

n

(5) h(u) = Zm (wi(logu; — 1)+ 1), € [0,00)",
i=1
where the numbers m; > 0 are assumed to satisfy ma;; = mja; for all ¢,5 = 1,...,n. This
condition is the detailed-balance condition for the Markov chain associated to (a;;), and
(71, ...,m,) is the corresponding reversible stationary measure [11]. Using w; = 7; logu; in
(4) as a test function and summing over i = 1,...,n, a formal computation shows that
d
(6) dt/ dx—i—2/ Zm(Zazo\V\/u_f+2a“]Vu2]2+ZaU]V,/u u3\2)dx—0
J#i

A similar expression holds in the stochastic setting; see (29). It provides L? estimates for
V/u; if ajp > 0 and for Vu; if a; > 0. Moreover, having proved the existence of a solution
w to an approximate version of (1) leads to the positivity of u;(w) = exp(w;/m;) (and
nonnegativity after passing to the de-regularization limit).

To define the approximate scheme, our idea is to “regularize” the entropy variable w.
Indeed, instead of the algebraic mapping w +— u(w), we introduce the mapping Q.(w) =
u(w) + eL*Lw, where L : D(L) — H with domain D(L) C H is a suitable operator and
L* its dual; see Section 3 for details. The operator L is chosen in such a way that all
elements of D(L) are bounded functions, implying that u(w) is well defined. Introducing
the regularization operator R. : D(L)" — D(L) as the inverse of Q. : D(L) — D(L)', the
approximate scheme to (1) is defined, written in compact form, as

(7) du(t) = div (B(R.(v))VR.(v))dt + o (u(R.(v)))dW (t), > 0.

The existence of a local weak solution v* to (7) with suitable initial and boundary
conditions is proved by applying the abstract result of [32, Theorem 4.2.4]; see Theorem
12. The entropy inequality for w® := R.(v®) and u® := u(w®),

€
B s [ huO)e+SE s [0

0<t<TATR 0<t<TATR
sup / /Vw w®(s)) Vs (s)dzds < C(u°,T),
O<t<T/\TR

up to some stopping time 7z > 0 allows us to extend the local solution to a global one
(Proposition 15).

For the de-regularization limit ¢ — 0, we need suitable uniform bounds. The entropy
inequality provides gradient bounds for u in the case with self-diffusion and for (u$)'/? in
the case without self-diffusion. Based on these estimates, we use the Gagliardo—N 1renberg
inequality to prove uniform bounds for u$ in L9(0, T’ Lq(O)) with ¢ > 2. Such an estimate
is crucial to define, for instance, the product ujuj. Furthermore, we show a uniform
estimate for u{ in the Sobolev—Slobodeckij space W*?(0,T; D(L)") for some o < 1/2 and
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p > 2 such that ap > 1. These estimates are needed to prove the tightness of the laws
of (u) in some sub-Polish space and to conclude strong convergence in L? thanks to the
Skorokhod—Jakubowski theorem.

For the uniform estimates, we need to distinguish the cases with and without self-
diffusion. In the former case, we obtain an L*(0,T; H'(O)) estimate for uf, such that
the product u$Vu5 is integrable, and we can pass to the limit in the coefficients A;;(us).
Without self-diffusion, we can only conclude that (uf) is bounded in L*(0,T; W'(0)),

and products like ujVui may be not integrable. To overcome this issue, we use the fact
that

(8) div ( é Aij(uf)Vuj) =A (u (am + é Gijuj) >

and write (1) in a “very weak” formulation by applying the Laplace operator to the test
function. Since the bound in L?(0,T; W(0)) implies a bound in L*(0, T; L*(©)) bound
in two space dimensions, products like uju$ are integrable. In the deterministic case, we
can exploit the L? bound for V(ufus)"/? to find a bound for u§us in L*(0,T; L*(O)) in any
space dimension, but the limit involves an identification that we could not extend to the
martingale solution concept.

On an informal level, we may state our main result as follows. We refer to Section 2 for

the precise formulation.

Theorem 1 (Informal statement). Let a;; > 0 satisfy the detailed-balance condition, let the
stochastic diffusion o;; be Lipschitz continuous on the space of Hilbert-Schmidt operators,
and let a certain interaction condition between the entropy and stochastic diffusion hold
(see Assumption (A5) below). Then there exists a global nonnegative martingale solution
to (1)=(3) in the case with self-diffusion in any space dimension and in the case without
self-diffusion in at most two space dimensions.

We discuss examples for o;;(u) in Section 7. Here, we only remark that an admissible
diffusion term is

(9) oij(u) = 5,~juf‘2ak(ek,~)(], ij=1,...,n,
k=1

where 1/2 < o < 1, ¢;; is the Kronecker symbol, a; > 0 decays sufficiently fast, (ej) is a
basis of the Hilbert space U with inner product (-, -)y.

We end this section by giving a brief overview of the state of the art for the deterministic
SKT model. First existence results for the two-species model were proven under restrictive
conditions on the parameters, for instance in one space dimension [26], for the triangular
system with ag; = 0 [33], or for small cross-diffusion parameters, since in the latter situation
the diffusion matrix becomes positive definite [17]. Amann [1] proved that a priori estimates
in the W'?(O) norm with p > d are sufficient to conclude the global existence of solutions
to quasilinear parabolic systems, and he applied this result to the triangular SK'T system.
The first global existence proof without any restriction on the parameters a;; (except
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nonnegativity) was achieved in [22] in one space dimension. This result was generalized
to several space dimensions in [9, 10] and to the whole space problem in [21]. SKT-
type systems with nonlinear coefficients A;;(u), but still for two species, were analyzed in
[15, 16]. Global existence results for SKT-type models with an arbitrary number of species
and under a detailed-balance condition were first proved in [11] and later generalized in
[31].

This paper is organized as follows. We present our notation and the main results in
Section 2. The operators needed to define the approximative scheme are introduced in
Section 3. In Section 4, the existence of solutions to a general approximative scheme is
proved and the corresponding entropy inequality is derived. Theorems 3 and 4 are shown
in Sections 5 and 6, respectively. Section 7 is concerned with examples for o;;(u) satisfying
our assumptions. Finally, the proofs of some auxiliary lemmas are presented in Appendix
A, and Appendix B states a tightness criterion that (slightly) extends [5, Corollary 2.6].

2. NOTATION AND MAIN RESULT

2.1. Notation and stochastic framework. Let O C R? (d > 1) be a bounded domain.
The Lebesgue and Sobolev spaces are denoted by LP(O) and W*P(QO), respectively, where
p € [1,00], k € N, and H*(O) = W*2(0O). For notational simplicity, we generally do not
distinguish between W*?(0) and W*?(O; R"™). We set HW(O) = {v € H™(O) : Vv-v =0
on 00} for m > 2. If u = (uy,...,u,) € X is some vector-valued function in the normed
space X, we write |[ul|% = >, [lui||%. The inner product of a Hilbert space H is denoted
by (-, )m, and (-, -)y v is the dual product between the Banach space V' and its dual V. If
F .U — V is a Fréchet differentiable function between Banach spaces U and V', we write
DF[v] : U — V for its Fréchet derivative, for any v € U.

Given two quadratic matrices A = (A;;), B = (By) € RV, A B = Y71, | Ai;By; is
the Frobenius matrix product, ||A||r = (A : A)Y/2 the Frobenius norm of A, and tr A =
> A the trace of A. The constants C' > 0 in this paper are generic and their values
change from line to line.

Let (2, F,P) be a probability space endowed with a complete right-continuous filtration
F = (F)i>0 and let H be a Hilbert space. Then L°(Q; H) consists of all measurable
functions from Q to H, and L*(Q; H) consists of all H-valued random variables v such
that Eljv]|3 = [, lv(w)||7P(dw) < co. Let U be a separable Hilbert space and (ex)ren be
an orthonormal basis of U. The space of Hilbert-Schmidt operators from U to L*(O) is
defined by

Lo(U; L*(0)) = {F : U — L*(O) linear, continuous : Z ||Fek||2L2(@) < oo},
k=1

and it is endowed with the norm ||F||z,w;r2(0)) = iy ||Fek|\%2(o))1/2.

Let W = (Wy,...,W,) be an n-dimensional U-cylindrical Wiener process, taking values
in the separable Hilbert space Uy D U and adapted to the filtration F. We can write
W; = >, ekVVf, where (I/Vj’“) is a sequence of independent standard one-dimensional
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Brownian motions [12, Section 4.1.2]. Then W;(w) € C°([0,00); Uy) for a.e. w [32, Section
2.5.1].

2.2. Assumptions. We impose the following assumptions:

(A1) Domain: O C R (d > 1) is a bounded domain with Lipschitz boundary. Let T' > 0
and set Qr = O x (0,7).

(A2) Inmitial datum: u® = (uf,...,u?) € L>®(Q; L*(O;R")) is a Fy-measurable random
variable satisfying u"(z) > 0 for a.e. v € O P-as.

(A3) Diffusion matrix: a;; > 0fori=1,...,n,j =0,...,n and there exist my,...,m, > 0
such that ma;; = mja;; for all i, j = 1,...,n (detailed-balance condition).

(A4) Multiplicative noise: o = (0y;) is an n X n matrix, where o;; : L*(O;R") —
Lo(U; L?(0)) is B(L*(O;R™))/ B(Ly(U; L*(O)))-measurable and F-adapted. Fur-
thermore, there exists C, > 0 such that for all u, v € L?*(O;R"),

lo(u) = o)l w2 (0)) < Collu = vllz2(0),
lo ()|l cowiz20y) < Co(1 + [0l 22(0))-
(A5) Interaction between entropy and noise: There exists C;, > 0 such that for all

ue L0 x (0,T)),
([

2o 1( OS_Z(u(s))aij(u(S))ekdx>2d3}1 <ch(1+// dxds)
/0 / tr [(o (w)er) "W (w)o(w)ex] (s)dads <ch(1+ / / dxds)

where h is the entropy density defined in (5).

Remark 2 (Discussion of the assumptions). (A1) The Lipschitz regularity of the bound-
ary 00 is needed to apply the Sobolev and Gagliardo-Nirenberg inequalities.

(A2) The regularity condition on u° can be weakened to u® € LP(§); L?(O;R")) for suf-
ficiently large p > 2 (only depending on the space dimension); it is used to derive
the higher-order moment estimates.

(A3) The detailed-balance condition is also needed in the deterministic case to reveal the
entropy structure of the system; see [11].

(A4) The Lipschitz continuity of the stochastic diffusion o(u) is a standard condition for
stochastic PDEs; see, e.g., [36].

(A5) This is the most restrictive assumption. It compensates for the singularity of
(Oh/0u;)(u) = m;logu; at u; = 0. We show in Lemma 33 that

ul 17
70 = T Z ax(ex )

satisfies Assumption (A5), where n > 0 and (a;) € (*(R). Taking into account
the gradient estimate from the entropy inequality (see (6)), we can allow for more
general stochastic diffusion terms like (9); see Lemma 34.
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2.3. Main results. Let "> 0, m € N with m > d/2 + 1, and D(L) = HJ(O).

Definition 1 (Martingale solution). A martingale solution to (1)(3) is the triple (U, W , )
such that U = (Q, F,P,F) is a stochastic basis with filtration F = (]-"t)t>0, W is an n-

dimensional cylindrical Wiener process, and u = (U1, . .., Uy) is a continuous D(L) -valued
F-adapted process such that u; > 0 a.e. in O x (0,7T) ]P-a.s.,
(10) U € L°(;C°([0,T); D(L)")) N LO($y; L*(0, T H' (0))),

the law of ;(0) is the same as for u?, and for all¢ € D(L), t € (0,T),i=1,...,n, P-a.s.,

(11)  (i(t), &) pwy ) = (ui(0), d) pry.p Z/ / 4 (U(s)) Vi (s) - Vodads

+Z/ (/ o (T(s))dW; (s ))(bdx.

Our main results read as follows.

Theorem 3 (Existence for the SKT model with self-diffusion). Let Assumptions (A1)-
(A5) be satisfied and let a; > 0 fori =1,...,n. Then (1)~(3) has a global nonnegative
martingale solution in the sense of Definition 1.

Theorem 4 (Existence for the SKT model without self-diffusion). Let Assumptions (A1)-
(A5) be satisfied, let d < 2, and let ag; > 0 for i = 1,...,n. We strengthen Assumption
(A4) slightly by assuming that for all v € L*(O;R"),

lo(0)l| 2220y < Col1 + 0]]2(0))-

where y < 1ifd=2andy=1ifd=1. Then (1)—(3) has a global nonnegative martingale
solution in the sense of Definition 1 with the exception that (10) and (11) are replaced by

i, € L°(Q; C°([0,T]; D(L)') N LO(Q; L*(0, T; W (0))
and, for all $ € D(L) NTW*>(0),

<?7i(t)a ¢>D(L)',D(L) = @1(0)7 ¢>D(L)',D(L) - /0 /0’171(5) <Cbio + ;Giﬂj(s))A¢dl’dS

+Z/ (/ o3 ((s)) AW, (s )>¢dx.

The weak formulation for the SKT system without self-diffusion is weaker than that one
with self-diffusion, since we have only the gradient regularity Vu; € L'(O), and A;;(u)
may be nonintegrable. However, system (1) can be written in Laplacian form according to
(8), which allows for the “very weak” formulation stated in Theorem 4. The condition on
v if d = 2 is needed to prove the fractional time regularity for the approximative solutions.
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Remark 5 (Nonnegativity of the solution). The a.s. nonnegativity of the population den-
sities is a consequence of the entropy structure, since the approximate densities u; satisfy
uf = u;(R(v°)) = exp(R.(v°)/m;) > 0 a.e. in Qp. This may be surprising since we do not
assume that the noise vanishes at zero, i.e. o;(u) = 0 if u; = 0. This condition is replaced
by the weaker integrability condition for o;;(u)logw; in Assumption (A5). A similar, but
pointwise condition was imposed in the deterministic case; see Hypothesis (H3) in [25,
Section 4.4]. The examples in Section 7 satisfy o;;(u) = 0 if w; = 0. O

3. OPERATOR SETUP
In this section, we introduce the operators needed to define the approximate scheme.

3.1. Definition of the connection operator L. We define an operator L that “con-
nects” two Hilbert spaces V' and H satisfying V' C H. This abstract operator allows us to
define a regularization operator that “lifts” the dual space V' to V.

Proposition 6 (Operator L). Let V and H be separable Hilbert spaces such that the
embedding V — H is continuous and dense. Then there exists a bounded, self-adjoint,
positive operator L : D(L) — H with domain D(L) = V. Moreover, it holds for L and its
dual operator L* : H — V' (we identify H and its dual H') that, for some 0 < ¢ < 1,

(12) cllolly <IL@)a = llvllv,  [I1L5(w)llv < lwlla, veV, we H.

We abuse slightly the notation by denoting both dual and adjoint operators by A*. The
proof is similar to [27, Theorem 1.12]. For the convenience of the reader, we present the
full proof.

Proof. We first construct some auxiliary operator by means of the Riesz representation
theorem. Let w € H. The mapping V — R, v — (v, w)y, is linear and bounded. Hence,
there exists a unique element w € V such that (v,w)y = (v,w)y for all v € V. This
defines the linear operator G : H — V, G(w) := w, such that

(v,w)g = (v,G(w))y forallveV, we H.
The operator G is bounded and symmetric, since ||G(w)||y = ||w|lv = ||w||z and
(13) (G(w),v)g = (G(w),G(v))y = (w,G(v))y for all v,w € H.
This means that G is self-adjoint as an operator on H. Choosing v = w € H in (13) gives
(G),v)g = [|G)|3 >0, ie., G is positive. We claim that G is also one-to-one. Indeed,
let G(w) = 0 for some w € H. Then 0 = (v,G(w))y = (v,w)y for all v € V and, by the
density of the embedding V' < H, for all v € H. This implies that w = 0 and shows the
claim.

The properties on G allow us to define A :== G~ : D(A) — H, where D(A) = ran(G) C
V and D(A) denotes the domain of A. By definition, this operator satisfies

(v, A(w))g = (v,w)y forallveV, we D).

Hence, for all v,w € D(A), we have (v, A(w))g = (v,w)y = (A(v),w)q, i.e., A is symmet-
ric. Since G = G*, we have D(A*) = ran(G*) = ran(G) = D(A) and consequently, A is
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self-adjoint. Moreover, A is densely defined (since V' < H is dense). As a densely defined,
self-adjoint operator, it is also closed. Finally, A is one-to-one and positive:

ClA@ullvlly = A allvllr = (A@),v)a = (v,v)y = [lv][; >0

for all v € D(A) and some C' > 0 and consequently, ||A(v)||g > C~|v||v.
Therefore, we can define the square root of A, AY? : D(AY?) — H, which is densely
defined and closed. Its domain can be obtained by closing D(A) with respect to

(14) IAY2(0) || = (AY2(0), AV2(0)) g = (A(v),0) 7 = (v,0)y/ = |Jolly

for v € D(AY?). In particular, the graph norm ||- ||+ [|AY?(-)|| ;7 is equivalent to the norm
in V. We claim that D(A'?) = V. To prove this, let w € V be orthogonal to D(A/?).
Then (w,v)y = 0 for all v € D(AY?) and, since D(A) € D(A'Y?), in particular for all
v € D(A). It follows that 0 = (w,v)y = (w, A(v))y for v € D(A). Since A is the inverse
of G: H— V, we have ran(A) = H, and it holds that (w,{)y = 0 for all £ € H, implying
that w = 0. This shows the claim.

Finally, we define L := A2 : D(L) = V — H, which is a positive and self-adjoint
operator. Estimate (14) shows that ||L(v)||g = ||v|[v for v € V. We deduce from the
equivalence between the norm in V' and the graph norm of L that, for some C' > 0 and all
veV,

lWllv < CUL@)a + llvllz) = CUL@)v + 127 L) |r) < CA+ 1L DIL©)]a,

which proves the lower bound in (12). The dual operator L* : H — V' is bounded too,
since it holds for all w € H that

1L (w)llv: = sup [(w, L(v))u| < sup [wlzllv]lv = [w]a-

llvllv=1 llvllv=1

This ends the proof. O

We apply Proposition 6 to V' = H¥(O) and H = L*(0), recalling that Hy(O) =
{v e H"(O) : Vv-v = 0 on 00} and m > d/2 + 1. Then, by Sobolev’s embedding,
D(L) < Wb>(0). Observe the following two properties that are used later:

(15) IL"L()llv < lvllv,  IIL5(w)llvr < [Jw]|g forallv eV, we H.
The following lemma is used in the proof of Proposition 15 to apply 1td’s lemma.

Lemma 7 (Operator L™1). Let L™ : ran(L) — D(L) be the inverse of L and let D(L™!) :=
D(A) be the closure of D(A) with respect to ||L~1(:)||zz. Then D(L) is isometric to D(L™1).
In particular, it holds that (L~*(v), L™ (w))x = (v, w)p(ry for all v, w € D(L)'.

Proof. The proof is essentially contained in [27, p. 136ff] and we only sketch it. Let
F € D(L7'Y. Then |F(v)| < C||L7'(v)||g for all v € D(A) and, as a consequence,
|F(Lu)| < Cllul|g for u = L7 (v) € D(L). The density of L™*(D(A)) in H guarantees
the unique representation F'(Lu) = (u,w)y for some w € H, and we can represent F' in
the form F(v) = (L7 'v,w)y = (v, L7'w)y, where L™'w € D(L). This shows that every
element of D(L™')" can be identified with an element of D(L).
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Conversely, if w € D(L), we consider functionals of the type v — (v, w)y for v € D(A),
which are bounded in ||L7!(-)||z. These functionals can be extended by continuity to
functionals F belonging to D(L™')". The proof in [27, p. 137] shows that || F|/p-1y =
|w||pry- We conclude that D(L™1) is isometric to D(L). Since Hilbert spaces are reflexive,
D(L™!) is isometric to D(L)'. O
Lemma 8 (Operator u). The mapping u := (h')~! from D(L) to L>(QO) is Fréchet differ-
entiable and, as a mapping from D(L) to D(L)', monotone.

Proof. Let w € D(L) < L*(0O) (here we use m > d/2). Then u(w) = (z — u(w(x))) €
L>=(0), showing that u : D(L) — L*(0) = (L*(O))" — D(L)" is well defined. It follows
from the mean-value theorem that for all w, £ € D(L),

1
luw + €) — u(w) — o (W) z=o) < ClEIBes / (1= s)u(w + s€)ds

L>=(0)
Since u” maps bounded sets to bounded sets, the integral is bounded. Thus, u : D(L) —
L>(0) is Fréchet differentiable. For the monotonicity, we use the convexity of 4 and hence
the monotonicity of h':
(u(v) —uw(w), v —w) pry,pry = (u(v) —uwlw), v —w)r2e)

= (u(v) = u(w), h'(u(v)) = B (u(w)))r20) =2 0
for all v, w € D(L). This proves the lemma. O
3.2. Definition of the regularization operator R.. First, we define another operator
that maps D(L) to D(L)’. Its inverse is the desired regularization operator.
Lemma 9 (Operator Q.). Let € > 0 and define Q. : D(L) — D(L) by Q-(w) = u(w) +
eL*Lw, where w € D(L). Then Q. is Fréchet differentiable, strongly monotone, coercive,

and invertible. Its Fréchet derivative DQ.[w](§) = v/ (w)& + eL*LE for w, £ € D(L) is
continuous, strongly monotone, coercive, and invertible.

Proof. The mapping . is well defined since w € D(L) — L*(0O) implies that u(w) €
L>*(0) and hence, ||u(w)|pry < Cllu(w)||i(o) is finite. We show that Q. is strongly
monotone. For this, let v, w € D(L) and compute

(16) (Q:(v) = Qe(w), v — W) p(ry.p(r)
= (u(v) —u(w),v —w)g +e(L*L(v — w),v — w) p(Ly,p(L)
> e(L*L(v — w),v — w)py,pr) = el L(v —w)||f > ecllo — wll]

where we used the monotonicity of w +— u(w) and the lower bound in (12). The coercivity
of (). is a consequence of the strong monotonicity:

(Q:(v),v) pry,pry = (Qe(v) — Q=(0),v — 0) pry.pry + (Qe(0),v) p(ry,p(1)
> ec|lvl[Dry + (w(0),v)m > ecllvl| By — Clu0)|Jv]lpw)

for v € D(L). Based on these properties, the invertibility of (). now follows from Browder’s
theorem [20, Theorem 6.1.21].
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Next, we show the properties for DQ.. The operator DQ.[w] : D(L) — D(L)" is well
defined for all w € D(L), since
[v'(w)Ellpy < Cllw'(w)llr20) < Cllw' (w)ll 20y €]l < 0) < Cll' (W)l 20) 1€l sy
for all £ € D(L) — L*>(O). The strong monotonicity of DQ.[w]| for w € D(L) follows
from the positive semidefiniteness of u'(w) = (h”) ™' (u(w)) and the lower bound in (12):
(DQ:[w](&§) — DQ:[w](n),& — n) p(ry.p(L)
= (W' (w)(§ —n), & =n)m +(L"L(E = n),§ = n)pwy.pw)
> e L€ =l = ecll§ = nllpe)

for &, n € D(L). The choice n = 0 yields immediately the coercivity of DQ.[w]. The
invertibility of DQ.[w] follows again from Browder’s theorem. U

Lemma 9 shows that the inverse of Q. exists. We set R. := Q-' : D(L) — D(L), which
is the desired regularization operator. It has the following properties.

Lemma 10 (Operator R.). The operator R. : D(L)" — D(L) is Fréchet differentiable and
strictly monotone. In particular, it is Lipschitz continuous with Lipschitz constant C/e,
where C' > 0 does not depend on €. The Fréchet derivative equals

DR.[v] = (DQ:[R-(v)]) ™" = (v/(R.(v)) +eL*L)~"  forv e D(L),
and it is Lipschitz continuous with constant C'/e, satisfying |DR:[v](€)|Ipy < e ClIEll ey
forv, £ € D(L).
Proof. We show first the Lipschitz continuity of R.. Let vy, vo € D(L)". Then there exist
wy, we € D(L) such that v; = Q. (wy), v2 = Q<(w2). Hence, using (12) and (16),
1R=(v1) = Re(v2) by = llwr — well by < ClIL(wy — ws)l
< e '0(Q:(w1) — Qcl(ws), wy — Wa) D(LY,D(L)
< e10||Qc(wr) — Qc(wa) || by lwr — wallpiry
=& 'Clloy — vallpy || Re(v1) — Re(v2)llp(r)
proving that R, is Lipschitz continuous with Lipschitz constant C'/e. The Fréchet differ-
entiability is a consequence of the inverse function theorem and DR [v] = (DQ.[R.(v)])™*
for v € D(L)'.

We verify the strict monotonicity of R.. Let v, w € D(L)" with v # w. Because of the
strong monotonicity of ()., we have

(v —w, Rc(v) — Re(w>>D( ,D(L) = = (Qc(R:(v)) — Q(R-(w)), Re(v) — Rs(w»D(L)’,D(L)
> e le||Re(v) = Re(w)][]r) > 0,

and the right-hand side vanishes only if v = w, since R, is one-to-one.
Next, we show that DR.[v] is Lipschitz continuous. Let w;, wy € D(L). By Lemma 9,
DQ.[w] is strongly monotone. Thus, for any w € D(L),

ecllwy — w2||D(L (DQc[w](w:) — DQ:[w](ws), wy — w2>D(L)',D(L)
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< [[DQe[w](w:) — DQc[w](wa)|| pry llwr — wal pw)-
Let v; = DQ.[w](w;) and vy = DQ.[w](wsy). We infer that
1(DQ:[w]) " (v1) = (DQe[w]) ™ (v)llp(ry = lwr — wall by
< e 'O|DQ:[w](wr) — DQ:[w](ws)|| oy =& ' Cllor — vallpiwy,

showing the Lipschitz continuity of (DQ.[w])™! and DR.[v] = (DQ.[R.(v)])~!. Finally,
choosing w = R.[v] and vy = 0, [|[DR.[v](v1)||pr) < e 'Cllv1llpy - O

4. EXISTENCE OF APPROXIMATE SOLUTIONS

In the previous section, we have introduced the regularization operator R. : D(L) —
/

D(L). The entropy variable w is replaced by the regularized variable R.(v) for v € D(L)’.
Setting v = u(R.(v)) + eL*LR.(v), we consider the regularized problem

(17) dv = div (B(R.(v))VR.(v))dt + o (u(R.(v)))dW(t) in O, t€[0,T A7),

(18) v(0)=u’ in O, VR.(v)-v=0 ondO, t>0,

recalling that B(w) = A(u(w))h” (u(w))™! for w € R™.

We clarify the notion of solution to problem (17)—(18). Let 7" > 0, let 7 be an F-adapted
stopping time, and let v be a continuous, D(L)-valued, F-adapted process. We call (7, v)
a local weak solution to (17) if

v(w, ) € L*([0,T A7(w)); D(L)) N C([0, T A7(w)); D(L)')
for a.e. w € Q and for all t € [0,T A7),

(19) v(t) = v(0) +/0 div (B(R.(v(s)))VR.(v(s)))ds +/O o(u(R-(v(s)))dW (s),
(20) VR.(v)-v=0 ondO P-as.

It can be verified that R, is strongly measurable and, if v is progressively measurable, also
progressively measurable. Furthermore, if w is progressively measurable then so does u(w),
and if v € C°([0,T); D(L)'), we have R.(v) € C°([0,T]; D(L)) and u(R.(v)) € L>®(Qr).
Finally, if v € L°(Q; LP(0,T; D(L)')) for 1 < p < oo, then div(B(u(R.(v)))VR.(v)) €
LO(Q; LP(0,T; D(L)))). Therefore, the integrals in (19) are well defined. The local weak
solution is called a global weak solution if P(t1 = oco) = 1. Given ¢t > 0 and a process
v € L*(Q;C°([0,t]; D(L)')), we introduce the stopping time

g := inf{s € [0,1] : |[v(s)||py > R} for R > 0.
This time is positive. Indeed, by Chebychev’s inequality, it holds for § > 0 that
1
P(rg > 9) > ]P( sup [[v(t ATr)||pry < R) >1-— ﬁE sup ||v(t A TR)||2D(L),.
0<t<d 0<t<d

Then, inserting (19) and using the properties of the operators introduced in Section 3, we
can show that P(tg > §) > 1 — C(9), where C'(J) — 0 as § — 0, which proves the claim.
We impose the following general assumptions.



STOCHASTIC SHIGESADA-KAWASAKI-TERAMOTO MODEL 13

(H1) Entropy density: Let D C R" be a domain and let h € C?(D; [0, 00)) be such that
h' D — R™ and h"(u) € R™" for u € D are invertible and there exists C' > 0 such
that |u| < C(1+ h(u)) for all u € D.

(H2) Initial datum: u® = (uf,...,ul) € L®(Q; L*(O;R")) is Fo-measurable satisfying
u’(x) € D for a.e. z € O P-aus.

(H3) Diffusion matrix: A = (4;;) € C'(O; R™") grows at most linearly and the matrix

h"(u)A(u) is positive semidefinite for all u € D.

Remark 11 (Discussion of the assumptions). Hypothesis (H1) and the positive semidef-
initeness condition of h”(u)A(u)h”(u) in (H3) are necessary for the entropy structure of
the general cross-diffusion system. The entropy density (5) with D = (0,00)" satisfies
Hypothesis (H1), and the diffusion matrix (3) fulfills (H3). The differentiability of A is
needed to apply [32, Prop. 4.1.4] (stating that the assumptions of the abstract existence
Theorem 4.2.2 are satisfied) and can be weakened to continuity, weak monotonicity, and
coercivity conditions. The growth condition for A is technical; it guarantees that the inte-
gral formulation associated to (1) is well defined. Hypothesis (H2) guarantees that h(u®)
is well defined. O

We consider general approximate stochastic cross-diffusion systems, since the existence
result for (17) may be useful also for other stochastic cross-diffusion systems.

Theorem 12 (Existence of approximate solutions). Let Assumptions (A1)-(A2), (A4)-
(A5), (H1)-(H3) be satisfied and let € > 0, R > 0. Then problem (17)—(18) has a unique
local solution (Tg, v°®).

Proof. We want to apply Theorem 4.2.4 and Proposition 4.1.4 of [32]. To this end, we need
to verify that the operator M : D(L) — D(L)", M(v) := div(B(R.(v))VRe(v)), is Fréchet
differentiable and has at most linear growth, DM [v] — ¢l is negative semidefinite for all
v € D(L) and some ¢ > 0, and o is Lipschitz continuous.

By the regularity of the matrix A and the entropy density h, the operator D(L) — D(L)’,
w — div(B(w)Vw), is Fréchet differentiable. Then the Fréchet differentiability of R. (see
Lemma 10) and the chain rule imply that the operator M is also Fréchet differentiable
with derivative

DM [v](¢) = div (DB[R.(v)|(DR:[v](§)) VR:(v)) + div (B(R(v)) VDR[v](€)),

where v, £ € D(L)". We claim that this derivative is locally bounded, i.e. if ||v||py < K
then [|[DM[v]()|pwry < C(K)||E||pry- For this, we deduce from the Lipschitz continuity
of R. (Lemma 10) and the property u(R.(v)) € L*(O) for v € D(L)" that

IB(R(v))l|o=(0) + IDB[R:(0)]]|L=(0) < C(1 + [[R=(v)l[ b)) < C(e)(1 + [[vllpeey),
where DB[R.(v)] is interpreted as a matrix. Recalling from Lemma 10 that
IDR:[](€)lpr) < CE)IElpy forall & € D(LY,
we obtain for ||v||pry < K and £ € D(L)":
IDM](E)llpwy < C|[DB[R:(0)[(DR:[v](€))VE:(v) + B(R:(v)) VDR:[v](€) || 11 0



14 M. BRAUKHOFF, F. HUBER, AND A. JUNGEL

< CIDB[R:(0)|(DR:[v](E)) | 20 IV Re(0) | L1(0)
+ C|B(R-(v)) || (0) IVDR:[v](£) | 21(0)

< CDB[R:(v)]|[ 2 (0) [DR:[v]() I D)l B (v) | p()
+ C|B(R-(v)) |0y IDR:[0)(E) [ p(r)

< C(e)A+ vllpay)iEllpry < Cle, K)IEllpwy -

This proves the claim. Thus, if ||v]|pz)y < K, there exists ¢ > 0 such that
(&, DM[v](§) — c§)pry <0 for { € D(L)"
Moreover, by Lemma 10 again,
1M (©)l[pwy < CIB(R:(0))VE(v)]|1(0) < ClVR(0)|[£10)
< Cl|Re)llpy < e7'CQ+ [vllpey)-

It follows from Assumption (A4) and Lemma 8 that for v, v € D(L)" with ||v||pry < K
and 0]y < K,
lo(u(Re(v)) = o(w(R(0)))l cow:nwy) < Cllo(w(R<(v))) = o (u(Be(0))) 2o w:22(0))
< C(E)[[u(Re(v))) = u(R=(0))]| 22(0)
< C(K)||Re(v) = Re(v)l[ ey < Cle, K)o = llpwy,

where C'(K) also depends on the L>°(Q) norms of u/(R.(v)) and u'(R.(v)).

These estimates show that the assumptions of Theorem 4.2.4 of [32] are satisfied in the
ball {v € D(L) : ||v|][py < K}. An inspection of the proof of that theorem, which
is based on the Galerkin method and It6’s lemma, shows that local bounds are sufficient

to conclude the existence of a local solution v up to the stopping time 7z. The boundary
conditions follow from R.(v) € D(L) = H}(O) and the definition of the space Hy(O). O

For the entropy estimate we need two technical lemmas whose proofs are deferred to

Appendix A.
Lemma 13. Let w € D(L), a = (a;;) € L'(O;R™™), and b = (b;;) € D(L)™ " satisfying

DR.[w](a) =b. Then
/Oa sbdr < /Otr[a v (w) taldx.

Lemma 14. Let v° € L?(Q; L'(O)) for some p > 1 satisfies E [, h(v°)dz < C. Then

/ h(u(R.(v°)))dx + gHLRE(UO)H%Z(O) < / h(v°)da.
o o
We turn to the entropy estimate.

Proposition 15 (Entropy inequality). Let (7g,v%) be a local solution to (17)—(18) and
set vE(t) = v (w,t A TR(w)) for w € Q, t € (0,7r(w)). Then there exists a constant
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C(u®,T) > 0, depending on u® and T but not on & and R, such that

£
E sup /h( ())dx+2E sup HLwE(t>H%2(0)

0<t<TATR 0<t<TATR
+E sup / /Vw w®(s)) Vs (s)dzds < C(u°,T),
0<t<TATR
where u¢ := u(R.(v")) and w® := R.(vT).

Proof. The result follows from It6’s lemma using a regularized entropy. More precisely, we
want to apply the Itd lemma in the version of [29, Theorem 3.1]. To this end, we verify
the assumptions of that theorem. Basically, we need a twice differentiable function H on a
Hilbert space H, whose derivatives satisfy some local growth conditions on H and V', where
V' is another Hilbert space such that the embedding V' < H is dense and continuous. We
choose V.= H = D(L)’ and the regularized entropy

(21) H(v) = /O A(u(Re(0)))dz + S| LR () 0y, v € DILY.

Recall that R.(v) = h'(u(R(v))) for v € D(L)’, since u = u(w) is the inverse of A’. Then,
in view of the regularity assumptions for h and Lemma 10, H is Fréchet differentiable with
derivative

DH[v](€) = / (h'( (Re(v)))u/ (Re(v))DR:[v](§) + eLDR:[v](€) - LR-(v))dx
= ((u )+ aL*L)DR (©)) pry
= <DQa ]DR >D 5 R( ))D(Ly,D(L)
where v, £ € D(L)". In other words, DH[ ] can be 1dent1ﬁed with R.(v) € D(L). In a
similar way, we can prove that DH[v] is Fréchet differentiable with
“H[](€m) = (& DR:](0)) pwy.pw) for v, &, n € DL
We have, thanks to the Lipschitz continuity of R. and DR.[v] (see Lemma 10) for all v,
£ € D(L) with ||v||py < K for some K > 0,
IDH[J(E)] < I B()llpw) €y < Ce)(X+ lvllpw)lElnwy < Cle, K)|[Elpw,)
ID*H[v](&, &) < IDR-[)(E)lpw Il by < CEIENDwy-

Finally, for any n € D(L)’, we need an estimate for the mapping D(L) — R, v
D#H[v](n). We have identified DH[v] with R.(v) € D(L), but we need an identification in
D(L)". As in Lemma 7, the operator L can be constructed in such a way that the Riesz
representative in D(L)" of a functional acting on D(L)" can be expressed via the application
of L*L to an element of D(L). Indeed, for F' € D(L) and £ € D(L)’, we infer from Lemma
7 that

(& F)pwy.ow) = (L& LF)pwy.pwy = (LL™)L7'E, LF) 12(0)
= (L', L7 L' LF) 120y = (L*LF, §) p(r)
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Hence, we can associate DH[v] with L*LR.(v) € D(L)". Then, by the first estimate in (15)
and the Lipschitz continuity of R.,
IL*LR(v)||pry < CllRe(v)llpry < Cl|R:(v) = Re(0)pzy + CllR(0) | p(r)
S 0(8)( + HUHD(L)’) for all v € D(L)/,
giving the desired estimate for DH[v] in D(L)". Thus, the assumptions of the It6 lemma,
as stated in [29], are satisfied.

To simplify the notation, we set u° := u(R.(v")) and w® := R.(v®) in the following. By
[t0’s lemma, using DH[v] = B/(u®), D*H[v®] = DR.(v’), we have

S)>D(L)/,D(L)d8

+Z Z/ / SZZZ <u5<3))0ij(UE<S))€kd$dW;€(S)

(22) H(vE(t)) = H(v(0)) + i (div (B(w®)VH (u*(s))), w

T3 ; /0 ; DR.[v"(s)] (0 (u®(s))ex) : (o(u(s))er)dzds

Lemma 14 shows that the first term on the right-hand side can be estimated from above
by [, h(u’)dz. Using w® = R.(v R) = 1/(uf) and integrating by parts, the second term on
the rlght hand side can be written as

[ (B 0) 05

_/0 /vaf(s) . B(w®) Vs (s)dads < 0.

The boundary integral vanishes because of the choice of the space D(L) = H3(O). The last
inequality follows from Assumption (A3), which implies that B(w®) = A(u(w®))h" (u(w))™!
is positive semidefinite.. We reformulate the last term in (22) by applying Lemma 13 with
a = o(u®)ep and b = DR.[v](o(u)ey):

/DRE[UR] (o(u)er) : (o(u)ey)da
o
< / tr [(o(u)er) v/ (w) o (uf)ey]dz.
0
Taking the supremum in (22) over (0,Tg), where Tp < T A 7g, and the expectation yields

(23) E sup /h( ())dx+2E sup || Lw® ||L2(O

0<t<TRr 0<t<TRr

+E sup //Vw w®)Vws(s )dxds—E/@h(uo)dx

0<t<TRr
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<E sup //auZ $))oi;(u (s))erdazdWF(s)

0<t<TRk’ 1ij=1

+3E sup / [t (o sen) ' (5)ofu (s dads

0<t<TRr =1
= Il%—]é.

We apply the Burkholder-Davis—Gundy inequality [32, Theorem 6.1.2] to I; and use As-
sumption (Ab):

oh 2§ 1/2
I, <CE sup {/ ( (u (s))a,-j(us(s))ekdx> ds}
0<t<Tgr 0 31 ij=1 auz

< CE sup (1—1—// dxds>
0<t<Tg

Also the remaining integral I, can be bounded from above by Assumption (A5):

I, < CE sup (1—1—/ / dxds)
0<t<Tg

Therefore, (23) becomes

(24) E sup /h( “(t))dx + ‘E sup || Lw[|72 (0
0<t<Tp 2 o<t<ty
+E sup / /Vw w®)Vw®(s )dxds—E/ h(u®)dx
0<t<TRr O

< CE sup (1+// dxds)
0<t<Tg

Tr
< C’—i—C’E/ / sup h(u®(s))dxdt.
o

0<s<t
We apply Gronwall’s lemma to the function F(t) = supy.,; [, M(u(s))dz to find that
E sup / h(us(t))dx < C(u°,T).
o

0<t<Tg
Using this bound in (24) then finishes the proof. O
The entropy inequality allows us to extend the local solution to a global one.

Proposition 16. Let (1g,v°) be a local solution to (19)—(20), constructed in Theorem 12.
Then v¢ can be extended to a global solution to (19)—(20).

Proof. With the notation u® = u(R.(v°)) and w® = R.(v®), we observe that v° = Q.(R.(v))
= u(R:(v°)) + eL*LR.(v®) = u® + eL*Lw*. Thus, we have for T < T A 7,

E sup [[v*(t)[[pry <E sup |u*l[pwry +eE sup [[L"Lw (1) b
0<t<TR 0<t<TR 0<t<TR
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< CE sup ||U€||L1((’))+5E sup ||L*Lw€(t)||D(L)

0<t<TR 0<t<TRr

We know from Hypothesis (H1) that |u®| < C(1 + h(u®)). Therefore, taking into account
the entropy inequality and the second inequality in (15),

E sup |v(t)||pwry < CE sup ||h(u(t))| o) +C sup ||Lw8(t)||L2(O)§C(uO,T).

0<t<TR 0<t<TRr 0<t<TR

This allows us to perform the limit R — oo and to conclude that we have indeed a solution
v® in (0,7) for any 7' > 0. O

5. PROOF OF THEOREM 3

We prove the global existence of martingale solutions to the SKT model with self-
diffusion.

5.1. Uniform estimates. Let v° be a global solution to (19)—(20) and set u® = u(R.(v°)).
We assume that A(u) is given by (3) and that a;; > 0 for i = 1,...,n. We start with some
uniform estimates, which are a consequence of the entropy inequality in Proposition 15.

Lemma 17 (Uniform estimates). There exists a constant C(u®,T) > 0 such that for all
e>0andi,j=1,...,n withi # j,

(25) El|u|| L o,r501(0)) < C(u°,T),

(26) aig Bl ()| 2oz oy + @ "Bl |20 oy < O, T),
I/ZEHV( € 5)1/2||L2(0,T;L2 < C’(uo,T)

Moreover, we have the estimate

(21) B LR () w1220 + BIV eioirniun < O, T)

Proof. Let v° be a global solution to (19)—(20). We observe that R.(v®) = h'(u(R.(v%))) =
h'(u®) implies that VR.(v®) = h"(u®)Vu®. It is shown in [11, Lemma 4] that for all z € R
and u € (0,00)",

1 [ /
Th// )z > Z ; (Goz + 2a,2 ) + 3 Wlazj( zZ )
1,7=1,1#7j

Using B (R (v%)) = A(u®)h"(u®)~! and the previous inequality with z = Vu?, we find that
(28) Re(v%) : B(R(v7))VR(v) = Vu© b () (A(u)h" (u) ) b (uF) Ve

Vu© b (u®)A(u®)Vu®

Z 4@01’v 1/2‘2 + QCL”’VU | + QZM%JW € 5)1/2‘2

i#]
Therefore, the entropy inequality in Proposition 15 becomes

(200 E sup /O M (B)de + B sup S LREH ()]0

o<t<T o<t<T
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T n
+ E/ / Z 7i (4agi| V (u) 2 * + 2a;;|Vu©|?) dzds

+2E/ /Zmalﬂv 1/Q\deds<C(u T).

i#]

This is the stochastic analog of the entropy inequality (6). By Hypothesis (H1), we have
|u] < C(1+ h(u)) and consequently,

E sup |[u®(t)|[z10) < CE sup /h(us(t))dx—l—C’g C(u’,T),
o

o<t<T 0<t<T

which proves (25). Estimate (26) then follows from the Poincaré-Wirtinger inequality.
[t remains to show estimate (27). We deduce from the second inequality in (15) that

[o* Ollpwy = 1Q-(Re(o" @)l pey = lu(Re(v (1)) + L LR-(v*(t) I p(ay
< Clfu(Re(v° (1)) |20y + [l L* LR (v" (1) | oy
< Olu (1)[| 10y + eCI LR (1)) 20

This shows that
E sup [v"(0)lpwy < CE sup o) +<CE sup LR ()]0 < CCu,T),
<t<

ending the proof. O
We also need higher-order moment estimates.

Lemma 18 (Higher-order moments I). Let p > 2. There exists a constant C(p,u°,T),
which is independent of €, such that

(30) B[ 1) e 0.0 0y < O, 1%, T),
(31) a5 Bl () 2% 0 a1 0y + 0 EIE [ o 11 0y < C o >,
2
(32) AP PEI|V (u5u5) 22 o p2 0y < C 00, T).
Moreover, we have
p p
) (s IR0 ) +E( s 5Ol ) < Clpal. 1)
o<t<T o<t<T

Proof. Proceeding as in the proof of Proposition 15 and taking into account identity (22)
and inequality (28), we obtain

T n
+ / / Z 7 (daw|V (u) 2 ? + 24, Vu|?) dzds
+2E/ /ZmaﬂV 1/2\2d:17ds

i#]
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+ZZ / / 7 log 2 (8)03; (42 (5)) exdzd W (s)

k=1 1,5=1

3> / / (o)) (0 (3)) o (0 (s) ] s,

recalling Definition 21 of H(v¢). We raise this inequality to the pth power, take the
expectation, apply the Burkholder Davis—Gundy inequality (for the second term on the
right-hand side), and use Assumption (A5) to find that

(34) E( sup /Oh(us(t))dx—i-a sup HLRE(UE(t>)H%2(O)>p

0<t<T o<t<T

(/T/ i”iaiilwi(s)\?dxds)p
(/ /ZWMV us) 2P dxds)p

i#£]

2 p/2
<C(p,u —i—CE(/ (/ loguf(s)aij(uf(s))ekdx) ds)
0 k=1 i,j=1 o

B ( /TOO 5 [ tr ot " () o (e s )

< C(p,u° +CE(// dxds)p.

We neglect the expression e|| LR (v¢(t))||? 12(0y and apply Gronwall’s lemma. Then, taking

into account the fact that the entropy dominates the L!'(O) norm, thanks to Hypothe-
sis (H1), and applying the Poincaré-Wirtinger inequality, we obtain estimates (30)—(32).
Going back to (34), we infer that

(= sup ||LR5<v8<t>>||ia(O))ps Clpa) + Cp.T)E | ' (f h(zf(s))dx)pds

+CE
+CE

o<t<T
< C(p,u’,T).

Combining the previous estimates and arguing as in the proof of Lemma 17, we have

P P
E( sup ||v€<t>||D<Ly) =E( sup ||u€<t)+€L*LRe(v€(t>>HD<L>')

0<t<T 0<t<T

P p/2
< CE( sup ||u€<t>||L1<o>) n CE(eQ sup ||LRa<v6<t>>||%z<@) < Clpu®, 7).

o<t<T o<t<T
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This ends the proof. O

Using the Gagliardo—Nirenberg inequality, we can derive further estimates. We recall
that Qr = O x (0, 7).

Lemma 19 (Higher-order moments I1). Let p > 2. There exists a constant C(p,u°,T)
> 0, which is independent of €, such that

(35) EHU‘ ||L2+2/d < C(p7 UOJT)7
(36) EHU’Z ||L2+4/d(O,T;L2((’))) S C(pa uou T)

Proof. We apply the Gagliardo-Nirenberg inequality:

T p/s T (-8 p/s
E( / Huinr(@dt) SCE( [ il dt)

(1-6) r 2 p/s
§0E<II o [ HUﬂlm(mdt)

2(1-0)p 1/2 dp/s 1/2
<C(EH 6HL(ooo:rLl(o ) (EH EHL};/OTHI(O))) <G,

where r > 1 and 0 € (0, 1] are related by 1/r =1 —60(d +2)/(2d) and s = 2/ > 2. The
right-hand side is bounded in view of estimates (30) and (31). Estimate (35) follows after
choosing r = s, implying that r = 2 4+ 2/d, and (36) follows from the choice s = 2 + 4/d,
implying that r = 2. O

Next, we show some bounds for the fractional time derivative of u®. This result is used
to establish the tightness of the laws of (u) in a sub-Polish space. Alternatively, the
tightness property can be proved by verifying the Aldous condition; see, e.g., [18]. We

recall the definition of the Sobolev-Slobodeckij spaces. Let X be a vector space and let
p>1,a€(0,1). Then W*P(0,T; X) is the set of all functions v € L*(0,7T; X) for which

||U||€Va,p(0,TX ||v||LP orx) T |U|€Vap (0,7:X)

el [ @ Hthd <
U |t—3|1+ S Q.

With this norm, W*?(0,T; X ) becomes a Banach space. We need the following technical
lemma, which is proved in Appendix A.

Lemma 20. Let g € L'(0,T) and § <2, § # 1. Then

(37) / / it — s 5/ " () drdds < oo,

We obtain the following uniform bounds for v and v® in Sobolev—-Slobodeckij spaces.

Lemma 21 (Fractional time regularity). Let o < 1/2. There exists a constant C'(u®,T) >
0 such that, for p:= (2d+4)/d > 2,

Ellu® HWap O.1:D(Ly) = C°,T),
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(38) e’B||L* LR (v°) [y, »(0.1:D(L)) T EHngva,p(o,T;D(L)/) < C°,T).

Since p > 2, we can choose a < 1/2 such that ap > 1. Then the continuous embedding
Wer(0,T) < C%([0,T]) for 8 =ca — 1/p > 0 implies that

(39) B P oz < C0T):

Proof. First, we derive the W*P estimate for v* and then we conclude the estimate for u®
from the definition v* = u® +eL*LR.(v°) and Lemma 19. Equation (17) reads in terms of

u® as
dof —dw(ZAZJ Vu)dt+20” }aws, i=1,...,n.

We know from (33) that E||v* ||L°<>(0 7.p(ryy 18 bounded. Thus, to prove the bound for the
second term in (38), it remains to estimate the following seminorm:

T o (1) = vi () Iy
(L)
]E"U ‘WO‘ 2(0,T;D(L = ]E/ / |1+ap dtd

<IE/ / it — 51 /: diV;Aij(ua(r))Vuj(r)dr

p

dtds

D(L)

Nt

p

dtds
D(L)

ol [ enaw)

Nt

J=1

We need some preparations before we can estimate J;. We observe that

(azo +22a” ]>Vu + Zaw u; Vus;

LY(0) ’ Ve
< C||VU§||L1(O) + Cllut]| 20y [ VUS| 220

It follows from the embedding L'(O) < D(L)’ that

T T tVs n
Jp < E/ / |t — s|_1_o‘p(/ div Z Aij(ue(r))Vuj(r)
0 0 sAt ]:1

<ce | ! / T\t—sllo‘p< / (0 () V()

7j=1
T T tVs P
= CE/ / [t — 5|77 </ ||V“€(7”)HL2(O)d7”) dtds
0 0 SN\t
r T tVs »
+C]E/ / |t—8|_1—ap</ ||u5(7”)||L2(0)HVu5(7’)|\L2(0)d7‘) dtds
0 0 SNt

=:Ji + Jia.

i (u

LY(0)

p
dr) dtds
D(LY

P
dr) dtds
LY(0)
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We use Holder’s inequality and fix p = (2d 4+ 4)/d to obtain

T T tVs p/2
Ji < C’]E/ / |t — s|717OP|t — [P/ (/ \|Vu€(r)\|%2(o)dr> dtds.
0 0 SN\t

In view of estimate (31) and (37), the right-hand side is finite if 1 + ap — p/2 < 2 or,
equivalently, @ < (d + 1)/(d + 2), and this holds true since a < 1/2. Applying Holder’s
inequality again, we have

T T tVs p/2 tVs p/2
na<ce [ [Cese( [ olea) ([ IV i
0 0 sAL sAL
T T tVs (2444)/d pd/(2d+4)
<or [ =i s ([ e ar)
0 0 sAL
tVs p/2
X (/M HVUE(T)H%Z(O)dT) dtds
T T tVs 24 1/2
_C{]E(/ / \t—s\”p“’/(d”)(/ w26y "“d )dtds)}
0 0 sAt
T py 1/2
X{E(/O st(r)uiz(o)dr)} |

Because of estimates (31), (36), and (37), the right-hand side of is finite if 14+ap—p/(d+2) <
2, which is equivalent to o < 1/2.
To estimate J,, we use the embedding L?(0) < D(L)’, the Burkholder-Davis-Gundy
inequality, the linear growth of o from Assumption (A4), and the Holder inequality:
dtds

tvs N
J, <c/ / it — o1 QPEH/ S 03 (u (1) )JAW; ()
e 12(0)
T T tvs o0 p/2
gc/ / |t—s\1apE< ZZH% ekHLQ(Od) dtds
0 0 s

A p—1 j=1

T T tVs n
<C / / [t — 5[ ert-2)/2 / EY (1 [[u5(r)][f 20, drdtds.
0 0 SAL j=1

By (36) and (37), the right-hand side is finite if 1+ ap — (p — 2)/2 < 2, which is equivalent
to a < (3d+2)/(2d+4), and this is valid due to the condition o < 1/2. We conclude that
(v®) is bounded in LP(2; W*P(0,T; D(L)")) with p = (2d +4)/d.

Next, we derive the uniform bounds for u®. By definition of v* and the WP seminorm,

p

E’“ﬂ@vam(OID Ly) — E|v —eL"LR. ( ) We P(OTD( )"

<CE "It )”P ' dtd
|t _ S|1+ap 5
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T T eP|L*LR-(v¢(t)) — L*LR.(v¢(s
+OE/ / I (v*(2)) (=)o dhds.
0

|t _ S|1+ap

It follows from (15) and the Lipschitz continuity of R. (Lemma 10) that
| LR (1)) — L*LR(o%(5)) oy < |Re(o°(8) — Reo? () l120)
< 1O () — () oy
Then we find that

T Jve(t) — v (s)|I7
E|U, Weer(0,T:D(L < O]E/ / D(L) dtds = OE|U |Wap(OTD( L))

|t— s|1+ap

which finishes the proof. O

5.2. Tightness of the laws of (u®). We show that the laws of (u°) are tight in a certain
sub-Polish space. For this, we introduce the following spaces:

e C°([0,T]; D(L)") is the space of continuous functions u : [0,7] — D(L)" with the
topology T, induced by the norm ||u||co(o,ry;p(L)) = SUPg<rer ||4(t)| DLy
e [2(0,T; H'(O)) is the space L*(0,T; H'(O)) with the weak topology Ts.
We define the space
Zy = C°([0,T]; D(L)') N L, (0, T H'(0)),
endowed with the topology T that is the maximum of the topologies Ty and T,. The space
Zr is a sub-Polish space, since C°([0,T]; D(L)’) is separable and metrizable and

ult) = [ (@t om0t e LO.T(O), m e,

where (V) is a dense subset of L?(0,T; H'(0O)), is a countable family (f,,) of point-
separating functionals acting on L?(0,T; H'(O)). In the following, we choose a number
s* > 1 such that

2d
(40) s*<m ifd>3, s"<oo ifd=2, s <oo ifd=1.

Then the embedding H'(O) < L (O) is compact.
Lemma 22. The set of laws of (u®) is tight in
Zy = Zp N L2(0,T; L* (O))

with the topology T that is the mazimum of T and the topology induced by the L*(0,T;
L¥(0)) norm, where s* is given by (40).

Proof. We apply Chebyshev’s inequality for the first moment and use estimate (39) with
f=a—-1/p>0,forany n >0 and § > 0,

1
sup]P( sup ||u(t) — u(s)|| by > 77) < sup —E( sup ||u®(t) — ue(s)HD(L)/>
e>0 s5,t€[0,T7, e>0 1] 5,t€[0,T7,

lt—s|<dé [t—s|<é
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6" [ us(t) — u(s)||p(wy 6° . &

< —SupE< sup 5 W) < — sup E||u®||co.sjo.13;0(2y)) < C—

7 >0 5,t€[0,T7, |t - 3‘ N >0 n
[t—s|<d

This means that for all 8 > 0 and all n > 0, there exists 6 > 0 such that

sup ]P’( [ sup |lu®(t) — u(s)| by > 77) <40,
s,te

£>0 0,7], |t—s|<8

which is equivalent to the Aldous condition [5, Section 2.2]. Applying [38, Lemma 5, The-

orem 3] with the spaces X = H'(O) and B = D(L)’, we conclude that (u®) is precompact

in C°([0,T]; D(L)"). Then, proceeding as in the proof of the basic criterion for tightness

(34, Chapter II, Section 2.1], we see that the set of laws of (u¢) is tight in C°([0, T]; D(L)').
Next, by Chebyshev’s inequality again and estimate (26), for all K > 0,

1 C

Pl uzaraion > K) < Bl Baorunion <

This implies that for any ¢ > 0, there exists K > 0 such that P(||u®||r20,1,m1(0)) < K) <
1 —§. Since closed balls with respect to the norm of L*(0,T; H'(O)) are weakly compact,
we infer that the set of laws of (uf) is tight in L2 (0,7; H(O)).

The tightness in L2(0,T; L* (O)) follows from Lemma 36 in Appendix B with p = ¢ = 2
and r =2+ 4/d. O

Lemma 23. The set of laws of (\/eL*LR.(v%)) is tight in
Y o= Ly, (0,75 D(L)) N L35,(0, 5 D(L))
with the associated topology Ty .

Proof. We apply the Chebyshev inequality and use the inequality |L*LR.(v®)|pry <
C||LR:(v®)||r2(0) and estimate (27):
* 15 € * 15 C
P(vel|L*LR:(v°) || r20,m,p2y) > K) < 72 EIL LR (v Nzeomipiy) < e

for any K > 0. Since closed balls in L?(0,T; D(L)') are weakly compact, the set of laws
of (y/eL*LR.(v%)) is tight in L2 (0, T; D(L)"). The second claim follows from an analogous
argument. Ul

5.3. Convergence of (u°). Let P(X) be the space of probability measures on X. We
consider the space Zr x Y x C°([0,T7]; Uy), equipped with the probability measure p° :=
5, X g, Xy, where
po(-) = P(u” € ) € P(Zr),
16, = P(EL*LR.(v°) € ) € P(Yy),
piv () =P(W € ) € P(C*([0, T]; U)),
recalling the choice (40) of s*. The set of measures (1) is tight, since the set of laws of (u?)

and (y/eL*LR.(v%)) are tight in (Z7, T) and (Y7, Ty ), respectively. Moreover, (u5,) consists
of one element only and is consequently weakly compact in C°([0,7T]; Up). By Prohorov’s
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theorem, (1) is tight. Hence, Z7 x Yy x CY([0,T7]; Up) satisfies the assumptions of the
Skorokhod—Jakubowski theorem [6, Theorem C.1]. We infer that there exists a subsequence

of (uf,v/eL*LR.(v?)), which is not relabeled, a probability space (ﬁ,]? , I?D) and, on this
space, (Zr x Yr x C°([0, T]; Uy))-valued random variables (u, w, W) and (u®, w®, W¢) such
that (4°, w®, W¢) has the same law as (u®, v/eL*LR.(v®), W) on B(Zy x Y x C°([0, T]; Uy))
and, as ¢ — 0,
(@, @, We) = (@, @,W) in Zr x Yy x C°([0,T);Up) P-as.

By the definition of Z7 and Y7, this convergence means @—a.s.,

u* —u strongly in C°([0,T); D(L)"),

u* —u weakly in L*(0,T; H'(0)),

u —u strongly in L?(0,T; L* (0)),

w® — w weakly in L?(0,T; D(L)"),

w® — w weakly* in L>(0,7T; D(L)"),

We = W strongly in C°([0, T]; Up).

We derive some regularity properties for the limit u. We note that u is a Zp-Borel random
variable, since B(Zr x Yy x C°([0,T); Uy)) is a subset of B(Z7) x B(Yr) x B(C°([0,T]; Up)).
We deduce from estimates (25) and (26) and the fact that v and u® have the same law
that N N

sggEHﬂEH%(O’T;Hl(O)) + SEEE”ﬂE”]ZPO(O,T;D(L)/) < 0.

We infer the existence of a further subsequence of (u®) (not relabeled) that is weakly
converging in LP(Q; L?(0,T; H(0))) and weakly* converging in LP(Q2; C°([0,T]; D(L)"))

as € — 0. Because u® — u in Zp P-a.s., we conclude that the limit function satisfies
Al 20, 0 BNz 0.m:p(zy) < 00

Let F and F¢ be the filtrations generated by (u,w, W) and (u®, @E,W), respectively. By
following the arguments of the proof of [7, Proposition B4], we can verify that these new
random variables induce actually stochastic processes. The progressive measurability of u®
is a consequence of [4, Appendix BJ. Set Wf’k(t) = (We(t), er)u. We claim that ﬁ/;a’k(t)
for £ € N are independent, standard j—i—Wiener processes. The adaptedness is a direct
consequence of the definition; the independence of fV[7j€’k(t) and the independence of the
increments We*(t) — We*(s) with respect to F, are inherited from (W (t),e;)y. Passing
to the limit € — 0 in the characteristic function, by using dominated convergence, we find
that W(t) are ﬁ-martingales with the correct marginal distributions. We deduce from
Lévy’s characterization theorem that W(t) is indeed a cylindrical Wiener process.

By definition, u = u;(R.(v°)) = exp(R-(v)) is positive in Q7 a.s. We claim that also
u; is nonnegative in O a.s.
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Lemma 24 (Nonnegativity). It holds that u; > 0 a.e. in Qr P-a.s. foralli=1,....n

Proof. Let i € {1,...,n}. Since u§ > 0 in Q7 a.s., we have E||(u$) ™ || L2(0,1;02(0)) = 0, where
2z~ = min{0, z}. The function u$ is Zp-Borel measurable and so does its negative part.
Therefore, using the equivalence of the laws of u5 and @ in Zr and writing u$ and g for
the laws of u and u, respectively, we obtain

B\ (@) |l 2in) = / o™ lz2omd7EE ()
L2(Qr)

— [ W hondiiw) = Eluillaen = O
L*(Qr)
This shows that u; > 0 a.e. in Qr P-a.s. The convergence (up to a subsequence) u* — u

a.e. in Qr P-a.s. then implies that u; > 0 in Qp P-a.s. Il

The following lemma is needed to verify that (@, W) is a martingale solution to (1)—(2).

Lemma 25. It holds for allt € [0,T],i=1,...,n, and all $; € L*(O) and all ¢ € D(L)
that

T
(41) ti B [ (@) (0. 1) ot = O
(42) },E%E<u — u;(0), ¢2>D(L)’,D(L) =0,
(43) lim E / (VR 62) sy eyt = O
(44) lim E(vEwE (0), d2) pry, ) = 0,
Tyt
(45) ?_I}éE Z_:/o /o (Ai; (@ (s)) V5 (s) — Ay (u(s)) Vi (s)) - Voodads|dt = 0,
2
@) iy / (o @ (A5 (5) = @A s). ), |t =0,

Proof. The proof is a combination of the uniform bounds and Vitali’s convergence theorem.
Convergences (41) and (42) have been shown in the proof of [18, Lemma 16], and (43) is
a direct consequence of (38) and

B( [ Waato. enowrowit) < B( [ 13 Olborlolomr) < ke

Convergence 44) follows from w; — w; weakly* in L>(0,7; D(L)"). We establish (45):

/ | (A5 ) (5) — A ()9 (5)) - Vodads
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T
S/O [ Aij (U (s)) — Aij(u(s)) | 2(0) IV (3) | 2(0) | V b2l Lo (0) s

i ’ /oT /@ Ay (U(s))V (U (s) — u(s)) - Vodwds

By the Lipschitz continuity of A and the uniform bound for Vu®, we have If — 0 as
e — 0 P-a.s. At this point, we use the embedding D(L) < Wh*°(0). Also the second
integral I5 converges to zero, since A;;(u)Voq € L*(0,T; L*(O)) and Vu; — Vii; weakly
in L2(0,T; L*(O)). This shows that P-a.s.,

lim/ / i ( Vﬂg() V(bgdxds—/ / i ((s))Vu;(s) - Vodads.

e—0

=: 17 + I5.

A straightforward estimation and bound (31) lead to

p

Aij (U (s))Vuj(s) - Voodrds

0 O
T
< Vel o (A

Hence, Vitali’s convergence theorem gives (45).
It remains to prove (46). By Assumption (A4), P-a.s.,

n

> Ay (s)Vis(s)

j=1

P
ds) <,
LY(0)

T
/ loij (@ (5)) = o33 (@) |2, 22048 < CollT = | z20,722(0)) = 0.
0
This convergence and We — W in C°([0,T]; Up) imply that [14, Lemma 2.1]
T T
/ oij(u®)dWe — / oii(@)dW in L*(0,T; L*(O)) P-a.s.
0 0
By Assumption (A4) again,
T
B[ 0@ (6D — o@Dl s
~ T P
<04 CB( [ (10 + [T e)ds) < C.
0

We infer from Vitali’s convergence theorem that

T
nmE/ o5 (@(5)) — 055 @Iy zaonds = 0.
0

p

e—0

The estimate

( /oT 033 (@ (5)) AW (s) — /DT 735 (T(s))dW; (s), ¢1>

E

L2(0)



STOCHASTIC SHIGESADA-KAWASAKI-TERAMOTO MODEL
T
2 ~ ~
< C||¢1||L2(O)E/ (H%( “(s ))H%Q(U;LQ(O)) + H%‘(U(S))||252(U;L2(O)))d3
0

T
< C||¢1||2L2(O){1 + E(/O (||ﬂ€(3>||%2(0) + ||a<5)||%2(0))d3>} <C

for all ¢; € L*(O) and the dominated convergence theorem yield (46).

To show that the limit is indeed a solution, we define, for t € [0, 7], i = 1,...

¢ € D(L),
AE(E”WW)()':H ¢) + Ve(@(0), 9)

/ /A” u5(s) - Vodrds

+Z(/% >dW€<>¢) 7

L2(0)

A(@, @, W, 0)(t) = (a( // L (W(5)) VU (s) - Vodads

+Z(/am dW()¢>

The following corollary is a consequence of the previous lemma.
Corollary 26. It holds for any ¢; € L*(O) and ¢ € D(L) that
lg% H (a::’ ¢1)L2((9) - (aza ¢1)L2((9) HLl(QX(QT)) = 07

ll_{% HA5<657 \/5&787 WE? ¢2) - Al(a’/v 07 W7 ¢2)HL1(S~2><(O,T)) =0.

L2(0)

Since v° is a strong solution to (17), it satisfies for a.e. t € [0,T] P-a.s., i =1,...

¢ € D(L),
(U(‘S (t)a (b)L?(O) = Af(uev 6L*LRE (UE)v W, ¢> (t)

)

and in particular,

T
| B0, 0020~ Af(07 2L LR) W) 0]t = 0.
0

29

,n, and

,n, and

We deduce from the equivalence of the laws of (u®, e L* LR (v®), W) and (u*, \/ew®, W) that

/0 E| (1 (1) + VT, 0) () — AF (@, VEDT, WF,6) (1)]dt = 0.

By Corollary 26, we can pass to the limit ¢ — 0 to obtain

T~ —~
| El@(0): 00, — A 0. 0) (0] =0,
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This identity holds for all ¢ = 1,...,n and all ¢ € D(L). This shows that
| (@i(t), ¢)12(0) — Ai(ﬂ,O,W,¢)(t)| =0 forae tel0,T]Pas,i=1...n.
We infer from the definition of A; that

(ui(t), ®)r2(0) = (wi(0), @) 2(0) — Z/ / i (0(s))Vu;(s) - Vodads

+Z </ 7uNIT;(s), ¢)L2(0)

,T] and all ¢ € D(L). Set U = (€, F,P,F). Then (U, W,7) is a martingale
)-(3).

for a.e. t € [0
solution to (1

6. PROOF OF THEOREM 4
We turn to the existence proof of the SKT model without self-diffusion.

6.1. Uniform estimates. Let v° be a global solution to (19)—(20) and set u® = u(R.(v°)).
We assume that A(u) is given by (3) and that a;o > 0, a;; = 0 for ¢ = 1,...,n. The uniform
estimates of Lemmas 17 and 18 are still valid. Since a; = 0, we obtain an H'(O) bound
for (u$)'/? instead of ug, which yields weaker bounds than those in Lemma 19.

Lemma 27. Let p > 2 and set p; := (d + 2)/(d + 1). Then there ezists a constant
C(p,u®,T) > 0, which is independent of €, such that

(47) Ellu; 720, rwra 0y < Cp. . 1),
(48) B a0,y < Clo a0, T),
(49) EHUEHUL/d (0,T;L2(0)) < C(p, U07T>>
(50) BN 20 0 s oy < C 0,0, 7).

Proof. The identity Vus = 2(uf)Y/2V (u$)'/? and the Hélder inequality show that

T p/2
E”VUEHLQ (0,T;L1(0)) < CE(/OV H( )1/2HL2(O)HV( )1/2HL2(0 dt)

p/2
SCE(HUfHLoo(o,T;LI(O / IV (u )1/2‘|L2(O)dt)

. 1/2 1/2 1/2
S C<]EHuin°°(O,T;L1( ) (EHV( ) / HLQ(OTL2(O))) '

Because of (30) and (31), the right-hand side is bounded. Using (30) again, we infer that
(47) holds. Estimate (48) is obtained from the Gagliardo—Nirenberg inequality similarly
as in the proof of Lemma 19:

T p/s
1/2
E(/|u>”wyw9 C (BN 21208 o)
0
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4p/s 1/2
x (Bl (u§) 2| 2o rmon) . < C,

where s = 2/0 > 2 and 1/r =1/2—60/d = 1/2 — 2/(ds). Choosing r = (2d + 4)/d gives
s =r,and r = 4 leads to s = 8/d; this proves estimates (48) and (49). Finally, (50) follows
from Holder’s inequality:

|z @r) = 201(uf) >V (u5) 2 | Lo @y < 201 ()2 | paararagop |V (uf) 2| 2(or)

1/2
< 21 2 1) 2 20,5801 0

and taking the expectation and using (48) and (31) ends the proof. O
The following lemma is needed to derive the fractional time estimate.

Lemma 28. Letp > 2 and set ps := (2d+2)/(2d+1). Then it holds for anyi,j =1,...,n

with i # j:

(51) Eljuiu < C(p,u’,T).

U5 o2 o, 1w102 0)
Proof. The Hélder inequality and (30) immediately yield
B (60 Y21 e o < €

and we conclude from the Poincaré—Wirtinger 1nequality, estimate (32), and the previous
estimate that

(52) El|(uf 6)1/2“1:2 (0,T;H(0)) <C
By the Gagliardo—Nirenberg inequality, with 8 = d/(d + 1),

T
d+1)/d 0(d+1)/d 0)(d+1)/d
| i e < € / () 2 ey ) 2 ) e

T
1 9 d+1)/d
< O (ugus) V2|2 Oy / (g ) 22 ot

2/d
= Ol (uus) (172 0 1 (w505 2 320 a1 (0

Taking the expectation and applying the Holder inequality, we infer that
(53) E| (ufu )1/2”L2(d+1>/d(QT) <C.
Finally, the identity V(ufus) = 2(ufu$)"/*V (ufu5)"/? and Holder’s inequality lead to

T
/0 IV ()22, o < C / )2 sy |V (050 2 B
T

(@+1)/d 1—p2/2 T p2/2
< C(/ “(ufuj)l/g”p d+1)/d(@)dt) (/ IV (uiu )1/2HL2((9 dt) :
0 0

The bounds (52)—(53) yield, after taking the expectation and applying Holder’s inequality
again, the conclusion (51). O]

We show now that the fractional time derivative of »° is uniformly bounded.
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Lemma 29 (Fractional time regularity). Let d < 2. Then there exist 0 < o < 1, p > 1,
and 8 > 0 such that ap > 1 and
(54) Elluf [y as o,mpLy) T E||UE||%0,,3([O,T};D(L)/) <C.

Proof. We proceed similarly as in the proof of Lemma 21. First, we estimate the diffusion
ajoVu; + Z ai; V (uiuj)

part, setting
t
g(t) = /
0 j#i

Then, using D(L) C W'*>(O) (which holds due to the assumption m > d/2 + 1),

dr.
L}(0)

tVs n p
/ / o / div Z Agj(us(r)) Vs (r)dr dtds
SAL j=1 D(L)
T T tVs p
< C'/ / [t — s|717oP (/ a;oVu; + Z ai; V (uiuj) dr) dtds
0 Jo SAt i L1(0)

T
lg(t)
<C]E/ / t_s|1+ l9(t) Z 9GP 4, 5 < CEllg|yanora)

The embedding WP(0, T;R) — W*P(0,T;R) and estimates (51) and (50) show that for
1<p<p=(d+2)/(d+1),

Ellgl7ye. P(OTR) = CE”g”vvlp 0TR) — OEHatg”Lp oTiR) T CEHQHLI, 0,T;R)

T p
S C]E/ aiOVuf(t) + Z aijV u,u dt
0 j#i L1(0)
p
+CE / / aVus(r) + > aV(usus)(r)||  drdt < C.
jF#i LY(0)

Next, we consider the stochastic part, using the Burkholder-Davis-Gundy inequality,
Holder’s inequality, and the sublinear growth condition in the statement of the theorem:
tvs 1
dtds

T T
IE/ / i ZUU(UE(T»dVVj(T)
o Jo st 12(0)
T /T tVs M p/2
S CE/O /(; | 1= ap( ZHO_U ||£2(UL2( ))d'f’) dtds
T /T tvs n
< C’/ / 5| lmor+p/2- 1]E/ ZHO’U 17, (0L2(oydrdtds
0o Jo
tvs n
< c/ / it — 5| marp/2- 1E/ SO0+ [0 () ) drdids < C.
j=1

p
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The last step follows from estimate (49) (assuming that 1 < yp < 4/d) and Lemma 20,
since 1 + ap —p/2+ 1 < 2 if and only if @ < 1/2. We conclude that the second term of
the right-hand side of

ve(t) = v°(0) +/O diV(A(ue(s))Vus(s))ds—f—/o o(u®(s))dW (s)

is uniformly bounded in E| - [ye»or;pr)y) for @ < 1 and p < (d + 2)/(d + 1), while the
third term is uniformly bounded in that norm for o < 1/2 and p < 4/(yd). In both cases,
we can choose « such that ap > 1. At this point, we need the condition v < 1 if d = 2.
(The result holds for any space dimension if v < 2/d.) Taking into account (33), (v°) is
bounded in WP(0,T; D(L)"). The embedding W*(0,T; D(L)") — C%#([0,T]; D(L)') for
B =a—1/p> 0 implies that (v°) is bounded in the latter space.

We turn to the estimate of v in the W*?(0,7; D(L)’) norm:

Elu 1§y esornwyy < CE IV anorpwy) T EBIL LR(0) [fyanornwy))-

It remains to consider the last term. In view of estimate (15) and the Lipschitz continuity
of R. with Lipschitz constant C'/e, we obtain

EleL*LR(v%)[} Wer(0,T;D(L)")

=B [ [ S LR ) — 1 LR (5 s
0 0
T T
<erCE [ [ e s R ) ~ R (5) g s
0 0
T T C
< CE / / = s S (8) = (5) s

:C]EHUEHWap (0,7;D(L)) = <C.
Moreover, by (15) and the Lipschitz continuity of R. again,
leL* LR (v ) Loo.2,p(nyy < € CNR0) oo mpmy) < ECIV oo mpryy < €
where we used estimate (33). ThlS finishes the proof. O

6.2. Tightness of the laws of (u°). The tightness is shown in a different sub-Polish space
than in Section 5.2:

7= C°([0,T]; D(L)") N L{} (0, T; W (0)),

endowed with the topology T that is the maximum of the topology of C°([0,T]; D(L)') and
the weak topology of L2 (0,T; Whr1(Q)), recalling that p; = (d+2)/(d +1) > 1.

Lemma 30. The family of laws of (u®) is tight in
Zr = Zp N L0, T; L*(0))

with the topology that is the mazimum of T and the topology induced by the L*(0,T; L*(0))
norm.
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Proof. The tightness in L*(0,7T; L4(0)) for ¢ < d/(d — 1) = 2 is a consequence of the
compact embedding W(O) < L1(O) as well as estimates (47) and (54). In fact, we can
extend this result up to ¢ = 2 because of the uniform bound of u log u$ in L>°(0,T; L'(0)),
which originates from the entropy estimate. Indeed, we just apply [3, Prop. 1], using
additionally (26) with a;y > 0. Then the tightness in L?(0,T; L*(0O)) follows from Lemma

36. Finally, the tightness in Z7 is shown as in the proof of Lemma 22 in Appendix B. [J

In three space dimensions, we do not obtain tightness in L*(0,7; L?(O)) but in the larger
space L*3(0,T; L*>(0)). This follows similarly as in the proof of Lemma 22 taking into
account the compact embedding W' (0) — L*(O), which holds as long as d < 3, as well
as estimates (50) and (54). Unfortunately, this result seems to be not sufficient to identify
the limit of the product ufu$. Therefore, we restrict ourselves to the two-dimensional case.

The following result is shown exactly as in Lemma 23.

Lemma 31. The family of laws of (\/eL*LR.(v°)) is tight in Yy = L2(0,T; D(L)) N
L3.(0,T; D(L)').

Arguing as in Section 5.3, the Skorokhod—Jakubowski theorem implies the existence of a
subsequence, a probability space ((NZ, F, I?Pg), and, on this space, (Zr x Yy x C°([0,T]; Uy))-
valued random variables (ﬂa,fwe,WE) and (u,w, W) such that (ﬂé,@f,W@) has the same
law as (uf, JEL*LR.(v?), W) on B(Zp x Yy x C°([0,T); Uy)) and, as ¢ — 0 and P-a.s.,

(@, 0%, W) — (@, @, W) in Zy x Yy x C°([0,T); Uy).
This convergence means that f"—a.s.,
u* — u strongly in C°([0,T]; D(L)),
Vu® — Vu weakly in L (Qr),
U — u strongly in L*(Qr),
w® — w weakly in L*(0,T; D(L)"),
w® — w weakly* in L>(0,7T; D(L)"),
We — W strongly in C°([0,T]; Up).
The remainder of the proof is very similar to that one of Section 5.3, using slightly
weaker convergence results. The most difficult part is the convergence of the nonlinear
term V(uju3), since the previous convergences do not allow us to perform the limit u; Vu;

because of p; < 2. The idea is to consider the “very weak” formulation by performing
the limit in ufu;A¢ instead of V(ujus) - V¢ for suitable test functions ¢. Indeed, let

¢ € L=(0,T;C(0)). Since % — @ strongly in L2(0,T; L*(O)) P-a.s., we have

T T T
/ / V(@) - Vodedt = — / / T Agdrdt — — / / itl; Agdadt.
0 O 0 (@] 0 o
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It follows from the equivalence of the laws that

( / / ~5~5A¢dmdt)2 <C,

and we conclude from Vitali’s theorem that

/ | G = ) () agazd

By density, this convergence holds for all test functions ¢ € L>(0,T; W2>(0)) such that
V¢ -v =0 on 00. This ends the proof of Theorem 4.

—0 ase—0.

Remark 32 (Three space dimensions). The three-dimensional case is delicate since u lies
in a space larger than L*(Qr). We may exploit the regularity (51) for V(uju5), but this
leads only to the existence of random variables 77; and 7;; with ¢,j = 1,...,n and i # j
on the space Xy = L£2(0,T; LP2(0)) such that 77, and ufu; have the same law on B(Xr)
and, as ¢ — 0,

m; — M weakly in Xp.
Similar arguments as before lead to the limit

/ /V% ni;)(t) - Vo(t)daxdt| — 0,

but we cannot easily identify 7;; with u,u;. U

7. DISCUSSION OF THE NOISE TERMS

We present some examples of admissible terms o (u). Recall that (ey)ren is an orthonor-
mal basis of U.

Lemma 33. The stochastic diffusion

033 (u) = 0ys(w) Y arlee Ju.  s(w) =

satisfies Assumption (A5) forn >0 and (a;) € (*(R).

Proof. With the entropy density h given by (5), we compute (0h/0u;)(u) = m; logu; and
(02h/0u;0u;)(u) = (m;/u;)d;;. Therefore, by Jensen’s inequality and the elementary in-
equalities |u; logu;| < C(1+ul™) for any n > 0 and |u| < C(1 + h(u)),

T o© n oh 2 1/2
J1 = { ; Z Z < o a—uz(’U,)U”(U)(fkdx) dS}
S T n logu 2 1/2
= a2/ (/ mud ) ds}
{Z Sy ; o 1+u1/2+77
C

k
n T 1 1+n 2 1/2
{ / (/—+Z1L/2+ dx) ds}
—'Jo ol+u"""

U

1+u 1/2+77
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1 14+n \ 2 1/2
o35 (R o)
1+, "
1/2
gC{Z/ /(1+ui)dxds} <0(1+/ / dxds)
i=1 70 JO

The second condition in Assumption (A5) becomes

Ty = / B / tr [(o(w)er) " (u)o(w)ey] drds

00 n T

o(l+uy
Thus, Assumption (A5) is satisfied. O

The proof shows that .J; can be estimated if s(u;)?log(u;)? is bounded from above by
C(1 + h(u)). This is the case if s(u;) behaves like u$ with o < 1/2. Furthermore, J; can
be estimated if s(u;)?/u; is bounded, which is possible if s(u;) = u® with o > 1/2. Thus,
to both satisfy the growth restriction and avoid the singularity at u; = 0, we have chosen
0;; as in Lemma 33. This example is rather artificial. To include more general choices, we
generalize our approach. In fact, it is sufficient to estimate the integrals in inequality (23)
in such a way that the entropy inequality of Proposition 15 holds. The idea is to exploit
the gradient bound for u; for the estimatation of .J; and Js.

Consider a trace-class, positive, and symmetric operator @ on L?(Q) and the space U =
QV*(L*(0)), equipped with the norm [|Q2(-)| z2(0). We will work in the following with
an U-cylindrical Wiener process W¢. This setting is equivalent to a spatially colored noise
on L?(O) in the form of a Q-Wiener process (with @ # Id). The latter viewpoint provides,
in our opinion, a more intuitive insight. In particular, the operator ) is constructed from
the eigenfunctions and eigenvalues described below.

Let (ni)reny be a basis of L?(0), consisting of the normalized eigenfunctions of the
Laplacian subject to Neumann boundary conditions with eigenvalues A\ > 0, and set
ar, = (14 X\)~” for some p > 0 such that >332, ail|nk]| (o) < 00. Since Ay < Ck*/*
28, Corollary 2] and |1~y < Ck@1/2 [23, Theorem 1], we may choose p > (d/2)2.
Considering a sequence of independent Brownian motions (WF,... Wk),cn, we assume
the noise to be of the form W® = (W2, ..., W), where

o t) :ZakekW]k(t)> J=1....n, >0,

and (ex)ren = (arne)ren is a basis of U = QY2(L*(0)).

Lemma 34. For the SKT model with self-diffusion, let 0;;(u) = 6;;ud for 1/2 < a < 1,
i,j =1,...,n, interpreted as a map from L*(O) to Lo(HP(O); L*(O)), where B > p. Then
the entropy inequality (29) holds, i.e., o;; is admissible for Theorem 3.
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Proof. We can write inequality (23) for 0 < T' < Ty as

(55) E sup /h( “(t))dx + ZE sup HLwE<t>H%2(0)

0<t<T 0<t<T

+Esm>/"/<m; : B )Vw%QMﬁ&—E/Vmﬁmx

o<t<T (@]

2y 1/2
<E sup {/ (/ i loguf(s)aij(ug(s))ekdx) ds}
0<t<T 0 34— 1ij—1 @)

+ ]E sup Z/ / oii(u O'm( “erdzds

0<t<Tk 1 i=1

= J3+ Jy,

recalling that w® = R.(v°) and u® = u(w®). We simplify J3 and J4, using the definition

€ = Ak
2 N 1/2
=E sup {Zak/ (/ uf(s)aloguf(s)nkdx) ds}
o<t<T o
1/2
< CE sup {Zai/ nde/ / ) log us ( ))2dxds}
o<t<T 1 o

<C Z E||(u7)* log u; ||L2(O,T;L2(O))a

Z%E sup Zm/ / )2 (uf) " tnidads

o<t<T

< CZ%H%HW(O ZEH )** om0y

< CZEH 20‘7 HL1 (0,T;L1(O))-

The last inequality follows from our assumption on (ax). By (28), we can estimate the
integrand of the third integral on the left-hand side of (55) according to

Vuw® : B(w®)Vw® > QZmaii|Vu€|2.
i=1

Hence, because of |u] < C(1 + h(u)), we can formulate (55) as

E sup [[A(w ()] o) + E sup || Lw® (t)[|720) + CEI V() 1202220

0<t<T 0<t<T
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n n
< C+CY E|(u) log il 2orizziop + C Y Bl (w0101 0))-
i=1 i=1

It is sufficient to continue with the case o = 1, since the proof for a < 1 follows from the
case o = 1. Then, using |u®| < C(1 + h(u®)),

(56) E|[h(u)|| Lo 0,521 (0)) + Bl || Loo (0,721 (0))

+ EEHLwEH%W(O,T;LQ(O)) + E”VUEH%%O,T;L?(O))

< C+CY Elus logus | r207:22(0)) + CEWE]| 11 0,321 (0))-
i=1

Now, we use the following lemma which is proved in Appendix A.

Lemma 35. Let d > 2 and let v € L*(0,T; H(O)) satisfy vlogv € L>(0,T; L*(0)).
Then for any 6 > 0, there exists C'(§) > 0 such that

[vlog | 2075220y < (lv1og vl L1y + [0l oo omser0)) + IVUIIT2(0 1:22(0))
+ C(O)[vllzr0,7:L2(0))-
It follows from (56) that, for any 6 > 0,

E[[h(u”)[| o 0,7;01(0)) + Ellu||zee 0,721 0))
+ gEHng“%m(QT;LQ(O)) + EHVUEH%Q(D,T;LZ(O))

< C+ COE|w| 020 0)) + 0C D El|us log v || 11 0721 (0))

=1
+ 6C(E||u6||Loo(0’T;Ll(o)) + E||VU€||%2(O,T;L2(O))> .

For sufficiently small § > 0, the last terms on the right-hand side can be absorbed by the
corresponding terms on the left-hand side, leading to

E[|7(u®) | 2o 0,721 0)) + Ellw || 220,721 (0))
+ gEHLwE”%OO(O,T;L?(O)) + EHVUEH%Q(QT;LQ(O))

T
<C+ C/ |u®|| Lo (0,451 (0)ydt  for all T' > 0.
0
Gronwall’s lemma ends the proof. O
In the case without self-diffusion, we have an H'(O) estimate for (u)*/? only, and it can

be seen that stochastic diffusion terms of the type d;;u for a > 1/2 are not admissible.
However, we may choose o;j(u)e, = dus (1 + (uf)?) tagn for 1/2 < a <1 and 8 > /2.
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APPENDIX A. PROOFS OF SOME LEMMAS

A.l. Proof of Lemma 13. The operator equation DR.[w](a) = b can be written as
a =DQ.[w](b) = v (w)b+ eL*Lb. Hence,
(57) / a:bdr = / o' (w)b : bdz + 8/ Lb: Lbdz.

@ 0 @

The matrix u/(w) = (h”) ! (u(w)) is symmetric and positive semidefinite (since h is convex).
Thus, the square root operator \/u/(w) exists and is symmetric. This shows that

' (w)b : b= /u'(w)\/u'(w)b:b=tr [(\/u’(w)\/u’(w)b)Tb]
= tr [(\/u'(w)b)T(\/u’(w)b)] = Hvu’(w)b”i.

Furthermore, by the Cauchy—Schwarz inequality tr[A” B] < tr[A” A] tr[BT B] and the prop-
erty tr[AB] = tr[BA] for matrices A and B,

aib=tr [o /(@) V)l

< o (VAT VATt o (o) ) A )
< 5 e [(Varw)t) /] + 5 e [(varlw) ~'a) (o /() )]
LIV + 5 e (@ Varw) ) (Ver(w) a)]
= IV + 5 trla” el (w) .

Inserting these relations into (57) leads to

(58) / v U/(w)szpdSL’ + 5/ Lb: Lbdx = / a: bdx
1 1
< 5/ v/ (w)b]|%dx + 5/ traTo (w)~la]dz
o 1)

and consequently,

/||\/ b||Fdx</tr[a o (w)~La]dz.
Together with (58) we obtain the statement.

A.2. Proof of Lemma 14. It follows from the convexity of h that

h(v") = h(u(Re(v"))) + (v° — u(R:(0"))) - I (u(Re(v"))).

Since R. and Q. are inverse to each other, we can replace v° by Q.(R.(v")) = u(R.(v")) +

eL*LR.(vY):
R(v°) > h(u(R.(v°))) + <u(R€(UO)) +eL*LR.(v°) — u(R.(v°)), B (u( R-(v°
= h(u(R.(v°))) + e(L* LR(v°), Re(v°)) p(1y (1)

))>D(L)’,D(L)
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We find after an integration that

/Oh(vo)da: > /Oh(u(RE(vo)))dx—|—8/OLRE(UO) - LR.(v°)dz,

which yields the statement.

A.3. Proof of Lemma 20. We show that

T T tVs
I:= / / |t — 5]5/ g(r)drdtds < oo.
0 0 SAt

A change of the integration domain and an integration by parts lead to

(59) 1= 2/T /T<t—3>_6(/t9(r)dr)dtds
/ / )dtd3+1%6 T(T_s)lfa /Stg(r)drds,

observing that lim;_,4(t — s)1~? f g(r)dr =0 for 1 —§ > —1, since the integrability of g
implies that lim; 4(t — s) f g(r)dr = g(s) for a.e. s. The result follows as the integrals
on the right-hand side of (59) are ﬁmte

A.4. Proof of Lemma 35. We use the interpolation inequality with 1/2 = 6; + (1 —
61)/(2p) and some 1 < p < d/(d—2) (and p > 1 if d = 2) as well as the Young inequality
with ¢ > 0:

T 1/2
(60) [vlog vl L20/r:r2(0)) < (/0 ||U10gv||i€11(o)||vlogv||L2lp (991) dt)
T T 1/2
< (cor [ Iotogols o+ [ futogelao)
< C(9)||vlogv| 20,1 (0)) + 0l|v1og v L2020 (0))-

The first term on the right-hand side is estimated in a similar way as before, where 1 > 0:

(61) |vlog || 20,11 (0)) < ||vlogUHLoo (OT:L1(O)) HvlogvHL1 (0.T:L1(0)
< nlvlogv| o0y + Cn)llvlog vl Lior,Li(0))-
For the second term on the right—hand side of (60), we introduce the function g(v) =
max{2,vlogv} for v > 0. Then g € C*([0,00)). (The function v — vlogwv is not C* at
v = 0, therefore we need to truncate.) We use the Sobolev inequality:
[vlog v 207120 (0)) < l9(V)[L20,7:L200)) < Cllg(v) |20/ 019(0))
< C(HQ(U)”L?(O,T;M(O)) + ||Vg(v>||L2(O,T;L‘1((’))))a

where ¢ = 2dp/(d + 2p). The condition p < d/(d — 2) guarantees that ¢ < 2, while d > 2
yields ¢ > 1; thus ¢ € (1,2). Applying the Gagliardo—Nirenberg inequality, combined with
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the Poincaré~Wirtinger inequality, with 6y = d(q — 1)/(d(q¢ — 1) + ¢) < 1, and then the
Young inequality, we find that

lg(0)lze(0) < CIVIO) Eo 9113, + 9(0)llz10)
< |IVg()|la) + Cllg()llr0) < IVg(®)|Lago) + C(1 + llvlog v Lro))-
This yields
(62)  [[vlogvl|z20,7;z2r(0)) < C 4 ClIVg(v) | L20,1:20(0)) + Cllvlog vl 20,21 (0))-

The last term is estimated as in (61). We consider the norm of Vg(v) = 1fyi0g0s23(1 +
log v)Vw. For this, we observe that 11,105 v>2) logv < C(1407) for some 0 < v < (2—q)/(2q)
and use the Holder inequality:

IVg(0) |l zaoy < (1 +07)V0) 1oy < (1 + 07| 2asce-0(0)) | V0]l 2200
C(1+ o]l &) kum

since the property 2vq/(2 — q) < 1 gives v?)%/2-9 < C (1 +v) for v > 0. Consequently, by
Young’s inequality,

IVg(0)llzai0) < C(L+ 00 + Vo)

and an integration over time gives

IVg()ll 2207200y < C(1+ IS oy + 1V0 132070200

< C(1+ vllz=@r:cr0) + IVOlZ20.1:02(0))

where we used (2 — ¢q)/q < 1. Thus, (62) becomes

[vlog v[| z2(0,7:120(0)) < C + ClIVI[T20 71200y + Cllvll (0,711 (0))

+ Cllvlog v 20121 (0))-
It remains to insert (61) and the previous estimate into (60) to conclude that
[vlog vl|2(0,m;22(0)) < nC(6)|vlog vl Lo o,z (0)) + C(0,m)||lv10g v|[ 10,7501 (0))
+ 5C(||VU||%2(O,T;L2(O)) + ol 0,121 0))) -

Choosing first 6 > 0 and then 1 > 0 sufficiently small finishes the proof.

APPENDIX B. TIGHTNESS CRITERION

Lemma 36 (Tightness criterion). Let O C R? (d > 1) be a bounded domain with Lipschitz
boundary and let T >0, p,q,r > 1, « € (0,1) if r > p and a € (1/r—1/p,1) if r < p. Let
s > 1 be such that the embedding W14(O) — L*(O) is compact, and let Y be a Banach
space such that the embedding L°(O) — Y is continuous. Furthermore, let (u,)nen be a
sequence of functions such that there exists C' > 0 such that for all n € N,

Ellunllzeorwra0)) + Ellunllweromy) < C.

Then the laws of (u,) are tight in LP(0,T; L*(0)) if ¢ < d and in LP(0,T; C°(O)) if ¢ > d.
If p = oo, the space LP(0,T;") is replaced by C°([0,T];").



42

M. BRAUKHOFF, F. HUBER, AND A. JUNGEL

Proof. By Theorem 3 and Lemma 5 of [38], the set

Br = {u, € LP(0,T; WH(O0)) N W*"(0,T;Y) :

tn |l 2o rwr a0y < R and ||ug|lwer@ory) < R}

is relatively compact in LP(0,7; L*(O)). We deduce from Chebyshev’s inequality that

P(Br) < P([[unllrorwraoy > B) + P(unllwerory) > R)

1 C
< E(EHUTLHLT’(O,T;WM(O)) + E||up lwero.ry) < s

The definition of tightness finishes the proof. O
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