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Abstract. The existence of global nonnegative martingale solutions to cross-diffusion
systems of Shigesada–Kawasaki–Teramoto type with multiplicative noise is proven. The
model describes the stochastic segregation dynamics of an arbitrary number of population
species in a bounded domain with no-flux boundary conditions. The diffusion matrix is
generally neither symmetric nor positive semidefinite, which excludes standard methods
for evolution equations. Instead, the existence proof is based on the entropy structure of
the model, a novel regularization of the entropy variable, higher-order moment estimates,
and fractional time regularity. The regularization technique is generic and is applied to
the population system with self-diffusion in any space dimension and without self-diffusion
in two space dimensions.

1. Introduction

Shigesada, Kawasaki, and Teramoto (SKT) suggested in their seminal paper [37] a de-
terministic cross-diffusion system for two competing species, which is able to describe the
segregation of the populations. A random influence of the environment or the lack of knowl-
edge of certain biological parameters motivate the introduction of noise terms, leading to
the stochastic system for n species with the population density ui of the ith species:

(1) dui − div

( n∑

j=1

Aij(u)∇uj

)
dt =

n∑

j=1

σij(u)dWj(t) in O, t > 0, i = 1, . . . , n,

with initial and no-flux boundary conditions

(2) ui(0) = u0
i in O,

n∑

j=1

Aij(u)∇uj · ν = 0 on ∂O, t > 0, i = 1, . . . , n,
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and diffusion coefficients

(3) Aij(u) = δij

(
ai0 +

n∑

k=1

aikuk

)
+ aijui, i, j = 1, . . . , n,

where O ⊂ R
d (d ≥ 1) is a bounded domain, ν is the exterior unit normal vector to ∂O,

(W1, . . . ,Wn) is an n-dimensional cylindrical Wiener process, and aij ≥ 0 for i = 1, . . . , n,
j = 0, . . . , n are parameters. The stochastic framework is detailed in Section 2.
The deterministic analog of (1)–(3) generalizes the two-species model of [37] to an arbi-

trary number of species. The deterministic model can be derived rigorously from nonlocal
population systems [19, 35], stochastic interacting particle systems [8], and finite-state
jump Markov models [2, 13]. The original system in [37] also contains a deterministic
environmental potential and Lotka–Volterra terms, which are neglected here for simplicity.
We call ai0 the diffusion coefficients, aii the self-diffusion coefficients, and aij for i 6= j

the cross-diffusion coefficients. We say that system (1)-(3) is with self-diffusion if ai0 ≥ 0,
aii > 0 for all i = 1, . . . , n, and without self-diffusion if ai0 > 0, aii = 0 for all i = 1, . . . , n.
The aim of this work is to prove the existence of global nonnegative martingale solutions

to system (1)–(3) allowing for large cross-diffusion coefficients. The existence of a local
pathwise mild solution to (1)–(3) with n = 2 was shown in [30, Theorem 4.3] under the
assumption that the diffusion matrix is positive definite. Global martingale solutions to a
SKT model with quadratic instead of linear coefficients Aij(u) were found in [18]. Besides
detailed balance, this result needs a moderate smallness condition on the cross-diffusion
coefficients. We prove the existence of global martingale solutions to the SKT model for
general coefficients satisfying detailed balance. This result seems to be new.
There are two major difficulties in the analysis of system (1). The first difficulty is the

fact that the diffusion matrix associated to (1) is generally neither symmetric nor positive
semidefinite. In particular, standard semigroup theory is not applicable. These issues have
been overcome in [9, 10] in the deterministic case by revealing a formal gradient-flow or
entropy structure. The task is to extend this idea to the stochastic setting.
In the deterministic case, usually an implicit Euler time discretization is used [24]. In

the stochastic case, we need an explicit Euler scheme because of the stochastic Itô integral,
but this excludes entropy estimates. An alternative is the Galerkin scheme, which reduces
the infinite-dimensional stochastic system to a finite-dimensional one; see, e.g., the proof
of [32, Theorem 4.2.4]. This is possible only if energy-type (L2) estimates are available, i.e.
if ui can be used as a test function. In the present case, however, only entropy estimates
are available with the test function log ui, which is not an element of the Galerkin space.
In the following, we describe our strategy to overcome these difficulties. We say that

system (1) has an entropy structure if there exists a function h : [0,∞)n → [0,∞), called
an entropy density, such that the deterministic analog of (1) can be written in terms of
the entropy variables (or chemical potentials) wi = ∂h/∂ui as

(4) ∂tui(w)− div

( n∑

j=1

Bij(w)∇wj

)
= 0, i = 1 . . . , n,
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where w = (w1, . . . , wn), ui is interpreted as a function of w, andB(w) = A(u(w))h′′(u(w))−1

with B = (Bij) is positive semidefinite. For the deterministic analog of (1), it was shown
in [11] that the entropy density is given by

(5) h(u) =
n∑

i=1

πi

(
ui(log ui − 1) + 1

)
, u ∈ [0,∞)n,

where the numbers πi > 0 are assumed to satisfy πiaij = πjaji for all i, j = 1, . . . , n. This
condition is the detailed-balance condition for the Markov chain associated to (aij), and
(π1, . . . , πn) is the corresponding reversible stationary measure [11]. Using wi = πi log ui in
(4) as a test function and summing over i = 1, . . . , n, a formal computation shows that

(6)
d

dt

∫

O

h(u)dx+ 2

∫

O

n∑

i=1

πi

(
2ai0|∇

√
ui|2 + 2aii|∇ui|2 +

∑

j 6=i

aij|∇
√
uiuj|2

)
dx = 0.

A similar expression holds in the stochastic setting; see (29). It provides L2 estimates for
∇√

ui if ai0 > 0 and for ∇ui if aii > 0. Moreover, having proved the existence of a solution
w to an approximate version of (1) leads to the positivity of ui(w) = exp(wi/πi) (and
nonnegativity after passing to the de-regularization limit).
To define the approximate scheme, our idea is to “regularize” the entropy variable w.

Indeed, instead of the algebraic mapping w 7→ u(w), we introduce the mapping Qε(w) =
u(w) + εL∗Lw, where L : D(L) → H with domain D(L) ⊂ H is a suitable operator and
L∗ its dual; see Section 3 for details. The operator L is chosen in such a way that all
elements of D(L) are bounded functions, implying that u(w) is well defined. Introducing
the regularization operator Rε : D(L)′ → D(L) as the inverse of Qε : D(L) → D(L)′, the
approximate scheme to (1) is defined, written in compact form, as

(7) dv(t) = div
(
B(Rε(v))∇Rε(v)

)
dt+ σ

(
u(Rε(v))

)
dW (t), t > 0.

The existence of a local weak solution vε to (7) with suitable initial and boundary
conditions is proved by applying the abstract result of [32, Theorem 4.2.4]; see Theorem
12. The entropy inequality for wε := Rε(v

ε) and uε := u(wε),

E sup
0<t<T∧τR

∫

O

h(uε(t))dx+
ε

2
E sup

0<t<T∧τR

‖Lwε(t))‖2L2(O)

+ E sup
0<t<T∧τR

∫ t

0

∫

O

∇wε(s) : B(wε(s))∇wε(s)dxds ≤ C(u0, T ),

up to some stopping time τR > 0 allows us to extend the local solution to a global one
(Proposition 15).
For the de-regularization limit ε → 0, we need suitable uniform bounds. The entropy

inequality provides gradient bounds for uε
i in the case with self-diffusion and for (uε

i )
1/2 in

the case without self-diffusion. Based on these estimates, we use the Gagliardo–Nirenberg
inequality to prove uniform bounds for uε

i in Lq(0, T ;Lq(O)) with q ≥ 2. Such an estimate
is crucial to define, for instance, the product uε

iu
ε
j . Furthermore, we show a uniform

estimate for uε
i in the Sobolev–Slobodeckij space W α,p(0, T ;D(L)′) for some α < 1/2 and
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p > 2 such that αp > 1. These estimates are needed to prove the tightness of the laws
of (uε) in some sub-Polish space and to conclude strong convergence in L2 thanks to the
Skorokhod–Jakubowski theorem.
For the uniform estimates, we need to distinguish the cases with and without self-

diffusion. In the former case, we obtain an L2(0, T ;H1(O)) estimate for uε
i , such that

the product uε
i∇uε

j is integrable, and we can pass to the limit in the coefficients Aij(u
ε
i ).

Without self-diffusion, we can only conclude that (uε
i ) is bounded in L2(0, T ;W 1,1(O)),

and products like uε
i∇uε

j may be not integrable. To overcome this issue, we use the fact
that

(8) div

( n∑

j=1

Aij(u
ε)∇uε

j

)
= ∆

(
uε
i

(
ai0 +

n∑

j=1

aiju
ε
j

))

and write (1) in a “very weak” formulation by applying the Laplace operator to the test
function. Since the bound in L2(0, T ;W 1,1(O)) implies a bound in L2(0, T ;L2(O)) bound
in two space dimensions, products like uε

iu
ε
j are integrable. In the deterministic case, we

can exploit the L2 bound for ∇(uε
iu

ε
j)

1/2 to find a bound for uε
iu

ε
j in L1(0, T ;L1(O)) in any

space dimension, but the limit involves an identification that we could not extend to the
martingale solution concept.
On an informal level, we may state our main result as follows. We refer to Section 2 for

the precise formulation.

Theorem 1 (Informal statement). Let aij ≥ 0 satisfy the detailed-balance condition, let the
stochastic diffusion σij be Lipschitz continuous on the space of Hilbert–Schmidt operators,
and let a certain interaction condition between the entropy and stochastic diffusion hold
(see Assumption (A5) below). Then there exists a global nonnegative martingale solution
to (1)–(3) in the case with self-diffusion in any space dimension and in the case without
self-diffusion in at most two space dimensions.

We discuss examples for σij(u) in Section 7. Here, we only remark that an admissible
diffusion term is

(9) σij(u) = δiju
α
i

∞∑

k=1

ak(ek, ·)U , i.j = 1, . . . , n,

where 1/2 ≤ α ≤ 1, δij is the Kronecker symbol, ak ≥ 0 decays sufficiently fast, (ek) is a
basis of the Hilbert space U with inner product (·, ·)U .
We end this section by giving a brief overview of the state of the art for the deterministic

SKT model. First existence results for the two-species model were proven under restrictive
conditions on the parameters, for instance in one space dimension [26], for the triangular
system with a21 = 0 [33], or for small cross-diffusion parameters, since in the latter situation
the diffusion matrix becomes positive definite [17]. Amann [1] proved that a priori estimates
in the W 1,p(O) norm with p > d are sufficient to conclude the global existence of solutions
to quasilinear parabolic systems, and he applied this result to the triangular SKT system.
The first global existence proof without any restriction on the parameters aij (except
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nonnegativity) was achieved in [22] in one space dimension. This result was generalized
to several space dimensions in [9, 10] and to the whole space problem in [21]. SKT-
type systems with nonlinear coefficients Aij(u), but still for two species, were analyzed in
[15, 16]. Global existence results for SKT-type models with an arbitrary number of species
and under a detailed-balance condition were first proved in [11] and later generalized in
[31].
This paper is organized as follows. We present our notation and the main results in

Section 2. The operators needed to define the approximative scheme are introduced in
Section 3. In Section 4, the existence of solutions to a general approximative scheme is
proved and the corresponding entropy inequality is derived. Theorems 3 and 4 are shown
in Sections 5 and 6, respectively. Section 7 is concerned with examples for σij(u) satisfying
our assumptions. Finally, the proofs of some auxiliary lemmas are presented in Appendix
A, and Appendix B states a tightness criterion that (slightly) extends [5, Corollary 2.6].

2. Notation and main result

2.1. Notation and stochastic framework. Let O ⊂ R
d (d ≥ 1) be a bounded domain.

The Lebesgue and Sobolev spaces are denoted by Lp(O) and W k,p(O), respectively, where
p ∈ [1,∞], k ∈ N, and Hk(O) = W k,2(O). For notational simplicity, we generally do not
distinguish between W k,p(O) and W k,p(O;Rn). We set Hm

N (O) = {v ∈ Hm(O) : ∇v ·ν = 0
on ∂O} for m ≥ 2. If u = (u1, . . . , un) ∈ X is some vector-valued function in the normed
space X, we write ‖u‖2X =

∑n
i=1 ‖ui‖2X . The inner product of a Hilbert space H is denoted

by (·, ·)H , and 〈·, ·〉V ′,V is the dual product between the Banach space V and its dual V ′. If
F : U → V is a Fréchet differentiable function between Banach spaces U and V , we write
DF [v] : U → V for its Fréchet derivative, for any v ∈ U .
Given two quadratic matrices A = (Aij), B = (Bij) ∈ R

n×n, A : B =
∑n

i,j=1 AijBij is

the Frobenius matrix product, ‖A‖F = (A : A)1/2 the Frobenius norm of A, and trA =∑n
i=1 Aii the trace of A. The constants C > 0 in this paper are generic and their values

change from line to line.
Let (Ω,F ,P) be a probability space endowed with a complete right-continuous filtration

F = (Ft)t≥0 and let H be a Hilbert space. Then L0(Ω;H) consists of all measurable
functions from Ω to H, and L2(Ω;H) consists of all H-valued random variables v such
that E‖v‖2H =

∫
Ω
‖v(ω)‖2HP(dω) < ∞. Let U be a separable Hilbert space and (ek)k∈N be

an orthonormal basis of U . The space of Hilbert–Schmidt operators from U to L2(O) is
defined by

L2(U ;L2(O)) =

{
F : U → L2(O) linear, continuous :

∞∑

k=1

‖Fek‖2L2(O) < ∞
}
,

and it is endowed with the norm ‖F‖L2(U ;L2(O)) = (
∑∞

k=1 ‖Fek‖2L2(O))
1/2.

Let W = (W1, . . . ,Wn) be an n-dimensional U -cylindrical Wiener process, taking values
in the separable Hilbert space U0 ⊃ U and adapted to the filtration F. We can write
Wj =

∑∞
k=1 ekW

k
j , where (W k

j ) is a sequence of independent standard one-dimensional



6 M. BRAUKHOFF, F. HUBER, AND A. JÜNGEL

Brownian motions [12, Section 4.1.2]. Then Wj(ω) ∈ C0([0,∞);U0) for a.e. ω [32, Section
2.5.1].

2.2. Assumptions. We impose the following assumptions:

(A1) Domain: O ⊂ R
d (d ≥ 1) is a bounded domain with Lipschitz boundary. Let T > 0

and set QT = O × (0, T ).
(A2) Initial datum: u0 = (u0

1, . . . , u
0
n) ∈ L∞(Ω;L2(O;Rn)) is a F0-measurable random

variable satisfying u0(x) ≥ 0 for a.e. x ∈ O P-a.s.
(A3) Diffusion matrix: aij ≥ 0 for i = 1, . . . , n, j = 0, . . . , n and there exist π1, . . . , πn > 0

such that πiaij = πjaji for all i, j = 1, . . . , n (detailed-balance condition).
(A4) Multiplicative noise: σ = (σij) is an n × n matrix, where σij : L2(O;Rn) →

L2(U ;L2(O)) is B(L2(O;Rn))/ B(L2(U ;L2(O)))-measurable and F-adapted. Fur-
thermore, there exists Cσ > 0 such that for all u, v ∈ L2(O;Rn),

‖σ(u)− σ(v)‖L2(U ;L2(O)) ≤ Cσ‖u− v‖L2(O),

‖σ(v)‖L2(U ;L2(O)) ≤ Cσ(1 + ‖v‖L2(O)).

(A5) Interaction between entropy and noise: There exists Ch > 0 such that for all
u ∈ L∞(O × (0, T )),

{∫ t

0

∞∑

k=1

n∑

i,j=1

(∫

O

∂h

∂ui

(u(s))σij(u(s))ekdx

)2

ds

}1/2

≤ Ch

(
1 +

∫ t

0

∫

O

h(u(s))dxds

)
,

∫ t

0

∞∑

k=1

∫

O

tr
[
(σ(u)ek)

Th′′(u)σ(u)ek
]
(s)dxds ≤ Ch

(
1 +

∫ t

0

∫

O

h(u(s))dxds

)
,

where h is the entropy density defined in (5).

Remark 2 (Discussion of the assumptions). (A1) The Lipschitz regularity of the bound-
ary ∂O is needed to apply the Sobolev and Gagliardo–Nirenberg inequalities.

(A2) The regularity condition on u0 can be weakened to u0 ∈ Lp(Ω;L2(O;Rn)) for suf-
ficiently large p ≥ 2 (only depending on the space dimension); it is used to derive
the higher-order moment estimates.

(A3) The detailed-balance condition is also needed in the deterministic case to reveal the
entropy structure of the system; see [11].

(A4) The Lipschitz continuity of the stochastic diffusion σ(u) is a standard condition for
stochastic PDEs; see, e.g., [36].

(A5) This is the most restrictive assumption. It compensates for the singularity of
(∂h/∂ui)(u) = πi log ui at ui = 0. We show in Lemma 33 that

σij(u)(·) =
uiδij

1 + u
1/2+η
i

∞∑

k=1

ak(ek, ·)U

satisfies Assumption (A5), where η > 0 and (ak) ∈ ℓ2(R). Taking into account
the gradient estimate from the entropy inequality (see (6)), we can allow for more
general stochastic diffusion terms like (9); see Lemma 34.
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2.3. Main results. Let T > 0, m ∈ N with m > d/2 + 1, and D(L) = Hm
N (O).

Definition 1 (Martingale solution). A martingale solution to (1)–(3) is the triple (Ũ , W̃ , ũ)

such that Ũ = (Ω̃, F̃ , P̃, F̃) is a stochastic basis with filtration F̃ = (F̃t)t≥0, W̃ is an n-
dimensional cylindrical Wiener process, and ũ = (ũ1, . . . , ũn) is a continuous D(L)′-valued

F̃-adapted process such that ũi ≥ 0 a.e. in O × (0, T ) P̃-a.s.,

(10) ũi ∈ L0(Ω̃;C0([0, T ];D(L)′)) ∩ L0(Ω̃;L2(0, T ;H1(O))),

the law of ũi(0) is the same as for u0
i , and for all φ ∈ D(L), t ∈ (0, T ), i = 1, . . . , n, P̃-a.s.,

〈ũi(t), φ〉D(L)′,D(L) = 〈ũi(0), φ〉D(L)′,D(L) −
n∑

j=1

∫ t

0

∫

O

Aij(ũ(s))∇ũj(s) · ∇φdxds(11)

+
n∑

j=1

∫

O

(∫ t

0

σij(ũ(s))dW̃j(s)

)
φdx.

Our main results read as follows.

Theorem 3 (Existence for the SKT model with self-diffusion). Let Assumptions (A1)–
(A5) be satisfied and let aii > 0 for i = 1, . . . , n. Then (1)–(3) has a global nonnegative
martingale solution in the sense of Definition 1.

Theorem 4 (Existence for the SKT model without self-diffusion). Let Assumptions (A1)–
(A5) be satisfied, let d ≤ 2, and let a0i > 0 for i = 1, . . . , n. We strengthen Assumption
(A4) slightly by assuming that for all v ∈ L2(O;Rn),

‖σ(v)‖L2(U ;L2(O)) ≤ Cσ(1 + ‖v‖γL2(O)),

where γ < 1 if d = 2 and γ = 1 if d = 1. Then (1)–(3) has a global nonnegative martingale
solution in the sense of Definition 1 with the exception that (10) and (11) are replaced by

ũi ∈ L0(Ω̃;C0([0, T ];D(L)′)) ∩ L0(Ω̃;L2(0, T ;W 1,1(O)))

and, for all φ ∈ D(L) ∩W 2,∞(O),

〈ũi(t), φ〉D(L)′,D(L) = 〈ũi(0), φ〉D(L)′,D(L) −
∫ t

0

∫

O

ũi(s)

(
ai0 +

n∑

j=1

aijũj(s)

)
∆φdxds

+
n∑

j=1

∫

O

(∫ t

0

σij(ũ(s))dW̃j(s)

)
φdx.

The weak formulation for the SKT system without self-diffusion is weaker than that one
with self-diffusion, since we have only the gradient regularity ∇ũi ∈ L1(O), and Aij(ũ)
may be nonintegrable. However, system (1) can be written in Laplacian form according to
(8), which allows for the “very weak” formulation stated in Theorem 4. The condition on
γ if d = 2 is needed to prove the fractional time regularity for the approximative solutions.
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Remark 5 (Nonnegativity of the solution). The a.s. nonnegativity of the population den-
sities is a consequence of the entropy structure, since the approximate densities uε

i satisfy
uε
i = ui(Rε(v

ε)) = exp(Rε(v
ε)/πi) > 0 a.e. in QT . This may be surprising since we do not

assume that the noise vanishes at zero, i.e. σij(u) = 0 if ui = 0. This condition is replaced
by the weaker integrability condition for σij(u) log ui in Assumption (A5). A similar, but
pointwise condition was imposed in the deterministic case; see Hypothesis (H3) in [25,
Section 4.4]. The examples in Section 7 satisfy σij(u) = 0 if ui = 0. �

3. Operator setup

In this section, we introduce the operators needed to define the approximate scheme.

3.1. Definition of the connection operator L. We define an operator L that “con-
nects” two Hilbert spaces V and H satisfying V ⊂ H. This abstract operator allows us to
define a regularization operator that “lifts” the dual space V ′ to V .

Proposition 6 (Operator L). Let V and H be separable Hilbert spaces such that the
embedding V →֒ H is continuous and dense. Then there exists a bounded, self-adjoint,
positive operator L : D(L) → H with domain D(L) = V . Moreover, it holds for L and its
dual operator L∗ : H → V ′ (we identify H and its dual H ′) that, for some 0 < c < 1,

(12) c‖v‖V ≤ ‖L(v)‖H = ‖v‖V , ‖L∗(w)‖V ′ ≤ ‖w‖H , v ∈ V, w ∈ H.

We abuse slightly the notation by denoting both dual and adjoint operators by A∗. The
proof is similar to [27, Theorem 1.12]. For the convenience of the reader, we present the
full proof.

Proof. We first construct some auxiliary operator by means of the Riesz representation
theorem. Let w ∈ H. The mapping V → R, v 7→ (v, w)H , is linear and bounded. Hence,
there exists a unique element w̃ ∈ V such that (v, w̃)V = (v, w)H for all v ∈ V . This
defines the linear operator G : H → V , G(w) := w̃, such that

(v, w)H = (v,G(w))V for all v ∈ V, w ∈ H.

The operator G is bounded and symmetric, since ‖G(w)‖V = ‖w̃‖V = ‖w‖H and

(13) (G(w), v)H = (G(w), G(v))V = (w,G(v))H for all v, w ∈ H.

This means that G is self-adjoint as an operator on H. Choosing v = w ∈ H in (13) gives
(G(v), v)H = ‖G(v)‖2V ≥ 0, i.e., G is positive. We claim that G is also one-to-one. Indeed,
let G(w) = 0 for some w ∈ H. Then 0 = (v,G(w))V = (v, w)H for all v ∈ V and, by the
density of the embedding V →֒ H, for all v ∈ H. This implies that w = 0 and shows the
claim.
The properties on G allow us to define Λ := G−1 : D(Λ) → H, where D(Λ) = ran(G) ⊂

V and D(Λ) denotes the domain of Λ. By definition, this operator satisfies

(v,Λ(w))H = (v, w)V for all v ∈ V, w ∈ D(Λ).

Hence, for all v, w ∈ D(Λ), we have (v,Λ(w))H = (v, w)V = (Λ(v), w)H , i.e., Λ is symmet-
ric. Since G = G∗, we have D(Λ∗) = ran(G∗) = ran(G) = D(Λ) and consequently, Λ is
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self-adjoint. Moreover, Λ is densely defined (since V →֒ H is dense). As a densely defined,
self-adjoint operator, it is also closed. Finally, Λ is one-to-one and positive:

C‖Λ(v)‖H‖v‖V ≥ ‖Λ(v)‖H‖v‖H ≥ (Λ(v), v)H = (v, v)V = ‖v‖2V ≥ 0

for all v ∈ D(Λ) and some C > 0 and consequently, ‖Λ(v)‖H ≥ C−1‖v‖V .
Therefore, we can define the square root of Λ, Λ1/2 : D(Λ1/2) → H, which is densely

defined and closed. Its domain can be obtained by closing D(Λ) with respect to

(14) ‖Λ1/2(v)‖H = (Λ1/2(v),Λ1/2(v))
1/2
H = (Λ(v), v)

1/2
H = (v, v)

1/2
V = ‖v‖V

for v ∈ D(Λ1/2). In particular, the graph norm ‖·‖H+‖Λ1/2(·)‖H is equivalent to the norm
in V . We claim that D(Λ1/2) = V . To prove this, let w ∈ V be orthogonal to D(Λ1/2).
Then (w, v)V = 0 for all v ∈ D(Λ1/2) and, since D(Λ) ⊂ D(Λ1/2), in particular for all
v ∈ D(Λ). It follows that 0 = (w, v)V = (w,Λ(v))H for v ∈ D(Λ). Since Λ is the inverse
of G : H → V , we have ran(Λ) = H, and it holds that (w, ξ)H = 0 for all ξ ∈ H, implying
that w = 0. This shows the claim.
Finally, we define L := Λ1/2 : D(L) = V → H, which is a positive and self-adjoint

operator. Estimate (14) shows that ‖L(v)‖H = ‖v‖V for v ∈ V . We deduce from the
equivalence between the norm in V and the graph norm of L that, for some C > 0 and all
v ∈ V ,

‖v‖V ≤ C(‖L(v)‖H + ‖v‖H) = C(‖L(v)‖V + ‖L−1L(v)‖H) ≤ C(1 + ‖L−1‖)‖L(v)‖H ,
which proves the lower bound in (12). The dual operator L∗ : H → V ′ is bounded too,
since it holds for all w ∈ H that

‖L∗(w)‖V ′ = sup
‖v‖V =1

|(w,L(v))H | ≤ sup
‖v‖V =1

‖w‖H‖v‖V = ‖w‖H .

This ends the proof. �

We apply Proposition 6 to V = Hm
N (O) and H = L2(O), recalling that Hm

N (O) =
{v ∈ Hm(O) : ∇v · ν = 0 on ∂O} and m > d/2 + 1. Then, by Sobolev’s embedding,
D(L) →֒ W 1,∞(O). Observe the following two properties that are used later:

‖L∗L(v)‖V ′ ≤ ‖v‖V , ‖L∗(w)‖V ′ ≤ ‖w‖H for all v ∈ V, w ∈ H.(15)

The following lemma is used in the proof of Proposition 15 to apply Itô’s lemma.

Lemma 7 (Operator L−1). Let L−1 : ran(L) → D(L) be the inverse of L and let D(L−1) :=

D(Λ) be the closure of D(Λ) with respect to ‖L−1(·)‖H . Then D(L)′ is isometric to D(L−1).
In particular, it holds that (L−1(v), L−1(w))H = (v, w)D(L)′ for all v, w ∈ D(L)′.

Proof. The proof is essentially contained in [27, p. 136ff] and we only sketch it. Let
F ∈ D(L−1)′. Then |F (v)| ≤ C‖L−1(v)‖H for all v ∈ D(Λ) and, as a consequence,
|F (Lu)| ≤ C‖u‖H for u = L−1(v) ∈ D(L). The density of L−1(D(Λ)) in H guarantees
the unique representation F (Lu) = (u, w)H for some w ∈ H, and we can represent F in
the form F (v) = (L−1v, w)H = (v, L−1w)H , where L−1w ∈ D(L). This shows that every
element of D(L−1)′ can be identified with an element of D(L).
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Conversely, if w ∈ D(L), we consider functionals of the type v 7→ (v, w)H for v ∈ D(Λ),
which are bounded in ‖L−1(·)‖H . These functionals can be extended by continuity to
functionals F belonging to D(L−1)′. The proof in [27, p. 137] shows that ‖F‖D(L−1)′ =
‖w‖D(L). We conclude thatD(L−1)′ is isometric toD(L). Since Hilbert spaces are reflexive,
D(L−1) is isometric to D(L)′. �

Lemma 8 (Operator u). The mapping u := (h′)−1 from D(L) to L∞(O) is Fréchet differ-
entiable and, as a mapping from D(L) to D(L)′, monotone.

Proof. Let w ∈ D(L) →֒ L∞(O) (here we use m > d/2). Then u(w) = (x 7→ u(w(x))) ∈
L∞(O), showing that u : D(L) → L∞(O) = (L1(O))′ →֒ D(L)′ is well defined. It follows
from the mean-value theorem that for all w, ξ ∈ D(L),

‖u(w + ξ)− u(w)− u′(w)ξ‖L∞(O) ≤ C‖ξ‖2D(L)

∥∥∥∥
∫ 1

0

(1− s)u′′(w + sξ)ds

∥∥∥∥
L∞(O)

.

Since u′′ maps bounded sets to bounded sets, the integral is bounded. Thus, u : D(L) →
L∞(O) is Fréchet differentiable. For the monotonicity, we use the convexity of h and hence
the monotonicity of h′:

〈u(v)− u(w), v − w〉D(L)′,D(L) = (u(v)− u(w), v − w)L2(O)

= (u(v)− u(w), h′(u(v))− h′(u(w)))L2(O) ≥ 0

for all v, w ∈ D(L). This proves the lemma. �

3.2. Definition of the regularization operator Rε. First, we define another operator
that maps D(L) to D(L)′. Its inverse is the desired regularization operator.

Lemma 9 (Operator Qε). Let ε > 0 and define Qε : D(L) → D(L)′ by Qε(w) = u(w) +
εL∗Lw, where w ∈ D(L). Then Qε is Fréchet differentiable, strongly monotone, coercive,
and invertible. Its Fréchet derivative DQε[w](ξ) = u′(w)ξ + εL∗Lξ for w, ξ ∈ D(L) is
continuous, strongly monotone, coercive, and invertible.

Proof. The mapping Qε is well defined since w ∈ D(L) →֒ L∞(O) implies that u(w) ∈
L∞(O) and hence, ‖u(w)‖D(L)′ ≤ C‖u(w)‖L1(O) is finite. We show that Qε is strongly
monotone. For this, let v, w ∈ D(L) and compute

〈Qε(v)−Qε(w), v − w〉D(L)′,D(L)(16)

= (u(v)− u(w), v − w)H + ε〈L∗L(v − w), v − w〉D(L)′,D(L)

≥ ε〈L∗L(v − w), v − w〉D(L)′,D(L) = ε‖L(v − w)‖2H ≥ εc‖v − w‖2D(L)

where we used the monotonicity of w 7→ u(w) and the lower bound in (12). The coercivity
of Qε is a consequence of the strong monotonicity:

〈Qε(v), v〉D(L)′,D(L) = 〈Qε(v)−Qε(0), v − 0〉D(L)′,D(L) + 〈Qε(0), v〉D(L)′,D(L)

≥ εc‖v‖2D(L) + (u(0), v)H ≥ εc‖v‖2D(L) − C|u(0)| ‖v‖D(L)

for v ∈ D(L). Based on these properties, the invertibility of Qε now follows from Browder’s
theorem [20, Theorem 6.1.21].
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Next, we show the properties for DQε. The operator DQε[w] : D(L) → D(L)′ is well
defined for all w ∈ D(L), since

‖u′(w)ξ‖D(L)′ ≤ C‖u′(w)ξ‖L2(O) ≤ C‖u′(w)‖L2(O)‖ξ‖L∞(O) ≤ C‖u′(w)‖L2(O)‖ξ‖D(L)

for all ξ ∈ D(L) →֒ L∞(O). The strong monotonicity of DQε[w] for w ∈ D(L) follows
from the positive semidefiniteness of u′(w) = (h′′)−1(u(w)) and the lower bound in (12):

〈DQε[w](ξ)−DQε[w](η), ξ − η〉D(L)′,D(L)

= (u′(w)(ξ − η), ξ − η)H + ε〈L∗L(ξ − η), ξ − η〉D(L)′,D(L)

≥ ε‖L(ξ − η)‖2H ≥ εc‖ξ − η‖2D(L)

for ξ, η ∈ D(L). The choice η = 0 yields immediately the coercivity of DQε[w]. The
invertibility of DQε[w] follows again from Browder’s theorem. �

Lemma 9 shows that the inverse of Qε exists. We set Rε := Q−1
ε : D(L)′ → D(L), which

is the desired regularization operator. It has the following properties.

Lemma 10 (Operator Rε). The operator Rε : D(L)′ → D(L) is Fréchet differentiable and
strictly monotone. In particular, it is Lipschitz continuous with Lipschitz constant C/ε,
where C > 0 does not depend on ε. The Fréchet derivative equals

DRε[v] = (DQε[Rε(v)])
−1 = (u′(Rε(v)) + εL∗L)−1 for v ∈ D(L)′,

and it is Lipschitz continuous with constant C/ε, satisfying ‖DRε[v](ξ)‖D(L) ≤ ε−1C‖ξ‖D(L)′

for v, ξ ∈ D(L)′.

Proof. We show first the Lipschitz continuity of Rε. Let v1, v2 ∈ D(L)′. Then there exist
w1, w2 ∈ D(L) such that v1 = Qε(w1), v2 = Qε(w2). Hence, using (12) and (16),

‖Rε(v1)−Rε(v2)‖2D(L) = ‖w1 − w2‖2D(L) ≤ C‖L(w1 − w2)‖2H
≤ ε−1C〈Qε(w1)−Qε(w2), w1 − w2〉D(L)′,D(L)

≤ ε−1C‖Qε(w1)−Qε(w2)‖D(L)′‖w1 − w2‖D(L)

= ε−1C‖v1 − v2‖D(L)′‖Rε(v1)−Rε(v2)‖D(L),

proving that Rε is Lipschitz continuous with Lipschitz constant C/ε. The Fréchet differ-
entiability is a consequence of the inverse function theorem and DRε[v] = (DQε[Rε(v)])

−1

for v ∈ D(L)′.
We verify the strict monotonicity of Rε. Let v, w ∈ D(L)′ with v 6= w. Because of the

strong monotonicity of Qε, we have

〈v − w,Rε(v)−Rε(w)〉D(L)′,D(L) = 〈Qε(Rε(v))−Qε(Rε(w)), Rε(v)−Rε(w)〉D(L)′,D(L)

≥ ε−1c‖Rε(v)−Rε(w)‖2D(L) > 0,

and the right-hand side vanishes only if v = w, since Rε is one-to-one.
Next, we show that DRε[v] is Lipschitz continuous. Let w1, w2 ∈ D(L). By Lemma 9,

DQε[w] is strongly monotone. Thus, for any w ∈ D(L),

εc‖w1 − w2‖2D(L) ≤ 〈DQε[w](w1)−DQε[w](w2), w1 − w2〉D(L)′,D(L)
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≤ ‖DQε[w](w1)−DQε[w](w2)‖D(L)′‖w1 − w2‖D(L).

Let v1 = DQε[w](w1) and v2 = DQε[w](w2). We infer that

‖(DQε[w])
−1(v1)− (DQε[w])

−1(v2)‖D(L) = ‖w1 − w2‖D(L)

≤ ε−1C‖DQε[w](w1)−DQε[w](w2)‖D(L)′ = ε−1C‖v1 − v2‖D(L)′ ,

showing the Lipschitz continuity of (DQε[w])
−1 and DRε[v] = (DQε[Rε(v)])

−1. Finally,
choosing w = Rε[v] and v2 = 0, ‖DRε[v](v1)‖D(L) ≤ ε−1C‖v1‖D(L)′ . �

4. Existence of approximate solutions

In the previous section, we have introduced the regularization operator Rε : D(L)′ →
D(L). The entropy variable w is replaced by the regularized variable Rε(v) for v ∈ D(L)′.
Setting v = u(Rε(v)) + εL∗LRε(v), we consider the regularized problem

dv = div
(
B(Rε(v))∇Rε(v)

)
dt+ σ

(
u(Rε(v))

)
dW (t) in O, t ∈ [0, T ∧ τ),(17)

v(0) = u0 in O, ∇Rε(v) · ν = 0 on ∂O, t > 0,(18)

recalling that B(w) = A(u(w))h′′(u(w))−1 for w ∈ R
n.

We clarify the notion of solution to problem (17)–(18). Let T > 0, let τ be an F-adapted
stopping time, and let v be a continuous, D(L)′-valued, F-adapted process. We call (τ, v)
a local weak solution to (17) if

v(ω, ·, ·) ∈ L2([0, T ∧ τ(ω));D(L)′) ∩ C0([0, T ∧ τ(ω));D(L)′)

for a.e. ω ∈ Ω and for all t ∈ [0, T ∧ τ),

v(t) = v(0) +

∫ t

0

div
(
B(Rε(v(s)))∇Rε(v(s))

)
ds+

∫ t

0

σ
(
u(Rε(v(s))

)
dW (s),(19)

∇Rε(v) · ν = 0 on ∂O P-a.s.(20)

It can be verified that Rε is strongly measurable and, if v is progressively measurable, also
progressively measurable. Furthermore, if w is progressively measurable then so does u(w),
and if v ∈ C0([0, T ];D(L)′), we have Rε(v) ∈ C0([0, T ];D(L)) and u(Rε(v)) ∈ L∞(QT ).
Finally, if v ∈ L0(Ω;Lp(0, T ;D(L)′)) for 1 ≤ p ≤ ∞, then div(B(u(Rε(v)))∇Rε(v)) ∈
L0(Ω;Lp(0, T ;D(L)′))). Therefore, the integrals in (19) are well defined. The local weak
solution is called a global weak solution if P(τ = ∞) = 1. Given t > 0 and a process
v ∈ L2(Ω;C0([0, t];D(L)′)), we introduce the stopping time

τR := inf{s ∈ [0, t] : ‖v(s)‖D(L)′ > R} for R > 0.

This time is positive. Indeed, by Chebychev’s inequality, it holds for δ > 0 that

P(τR > δ) ≥ P

(
sup
0<t<δ

‖v(t ∧ τR)‖D(L)′ ≤ R
)
≥ 1− 1

R2
E sup

0<t<δ
‖v(t ∧ τR)‖2D(L)′ .

Then, inserting (19) and using the properties of the operators introduced in Section 3, we
can show that P(τR > δ) ≥ 1− C(δ), where C(δ) → 0 as δ → 0, which proves the claim.
We impose the following general assumptions.
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(H1) Entropy density: Let D ⊂ R
n be a domain and let h ∈ C2(D; [0,∞)) be such that

h′ : D → R
n and h′′(u) ∈ R

n×n for u ∈ D are invertible and there exists C > 0 such
that |u| ≤ C(1 + h(u)) for all u ∈ D.

(H2) Initial datum: u0 = (u0
1, . . . , u

0
n) ∈ L∞(Ω;L2(O;Rn)) is F0-measurable satisfying

u0(x) ∈ D for a.e. x ∈ O P-a.s.
(H3) Diffusion matrix: A = (Aij) ∈ C1(O;Rn×n) grows at most linearly and the matrix

h′′(u)A(u) is positive semidefinite for all u ∈ D.

Remark 11 (Discussion of the assumptions). Hypothesis (H1) and the positive semidef-
initeness condition of h′′(u)A(u)h′′(u) in (H3) are necessary for the entropy structure of
the general cross-diffusion system. The entropy density (5) with D = (0,∞)n satisfies
Hypothesis (H1), and the diffusion matrix (3) fulfills (H3). The differentiability of A is
needed to apply [32, Prop. 4.1.4] (stating that the assumptions of the abstract existence
Theorem 4.2.2 are satisfied) and can be weakened to continuity, weak monotonicity, and
coercivity conditions. The growth condition for A is technical; it guarantees that the inte-
gral formulation associated to (1) is well defined. Hypothesis (H2) guarantees that h(u0)
is well defined. �

We consider general approximate stochastic cross-diffusion systems, since the existence
result for (17) may be useful also for other stochastic cross-diffusion systems.

Theorem 12 (Existence of approximate solutions). Let Assumptions (A1)–(A2), (A4)–
(A5), (H1)–(H3) be satisfied and let ε > 0, R > 0. Then problem (17)–(18) has a unique
local solution (τR, v

ε).

Proof. We want to apply Theorem 4.2.4 and Proposition 4.1.4 of [32]. To this end, we need
to verify that the operator M : D(L)′ → D(L)′, M(v) := div(B(Rε(v))∇Rε(v)), is Fréchet
differentiable and has at most linear growth, DM [v] − cI is negative semidefinite for all
v ∈ D(L)′ and some c > 0, and σ is Lipschitz continuous.
By the regularity of the matrix A and the entropy density h, the operatorD(L) → D(L)′,

w 7→ div(B(w)∇w), is Fréchet differentiable. Then the Fréchet differentiability of Rε (see
Lemma 10) and the chain rule imply that the operator M is also Fréchet differentiable
with derivative

DM [v](ξ) = div
(
DB[Rε(v)](DRε[v](ξ))∇Rε(v)

)
+ div

(
B(Rε(v))∇DRε[v](ξ)

)
,

where v, ξ ∈ D(L)′. We claim that this derivative is locally bounded, i.e. if ‖v‖D(L)′ ≤ K
then ‖DM [v](ξ)‖D(L)′ ≤ C(K)‖ξ‖D(L)′ . For this, we deduce from the Lipschitz continuity
of Rε (Lemma 10) and the property u(Rε(v)) ∈ L∞(O) for v ∈ D(L)′ that

‖B(Rε(v))‖L∞(O) + ‖DB[Rε(v)]‖L∞(O) ≤ C(1 + ‖Rε(v)‖D(L)) ≤ C(ε)(1 + ‖v‖D(L)′),

where DB[Rε(v)] is interpreted as a matrix. Recalling from Lemma 10 that

‖DRε[v](ξ)‖D(L) ≤ C(ε)‖ξ‖D(L)′ for all ξ ∈ D(L)′,

we obtain for ‖v‖D(L)′ ≤ K and ξ ∈ D(L)′:

‖DM [v](ξ)‖D(L)′ ≤ C
∥∥DB[Rε(v)](DRε[v](ξ))∇Rε(v) + B(Rε(v))∇DRε[v](ξ)

∥∥
L1(O)
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≤ C‖DB[Rε(v)](DRε[v](ξ))‖L∞(O)‖∇Rε(v)‖L1(O)

+ C‖B(Rε(v))‖L∞(O)‖∇DRε[v](ξ)‖L1(O)

≤ C‖DB[Rε(v)]‖L∞(O)‖DRε[v](ξ)‖D(L)‖Rε(v)‖D(L)

+ C‖B(Rε(v))‖L∞(O)‖DRε[v](ξ)‖D(L)

≤ C(ε)(1 + ‖v‖D(L)′)‖ξ‖D(L)′ ≤ C(ε,K)‖ξ‖D(L)′ .

This proves the claim. Thus, if ‖v‖D(L)′ ≤ K, there exists c > 0 such that

(ξ,DM [v](ξ)− cξ)D(L)′ ≤ 0 for ξ ∈ D(L)′.

Moreover, by Lemma 10 again,

‖M(v)‖D(L)′ ≤ C‖B(Rε(v))∇Rε(v)‖L1(O) ≤ C‖∇Rε(v)‖L1(O)

≤ C‖Rε(v)‖D(L) ≤ ε−1C(1 + ‖v‖D(L)′).

It follows from Assumption (A4) and Lemma 8 that for v, v̄ ∈ D(L)′ with ‖v‖D(L)′ ≤ K
and ‖v̄‖D(L)′ ≤ K,

‖σ(u(Rε(v)))− σ(u(Rε(v̄)))‖L2(U ;D(L)′) ≤ C‖σ(u(Rε(v)))− σ(u(Rε(v̄)))‖L2(U ;L2(O))

≤ C(K)‖u(Rε(v)))− u(Rε(v̄))‖L2(O)

≤ C(K)‖Rε(v)−Rε(v̄)‖D(L) ≤ C(ε,K)‖v − v̄‖D(L)′ ,

where C(K) also depends on the L∞(O) norms of u′(Rε(v)) and u′(Rε(v̄)).
These estimates show that the assumptions of Theorem 4.2.4 of [32] are satisfied in the

ball {v ∈ D(L)′ : ‖v‖D(L)′ ≤ K}. An inspection of the proof of that theorem, which
is based on the Galerkin method and Itô’s lemma, shows that local bounds are sufficient
to conclude the existence of a local solution v up to the stopping time τR. The boundary
conditions follow from Rε(v) ∈ D(L) = Hm

N (O) and the definition of the space Hm
N (O). �

For the entropy estimate we need two technical lemmas whose proofs are deferred to
Appendix A.

Lemma 13. Let w ∈ D(L), a = (aij) ∈ L1(O;Rn×n), and b = (bij) ∈ D(L)n×n satisfying
DRε[w](a) = b. Then ∫

O

a : bdx ≤
∫

O

tr[aTu′(w)−1a]dx.

Lemma 14. Let v0 ∈ Lp(Ω;L1(O)) for some p ≥ 1 satisfies E
∫
O
h(v0)dx ≤ C. Then

∫

O

h(u(Rε(v
0)))dx+

ε

2
‖LRε(v

0)‖2L2(O) ≤
∫

O

h(v0)dx.

We turn to the entropy estimate.

Proposition 15 (Entropy inequality). Let (τR, v
ε) be a local solution to (17)–(18) and

set vR(t) = vε(ω, t ∧ τR(ω)) for ω ∈ Ω, t ∈ (0, τR(ω)). Then there exists a constant
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C(u0, T ) > 0, depending on u0 and T but not on ε and R, such that

E sup
0<t<T∧τR

∫

O

h(uε(t))dx+
ε

2
E sup

0<t<T∧τR

‖Lwε(t)‖2L2(O)

+ E sup
0<t<T∧τR

∫ t

0

∫

O

∇wε(s) : B(wε(s))∇wε(s)dxds ≤ C(u0, T ),

where uε := u(Rε(v
R)) and wε := Rε(v

R).

Proof. The result follows from Itô’s lemma using a regularized entropy. More precisely, we
want to apply the Itô lemma in the version of [29, Theorem 3.1]. To this end, we verify
the assumptions of that theorem. Basically, we need a twice differentiable function H on a
Hilbert space H, whose derivatives satisfy some local growth conditions on H and V , where
V is another Hilbert space such that the embedding V →֒ H is dense and continuous. We
choose V = H = D(L)′ and the regularized entropy

(21) H(v) :=

∫

O

h(u(Rε(v)))dx+
ε

2
‖LRε(v)‖2L2(O), v ∈ D(L)′.

Recall that Rε(v) = h′(u(Rε(v))) for v ∈ D(L)′, since u = u(w) is the inverse of h′. Then,
in view of the regularity assumptions for h and Lemma 10, H is Fréchet differentiable with
derivative

DH[v](ξ) =

∫

O

(
h′(u(Rε(v)))u

′(Rε(v))DRε[v](ξ) + εLDRε[v](ξ) · LRε(v)
)
dx

=
〈
(u′(Rε(v)) + εL∗L)DRε[v](ξ), Rε(v)

〉
D(L)′,D(L)

=
〈
DQε[Rε(v)]DRε[v](ξ), Rε(v)

〉
D(L)′,D(L)

= 〈ξ, Rε(v)〉D(L)′,D(L),

where v, ξ ∈ D(L)′. In other words, DH[v] can be identified with Rε(v) ∈ D(L). In a
similar way, we can prove that DH[v] is Fréchet differentiable with

D2H[v](ξ, η) = 〈ξ,DRε[v](η)〉D(L)′,D(L) for v, ξ, η ∈ D(L)′.

We have, thanks to the Lipschitz continuity of Rε and DRε[v] (see Lemma 10) for all v,
ξ ∈ D(L)′ with ‖v‖D(L)′ ≤ K for some K > 0,

|DH[v](ξ)| ≤ ‖Rε(v)‖D(L)‖ξ‖D(L)′ ≤ C(ε)(1 + ‖v‖D(L)′)‖ξ‖D(L)′ ≤ C(ε,K)‖ξ‖D(L)′ ,

|D2H[v](ξ, ξ)| ≤ ‖DRε[v](ξ)‖D(L)‖ξ‖D(L)′ ≤ C(ε)‖ξ‖2D(L)′ .

Finally, for any η ∈ D(L)′, we need an estimate for the mapping D(L)′ → R, v 7→
DH[v](η). We have identified DH[v] with Rε(v) ∈ D(L), but we need an identification in
D(L)′. As in Lemma 7, the operator L can be constructed in such a way that the Riesz
representative in D(L)′ of a functional acting on D(L)′ can be expressed via the application
of L∗L to an element of D(L). Indeed, for F ∈ D(L) and ξ ∈ D(L)′, we infer from Lemma
7 that

〈ξ, F 〉D(L)′,D(L) = (L−1ξ, LF 〉D(L)′,D(L) = ((LL−1)L−1ξ, LF )L2(O)

= (L−1ξ, L−1L∗LF )L2(O) = (L∗LF, ξ)D(L)′ .
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Hence, we can associate DH[v] with L∗LRε(v) ∈ D(L)′. Then, by the first estimate in (15)
and the Lipschitz continuity of Rε,

‖L∗LRε(v)‖D(L)′ ≤ C‖Rε(v)‖D(L) ≤ C‖Rε(v)−Rε(0)‖D(L) + C‖Rε(0)‖D(L)

≤ C(ε)(1 + ‖v‖D(L)′) for all v ∈ D(L)′,

giving the desired estimate for DH[v] in D(L)′. Thus, the assumptions of the Itô lemma,
as stated in [29], are satisfied.
To simplify the notation, we set uε := u(Rε(v

R)) and wε := Rε(v
R) in the following. By

Itô’s lemma, using DH[vR] = h′(uε), D2H[vR] = DRε(v
R), we have

H(vR(t)) = H(v(0)) +

∫ t

0

〈
div

(
B(wε)∇h′(uε(s))

)
, wε(s)

〉
D(L)′,D(L)

ds(22)

+
∞∑

k=1

n∑

i,j=1

∫ t

0

∫

O

∂h

∂ui

(uε(s))σij(u
ε(s))ekdxdW

k
j (s)

+
1

2

∞∑

k=1

∫ t

0

∫

O

DRε[v
R(s)]

(
σ(uε(s))ek

)
:
(
σ(uε(s))ek

)
dxds.

Lemma 14 shows that the first term on the right-hand side can be estimated from above
by

∫
O
h(u0)dx. Using wε = Rε(v

R) = h′(uε) and integrating by parts, the second term on
the right-hand side can be written as

∫ t

0

〈
div

(
B(wε)∇h′(uε(s))

)
, wε(s)

〉
D(L)′,D(L)

ds

= −
∫ t

0

∫

O

∇wε(s) : B(wε)∇wε(s)dxds ≤ 0.

The boundary integral vanishes because of the choice of the spaceD(L) = Hm
N (O). The last

inequality follows from Assumption (A3), which implies thatB(wε) = A(u(wε))h′′(u(wε))−1

is positive semidefinite.. We reformulate the last term in (22) by applying Lemma 13 with
a = σ(uε)ek and b = DRε[v](σ(u

ε)ek):
∫

O

DRε[v
R]
(
σ(uε)ek

)
:
(
σ(uε)ek

)
dx

≤
∫

O

tr
[
(σ(uε)ek)

Tu′(wε)−1σ(uε)ek
]
dx.

Taking the supremum in (22) over (0, TR), where TR ≤ T ∧ τR, and the expectation yields

E sup
0<t<TR

∫

O

h(uε(t))dx+
ε

2
E sup

0<t<TR

‖Lwε‖2L2(O)(23)

+ E sup
0<t<TR

∫ t

0

∫

O

∇wε(s) : B(wε)∇wε(s)dxds− E

∫

O

h(u0)dx
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≤ E sup
0<t<TR

∞∑

k=1

n∑

i,j=1

∫ t

0

∫

O

∂h

∂ui

(uε(s))σij(u
ε(s))ekdxdW

k
j (s)

+
1

2
E sup

0<t<TR

∞∑

k=1

∫ t

0

∫

O

tr
[
(σ(uε(s))ek)

Tu′(wε(s))−1σ(uε(s))ek
]
dxds

=: I1 + I2.

We apply the Burkholder–Davis–Gundy inequality [32, Theorem 6.1.2] to I1 and use As-
sumption (A5):

I1 ≤ CE sup
0<t<TR

{∫ t

0

∞∑

k=1

n∑

i,j=1

(∫

O

∂h

∂ui

(uε(s))σij(u
ε(s))ekdx

)2

ds

}1/2

≤ CE sup
0<t<TR

(
1 +

∫ t

0

∫

O

h(uε(s))dxds

)
.

Also the remaining integral I2 can be bounded from above by Assumption (A5):

I2 ≤ CE sup
0<t<TR

(
1 +

∫ t

0

∫

O

h(uε(s))dxds

)
.

Therefore, (23) becomes

E sup
0<t<TR

∫

O

h(uε(t))dx+
ε

2
E sup

0<t<TR

‖Lwε‖2L2(O)(24)

+ E sup
0<t<TR

∫ t

0

∫

O

∇wε(s) : B(wε)∇wε(s)dxds− E

∫

O

h(u0)dx

≤ CE sup
0<t<TR

(
1 +

∫ t

0

∫

O

h(uε(s))dxds

)

≤ C + CE

∫ TR

0

∫

O

sup
0<s<t

h(uε(s))dxdt.

We apply Gronwall’s lemma to the function F (t) = sup0<s<t

∫
O
h(uε(s))dx to find that

E sup
0<t<TR

∫

O

h(uε(t))dx ≤ C(u0, T ).

Using this bound in (24) then finishes the proof. �

The entropy inequality allows us to extend the local solution to a global one.

Proposition 16. Let (τR, v
ε) be a local solution to (19)–(20), constructed in Theorem 12.

Then vε can be extended to a global solution to (19)–(20).

Proof. With the notation uε = u(Rε(v
ε)) and wε = Rε(v

ε), we observe that vε = Qε(Rε(v
ε))

= u(Rε(v
ε)) + εL∗LRε(v

ε) = uε + εL∗Lwε. Thus, we have for TR ≤ T ∧ τR,

E sup
0<t<TR

‖vε(t)‖D(L)′ ≤ E sup
0<t<TR

‖uε‖D(L)′ + εE sup
0<t<TR

‖L∗Lwε(t)‖D(L)′
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≤ CE sup
0<t<TR

‖uε‖L1(O) + εE sup
0<t<TR

‖L∗Lwε(t)‖D(L)′ .

We know from Hypothesis (H1) that |uε| ≤ C(1 + h(uε)). Therefore, taking into account
the entropy inequality and the second inequality in (15),

E sup
0<t<TR

‖v(t)‖D(L)′ ≤ CE sup
0<t<TR

‖h(uε(t))‖L1(O) + εC sup
0<t<TR

‖Lwε(t)‖L2(O) ≤ C(u0, T ).

This allows us to perform the limit R → ∞ and to conclude that we have indeed a solution
vε in (0, T ) for any T > 0. �

5. Proof of Theorem 3

We prove the global existence of martingale solutions to the SKT model with self-
diffusion.

5.1. Uniform estimates. Let vε be a global solution to (19)–(20) and set uε = u(Rε(v
ε)).

We assume that A(u) is given by (3) and that aii > 0 for i = 1, . . . , n. We start with some
uniform estimates, which are a consequence of the entropy inequality in Proposition 15.

Lemma 17 (Uniform estimates). There exists a constant C(u0, T ) > 0 such that for all
ε > 0 and i, j = 1, . . . , n with i 6= j,

E‖uε
i‖L∞(0,T ;L1(O)) ≤ C(u0, T ),(25)

a
1/2
i0 E‖(uε

i )
1/2‖L2(0,T ;H1(O)) + a

1/2
ii E‖uε

i‖L2(0,T ;H1(O)) ≤ C(u0, T ),(26)

a
1/2
ij E‖∇(uε

iu
ε
j)

1/2‖L2(0,T ;L2(O)) ≤ C(u0, T ).

Moreover, we have the estimate

(27) εE‖LRε(v
ε)‖2L∞(0,T ;L2(O)) + E‖vε‖2L∞(0,T ;D(L)′) ≤ C(u0, T ).

Proof. Let vε be a global solution to (19)–(20). We observe that Rε(v
ε) = h′(u(Rε(v

ε))) =
h′(uε) implies that ∇Rε(v

ε) = h′′(uε)∇uε. It is shown in [11, Lemma 4] that for all z ∈ R
n

and u ∈ (0,∞)n,

zTh′′(u)A(u)z ≥
n∑

i=1

πi

(
a0i

z2i
ui

+ 2aiiz
2
i

)
+

1

2

n∑

i,j=1, i 6=j

πiaij

(√
uj

ui

zi +

√
ui

uj

zj

)2

.

Using B(Rε(v
ε)) = A(uε)h′′(uε)−1 and the previous inequality with z = ∇uε, we find that

∇Rε(v
ε) : B(Rε(v

ε))∇Rε(v) = ∇uε : h′′(uε)
(
A(uε)h′′(uε)−1

)
h′′(uε)∇uε(28)

= ∇uε : h′′(uε)A(uε)∇uε

≥
n∑

i=1

πi

(
4a0i|∇(uε)1/2|2 + 2aii|∇uε|2

)
+ 2

∑

i 6=j

πiaij|∇(uε
iu

ε
j)

1/2|2.

Therefore, the entropy inequality in Proposition 15 becomes

E sup
0<t<T

∫

O

h(uε(t))dx+ E sup
0<t<T

ε

2
‖LR(vε(t))‖2L2(O)(29)
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+ E

∫ T

0

∫

O

n∑

i=1

πi

(
4a0i|∇(uε)1/2|2 + 2aii|∇uε|2

)
dxds

+ 2E

∫ T

0

∫

O

∑

i 6=j

πiaij|∇(uε
iu

ε
j)

1/2|2dxds ≤ C(u0, T ).

This is the stochastic analog of the entropy inequality (6). By Hypothesis (H1), we have
|u| ≤ C(1 + h(u)) and consequently,

E sup
0<t<T

‖uε(t)‖L1(O) ≤ CE sup
0<t<T

∫

O

h(uε(t))dx+ C ≤ C(u0, T ),

which proves (25). Estimate (26) then follows from the Poincaré–Wirtinger inequality.
It remains to show estimate (27). We deduce from the second inequality in (15) that

‖vε(t)‖D(L)′ = ‖Qε(Rε(v
ε(t)))‖D(L)′ = ‖u(Rε(v

ε(t))) + εL∗LRε(v
ε(t))‖D(L)′

≤ C‖u(Rε(v
ε(t)))‖L1(O) + ε‖L∗LRε(v

ε(t))‖D(L)′

≤ C‖uε(t)‖L1(O) + εC‖LRε(v
ε(t))‖L2(O).

This shows that

E sup
0<t<T

‖vε(t)‖D(L)′ ≤ CE sup
0<t<T

‖uε‖L1(O) + εCE sup
0<t<T

‖LRε(v
ε(t))‖L2(O) ≤ C(u0, T ),

ending the proof. �

We also need higher-order moment estimates.

Lemma 18 (Higher-order moments I). Let p ≥ 2. There exists a constant C(p, u0, T ),
which is independent of ε, such that

E‖uε‖pL∞(0,T ;L1(O)) ≤ C(p, u0, T ),(30)

a
p/2
i0 E‖(uε

i )
1/2‖pL2(0,T ;H1(O)) + a

p/2
ii E‖uε

i‖pL2(0,T ;H1(O)) ≤ C(p, u0, T ),(31)

a
p/2
ij E‖∇(uε

iu
ε
j)

1/2‖pL2(0,T ;L2(O)) ≤ C(p, u0, T ).(32)

Moreover, we have

(33) E

(
ε sup
0<t<T

‖LRε(v
ε(t))‖2L2(O)

)p

+ E

(
sup

0<t<T
‖vε(t)‖D(L)′

)p

≤ C(p, u0, T ).

Proof. Proceeding as in the proof of Proposition 15 and taking into account identity (22)
and inequality (28), we obtain

H(vε(t)) +

∫ T

0

∫

O

n∑

i=1

πi

(
4ai0|∇(uε)1/2|2 + 2aii|∇uε|2

)
dxds

+ 2E

∫ T

0

∫

O

∑

i 6=j

πiaij|∇(uε
iu

ε
j)

1/2|2dxds
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≤ H(vε(0)) +
∞∑

k=1

n∑

i,j=1

∫ t

0

∫

O

πi log u
ε
i (s)σij(u

ε(s))ekdxdW
k
j (s)

+
1

2

∞∑

k=1

∫ t

0

∫

O

tr
[
(σ(uε(s))ek)

Th′′(uε(s))σ(uε(s))ek
]
dxds,

recalling Definition 21 of H(vε). We raise this inequality to the pth power, take the
expectation, apply the Burkholder–Davis–Gundy inequality (for the second term on the
right-hand side), and use Assumption (A5) to find that

E

(
sup

0<t<T

∫

O

h(uε(t))dx+ ε sup
0<t<T

‖LRε(v
ε(t))‖2L2(O)

)p

(34)

+ CE

(∫ T

0

∫

O

n∑

i=1

πiai0|∇(uε
i (s))

1/2|2dxds
)p

+ CE

(∫ T

0

∫

O

n∑

i=1

πiaii|∇uε
i (s)|2dxds

)p

+ CE

(∫ T

0

∫

O

∑

i 6=j

πiaij|∇(uε
iu

ε
j)

1/2|2dxds
)p

≤ C(p, u0) + CE

(∫ T

0

∞∑

k=1

n∑

i,j=1

(∫

O

log uε
i (s)σij(u

ε(s))ekdx

)2

ds

)p/2

+ CE

(∫ T

0

∞∑

k=1

∫

O

tr
[
(σ(uε(s))ek)

Th′′(uε(s))(σ(uε(s))ek)
]
dxds

)p

≤ C(p, u0) + CE

(∫ T

0

∫

O

h(uε(s))dxds

)p

.

We neglect the expression ε‖LRε(v
ε(t))‖2L2(O) and apply Gronwall’s lemma. Then, taking

into account the fact that the entropy dominates the L1(O) norm, thanks to Hypothe-
sis (H1), and applying the Poincaré–Wirtinger inequality, we obtain estimates (30)–(32).
Going back to (34), we infer that

E

(
ε sup
0<t<T

‖LRε(v
ε(t))‖2L2(O)

)p

≤ C(p, u0) + C(p, T )E

∫ T

0

(∫

O

h(uε(s))dx

)p

ds

≤ C(p, u0, T ).

Combining the previous estimates and arguing as in the proof of Lemma 17, we have

E

(
sup

0<t<T
‖vε(t)‖D(L)′

)p

= E

(
sup

0<t<T
‖uε(t) + εL∗LRε(v

ε(t))‖D(L)′

)p

≤ CE

(
sup

0<t<T
‖uε(t)‖L1(O)

)p

+ CE

(
ε2 sup

0<t<T
‖LRε(v

ε(t))‖2L2(O)

)p/2

≤ C(p, u0, T ).
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This ends the proof. �

Using the Gagliardo–Nirenberg inequality, we can derive further estimates. We recall
that QT = O × (0, T ).

Lemma 19 (Higher-order moments II). Let p ≥ 2. There exists a constant C(p, u0, T )
> 0, which is independent of ε, such that

E‖uε
i‖pL2+2/d(QT )

≤ C(p, u0, T ),(35)

E‖uε
i‖pL2+4/d(0,T ;L2(O))

≤ C(p, u0, T ).(36)

Proof. We apply the Gagliardo–Nirenberg inequality:

E

(∫ T

0

‖uε
i‖sLr(O)dt

)p/s

≤ CE

(∫ T

0

‖uε
i‖θsH1(O)‖uε

i‖
(1−θ)s

L1(O) dt

)p/s

≤ CE

(
‖uε

i‖
(1−θ)s

L∞(0,T ;L1(O))

∫ T

0

‖uε
i‖2H1(O)dt

)p/s

≤ C
(
E‖uε

i‖
2(1−θ)p

L∞(0,T ;L1(O))

)1/2(
E‖uε

i‖
4p/s

L2(0,T ;H1(O))

)1/2 ≤ C,

where r > 1 and θ ∈ (0, 1] are related by 1/r = 1 − θ(d + 2)/(2d) and s = 2/θ ≥ 2. The
right-hand side is bounded in view of estimates (30) and (31). Estimate (35) follows after
choosing r = s, implying that r = 2 + 2/d, and (36) follows from the choice s = 2 + 4/d,
implying that r = 2. �

Next, we show some bounds for the fractional time derivative of uε. This result is used
to establish the tightness of the laws of (uε) in a sub-Polish space. Alternatively, the
tightness property can be proved by verifying the Aldous condition; see, e.g., [18]. We
recall the definition of the Sobolev–Slobodeckij spaces. Let X be a vector space and let
p ≥ 1, α ∈ (0, 1). Then W α,p(0, T ;X) is the set of all functions v ∈ Lp(0, T ;X) for which

‖v‖pWα,p(0,T ;X) = ‖v‖pLp(0,T ;X) + |v|pWα,p(0,T ;X)

=

∫ T

0

‖v‖pXdt+
∫ T

0

∫ T

0

‖v(t)− v(s)‖pX
|t− s|1+αp

dtds < ∞.

With this norm, W α,p(0, T ;X) becomes a Banach space. We need the following technical
lemma, which is proved in Appendix A.

Lemma 20. Let g ∈ L1(0, T ) and δ < 2, δ 6= 1. Then

(37)

∫ T

0

∫ T

0

|t− s|−δ

∫ t∨s

s∧t

g(r)drdtds < ∞.

We obtain the following uniform bounds for uε and vε in Sobolev–Slobodeckij spaces.

Lemma 21 (Fractional time regularity). Let α < 1/2. There exists a constant C(u0, T ) >
0 such that, for p := (2d+ 4)/d > 2,

E‖uε‖pWα,p(0,T ;D(L)′) ≤ C(u0, T ),
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εpE‖L∗LRε(v
ε)‖pWα,p(0,T ;D(L)′) + E‖vε‖pWα,p(0,T ;D(L)′) ≤ C(u0, T ).(38)

Since p > 2, we can choose α < 1/2 such that αp > 1. Then the continuous embedding
W α,p(0, T ) →֒ C0,β([0, T ]) for β = α− 1/p > 0 implies that

(39) E‖uε‖p
C0,β([0,T ];D(L)′)

≤ C(u0, T ).

Proof. First, we derive the W α,p estimate for vε and then we conclude the estimate for uε

from the definition vε = uε + εL∗LRε(v
ε) and Lemma 19. Equation (17) reads in terms of

uε as

dvεi = div

( n∑

j=1

Aij(u
ε)∇uε

j

)
dt+

n∑

j=1

σij(u
ε)dWj, i = 1, . . . , n.

We know from (33) that E‖vε‖pL∞(0,T ;D(L)′) is bounded. Thus, to prove the bound for the

second term in (38), it remains to estimate the following seminorm:

E|vεi |pWα,p(0,T ;D(L)′ = E

∫ T

0

∫ T

0

‖vεi (t)− vεi (s)‖pD(L)′

|t− s|1+αp
dtds

≤ E

∫ T

0

∫ T

0

|t− s|−1−αp

∥∥∥∥
∫ t∨s

s∧t

div
n∑

j=1

Aij(u
ε(r))∇uε

j(r)dr

∥∥∥∥
p

D(L)′
dtds

+ E

∫ T

0

∫ T

0

|t− s|−1−αp

∥∥∥∥
∫ t∨s

s∧t

n∑

j=1

σij(u
ε(r))dWj(r)

∥∥∥∥
p

D(L)′
dtds

=: J1 + J2.

We need some preparations before we can estimate J1. We observe that
∥∥∥∥

n∑

j=1

Aij(u
ε)∇uε

j

∥∥∥∥
L1(O)

=

∥∥∥∥
(
ai0 + 2

n∑

j=1

aiju
ε
j

)
∇uε

i +
∑

j 6=i

aiju
ε
i∇uε

j

∥∥∥∥
L1(O)

≤ C‖∇uε
i‖L1(O) + C‖uε‖L2(O)‖∇uε‖L2(O).

It follows from the embedding L1(O) →֒ D(L)′ that

J1 ≤ E

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

∥∥∥∥ div
n∑

j=1

Aij(u
ε(r))∇uε

j(r)

∥∥∥∥
D(L)′

dr

)p

dtds

≤ CE

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

∥∥∥∥
n∑

j=1

Aij(u
ε(r))∇uε

j(r)

∥∥∥∥
L1(O)

dr

)p

dtds

≤ CE

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

‖∇uε(r)‖L2(O)dr

)p

dtds

+ CE

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

‖uε(r)‖L2(O)‖∇uε(r)‖L2(O)dr

)p

dtds

=: J11 + J12.
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We use Hölder’s inequality and fix p = (2d+ 4)/d to obtain

J11 ≤ CE

∫ T

0

∫ T

0

|t− s|−1−αp|t− s|p/2
(∫ t∨s

s∧t

‖∇uε(r)‖2L2(O)dr

)p/2

dtds.

In view of estimate (31) and (37), the right-hand side is finite if 1 + αp − p/2 < 2 or,
equivalently, α < (d + 1)/(d + 2), and this holds true since α < 1/2. Applying Hölder’s
inequality again, we have

J12 ≤ CE

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

‖uε(r)‖2L2(O)dr

)p/2(∫ t∨s

s∧t

‖∇uε(r)‖2L2(O)dr

)p/2

dtds

≤ CE

∫ T

0

∫ T

0

|t− s|−1−αp|t− s|p/(d+2)

(∫ t∨s

s∧t

‖uε(r)‖(2d+4)/d

L2(O) dr

)pd/(2d+4)

×
(∫ t∨s

s∧t

‖∇uε(r)‖2L2(O)dr

)p/2

dtds

≤ C

{
E

(∫ T

0

∫ T

0

|t− s|−1−αp+p/(d+2)

(∫ t∨s

s∧t

‖uε(r)‖(2d+4)/d

L2(O) dr

)
dtds

)2}1/2

×
{
E

(∫ T

0

‖∇uε(r)‖2L2(O)dr

)p}1/2

.

Because of estimates (31), (36), and (37), the right-hand side of is finite if 1+αp−p/(d+2) <
2, which is equivalent to α < 1/2.
To estimate J2, we use the embedding L2(O) →֒ D(L)′, the Burkholder–Davis–Gundy

inequality, the linear growth of σ from Assumption (A4), and the Hölder inequality:

J2 ≤ C

∫ T

0

∫ T

0

|t− s|−1−αp
E

∥∥∥∥
∫ t∨s

s∧t

n∑

j=1

σij(u
ε(r))dWj(r)

∥∥∥∥
p

L2(O)

dtds

≤ C

∫ T

0

∫ T

0

|t− s|−1−αp
E

(∫ t∨s

s∧t

∞∑

k=1

n∑

j=1

‖σij(u
ε(r))ek‖2L2(O)dr

)p/2

dtds

≤ C

∫ T

0

∫ T

0

|t− s|−1−αp+(p−2)/2

∫ t∨s

s∧t

E

n∑

j=1

(
1 + ‖uε

j(r)‖pL2(O)

)
drdtds.

By (36) and (37), the right-hand side is finite if 1+αp− (p− 2)/2 < 2, which is equivalent
to α < (3d+2)/(2d+4), and this is valid due to the condition α < 1/2. We conclude that
(vε) is bounded in Lp(Ω;W α,p(0, T ;D(L)′)) with p = (2d+ 4)/d.
Next, we derive the uniform bounds for uε. By definition of vε and the W α,p seminorm,

E|uε|pWα,p(0,T ;D(L)′) = E|vε − εL∗LRε(v
ε)|pWα,p(0,T ;D(L)′)

≤ CE

∫ T

0

∫ T

0

‖vε(t)− vε(s)‖pD(L)′

|t− s|1+αp
dtds
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+ CE

∫ T

0

∫ T

0

εp‖L∗LRε(v
ε(t))− L∗LRε(v

ε(s))‖pD(L)′

|t− s|1+αp
dtds.

It follows from (15) and the Lipschitz continuity of Rε (Lemma 10) that

‖L∗LRε(v
ε(t))− L∗LRε(v

ε(s))‖D(L)′ ≤ ‖Rε(v
ε(t))−Rε(v

ε(s))‖L2(O)

≤ ε−1C‖vε(t)− vε(s)‖D(L)′ .

Then we find that

E|uε|pWα,p(0,T ;D(L)′) ≤ CE

∫ T

0

∫ T

0

‖vε(t)− vε(s)‖pD(L)′

|t− s|1+αp
dtds = CE|vε|Wα,p(0,T ;D(L)′),

which finishes the proof. �

5.2. Tightness of the laws of (uε). We show that the laws of (uε) are tight in a certain
sub-Polish space. For this, we introduce the following spaces:

• C0([0, T ];D(L)′) is the space of continuous functions u : [0, T ] → D(L)′ with the
topology T1 induced by the norm ‖u‖C0([0,T ];D(L)′) = sup0<t<T ‖u(t)‖D(L)′ ;

• L2
w(0, T ;H

1(O)) is the space L2(0, T ;H1(O)) with the weak topology T2.

We define the space

Z̃T := C0([0, T ];D(L)′) ∩ L2
w(0, T ;H

1(O)),

endowed with the topology T̃ that is the maximum of the topologies T1 and T2. The space

Z̃T is a sub-Polish space, since C0([0, T ];D(L)′) is separable and metrizable and

fm(u) =

∫ T

0

(u(t), vm(t))H1(O)dt, u ∈ L2
w(0, T ;H

1(O)), m ∈ N,

where (vm)m is a dense subset of L2(0, T ;H1(O)), is a countable family (fm) of point-
separating functionals acting on L2(0, T ;H1(O)). In the following, we choose a number
s∗ ≥ 1 such that

(40) s∗ <
2d

d− 2
if d ≥ 3, s∗ < ∞ if d = 2, s∗ ≤ ∞ if d = 1.

Then the embedding H1(O) →֒ Ls∗(O) is compact.

Lemma 22. The set of laws of (uε) is tight in

ZT = Z̃T ∩ L2(0, T ;Ls∗(O))

with the topology T that is the maximum of T̃ and the topology induced by the L2(0, T ;
Ls∗(O)) norm, where s∗ is given by (40).

Proof. We apply Chebyshev’s inequality for the first moment and use estimate (39) with
β = α− 1/p > 0, for any η > 0 and δ > 0,

sup
ε>0

P

(
sup

s,t∈[0,T ],
|t−s|≤δ

‖uε(t)− uε(s)‖D(L)′ > η

)
≤ sup

ε>0

1

η
E

(
sup

s,t∈[0,T ],
|t−s|≤δ

‖uε(t)− uε(s)‖D(L)′

)
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≤ δβ

η
sup
ε>0

E

(
sup

s,t∈[0,T ],
|t−s|≤δ

‖uε(t)− uε(s)‖D(L)′

|t− s|β
)

≤ δβ

η
sup
ε>0

E‖uε‖C0,β([0,T ];D(L)′)) ≤ C
δβ

η
.

This means that for all θ > 0 and all η > 0, there exists δ > 0 such that

sup
ε>0

P

(
sup

s,t∈[0,T ], |t−s|≤δ

‖uε(t)− uε(s)‖D(L)′ > η

)
≤ θ,

which is equivalent to the Aldous condition [5, Section 2.2]. Applying [38, Lemma 5, The-
orem 3] with the spaces X = H1(O) and B = D(L)′, we conclude that (uε) is precompact
in C0([0, T ];D(L)′). Then, proceeding as in the proof of the basic criterion for tightness
[34, Chapter II, Section 2.1], we see that the set of laws of (uε) is tight in C0([0, T ];D(L)′).
Next, by Chebyshev’s inequality again and estimate (26), for all K > 0,

P
(
‖uε‖L2(0,T ;H1(O)) > K

)
≤ 1

K2
E‖uε‖2L2(0,T ;H1(O)) ≤

C

K2
.

This implies that for any δ > 0, there exists K > 0 such that P(‖uε‖L2(0,T ;H1(O)) ≤ K) ≤
1− δ. Since closed balls with respect to the norm of L2(0, T ;H1(O)) are weakly compact,
we infer that the set of laws of (uε) is tight in L2

w(0, T ;H
1(O)).

The tightness in L2(0, T ;Ls∗(O)) follows from Lemma 36 in Appendix B with p = q = 2
and r = 2 + 4/d. �

Lemma 23. The set of laws of (
√
εL∗LRε(v

ε)) is tight in

YT := L2
w(0, T ;D(L)′) ∩ L∞

w∗(0, T ;D(L)′)

with the associated topology TY .

Proof. We apply the Chebyshev inequality and use the inequality ‖L∗LRε(v
ε)‖D(L)′ ≤

C‖LRε(v
ε)‖L2(O) and estimate (27):

P
(√

ε‖L∗LRε(v
ε)‖L2(0,T ;D(L)′) > K

)
≤ ε

K2
E‖L∗LRε(v

ε)‖2L2(0,T ;D(L)′) ≤
C

K2

for any K > 0. Since closed balls in L2(0, T ;D(L)′) are weakly compact, the set of laws
of (

√
εL∗LRε(v

ε)) is tight in L2
w(0, T ;D(L)′). The second claim follows from an analogous

argument. �

5.3. Convergence of (uε). Let P(X) be the space of probability measures on X. We
consider the space ZT × YT × C0([0, T ];U0), equipped with the probability measure µε :=
µε
u × µε

w × µε
W , where

µε
u(·) = P(uε ∈ ·) ∈ P(ZT ),

µε
w = P(

√
εL∗LRε(v

ε) ∈ ·) ∈ P(YT ),

µε
W (·) = P(W ∈ ·) ∈ P(C0([0, T ];U0)),

recalling the choice (40) of s∗. The set of measures (µε) is tight, since the set of laws of (uε)
and (

√
εL∗LRε(v

ε)) are tight in (ZT ,T) and (YT ,TY ), respectively. Moreover, (µε
W ) consists

of one element only and is consequently weakly compact in C0([0, T ];U0). By Prohorov’s
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theorem, (µε
W ) is tight. Hence, ZT × YT × C0([0, T ];U0) satisfies the assumptions of the

Skorokhod–Jakubowski theorem [6, Theorem C.1]. We infer that there exists a subsequence

of (uε,
√
εL∗LRε(v

ε)), which is not relabeled, a probability space (Ω̃, F̃ , P̃) and, on this

space, (ZT × YT ×C0([0, T ];U0))-valued random variables (ũ, w̃, W̃ ) and (ũε, w̃ε, W̃ ε) such

that (ũε, w̃ε, W̃ ε) has the same law as (uε,
√
εL∗LRε(v

ε),W ) on B(ZT ×YT ×C0([0, T ];U0))
and, as ε → 0,

(ũε, w̃ε, W̃ ε) → (ũ, w̃, W̃ ) in ZT × YT × C0([0, T ];U0) P̃-a.s.

By the definition of ZT and YT , this convergence means P̃-a.s.,

ũε → ũ strongly in C0([0, T ];D(L)′),

ũε ⇀ ũ weakly in L2(0, T ;H1(O)),

ũε → ũ strongly in L2(0, T ;Ls∗(O)),

w̃ε ⇀ w̃ weakly in L2(0, T ;D(L)′),

w̃ε ⇀ w̃ weakly* in L∞(0, T ;D(L)′),

W̃ ε → W̃ strongly in C0([0, T ];U0).

We derive some regularity properties for the limit ũ. We note that ũ is a ZT -Borel random
variable, since B(ZT ×YT ×C0([0, T ];U0)) is a subset of B(ZT )×B(YT )×B(C0([0, T ];U0)).
We deduce from estimates (25) and (26) and the fact that uε and ũε have the same law
that

sup
ε>0

Ẽ‖ũε‖pL2(0,T ;H1(O)) + sup
ε>0

Ẽ‖ũε‖pL∞(0,T ;D(L)′) < ∞.

We infer the existence of a further subsequence of (ũε) (not relabeled) that is weakly

converging in Lp(Ω̃;L2(0, T ;H1(O))) and weakly* converging in Lp(Ω̃;C0([0, T ];D(L)′))

as ε → 0. Because ũε → ũ in ZT P̃-a.s., we conclude that the limit function satisfies

Ẽ‖ũ‖pL2(0,T ;H1(O)) + Ẽ‖ũ‖pL∞(0,T ;D(L)′) < ∞.

Let F̃ and F̃
ε be the filtrations generated by (ũ, w̃, W̃ ) and (ũε, w̃ε, W̃ ), respectively. By

following the arguments of the proof of [7, Proposition B4], we can verify that these new
random variables induce actually stochastic processes. The progressive measurability of ũε

is a consequence of [4, Appendix B]. Set W̃ ε,k
j (t) := (W̃ ε(t), ek)U . We claim that W̃ ε,k

j (t)

for k ∈ N are independent, standard F̃t-Wiener processes. The adaptedness is a direct

consequence of the definition; the independence of W̃ ε,k
j (t) and the independence of the

increments W̃ ε,k(t) − W̃ ε,k(s) with respect to F̃s are inherited from (W (t), ek)U . Passing
to the limit ε → 0 in the characteristic function, by using dominated convergence, we find

that W̃ (t) are F̃t-martingales with the correct marginal distributions. We deduce from

Lévy’s characterization theorem that W̃ (t) is indeed a cylindrical Wiener process.
By definition, uε

i = ui(Rε(v
ε)) = exp(Rε(v

ε)) is positive in QT a.s. We claim that also
ũi is nonnegative in O a.s.
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Lemma 24 (Nonnegativity). It holds that ũi ≥ 0 a.e. in QT P̃-a.s. for all i = 1, . . . , n.

Proof. Let i ∈ {1, . . . , n}. Since uε
i > 0 in QT a.s., we have E‖(uε

i )
−‖L2(0,T ;L2(O)) = 0, where

z− = min{0, z}. The function uε
i is ZT -Borel measurable and so does its negative part.

Therefore, using the equivalence of the laws of uε
i and ũε

i in ZT and writing µε
i and µ̃ε

i for
the laws of uε

i and ũε
i , respectively, we obtain

Ẽ‖(ũε
i )

−‖L2(QT ) =

∫

L2(QT )

‖y−‖L2(QT )dµ̃
ε
i (y)

=

∫

L2(QT )

‖y−‖L2QT )dµ
ε
i (y) = E‖uε

i‖L2(QT ) = 0.

This shows that ũε
i ≥ 0 a.e. in QT P̃-a.s. The convergence (up to a subsequence) ũε → ũ

a.e. in QT P̃-a.s. then implies that ũi ≥ 0 in QT P̃-a.s. �

The following lemma is needed to verify that (ũ, W̃ ) is a martingale solution to (1)–(2).

Lemma 25. It holds for all t ∈ [0, T ], i = 1, . . . , n, and all φ1 ∈ L2(O) and all φ2 ∈ D(L)
that

lim
ε→0

Ẽ

∫ T

0

(
ũε
i (t)− ũi(t), φ1

)
L2(O)

dt = 0,(41)

lim
ε→0

Ẽ
〈
ũε
i (0)− ũi(0), φ2

〉
D(L)′,D(L)

= 0,(42)

lim
ε→0

Ẽ

∫ T

0

〈√
εw̃ε

i (t), φ2

〉
D(L)′,D(L)

dt = 0,(43)

lim
ε→0

Ẽ〈
√
εw̃ε

i (0), φ2〉D(L)′,D(L) = 0,(44)

lim
ε→0

Ẽ

∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

∫

O

(
Aij(ũ

ε(s))∇ũε
j(s)− Aij(ũ(s))∇ũj(s)

)
· ∇φ2dxds

∣∣∣∣dt = 0,(45)

lim
ε→0

Ẽ

∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

(
σij(ũ

ε(s))dW̃ ε
j (s)− σij(ũ(s))dW̃j(s), φ1

)
L2(O)

∣∣∣∣
2

dt = 0.(46)

Proof. The proof is a combination of the uniform bounds and Vitali’s convergence theorem.
Convergences (41) and (42) have been shown in the proof of [18, Lemma 16], and (43) is
a direct consequence of (38) and

Ẽ

(∫ T

0

〈
√
εw̃ε

i (t), φ2〉D(L)′,D(L)dt

)p

≤ εp/2Ẽ

(∫ T

0

‖w̃ε
i (t)‖D(L)′‖φ2‖D(L)dt

)p

≤ εp/2C.

Convergence (44) follows from w̃ε
i ⇀ w̃i weakly* in L∞(0, T ;D(L)′). We establish (45):

∣∣∣∣
∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

∫

O

(
Aij(ũ

ε(s))∇ũε
j(s)− Aij(ũ(s))∇ũj(s)

)
· ∇φ2dxds

∣∣∣∣
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≤
∫ T

0

‖Aij(ũ
ε(s))− Aij(ũ(s))‖L2(O)‖∇ũε

j(s)‖L2(O)‖∇φ2‖L∞(O)ds

+

∣∣∣∣
∫ T

0

∫

O

Aij(ũ(s))∇(ũε(s)− ũ(s)) · ∇φ2dxds

∣∣∣∣ =: Iε1 + Iε2 .

By the Lipschitz continuity of A and the uniform bound for ∇ũε, we have Iε1 → 0 as

ε → 0 P̃-a.s. At this point, we use the embedding D(L) →֒ W 1,∞(O). Also the second
integral Iε2 converges to zero, since Aij(ũ)∇φ2 ∈ L2(0, T ;L2(O)) and ∇ũε

j ⇀ ∇ũj weakly

in L2(0, T ;L2(O)). This shows that P̃-a.s.,

lim
ε→0

∫ T

0

∫

O

Aij(ũ
ε(s))∇ũε

j(s) · ∇φ2dxds =

∫ T

0

∫

O

Aij(ũ(s))∇ũj(s) · ∇φ2dxds.

A straightforward estimation and bound (31) lead to

Ẽ

∣∣∣∣
∫ T

0

∫

O

Aij(ũ
ε(s))∇ũε

j(s) · ∇φ2dxds

∣∣∣∣
p

≤ ‖∇φ2‖pL∞(O)Ẽ

(∫ T

0

∥∥∥∥
n∑

j=1

Aij(ũ
ε(s))∇ũε

j(s)

∥∥∥∥
L1(O)

ds

)p

≤ C,

Hence, Vitali’s convergence theorem gives (45).

It remains to prove (46). By Assumption (A4), P̃-a.s.,
∫ T

0

‖σij(ũ
ε(s))− σij(ũ(s))‖2L2(U ;L2(O))ds ≤ Cσ‖ũε − ũ‖L2(0,T ;L2(O)) → 0.

This convergence and W̃ ε → W̃ in C0([0, T ];U0) imply that [14, Lemma 2.1]
∫ T

0

σij(ũ
ε)dW̃ ε →

∫ T

0

σij(ũ)dW̃ in L2(0, T ;L2(O)) P̃-a.s.

By Assumption (A4) again,

Ẽ

(∫ T

0

‖σij(ũ
ε(s))− σij(ũ(s))‖2L2(U ;L2(O))ds

)p

≤ C + CẼ

(∫ T

0

(
‖ũε(s)‖2L2(O) + ‖ũ(s)‖2L2(O)

)
ds

)p

≤ C.

We infer from Vitali’s convergence theorem that

lim
ε→0

Ẽ

∫ T

0

‖σij(ũ
ε(s))− σij(ũ(s))‖2L2(U ;L2(O))ds = 0.

The estimate

Ẽ

∣∣∣∣
( ∫ T

0

σij(ũ
ε(s))dW̃ ε

j (s)−
∫ T

0

σij(ũ(s))dW̃j(s), φ1

)

L2(O)

∣∣∣∣
2
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≤ C‖φ1‖2L2(O)Ẽ

∫ T

0

(
‖σij(ũ

ε(s))‖2L2(U ;L2(O)) + ‖σij(ũ(s))‖2L2(U ;L2(O))

)
ds

≤ C‖φ1‖2L2(O)

{
1 + Ẽ

(∫ T

0

(
‖ũε(s)‖2L2(O) + ‖ũ(s)‖2L2(O)

)
ds

)}
≤ C

for all φ1 ∈ L2(O) and the dominated convergence theorem yield (46). �

To show that the limit is indeed a solution, we define, for t ∈ [0, T ], i = 1, . . . , n, and
φ ∈ D(L),

Λε
i (ũ

ε, w̃ε, W̃ ε, φ)(t) := 〈ũi(0), φ〉+
√
ε〈w̃ε(0), φ〉

−
n∑

j=1

∫ t

0

∫

O

Aij(ũ
ε(s))∇ũε

j(s) · ∇φdxds

+
n∑

j=1

(∫ t

0

σij(ũ
ε(s))dW̃ ε

j (s), φ

)

L2(O)

,

Λi(ũ, w̃, W̃ , φ)(t) := 〈ũi(0), φ〉 −
n∑

j=1

∫ t

0

∫

O

〈Aij(ũ(s))∇ũj(s) · ∇φdxds

+
n∑

j=1

(∫ t

0

σij(ũ(s))dW̃j(s), φ

)

L2(O)

.

The following corollary is a consequence of the previous lemma.

Corollary 26. It holds for any φ1 ∈ L2(O) and φ2 ∈ D(L) that

lim
ε→0

∥∥(ũε
i , φ1)L2(O) − (ũi, φ1)L2(O)

∥∥
L1(Ω̃×(0,T ))

= 0,

lim
ε→0

‖Λε
i (ũ

ε,
√
εw̃ε, W̃ ε, φ2)− Λi(ũ, 0, W̃ , φ2)‖L1(Ω̃×(0,T )) = 0.

Since vε is a strong solution to (17), it satisfies for a.e. t ∈ [0, T ] P-a.s., i = 1, . . . , n, and
φ ∈ D(L),

(vεi (t), φ)L2(O) = Λε
i (u

ε, εL∗LRε(v
ε),W, φ)(t)

and in particular,
∫ T

0

E
∣∣(vεi (t), φ)L2(O) − Λε

i (u
ε, εL∗LRε(v

ε),W, φ)(t)
∣∣dt = 0.

We deduce from the equivalence of the laws of (uε, εL∗LRε(v
ε),W ) and (ũε,

√
εw̃ε, W̃ ) that

∫ T

0

Ẽ
∣∣(ũε

i (t) +
√
εw̃ε

i , φ
)
L2(O)

− Λε
i

(
ũε,

√
εw̃ε, W̃ ε, φ

)
(t)

∣∣dt = 0.

By Corollary 26, we can pass to the limit ε → 0 to obtain
∫ T

0

Ẽ
∣∣(ũi(t), φ)L2(O) − Λi(ũ, 0, W̃ , φ)(t)

∣∣dt = 0.
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This identity holds for all i = 1, . . . , n and all φ ∈ D(L). This shows that
∣∣(ũi(t), φ)L2(O) − Λi(ũ, 0, W̃ , φ)(t)

∣∣ = 0 for a.e. t ∈ [0, T ] P̃-a.s., i = 1, . . . , n.

We infer from the definition of Λi that

(ũi(t), φ)L2(O) = (ũi(0), φ)L2(O) −
n∑

j=1

∫ t

0

∫

O

Aij(ũ(s))∇ũj(s) · ∇φdxds

+
n∑

j=1

(∫ t

0

σij(ũ(s))dW̃j(s), φ

)

L2(O)

for a.e. t ∈ [0, T ] and all φ ∈ D(L). Set Ũ = (Ω̃, F̃ , P̃, F̃). Then (Ũ , W̃ , ũ) is a martingale
solution to (1)–(3).

6. Proof of Theorem 4

We turn to the existence proof of the SKT model without self-diffusion.

6.1. Uniform estimates. Let vε be a global solution to (19)–(20) and set uε = u(Rε(v
ε)).

We assume that A(u) is given by (3) and that ai0 > 0, aii = 0 for i = 1, . . . , n. The uniform
estimates of Lemmas 17 and 18 are still valid. Since aii = 0, we obtain an H1(O) bound
for (uε

i )
1/2 instead of uε

i , which yields weaker bounds than those in Lemma 19.

Lemma 27. Let p ≥ 2 and set ρ1 := (d + 2)/(d + 1). Then there exists a constant
C(p, u0, T ) > 0, which is independent of ε, such that

E‖uε
i‖pL2(0,T ;W 1,1(O)) ≤ C(p, u0, T ),(47)

E‖uε
i‖pL1+2/d(QT )

≤ C(p, u0, T ),(48)

E‖uε
i‖pL4/d(0,T ;L2(O))

≤ C(p, u0, T ),(49)

E‖uε
i‖pLρ1 (0,T ;W 1,ρ1 (O))

≤ C(p, u0, T ).(50)

Proof. The identity ∇uε
i = 2(uε

i )
1/2∇(uε

i )
1/2 and the Hölder inequality show that

E‖∇uε
i‖pL2(0,T ;L1(O)) ≤ CE

(∫ T

0

‖(uε
i )

1/2‖2L2(O)‖∇(uε
i )

1/2‖2L2(O)dt

)p/2

≤ CE

(
‖uε

i‖L∞(0,T ;L1(O))

∫ T

0

‖∇(uε
i )

1/2‖2L2(O)dt

)p/2

≤ C
(
E‖uε

i‖pL∞(0,T ;L1(O))

)1/2(
E‖∇(uε

i )
1/2‖2pL2(0,T ;L2(O))

)1/2
.

Because of (30) and (31), the right-hand side is bounded. Using (30) again, we infer that
(47) holds. Estimate (48) is obtained from the Gagliardo–Nirenberg inequality similarly
as in the proof of Lemma 19:

E

(∫ T

0

‖(uε
i )

1/2‖sLr(O)

)p/s

≤ C
(
E‖(uε

i )
1/2‖2(1−θ)p

L∞(0,T ;L2(O))

)1/2
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×
(
E‖(uε

i )
1/2‖4p/sL2(0,T ;H1(O))

)1/2 ≤ C,

where s = 2/θ ≥ 2 and 1/r = 1/2 − θ/d = 1/2 − 2/(ds). Choosing r = (2d + 4)/d gives
s = r, and r = 4 leads to s = 8/d; this proves estimates (48) and (49). Finally, (50) follows
from Hölder’s inequality:

‖uε
i‖Lρ1 (QT ) = 2‖(uε

i )
1/2∇(uε

i )
1/2‖Lρ1 (QT ) ≤ 2‖(uε

i )
1/2‖L(2d+4)/d(QT )‖∇(uε

i )
1/2‖L2(QT )

≤ 2‖uε
i‖

1/2

L1+2/d(QT )
‖(uε

i )
1/2‖L2(0,T ;H1(O))

and taking the expectation and using (48) and (31) ends the proof. �

The following lemma is needed to derive the fractional time estimate.

Lemma 28. Let p ≥ 2 and set ρ2 := (2d+2)/(2d+1). Then it holds for any i, j = 1, . . . , n
with i 6= j:

(51) E‖uε
iu

ε
j‖pLρ2 (0,T ;W 1,ρ2 (O))

≤ C(p, u0, T ).

Proof. The Hölder inequality and (30) immediately yield

E‖(uε
iu

ε
j)

1/2‖pL∞(0,T ;L1(O)) ≤ C,

and we conclude from the Poincaré–Wirtinger inequality, estimate (32), and the previous
estimate that

(52) E‖(uε
iu

ε
j)

1/2‖pL2(0,T ;H1(O)) ≤ C.

By the Gagliardo–Nirenberg inequality, with θ = d/(d+ 1),
∫ T

0

‖(uε
iu

ε
j)

1/2‖2(d+1)/d

L2(d+1)/d(O)
dt ≤ C

∫ T

0

‖(uε
iu

ε
j)

1/2‖2θ(d+1)/d

H1(O) ‖(uε
iu

ε
j)

1/2‖2(1−θ)(d+1)/d

L1(O) dt

≤ C‖(uε
iu

ε
j)

1/2‖2(1−θ)(d+1)/d

L∞(0,T ;L1(O))

∫ T

0

‖(uε
iu

ε
j)

1/2‖2H1(O)dt

= C‖(uε
iu

ε
j)

1/2‖2/dL∞(0,T ;L1(O))‖(uε
iu

ε
j)

1/2‖2L2(0,T ;H1(O)).

Taking the expectation and applying the Hölder inequality, we infer that

(53) E‖(uε
iu

ε
j)

1/2‖p
L2(d+1)/d(QT )

≤ C.

Finally, the identity ∇(uε
iu

ε
j) = 2(uε

iu
ε
j)

1/2∇(uε
iu

ε
j)

1/2 and Hölder’s inequality lead to
∫ T

0

‖∇(uε
iu

ε
j)‖ρ2Lρ2 (O)dt ≤ C

∫ T

0

‖(uε
iu

ε
j)

1/2‖2L2(d+1)/d(O)‖∇(uε
iu

ε
j)

1/2‖2L2(O)dt

≤ C

(∫ T

0

‖(uε
iu

ε
j)

1/2‖2(d+1)/d

L2(d+1)/d(O)
dt

)1−ρ2/2(∫ T

0

‖∇(uε
iu

ε
j)

1/2‖2L2(O)dt

)ρ2/2

.

The bounds (52)–(53) yield, after taking the expectation and applying Hölder’s inequality
again, the conclusion (51). �

We show now that the fractional time derivative of uε is uniformly bounded.
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Lemma 29 (Fractional time regularity). Let d ≤ 2. Then there exist 0 < α < 1, p > 1,
and β > 0 such that αp > 1 and

(54) E‖uε‖pWα,p(0,T ;D(L)′) + E‖uε‖p
C0,β([0,T ];D(L)′)

≤ C.

Proof. We proceed similarly as in the proof of Lemma 21. First, we estimate the diffusion
part, setting

g(t) =

∫ t

0

∥∥∥∥ai0∇uε
i +

∑

j 6=i

aij∇(uε
iu

ε
j)

∥∥∥∥
L1(O)

dr.

Then, using D(L) ⊂ W 1,∞(O) (which holds due to the assumption m > d/2 + 1),

E

∫ T

0

∫ T

0

|t− s|−1−αp

∥∥∥∥
∫ t∨s

s∧t

div
n∑

j=1

Aij(u
ε(r))∇uε

j(r)dr

∥∥∥∥
p

D(L)′
dtds

≤ C

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

∥∥∥∥ai0∇uε
i +

∑

j 6=i

aij∇(uε
iu

ε
j)

∥∥∥∥
L1(O)

dr

)p

dtds

≤ CE

∫ T

0

∫ T

0

|g(t)− g(s)|p
|t− s|1+αp

dtds ≤ CE‖g‖pWα,p(0,T ;R).

The embedding W 1,p(0, T ;R) →֒ W α,p(0, T ;R) and estimates (51) and (50) show that for
1 ≤ p ≤ ρ1 = (d+ 2)/(d+ 1),

E‖g‖pWα,p(0,T ;R) ≤ CE‖g‖pW 1,p(0,T ;R) = CE‖∂tg‖pLp(0,T ;R) + CE‖g‖pLp(0,T ;R)

≤ CE

∫ T

0

∥∥∥∥ai0∇uε
i (t) +

∑

j 6=i

aij∇(uε
iu

ε
j)(t)

∥∥∥∥
p

L1(O)

dt

+ CE

∫ T

0

∫ t

0

∥∥∥∥ai0∇uε
i (r) +

∑

j 6=i

aij∇(uε
iu

ε
j)(r)

∥∥∥∥
p

L1(O)

drdt ≤ C.

Next, we consider the stochastic part, using the Burkholder–Davis–Gundy inequality,
Hölder’s inequality, and the sublinear growth condition in the statement of the theorem:

E

∫ T

0

∫ T

0

|t− s|−1−αp

∥∥∥∥
∫ t∨s

s∧t

n∑

j=1

σij(u
ε(r))dWj(r)

∥∥∥∥
p

L2(O)

dtds

≤ CE

∫ T

0

∫ T

0

|t− s|−1−αp

(∫ t∨s

s∧t

n∑

j=1

‖σij(u
ε(r))‖2L2(U ;L2(O))dr

)p/2

dtds

≤ C

∫ T

0

∫ T

0

|t− s|−1−αp+p/2−1
E

∫ t∨s

s∧t

n∑

j=1

‖σij(u
ε(r))‖pL2(U ;L2(O))drdtds

≤ C

∫ T

0

∫ T

0

|t− s|−1−αp+p/2−1
E

∫ t∨s

s∧t

n∑

j=1

(1 + ‖uε(r)‖γpL2(O))drdtds ≤ C.
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The last step follows from estimate (49) (assuming that 1 ≤ γp ≤ 4/d) and Lemma 20,
since 1 + αp − p/2 + 1 < 2 if and only if α < 1/2. We conclude that the second term of
the right-hand side of

vε(t) = vε(0) +

∫ t

0

div(A(uε(s))∇uε(s))ds+

∫ t

0

σ(uε(s))dW (s)

is uniformly bounded in E| · |Wα,p(0,T ;D(L)′) for α < 1 and p ≤ (d + 2)/(d + 1), while the
third term is uniformly bounded in that norm for α < 1/2 and p ≤ 4/(γd). In both cases,
we can choose α such that αp > 1. At this point, we need the condition γ < 1 if d = 2.
(The result holds for any space dimension if γ < 2/d.) Taking into account (33), (vε) is
bounded in W α,p(0, T ;D(L)′). The embedding W α,p(0, T ;D(L)′) →֒ C0,β([0, T ];D(L)′) for
β = α− 1/p > 0 implies that (vε) is bounded in the latter space.
We turn to the estimate of uε in the W α,p(0, T ;D(L)′) norm:

E‖uε‖pWα,p(0,T ;D(L)′) ≤ C
(
E‖vε‖pWα,p(0,T ;D(L)′) + εE‖L∗LRε(v

ε)‖pWα,p(0,T ;D(L)′)

)
.

It remains to consider the last term. In view of estimate (15) and the Lipschitz continuity
of Rε with Lipschitz constant C/ε, we obtain

E|εL∗LRε(v
ε)|pWα,p(0,T ;D(L)′)

= εpE

∫ T

0

∫ T

0

|t− s|−1−αp‖L∗LRε(v
ε(t))− L∗LRε(v

ε(s))‖pD(L)′dtds

≤ εpCE

∫ T

0

∫ T

0

|t− s|−1−αp‖Rε(v
ε(t))−Rε(v

ε(s))‖pD(L)dtds

≤ εpCE

∫ T

0

∫ T

0

|t− s|−1−αpC

εp
‖vε(t)− vε(s)‖pD(L)′dtds

= CE‖vε‖pWα,p(0,T ;D(L)′) ≤ C.

Moreover, by (15) and the Lipschitz continuity of Rε again,

‖εL∗LRε(v
ε)‖pLp(0,T ;D(L)′) ≤ εpC‖Rε(v

ε)‖pLp(0,T ;D(L)) ≤ εpC‖vε‖pLp(0,T ;D(L)′) ≤ C,

where we used estimate (33). This finishes the proof. �

6.2. Tightness of the laws of (uε). The tightness is shown in a different sub-Polish space
than in Section 5.2:

Z̃T := C0([0, T ];D(L)′) ∩ Lρ1
w (0, T ;W 1,ρ1(O)),

endowed with the topology T̃ that is the maximum of the topology of C0([0, T ];D(L)′) and
the weak topology of Lρ1

w (0, T ;W 1,ρ1(O)), recalling that ρ1 = (d+ 2)/(d+ 1) > 1.

Lemma 30. The family of laws of (uε) is tight in

ZT := Z̃T ∩ L2(0, T ;L2(O))

with the topology that is the maximum of T̃ and the topology induced by the L2(0, T ;L2(O))
norm.
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Proof. The tightness in L2(0, T ;Lq(O)) for q < d/(d − 1) = 2 is a consequence of the
compact embedding W 1,1(O) →֒ Lq(O) as well as estimates (47) and (54). In fact, we can
extend this result up to q = 2 because of the uniform bound of uε

i log u
ε
i in L∞(0, T ;L1(O)),

which originates from the entropy estimate. Indeed, we just apply [3, Prop. 1], using
additionally (26) with ai0 > 0. Then the tightness in L2(0, T ;L2(O)) follows from Lemma

36. Finally, the tightness in Z̃T is shown as in the proof of Lemma 22 in Appendix B. �

In three space dimensions, we do not obtain tightness in L2(0, T ;L2(O)) but in the larger
space L4/3(0, T ;L2(O)). This follows similarly as in the proof of Lemma 22 taking into
account the compact embedding W 1,ρ1(O) →֒ L2(O), which holds as long as d ≤ 3, as well
as estimates (50) and (54). Unfortunately, this result seems to be not sufficient to identify
the limit of the product ũε

i ũ
ε
j . Therefore, we restrict ourselves to the two-dimensional case.

The following result is shown exactly as in Lemma 23.

Lemma 31. The family of laws of (
√
εL∗LRε(v

ε)) is tight in YT = L2
w(0, T ;D(L)′) ∩

L∞
w∗(0, T ;D(L)′).

Arguing as in Section 5.3, the Skorokhod–Jakubowski theorem implies the existence of a

subsequence, a probability space (Ω̃, F̃ , P̃), and, on this space, (ZT × YT × C0([0, T ];U0))-

valued random variables (ũε, w̃ε, W̃ ε) and (ũ, w̃, W̃ ) such that (ũε, w̃ε, W̃ ε) has the same

law as (uε,
√
εL∗LRε(v

ε),W ) on B(ZT × YT × C0([0, T ];U0)) and, as ε → 0 and P̃-a.s.,

(ũε, w̃ε, W̃ ε) → (ũ, w̃, W̃ ) in ZT × YT × C0([0, T ];U0).

This convergence means that P̃-a.s.,

ũε → ũ strongly in C0([0, T ];D(L)′),

∇ũε ⇀ ∇ũ weakly in Lρ1(QT ),

ũε → ũ strongly in L2(QT ),

w̃ε ⇀ w̃ weakly in L2(0, T ;D(L)′),

w̃ε ⇀ w̃ weakly* in L∞(0, T ;D(L)′),

W̃ ε → W̃ strongly in C0([0, T ];U0).

The remainder of the proof is very similar to that one of Section 5.3, using slightly
weaker convergence results. The most difficult part is the convergence of the nonlinear
term ∇(ũε

i ũ
ε
j), since the previous convergences do not allow us to perform the limit ũε

i∇ũε
j

because of ρ1 < 2. The idea is to consider the “very weak” formulation by performing
the limit in ũε

i ũ
ε
j∆φ instead of ∇(ũε

i ũ
ε
j) · ∇φ for suitable test functions φ. Indeed, let

φ ∈ L∞(0, T ;C∞
0 (O)). Since ũε

i → ũ strongly in L2(0, T ;L2(O)) P̃-a.s., we have

∫ T

0

∫

O

∇(ũj
i ũ

ε
j) · ∇φdxdt = −

∫ T

0

∫

O

ũε
i ũ

ε
j∆φdxdt → −

∫ T

0

∫

O

ũiũj∆φdxdt.
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It follows from the equivalence of the laws that

Ẽ

(∫ T

0

∫

O

ũε
i ũ

ε
j∆φdxdt

)2

≤ C,

and we conclude from Vitali’s theorem that

Ẽ

∣∣∣∣
∫ T

0

∫

O

(
ũε
i ũ

ε
j − ũiũj

)
(t)∆φdxdt

∣∣∣∣ → 0 as ε → 0.

By density, this convergence holds for all test functions φ ∈ L∞(0, T ;W 2,∞(O)) such that
∇φ · ν = 0 on ∂O. This ends the proof of Theorem 4.

Remark 32 (Three space dimensions). The three-dimensional case is delicate since uε
i lies

in a space larger than L2(QT ). We may exploit the regularity (51) for ∇(uε
iu

ε
j), but this

leads only to the existence of random variables η̃εij and η̃ij with i, j = 1, . . . , n and i 6= j
on the space XT = Lρ2

w (0, T ;Lρ2(O)) such that η̃εij and uε
iu

ε
j have the same law on B(XT )

and, as ε → 0,
η̃εij ⇀ η̃ij weakly in XT .

Similar arguments as before lead to the limit

Ẽ

∣∣∣∣
∫ T

0

∫

O

∇(η̃εij − η̃ij)(t) · ∇φ(t)dxdt

∣∣∣∣ → 0,

but we cannot easily identify η̃ij with ũiũj. �

7. Discussion of the noise terms

We present some examples of admissible terms σ(u). Recall that (ek)k∈N is an orthonor-
mal basis of U .

Lemma 33. The stochastic diffusion

σij(u) = δijs(ui)
∞∑

ℓ=1

aℓ(eℓ, ·)U , s(ui) =
ui

1 + u
1/2+η
i

satisfies Assumption (A5) for η > 0 and (aℓ) ∈ ℓ2(R).

Proof. With the entropy density h given by (5), we compute (∂h/∂ui)(u) = πi log ui and
(∂2h/∂ui∂uj)(u) = (πi/ui)δij . Therefore, by Jensen’s inequality and the elementary in-

equalities |ui log ui| ≤ C(1 + u1+η
i ) for any η > 0 and |u| ≤ C(1 + h(u)),

J1 :=

{∫ T

0

∞∑

k=1

n∑

i,j=1

(∫

O

∂h

∂ui

(u)σij(u)ekdx

)2

ds

}1/2

=

{ ∞∑

k=1

a2k

∫ T

0

n∑

i=1

(∫

O

πi
ui log ui

1 + u
1/2+η
i

dx

)2

ds

}1/2

≤ C

{ n∑

i=1

∫ T

0

(∫

O

1 + u1+η
i

1 + u
1/2+η
i

dx

)2

ds

}1/2
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≤ C

{ n∑

i=1

∫ T

0

∫

O

(
1 + u1+η

i

1 + u
1/2+η
i

)2

dxds

}1/2

≤ C

{ n∑

i=1

∫ T

0

∫

O

(1 + ui)dxds

}1/2

≤ C

(
1 +

∫ T

0

∫

O

h(u)dxds

)
.

The second condition in Assumption (A5) becomes

J2 :=

∫ T

0

∞∑

k=1

∫

O

tr
[
(σ(u)ek)

Th′′(u)σ(u)ek
]
dxds

=
∞∑

k=1

a2k

n∑

i=1

∫ T

0

∫

O

πiui

(1 + u
1/2+η
i )2

dxds ≤ C(O, T ).

Thus, Assumption (A5) is satisfied. �

The proof shows that J1 can be estimated if s(ui)
2 log(ui)

2 is bounded from above by
C(1 + h(u)). This is the case if s(ui) behaves like uα

i with α < 1/2. Furthermore, J2 can
be estimated if s(ui)

2/ui is bounded, which is possible if s(ui) = uα
i with α ≥ 1/2. Thus,

to both satisfy the growth restriction and avoid the singularity at ui = 0, we have chosen
σij as in Lemma 33. This example is rather artificial. To include more general choices, we
generalize our approach. In fact, it is sufficient to estimate the integrals in inequality (23)
in such a way that the entropy inequality of Proposition 15 holds. The idea is to exploit
the gradient bound for ui for the estimatation of J1 and J2.
Consider a trace-class, positive, and symmetric operator Q on L2(O) and the space U =

Q1/2(L2(O)), equipped with the norm ‖Q1/2(·)‖L2(O). We will work in the following with
an U -cylindrical Wiener process WQ. This setting is equivalent to a spatially colored noise
on L2(O) in the form of a Q-Wiener process (with Q 6= Id). The latter viewpoint provides,
in our opinion, a more intuitive insight. In particular, the operator Q is constructed from
the eigenfunctions and eigenvalues described below.
Let (ηk)k∈N be a basis of L2(O), consisting of the normalized eigenfunctions of the

Laplacian subject to Neumann boundary conditions with eigenvalues λk ≥ 0, and set
ak = (1 + λk)

−ρ for some ρ > 0 such that
∑∞

k=1 a
2
k‖ηk‖2L∞(O) < ∞. Since λk ≤ Ck2/d

[28, Corollary 2] and ‖ηk‖L∞(O) ≤ Ck(d−1)/2 [23, Theorem 1], we may choose ρ > (d/2)2.
Considering a sequence of independent Brownian motions (W k

1 , . . . ,W
k
n )k∈N, we assume

the noise to be of the form WQ = (WQ
1 , . . . ,WQ

n ), where

WQ
j (t) =

∞∑

k=1

akekW
k
j (t), j = 1, . . . , n, t > 0,

and (ek)k∈N = (akηk)k∈N is a basis of U = Q1/2(L2(O)).

Lemma 34. For the SKT model with self-diffusion, let σij(u) = δiju
α
i for 1/2 ≤ α ≤ 1,

i, j = 1, . . . , n, interpreted as a map from L2(O) to L2(H
β(O);L2(O)), where β > ρ. Then

the entropy inequality (29) holds, i.e., σij is admissible for Theorem 3.
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Proof. We can write inequality (23) for 0 < T < TR as

E sup
0<t<T

∫

O

h(uε(t))dx+
ε

2
E sup

0<t<T
‖Lwε(t)‖2L2(O)(55)

+ E sup
0<t<T

∫ t

0

∫

O

∇wε(s) : B(wε)∇wε(s)dxds− E

∫

O

h(u0)dx

≤ E sup
0<t<T

{∫ t

0

∞∑

k=1

n∑

i,j=1

(∫

O

πi log u
ε
i (s)σij(u

ε(s))ekdx

)2

ds

}1/2

+
1

2
E sup

0<t<T

∞∑

k=1

n∑

i=1

∫ t

0

∫

O

(σii(u
ε)ek

πi

uε
i

σii(u
ε)ekdxds

=: J3 + J4,

recalling that wε = Rε(v
ε) and uε = u(wε). We simplify J3 and J4, using the definition

ek = akηk:

J3 = E sup
0<t<T

{ ∞∑

k=1

a2k

∫ t

0

n∑

i=1

π2
i

(∫

O

uε
i (s)

α log uε
i (s)ηkdx

)2

ds

}1/2

≤ CE sup
0<t<T

{ ∞∑

k=1

a2k

∫

O

η2kdx

∫ t

0

n∑

i=1

∫

O

(uε
i (s)

α log uε
i (s))

2dxds

}1/2

≤ C

n∑

i=1

E‖(uε
i )

α log uε
i‖L2(0,T ;L2(O)),

J4 =
∞∑

k=1

a2kE sup
0<t<T

n∑

i=1

πi

∫ t

0

∫

O

(uε
i )

2α(uε
i )

−1η2kdxds

≤ C
∞∑

k=1

a2k‖ηk‖2L∞(O)

n∑

i=1

E‖(uε
i )

2α−1‖L1(0,T ;L1(O))

≤ C

n∑

i=1

E‖(uε
i )

2α−1‖L1(0,T ;L1(O)).

The last inequality follows from our assumption on (ak). By (28), we can estimate the
integrand of the third integral on the left-hand side of (55) according to

∇wε : B(wε)∇wε ≥ 2
n∑

i=1

πiaii|∇uε|2.

Hence, because of |u| ≤ C(1 + h(u)), we can formulate (55) as

E sup
0<t<T

‖h(uε(t))‖L1(O) +
ε

2
E sup

0<t<T
‖Lwε(t)‖2L2(O) + CE‖∇uε(s)‖2L2(0,T ;L2(O))
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≤ C + C

n∑

i=1

E‖(uε
i )

α log uε
i‖L2(0,T ;L2(O)) + C

n∑

i=1

E‖(uε
i )

2α−1‖L1(0,T ;L1(O)).

It is sufficient to continue with the case α = 1, since the proof for α < 1 follows from the
case α = 1. Then, using |uε| ≤ C(1 + h(uε)),

E‖h(uε)‖L∞(0,T ;L1(O)) + E‖uε‖L∞(0,T ;L1(O))(56)

+ εE‖Lwε‖2L∞(0,T ;L2(O)) + E‖∇uε‖2L2(0,T ;L2(O))

≤ C + C
n∑

i=1

E‖uε
i log u

ε
i‖L2(0,T ;L2(O)) + CE‖uε‖L1(0,T ;L1(O)).

Now, we use the following lemma which is proved in Appendix A.

Lemma 35. Let d ≥ 2 and let v ∈ L2(0, T ;H1(O)) satisfy v log v ∈ L∞(0, T ;L1(O)).
Then for any δ > 0, there exists C(δ) > 0 such that

‖v log v‖L2(0,T ;L2(O)) ≤ δ
(
‖v log v‖L1(0,T ;L1(O)) + ‖v‖L∞(0,T ;L1(O)) + ‖∇v‖2L2(0,T ;L2(O))

)

+ C(δ)‖v‖L1(0,T ;L1(O)).

It follows from (56) that, for any δ > 0,

E‖h(uε)‖L∞(0,T ;L1(O)) + E‖uε‖L∞(0,T ;L1(O))

+ εE‖Lwε‖2L∞(0,T ;L2(O)) + E‖∇uε‖2L2(0,T ;L2(O))

≤ C + C(δ)E‖uε‖L1(0,T ;L1(O)) + δC
n∑

i=1

E‖uε
i log u

ε
i‖L1(0,T ;L1(O))

+ δC
(
E‖uε‖L∞(0,T ;L1(O)) + E‖∇uε‖2L2(0,T ;L2(O))

)
.

For sufficiently small δ > 0, the last terms on the right-hand side can be absorbed by the
corresponding terms on the left-hand side, leading to

E‖h(uε)‖L∞(0,T ;L1(O)) + E‖uε‖L∞(0,T ;L1(O))

+ εE‖Lwε‖2L∞(0,T ;L2(O)) + E‖∇uε‖2L2(0,T ;L2(O))

≤ C + C

∫ T

0

‖uε‖L∞(0,t;L1(O))dt for all T > 0.

Gronwall’s lemma ends the proof. �

In the case without self-diffusion, we have an H1(O) estimate for (uε
i )

1/2 only, and it can
be seen that stochastic diffusion terms of the type δiju

α
i for α > 1/2 are not admissible.

However, we may choose σij(u)ek = δiju
α
i (1 + (uε

i )
β)−1akηk for 1/2 ≤ α < 1 and β ≥ α/2.
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Appendix A. Proofs of some lemmas

A.1. Proof of Lemma 13. The operator equation DRε[w](a) = b can be written as
a = DQε[w](b) = u′(w)b+ εL∗Lb. Hence,

(57)

∫

O

a : bdx =

∫

O

u′(w)b : bdx+ ε

∫

O

Lb : Lbdx.

The matrix u′(w) = (h′′)−1(u(w)) is symmetric and positive semidefinite (since h is convex).

Thus, the square root operator
√
u′(w) exists and is symmetric. This shows that

u′(w)b : b =
√
u′(w)

√
u′(w)b : b = tr

[(√
u′(w)

√
u′(w)b

)T
b
]

= tr
[(√

u′(w)b
)T (√

u′(w)b
)]

=
∥∥√u′(w)b

∥∥2

F
.

Furthermore, by the Cauchy–Schwarz inequality tr[ATB] ≤ tr[ATA] tr[BTB] and the prop-
erty tr[AB] = tr[BA] for matrices A and B,

a : b = tr
[
aT

√
u′(w) −1

√
u′(w)b

]

≤ tr
[(√

u′(w)b
)T√

u′(w)b
]1/2

tr
[(
aT

√
u′(w) −1

)T
aT

√
u′(w) −1

]1/2

≤ 1

2
tr
[(√

u′(w)b
)T√

u′(w)b
]
+

1

2
tr
[(√

u′(w) −1a
)(
aT

√
u′(w) −1

)]

=
1

2

∥∥√u′(w)b
∥∥2

F
+

1

2
tr
[(
aT

√
u′(w) −1

)(√
u′(w) −1a

)]

=
1

2

∥∥√u′(w)b
∥∥2

F
+

1

2
tr[aTu′(w)−1a].

Inserting these relations into (57) leads to
∫

O

‖
√

u′(w)b‖2Fdx+ ε

∫

O

Lb : Lbdx =

∫

O

a : bdx(58)

≤ 1

2

∫

O

‖
√

u′(w)b‖2Fdx+
1

2

∫

O

tr[aTu′(w)−1a]dx

and consequently, ∫

O

‖
√
u′(w)b‖2Fdx ≤

∫

O

tr[aTu′(w)−1a]dx.

Together with (58) we obtain the statement.

A.2. Proof of Lemma 14. It follows from the convexity of h that

h(v0) ≥ h(u(Rε(v
0))) +

(
v0 − u(Rε(v

0))
)
· h′(u(Rε(v

0))).

Since Rε and Qε are inverse to each other, we can replace v0 by Qε(Rε(v
0)) = u(Rε(v

0)) +
εL∗LRε(v

0):

h(v0) ≥ h(u(Rε(v
0))) +

〈
u(Rε(v

0)) + εL∗LRε(v
0)− u(Rε(v

0)), h′(u(Rε(v
0)))

〉
D(L)′,D(L)

= h(u(Rε(v
0))) + ε〈L∗LRε(v

0), Rε(v
0)〉D(L)′,D(L).
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We find after an integration that
∫

O

h(v0)dx ≥
∫

O

h(u(Rε(v
0)))dx+ ε

∫

O

LRε(v
0) · LRε(v

0)dx,

which yields the statement.

A.3. Proof of Lemma 20. We show that

I :=

∫ T

0

∫ T

0

|t− s|−δ

∫ t∨s

s∧t

g(r)drdtds < ∞.

A change of the integration domain and an integration by parts lead to

I = 2

∫ T

0

∫ T

s

(t− s)−δ

(∫ t

s

g(r)dr

)
dtds(59)

= − 2

1− δ

∫ T

0

∫ T

s

(t− s)1−δg(t)dtds+
2

1− δ

∫ T

0

(T − s)1−δ

∫ t

s

g(r)drds,

observing that limt→s(t − s)1−δ
∫ t

s
g(r)dr = 0 for 1 − δ > −1, since the integrability of g

implies that limt→s(t− s)−1
∫ t

s
g(r)dr = g(s) for a.e. s. The result follows as the integrals

on the right-hand side of (59) are finite.

A.4. Proof of Lemma 35. We use the interpolation inequality with 1/2 = θ1 + (1 −
θ1)/(2p) and some 1 < p < d/(d− 2) (and p > 1 if d = 2) as well as the Young inequality
with δ > 0:

‖v log v‖L2(0,T ;L2(O)) ≤
(∫ T

0

‖v log v‖2θ1L1(O)‖v log v‖
2(1−θ1)

L2p(O) dt

)1/2

(60)

≤
(
C(δ)2

∫ T

0

‖v log v‖2L1(O)dt+ δ2
∫ T

0

‖v log v‖2L2p(O)dt

)1/2

≤ C(δ)‖v log v‖L2(0,T ;L1(O)) + δ‖v log v‖L2(0,T ;L2p(O)).

The first term on the right-hand side is estimated in a similar way as before, where η > 0:

‖v log v‖L2(0,T ;L1(O)) ≤ ‖v log v‖1/2L∞(0,T ;L1(O))‖v log v‖
1/2

L1(0,T ;L1(O))(61)

≤ η‖v log v‖L∞(0,T ;L1(O)) + C(η)‖v log v‖L1(0,T ;L1(O)).

For the second term on the right-hand side of (60), we introduce the function g(v) =
max{2, v log v} for v ≥ 0. Then g ∈ C1([0,∞)). (The function v 7→ v log v is not C1 at
v = 0, therefore we need to truncate.) We use the Sobolev inequality:

‖v log v‖L2(0,T ;L2p(O)) ≤ ‖g(v)‖L2(0,T ;L2p(O)) ≤ C‖g(v)‖L2(0,T ;W 1,q(O))

≤ C
(
‖g(v)‖L2(0,T ;Lq(O)) + ‖∇g(v)‖L2(0,T ;Lq(O))

)
,

where q = 2dp/(d + 2p). The condition p < d/(d − 2) guarantees that q < 2, while d ≥ 2
yields q > 1; thus q ∈ (1, 2). Applying the Gagliardo–Nirenberg inequality, combined with
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the Poincaré–Wirtinger inequality, with θ2 = d(q − 1)/(d(q − 1) + q) ≤ 1, and then the
Young inequality, we find that

‖g(v)‖Lq(O) ≤ C‖∇g(v)‖θ2Lq(O)‖g(v)‖
1−θ2
L1(O) + ‖g(v)‖L1(O)

≤ ‖∇g(v)‖Lq(O) + C‖g(v)‖L1(O) ≤ ‖∇g(v)‖Lq(O) + C
(
1 + ‖v log v‖L1(O)

)
.

This yields

(62) ‖v log v‖L2(0,T ;L2p(O)) ≤ C + C‖∇g(v)‖L2(0,T ;Lq(O)) + C‖v log v‖L2(0,T ;L1(O)).

The last term is estimated as in (61). We consider the norm of ∇g(v) = 1{v log v>2}(1 +
log v)∇v. For this, we observe that 1{v log v>2} log v ≤ C(1+vγ) for some 0 < γ < (2−q)/(2q)
and use the Hölder inequality:

‖∇g(v)‖Lq(O) ≤ ‖(1 + vγ)∇v‖Lq(O) ≤
(
1 + ‖vγ‖L2q/(2−q)(O)

)
‖∇v‖L2(O)

≤ C
(
1 + ‖v‖(2−q)/(2q)

L1(O)

)
‖∇v‖L2(O),

since the property 2γq/(2− q) < 1 gives v2γq/(2−q) ≤ C(1 + v) for v ≥ 0. Consequently, by
Young’s inequality,

‖∇g(v)‖Lq(O) ≤ C
(
1 + ‖v‖(2−q)/q

L1(O) + ‖∇v‖2L2(O)

)
,

and an integration over time gives

‖∇g(v)‖L2(0,T ;Lq(O)) ≤ C
(
1 + ‖v‖(2−q)/q

L∞(0,T ;L1(O)) + ‖∇v‖2L2(0,T ;L2(O))

)

≤ C
(
1 + ‖v‖L∞(0,T ;L1(O)) + ‖∇v‖2L2(0,T ;L2(O))

)
,

where we used (2− q)/q < 1. Thus, (62) becomes

‖v log v‖L2(0,T ;L2p(O)) ≤ C + C‖∇v‖2L2(0,T ;L2(O)) + C‖v‖L∞(0,T ;L1(O))

+ C‖v log v‖L2(0,T ;L1(O)).

It remains to insert (61) and the previous estimate into (60) to conclude that

‖v log v‖L2(0,T ;L2(O)) ≤ ηC(δ)‖v log v‖L∞(0,T ;L1(O)) + C(δ, η)‖v log v‖L1(0,T ;L1(O))

+ δC
(
‖∇v‖2L2(0,T ;L2(O)) + ‖v‖L∞(0,T ;L1(O))

)
.

Choosing first δ > 0 and then η > 0 sufficiently small finishes the proof.

Appendix B. Tightness criterion

Lemma 36 (Tightness criterion). Let O ⊂ R
d (d ≥ 1) be a bounded domain with Lipschitz

boundary and let T > 0, p, q, r ≥ 1, α ∈ (0, 1) if r ≥ p and α ∈ (1/r− 1/p, 1) if r < p. Let
s ≥ 1 be such that the embedding W 1,q(O) →֒ Ls(O) is compact, and let Y be a Banach
space such that the embedding Ls(O) →֒ Y is continuous. Furthermore, let (un)n∈N be a
sequence of functions such that there exists C > 0 such that for all n ∈ N,

E‖un‖Lp(0,T ;W 1,q(O)) + E‖un‖Wα,r(0,T ;Y )) ≤ C.

Then the laws of (un) are tight in Lp(0, T ;Ls(O)) if q ≤ d and in Lp(0, T ;C0(O)) if q > d.
If p = ∞, the space Lp(0, T ; ·) is replaced by C0([0, T ]; ·).
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Proof. By Theorem 3 and Lemma 5 of [38], the set

BR =
{
un ∈ Lp(0, T ;W 1,q(O)) ∩W α,r(0, T ;Y ) :

‖un‖Lp(0,T ;W 1,q(O)) ≤ R and ‖un‖Wα,r(0,T ;Y ) ≤ R
}

is relatively compact in Lp(0, T ;Ls(O)). We deduce from Chebyshev’s inequality that

P(Bc
R) ≤ P(‖un‖Lp(0,T ;W 1,q(O)) > R) + P(‖un‖Wα,r(0,T ;Y ) > R)

≤ 1

R

(
E‖un‖Lp(0,T ;W 1,q(O)) + E‖un‖Wα,r(0,T ;Y )

)
≤ C

R
.

The definition of tightness finishes the proof. �
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