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Abstract. In this review, thermal effects in semiconductor deviced alectric circuits are
modeled and numerically simulated. The device heating é&stduhe particle temperatures,
recombination effects, and the thermal power from the caongoethermal network. The com-
plete model consists of the energy-transport equationthéocharge carriers and the particle
temperatures in the semiconductor device, together witted équation for the lattice temper-
ature; the electric network equations; and the thermal oitescribing the heat evolution in
the circuit elements. The derivation of the energy-transpguations from the semiconductor
Boltzmann equation is sketched, and the submodels andabeplings are introduced. The
heating effects are illustrated by several numerical exasap
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1 Introduction

Self-heating is becoming of paramount importance in modéra-integrated circuits and power devices

since it influences strongly the circuit behavior or evendowits performance. The standard approach for
the modeling of integrated circuits is to replace the semdcmtor devices by equivalent circuits consist-

ing of basic elements and including (thermal) fitting parteree Due to the decreasing feature size and
increasing operating frequency, however, a very large murobbasic elements and a careful adjustment
of the large number of fitting parameters is needed in ordectieve the required accuracy. Therefore,

it is preferable to model thermally relevant semicondudmrices by transport equations and to develop a
coupled model for the particle temperatures, the lattiogptrature in the device, and the temperatures of
the circuit elements. The goal of this paper is to review g@dtion of the energy-transport equations and

the modeling of electric circuits and thermal networks angresent some numerical examples illustrating

the self-heating behavior.

Thermal effects in microelectronic modeling were alreadgsidered in the 1970s [1, 26]. First coupled
circuit-device models were often based on a combinatiorewfcg and circuit simulators [23]. More re-
cently, electric network models were coupled to semicotaturansport equations, using drift-diffusion
[43, 47] or energy-transport models [3, 13]. A thermodyrmaapproach to extend the drift-diffusion equa-
tions to the nonisothermal case was presented in [49], dgteeralized in [2] using first principles of en-
tropy maximization and partial local equilibrium. Recgntin energy-transport model coupled to electric
circuit equations and a lattice heat equation was numéyisathulated in [14].

Self-heating is described by the following models. Firkg £nergy-transport equations allow for the
computation of the particle temperatures. Collisions ef¢harge carriers with the crystal lattice (modeled
by a relaxation-time ansatz) leads to an increasing laticgerature which is described by a heat equation
derived from thermodynamic principles. Second, the ciriimodeled by electric network equations
resulting from the so-called modified nodal analysis. Thardhermal network model describes the heat
evolution in the (lumped and distributed) circuit elementisese three subsystems are coupled by thermo-
electric, electric circuit-device, and thermal networkvite interfaces. Figure 1 presents an overview of
the subsystems.

In Section 2 we introduce the energy-transport equationthfoelectrons. First their derivation from the
semiconductor Boltzmann equation is sketched. The equatioe numerically approximated by using
mixed finite-element methods, and numerical simulationsvof and three-dimensional devices are pre-
sented. The equation for the lattice temperature is deiliveection 3. Section 4 is concerned with the
modeling of the electric circuit employing the KirchhoffWa and current-voltage characteristics of the
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Figure 1. Overview of the coupled thermo-electric circuit-device model.

basic elements. Thermally relevant circuit elements aseriteed in a thermal network model detailed in
Section 5. Finally, the fully coupled model is considere&éttion 6.

2 Energy-transport modeling

Heating of electrons in the semiconductor crystal is describy the energy-transport equations. In this
section, we sketch its derivation from the semiconductdtZBtann equation, approximate the equations
numerically, and present some numerical examples.

2.1 Derivation of the model

The semiconductor crystal is supposed to be a three-diomaisarray of atoms arranged in a lattice. The
qguantum states of the electrons in the periodic lattice asengoy the eigenfunctiongi(k), n € N, of a
suitable Schrédinger equation, indexed by the so-calledgis-wave vectdk € B, where the subs@& c R3

is the Brillouin zone (see [33, 35] for details). The cormsging eigenvalu& (k) = E, (k) represents the
energy of the statk in then-th band.

Instead of a full quantum description, we prefer a semisitad model in which the electrons in the conduc-
tion band are modeled statistically and quantum effectsremtly through the (conduction) band structure
E(k). Let f(x,k,t) be the distribution function of an electron ensemble, wixszeR® denotes the spatial
variable and > 0 the time. More precisely,(x, k,t) is the ratio of the number of occupied quantum states
of the electrons in the infinitesimal volume elememtdkin the conduction band to the total number of
states indx dkin the conduction band. The distribution functiég(x, k,t) is assumed to satisfy the scaled
semiconductor Boltzmann equation

a26 fa +a (v(k) - Oxfa + OV - Okfa) =Q(fa), x€R3 keB, t>0,

wherea > 0 is the (scaled) mean free path of the particlék) = OkE(k) the electron group velocity,
V =V(x,t) the electric potential, an@(f) is the collision operator. The Boltzmann equation is comple
mented with periodic boundary conditions foe B and initial conditions forf. The collision operator is
decomposed as the sum of elastic, electron-electron, atasiic scattering terms according to

Q(f) = Qei(f) + aQed(f) + a?Qin(f).

We do not make precise the structure of the scattering teimos w/e need only some properties (and refer
to [33] for details): The kernel of the linear elastic cadbis operatoQe consists of functions which depend
only on the energyf(x,k,t) = F(x,E(k),t). Furthermore, the kernel of the electron-electron calfisi
operatorQee consists of Fermi-Dirac distributions,= (1+ exp((E(k) — u)/Tn)) ™%, where the chemical
potentialu € R and the electron temperatufg > 0 are some parameters. Moreover, we assume that
scattering conserves mass and that elastic scatterinticaddly conserves energy:

/Qy(f)dk:/Qe|(f)Edk:0 for all f, y = el eein.
B B



We suppose that the mean free path is “small’ 1, meaning that we consider a time scale much larger
than the typical time between two inelastic collisions. \&ker to [33] for the precise scaling.

The main idea of the derivation of the macroscopic equatisiie multiply the Boltzmann equation by
1 andE(k), to integrate the resulting equation over the wave-vegtace, which leads to the so-called
moment equations

1.
d/BfadI(+Ed|vX/Bfavdl(:O, )
: 1. 1 1
dt./BfaEdI(—s—adwx/BfavEdl{—EDXV~/Bfavdl(:?/BQ(fO,)EdI(, 2)

wheredK = dk/4m, and to perform the (formal) limir — O appropriately.

The derivation consists of three steps, following [22]. I first step, we let formallyr — 0 in the
Boltzmann equation leading @ (f) = 0, wheref = limy_ fa. Thus,f(x k,t) = F(x,E(k),t) for some
functionF. For the second step, we insert the Chapman-Enskog expafisie F + agq (which defines
0q) into the Boltzmann equation and let— O:

Qel(g) = V(k) -OxF +0OxV - OkF — Qee(F)7

whereg = limg_00q. It can be shown that this operator equation is formally @l if and only if its
integral over the energy surface of eneegyanishes [33], which, after some manipulations, can bdevrit
as

/Qee(F)cS(E(k) _&)dk=0 foralle.

B

The integral involving the delta distribution can be mathéioally defined by using the coarea formula. By
assumptionF is a Fermi-Dirac distribution = Fy, 7, = (1+exp((E(k) — ) /Tn)) 1 for someu = p(x,t)
andTn == Tn(x7t)

The third step is concerned with the linut— O in the moment equations (1)-(2). The integralFafr,

over B vanishes since = [xE andF, T, lies in the kernels 0Qe andQee. Thus, thea ~1-terms in (1)-(2)
vanish and the moment equations become in the limit

dt/E;F“7TndK+divX/E;gvdK:O,
5t/BF“7TnEdK+divX/BngdK—DXV-/BgvdK:/BQin(Fu,Tn)EdK-

Introducing the electron and energy densities and thegb@eind energy current densities

n— / FurdK, ne= / Fur.EdK, Jo= f/ gvdk, S — —/ngdK, @3)
B B B B
respectively, the moment equations can be formulated as

whereW = [;Qi,(F)EdK. In order to derive expressions for the current densitieghvtlepend on the
macroscopic variables, we introduce the vector-valuedtiswl dy of Qg (dy) = —vF(1—F). Then, since
F = (1+exp((E(k) —u)/Ty))~* and sincee is assumed to be linear, we can wigte: —do - (Ox(1/Tn) —
OxV /T —EO(1/Ty)) + F1, andF, lies in the kernel of)e. This implies that

= Dok - DTX:’) - D01Dx(%>, $ = Duo( Dk - DTXnV) - DMDX(T—ln), (5)

and the diffusion coefficients are given by

Dij :Dij(UaTn):/lBEi+jV®dodK i,j=0,1 (6)



The functiongn,ne) and(u, Ty) are related by the first two equations in (3). Equations ¢ )a(e referred
to as theenergy-transport equationghey are complemented by initial conditions foandT,, and, in the
case of a bounded domain, by mixed Dirichlet-Neumann or Rdl@umann boundary conditions for
Ty, andV (see [13]).

Another contribution to the current flow is due to defect &laes in the valence band, which are usually
described by pseudo-particles: holes. Physically, a ke vacant orbital in a valence band. Also for
these particles, an energy-transport model for the holsitep and the hole temperatuil (with the
hole current density, and the hole energy flu%,) can be derived. Often, the hole temperature can be
approximated by the lattice temperature, and the hole temgilves according to the drift-diffusion model

dp+diviy=—R(n,p), Jp=—-0(Upp)— HppLV, (7

wherep is the hole mobility andR(n, p) describes recombination-generation processes betweeinogis
and holes.

The above transport equations are coupled to the Poissati@oq|for the electric potential:
A20V =n—p—C(x), (8)

whereA is the (scaled) Debye length a@x) the doping profile modeling fixed background charges in
the semiconductor crystal.

The first energy-transport model was presented by Straitd862 [45]. Often, the energy-transport model
is considered as an approximation of the hydrodynamic @qn&f42]. There are only a few mathematical
results about the initial-value problem of the energy-4port equations, since they are strongly coupled.
The first existence result for a heuristic model was proveffijn Existence results for models with a
uniformly positive diffusion matrix were shown in [19, 2Qjéfor data close to equilibrium in [18, 24, 28].

In nonequilibrium thermodynamics, the formulation (4)-well known. Indeed, the so-called thermo-
dynamic fluxes depend linearly on the thermodynamic fokges O(u/Ty) — OV /Ty andXy = —0(1/Tn)
[29]. The variablest/T, and—1/T, are known as the (primal) entropy variables. The connedtidher-
modynamics has an important consequence. By introducgltlal entropy variablesy = (1 —V)/T,
andw; = —1/T,, the current densities can be written in the “symmetrictrior

1 1
h=>5 LilOwi, $= Lulw;, )
2, 2,

where the new diffusion coefficients; depend orD;; andV, and the equation for the energy becomes
d(ne—nV) —divs, =W. Thus, the convective terms disappear which is very usefuttfe design of
numerical schemes.

The formulation (4)-(6) is not explicit in the macroscopariables(n,ne) or (i, Ty). Explicit expressions
are obtained under simplifying assumptions. To this endapmgroximate the Fermi-Dirac distribution by
the Maxwellian exp—(E — u)/Tn) and assume that the energy is given by the parabolic bandpg-
tion E(k) = |k|2/2, that the elastic scattering rate is proportionaEfowith 8 = 1/2 (valid for nonpolar
phonon scattering; see [35]), and that the averaged imetadlision integral is approximated by a Fokker-
Planck ansatz [21]. Then the energy-transport model censigquations (4)-(5) with the relations

B 2
-~ (2m)3/2

the (scalar) diffusion coefficients

T¥2e4/T ne= gnTn,

3 15
Doo= Hon, Do1=Dio= éuonTn, D11 = ZuonTr?’
with the mobility constantiy > 0, and the relaxation-time terll = —(3/2)n(T, —T.)/1, whereT_ is the

lattice temperature and > 0O is the energy relaxation time appearing in the FokkeréNamnsatz. The
current densities (5) can be written in the “drift-diffusidorm

o= po(On—nT,10V), S= guo(D(nTn) —nV). (10)



The drawback of this formulation, compared to the “symnaétidorm (9), is that the equations are con-
vection dominated for large electric fields, which requspecial numerical schemes. On the other hand,
the model is decoupled in the “drift-diffusion” formulatipi.e., there are no cross-diffusion terms like in
the formulation (5) or (9), which makes it easier to devisedtion schemes for the numerically discretized
system.

We remark that there are also other energy-transport madelse literature which are different in the
choice of the energy band and the definition of the scatteidtg. For instance, the cage= 0 was
considered in [36]. I3 = —1, the model corresponds to some simplified hydrodynamiatémns [33].
Nonparabolic energy bands were assumed in [17, 21, 51].

2.2 Numerical approximation

The numerical discretization of (stationary) energy-$g@ort models was investigated in the physical liter-
ature since the 1980s, see, e.g., [17, 25, 44]. Mathemagisi@rted to consider these models in the 1990s,
using finite-difference methods [41], mixed finite-volunshsmes [8], and mixed finite-element techniques
[21, 27, 31, 32, 34, 37] (see [10] for a review). The most inatr features of the mixed finite-element
method are the current conservation (the current is inttedas an independent variable and continuity is
directly imposed) and the ability to approximate accusastbep gradients. In the following, we describe
two approaches.

The approximation of [21, 31, 32] is based on the “drift-défion” formulation (10), which allows for the
use of well-understood discrete schemes developed oligipathe drift-diffusion model. The stationary
equations are written in the form

—divl+og=f, J:Dg—yg, (11)

Tn

whereJ is a current densityg the variable at handyg with o > 0 is a zeroth-order term originating from
the relaxation-time term in (4), anfdis the right-hand side. In [31], the equation is discretiretivo space
dimensions as follows.

First, the problem is written by means of a local Slotboomalde in a symmetric form, defining =
exp(—V /Tn)gin each element of the triangulation of the semiconductonaia, whereT , is some piece-
wise constant function approximating the electron tempeeal,. Then, the current density becomes
J =exp(—V /Tr)0y in each element, which eliminates the drift tegmV /T,. This change of unknowns
is also called exponential fitting.

In the second step, the symmetric form is discretized witkewhifinite elements. For the case= 0
and constant temperature, a mixed scheme, based on the-lomles Raviart-Thomas elements [40], has
been introduced and discussed in [12] fo= 0 and in [11] forf # 0. The matrix associated with the
scheme can be proved to be an M-matrix if a weakly acute talatign is used. This property guarantees a
discrete maximum principle and, in particular, a nonnegegblution if the boundary data are nonnegative.
Unfortunately, the M-matrix property does not hold anymibre = 0. In order to circumvent this fact we
use the finite elements developed and analyzed by Marini &tcaH39]. It has been proved that these
elements provide an M-matrix for adt > 0.

In the third step, a suitable discrete change of unknownsrifopned to return to the original variabde
Finally, static condensation gives a nonlinear discrestesy only in the (discrete version of the) variable
g. The nonlinear problem is solved by a variant of the Gumnesghiion procedure. The main idea is to
solve the Poisson equation, in whialandp are replaced by the locsl-dependent Slotboom variables, by
a Newton method, but to employ a fixed-point strategy for #reaining equations. It is well known that a
Gummel-type iteration scheme is very sensitive to the ehofdnitial guess, in particular far from thermal
equilibrium. Therefore, the procedure is coupled with aticwmtion in the applied voltage. In [32], the
two-dimensional mesh is adaptively refined using an erromesor motivated by results of Hoppe and
Wohlmuth.

As a numerical example, we simulate a two-dimensional MOSfRetal-oxide semiconductor field-effect
transistor) which can be employed as a voltage switch. heésmost used device in computer technology.
The transistor has a size of 420 ri210 nm with an effective channel (source to drain) length @i



n+ n+ D

B
Figure2: Geometry of the MOSFET with sour& drainD, gateG, and bulkB contacts.
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Figure 3: Electron density (left, gate contact at the back) and electron tempef&gire gate contact at the
front) in a MOSFET with 70 nm channel length. A part of the bulk region isshown.

and an oxide thickness of 1.5 nm near the gate contact (saeeR2) For the physical parameters, we refer
to [32] from which the following pictures are taken. The tsator is simulated using the energy-transport
equations for electrons and the drift-diffusion equatifmroles.

The electron density and temperature are shown in Figuréo3e@o the gate contact in the channel region,
the electron density is large compared to the bulk densityhis region, the electron temperature is high
too. The temperature near the the drain junction is largem #t the source junction since the electrons
gain more energy from the electric field during their flow tingb the device.

The second numerical approach, employed in [27, 37], istbase¢he dual-entropy formulation (9). Com-
pared to the previous approach, no convective terms appedthe use of Raviart-Thomas-type mixed fi-
nite elements is sufficient to guarantee a monotone schenfi27], the three-dimensional stationary equa-
tions were approximated using a hybridized mixed finite @emethod with Raviart-Thomas-Nédélec
elements. As above, static condensation allows for a remuof the number of variables in the mixed-
hybrid formulation. The resulting nonlinear algebraicteys is solved by two iterative schemes, either
using the full Newton method with a continuation in the apglivoltage and a path-following algorithm
or a Gummel-type strategy, which allows for a complete dpting of the diffusion system such that
only scalar equations have to be solved in each step. Singer@litype iteration procedures have a low
convergence rate, a vector extrapolation technique wasogetbto improve the convergence.

As an example, we consider a unipolar nonuniform single-ydESFET (metal-semiconductor field-effect
transistor) with size 1mx0.55umx0.42um (see Figure 4). The electron temperature is depicted in
Figure 5 (left; taken from [27]). The temperature is largéhatend of the channel since the kinetic energy
of the electrons gained in the channel is transformed ireontlal energy. The current flow is large in the
region between the source and gate contact due to acceteddtihe electrons from the electric field (see
Figure 5, right).

In the above simulations, the device temperature is kepstaoh We expect that collisions of high-
energetic electrons with the crystal lattice increase #téick temperature. In the following section, we
present a model which couples the lattice and the partiokpéeatures.
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Figure 4: Geometry of the three-dimensional single-gate MESFET.
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Figure 5: Electron temperature (left) and electron current density (right) in a tiraensional single-gate
MESFET.

3 Lattice heat modeling

We derive a model for the evolution of the lattice tempemiurby employing thermodynamic principles,
similar as in [5]. To this end, we assume that the total enargptisfies the balance equatidni+ divJ, =
—Vy, wherel, is the corresponding energy flux density arttie radiation. In the following, the expressions
for u, Jy, andy are detailed. Analogous to [5], we define the (scaled) freeggnas the sum of the electric
energy and the thermal energies of the lattice, electravshales:

22
f =5 |0VI*+pTi(logTe — 1) +n(Ta(logn — 1) + Ec) + p(Tp(logp— 1) — Ev),

wherep is the product of the (scaled) lattice material density agal ltapacity, ané. andE, denote the
conduction and valence band-edge energies, respectivetysimplicity, we suppose that these energies
are independent of the lattice temperature. By thermodyjewrthe total internal energycan be written
as
of of of

=f-Th——-"Tp=—-T.—.
. "oT,  PaT,  “oT
The total energy flux, is assumed to be the sum of the displacement current, Fdlierthe particle
energy fluxes, the currents of the dissipated power, anduirerts due to the band energies:

(12)

wherek, is the lattice heat conductivity. Inserting the free enaengg (12) and using (13), a computation
gives

Ozatu+divJu:pdtTL—div(KLDTL)—H, (14)
where

3
H = ~W+R(n. ) (Eo — By + 5 (Ta+ Tp) ) +3n- Do+ Jp- DB~y
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Figure 6: Transient electron temperature (left) and lattice temperature (rightpindode at 15 V.

is the heat source term which is the sum of relaxation, reqoation heat, band-energy Joule heating, and
radiation effects. In [14], it is assumed that the band amsrgre homogeneous and that the radiation is
linear inT_ such that

H=-W+R(n,p) (Ec— Ev+ g(Tn-i-Tp)) — S (TL — Tenv),

whereS_ denotes the transmission constant dgg the environmental temperature. This expression cor-
responds essentially to formula (41) in [50]. We remark thatexpression folfl differs from those in [5]
and [49] since we take into account the evolution of the tlaremergies of the particles via the energy-
transport equations. When using a drift-diffusion modeltfar electrons, the Joule heating terrd, - OV

has to be added td (see [16]).

Equation (14) is complemented by an initial condition Torhomogeneous Neumann boundary conditions
on the insulating boundary parts, and the Robin boundargition

—k OTL-v=R}(TL—Ta) onfg, (15)

wherev is the exterior unit normal vector on the domain boundBgythe union of all contactsxy the
contact thermal resistance, ahgthe temperature of the connected element (the environitentperature
or the temperature of a circuit element).

We illustrate the transient lattice heating in a one-dinare silicon bipolar junction diodeph diode) with
100 nm length. The device is modeled by the bipolar enemgysort equations, coupled to the Poisson
equation (8) and the lattice heat equation (14). Initidhg, device is assumed to be in thermal equilibrium,
i.e., the total current of electrons and holes vanishes. tidresient response of the electron and lattice
temperature is depicted in Figure 6 (taken from [16]). Thextbn temperature increases quickly in the
entire device with a temperature maximum of about 3300 Kémthegion and then decreases slightly until
the steady state is reached with a temperature minimum drilgnjunction. The increase of the lattice
temperature is significantly slower with a maximum of 325 Kstgady state. Due to the high thermal
conductivity, the lattice temperature is almost constarthée device.

Semiconductor devices are usually part of an electric itirda the following section, a circuit model is
detailed including semiconductor devices.

4 Circuit modeling

This section is concerned with the modeling of electric i containing semiconductor devices. To
simplify the presentation, the circuit is assumed to canthesides of the semiconductor devices, only
(ideal) resistors, capacitors, inductors, and voltage amcent sources. The circuit is modeled by em-
ploying modified nodal analysis [47, 48], whose basic tooésthe Kirchhoff laws and the current-voltage

characteristics of the basic elements. We replace theicbgwa directed graph with branches and nodes.



Branch currents, branch voltages, and node potentialb@uitthe mass node) are introduced as (time-
dependent) variables. Then the circuit can be charactebigehe incidence matriA = (aj) describing
the node-to-branch relations, with

1 if the branchk leaves the node
a=1¢ —1 if the branchk enters the node
0 else

The network is numbered in such a way that the indidence medrnsists of the block matricés, Ac,
AL, A, andAy, where the index indicates the resistive, capacitive, ¢tide, current source, and voltage
source branches, respectively. The semiconductor deviceluded into the network model employing
the semiconductor incidence matfx = (aﬁ) defined by

1 if the currentjy enters the circuit nodie
ay=1¢ —1 if the reference terminal is connected to the nigde
0 else

The current-voltage characteristics for the basic elemard given by

dqc _da .
E(V )s VL_E(”—)?
whereggr denotes the conductivity of the resistgg the charge of the capacitor, agd the flux of the

inductor. Moreoveriy andvy with o = R, C, L, are the branch current vectors and branch voltage vectors
for, respectively, all resistors, capacitors, and indrgcto

iR=0r(WR), Ic=

Denoting byis = is(t), Vs = vs(t) the input functions for the current and voltage sourcegyeetively,
the Kirchhoff laws lead to the following system of differ@italgebraic equations in the charge-oriented
modified nodal approach [47]:

dac

Ac= g (AC) +ARGR(ARE) + ALiL + Aviy + Asjs = —Alls, (16)
W) -Ale=0 Ae=v, a7)

for the unknown(t), i, (t), andiy(t), wheree(t) denotes the vector containing the node potentials. Equa-
tion (16) is the Kirchhoff current law for the complete ciitcwhere the current-voltage relations for the
resistors and capacitors have been included. The firstiequat(17) describes the voltage-current char-
acteristic for the inductors, and the second equation ates the node potentials adjacent to the given
voltage sources.

The circuit is coupled to the device through the semicorahumtrrentjsin (16), defined by
jsz/r(Jn+Jp—)\dtDV)-vds, (18)

wherel is some contact (terminal), and through the boundary cimmditfor the electric potential, given
by V(t) = g;(t) + Vi if the terminall’ is connected to the circuit node Here,e; denotes the potential at
the circuit nodej andV; is the built-in potential determined by the doping profile dine intrinsic density
(see formula (11) in [16]).

Equations (16)-(17) represent a system of differentigéhtaic equations (DAEs). Under certain assump-
tions on the topology of the network, the (tractability) @xdf the system is at most two [46, 47]. Moreover,

if the circuit does neither contain so-called LI-cutsets 6¥-loops with at least one voltage source, the
index is at most one [46].

For the numerical integration of DAES, Runge-Kutta methadsackward difference formulas (BDFs) can
be employed. For Runge-Kutta methods applied to DAEs, werrefg., to [30]. Only implicit Runge-
Kutta schemes are feasible for DAEs, and stiffly accuraténaut provide the best properties. Concerning
BDF methodsk-step BDFs (withk < 7) for index-1 DAEs are feasible for sufficiently small timiess,
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Figure 7: Rectifier circuit (left); energy density in a bipolar diode (right).

and they are convergent with the same order as in the caselidiegrdinary differential equations [38].
The numerical integration of index-2 DAEs with BDFs is sedlin [9, 30]. In [46], quasilinear index-2
DAEs, as they occur in circuit simulation, were examined. hafee employed the 2-step BDF method in
the following simulations.

As an illustration, we consider a rectifier circuit modelgdthe energy-transport equations for the elec-
trons, the drift-diffusion equations for the holes, and @iheve circuit equations (presented first in [13]).
After time discretization of the complete system, the péatiransport equations are approximated by ex-
ponentially fitted hybrid-mixed finite elements as expldinie Section 2.2. In this example, the lattice
temperature is assumed to be constant but not the electretature. The circuit contains fopndiodes
each of which with length 100 nm (see Figure 7, left). Inifiathe system is assumed to be in thermal
equilibrium. The voltage source is a sinusoidal signal viri¢gquency 10 GHz.

In Figure 7 (right) the energy density in one of the diodesrdpone oscillation of the circuit is presented.
The energy density is only significant in the forward biasgde; whereas it is very small for backward
bias.

Next, the behavior of the current through one diode and gindhe circuit using the transient or stationary
energy-transport (ET) equations and the transient diffitslon (DD) model is investigated. Figure 8
(left) clearly shows the rectifying behavior of the circuite also observe a capacitive effect at this rather
high frequency. The largest current is obtained from th#&-diffusion model since we have assumed a
constant electron mobility such that the drift is unboundét respect to the modulus of the electric field.
The stationary energy-transport model is not able to cdiehcapacitive effect at the junction. Similar
statements hold for the output signal of the circuit (FigByeght).

% —ET transient %
10 PN ] 1r RN >
* 3 o ET stationary JME x f%bo x

0.8f

= DD transient ||

0.6

o o
N b

current [mA]

S

output signal [V]

-0.2t |—ET transient
—04 o ET statio_nary
= DD transient
_60 20 40 60 80 100 0 20 40 60 80 100
time [ps] time [ps]

Figure 8: Current through a.Q um diode in a 10 GHz circuit (left); output signal of the circuit (right).



5 Thermal network modeling

The thermal network describes how the heat is produced awdthe evolving in the circuit topology.
To simplify the presentation, we consider only one semicatal device in the network. Moreover, as a
compromise between physical accuracy and fast numeritallaiion, all thermally relevant elements in
the circuit — except the semiconductor device — are modejetin- or one-dimensional structures.

We consider the following elements in the thermal network7p Lumped thermal elements are zero-
dimensional objects (for instance, resistors or contadeapto which a spatially constant temperature
T!(t) is associated. Distributed thermal lines are modeled inspage dimension (for instance, electric
lines or circuit elements) with an associated temperakt(e,t), x € [0, Ly,]. Moreover, a distributed semi-
conductor device possesses the temperdiuret) as described in Section 3. Adjacent lumped elements
are considered as a zero-dimensional object with temperituThen we assign the temperature at the
interface of connected distributed elements and an adiifzeiro-dimensional element (thermal node) with
temperaturd and without thermal mass. This forms a network with lumpgtrithuted interfaces only, in
which the nodes represent the zero-dimensional units andrinches represent the distributed elements.

The thermal network is characterized by the thermal inagenatrixAll' = (a}?) and the thermal semicon-
ductor incidence matriAd = (af};) defined by

1 if the contact ak = 0 of branchj is connected to node
a,‘ﬁ‘ =<1 if the contact ak = Ly, of branchj — my is connected to node
0 else
ah { 1 if the terminalj is connected to thermal node
Si—1o0 else

wheremy is the number of thermal lines af@l Ly,] the interval of the distributed element.

The temperature in the thermal nodes is supposed to evobeedieg to the heat equation

~

~dT ~ . ~ ~
M(:Tt —FY4FS—§T—Ted)+P, t>0. (19)

Here,M is a diagonal matrix containing the thermal masses of therthenodes, each of which is given
as the sum of the thermal masses of the lumped elementshagitg to the corresponding node. The
thermal mass is the product of the heat capacity, the mhtdgizsity, and the physical volume of the
corresponding element. Furthermofeis the vector of all temperature values in the thermal noded|

is the identity matrix. The electro-thermal source vectorthe thermal nodeB and the heat flux vectors
from the distributed line§9 and the devic&S are defined below in (23), (21), and (22), respectively. The
temperature values in the lumped eleméFtsan be computed frof by the formulaT = MT¢, where
the matrixM = (m;) relates the lumped elements to the thermal nodes,mwjtk- 1 if the lumped element

j belongs to the thermal nodendm;j = 0 else.

The vectorT? = (T¢) of all temperatures of the thermal lines satisfies
Mja T = o(kj&T") —Sj(TP = Tem) + P, x€ (O,L), t >0, (20)

whereM; denotes the thermal mass of th¢h element of lengtlh j, k;j is the thermal conductivityg; the
transmission constant, aftl= (P;) the electro-thermal source vector defined in (23). The alkguation
is complemented by initial conditions and Dirichlet boundeonditions, collected in the vectowg’ and
7.

6 Thefully coupled model

In this section, we explain the coupling conditions betw#®sn subsystems introduced in the previous
sections and give a numerical example of the full couplethtleeelectric semiconductor-circuit system.



6.1 Coupling conditions

The heat equations (19) and (20) are coupled through thedaoyiconditions(T¢, T9) T = (A1) T, and
the following equation for the thermal flux:

~a _ ath [ NodkT9(0,1)
=" (—Alade(Lm,w : @1

Here, Ly, denotes the length of a thermal line afvgl A1 contain the products of thermal conductivities and
the cross sections of the thermal linexat 0 andx = Ly, respectively.

Next, we describe the coupling between the thermal netwadktlae semiconductor device. The influence
of the network on the device is modeled by the boundary cmmditl5) on the terminal’y, with Teny
replaced by the temperature of the connected elemé&gts, (AtSh)T'f. The semiconductor heat flux at
terminall’y is given by the integral

Fé= [ J3-vdo, suchthat FS(t) =AQ(FS(t));, t>0. (22)
Mk

The thermal flux densit)lti is derived by making the quasi-stationary assumptioddiv 0, where the
energy flux densityl, is defined in (13). Then, inserting the stationary balanaeagqgn for the electric
energy, a computation shows that, assuming a constantdrojeerature,

divIg+ 0V - (Jh+Jp) =0, where J3 =k O —Ecdh—S

(see [14] for details). This equation indicates that the qﬁfrs responsible for the heat production caused
by the dissipated power and is therefore considered as dliveat

For the coupling between the electric and thermal netwokkagsume that only semiconductor devices
and resistors are thermally relevant. (In the numericaukition below, thermal effects in the resistor are
neglected.) Electric-to-thermal coupling occurs throtighpower dissipated by a resistor. We assume that
the resistance is given By= 1+ a1 Tr+ GzTRZ, wherea; anday are some nonnegative parameters ggnd

is the temperature of the resistor [6]. The vecIgrof all resistor temperature values can be determined
from the temperature vectors of the thermal notiemd of the distributed lines by

Tr= RTf+ KTTVd,

where the lumped valuég? are computed from the distributed valuE$ by taking the mean value, and
the matrice = (k;j) andK = (k;;) are defined by

D if the resistorj corresponds to the thermal branth
4710  else,

= { 1 if the resistorj corresponds to the thermal nofle
0 else.

The electric-to-thermal coupling is realized by the soustensP = (P}) andP in the heat equations (19)
and (20): o
P=KP, P=LgKP, wherePs=diagir)Age, (23)

ir contains the currents through all resistofg, denotes the resistor incidence matriis the vector
containing the node potentials, ahd is the resistor length. For a discussion about the propecetas
the local power distribution, we refer to [6].

Finally, we recall that the coupling between the semicotmludevice and the electric circuit is realized
through the semiconductor current (18) in the circuit eiqueaf16) and the node potentials applied to the
semiconductor contacts.
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Figure 9: Clipper circuit with twopn diodes, one resistor, and three voltages sources.

6.2 Numerical example

The complete thermo-electric circuit-semiconductor masle system of nonlinear partial differential-
algebraic equations. It consists of the energy-transpquiiions (4), (10) for the electrons, the drift-
diffusion equations (7) for the holes (alternatively, gyyetransport equations for the holes may be used),
the Poisson equation (8); the differential algebraic electetwork equations (16)-(17); and the thermal
network equations (19)-(21). The coupling conditions axemyin (18) and (22)-(23). The unknowns
of the system are the electron, energy and hole dengitie®, p, the potential in the devicé, the node
potentialse, the currents through inductors, voltage sources, andcegriictor devicdy , iy, js, the lattice

temperaturd|, and the temperature values in the lumped and distributdegits of the thermal network,
T, T,

As a numerical illustration, we consider a clipper which imspdoyed as an entrance protective circuit to
avoid voltage peaks (taken from [16]). It consists of tprodiodes (modeled in one space dimension), one
resistor, and three voltage sources (see Figure 9). We ntrateon the effect of lattice heating and neglect
thermal effects in the resistor. The sinusoidal input di¢fyahas a frequency of 10 GHz. The remaining
voltages are kept constant within(t) = —U andVimax(t) = U, whereU = 2V. A perfect clipper restricts
the input signal betweeitt (U + Vi), whereVy, is the threshold voltage of the diode. In the present case,

it holds approximatelyy, = 0.9V such that the signal is betweef?.9 V. We have chosen the resistance
such that the output signal should stay below 4 V.

In Figure 10 (left) we depict the input and output signalshef tircuit after 30 oscillations &f,. Whereas
the maximal output signal is below 4V during the first ostitias, it becomes 4.09 V after 30 oscillations.
A simulation of the same circuit with constant lattice hegtkeeps the maximum output signal below 4 V.
This shows that the increasing maximal output voltage isedwby lattice heating, as the heated diode
provides less current leading to a larger resistance. Wereb$rom Figure 10 (right) that the device heats
up while being forward biased. As the backward bias peridddshort to cool down the device, the lattice
heating accumulates during the first oscillations up to 8B60 K.

5F -~ ) ) -~ ) 7
K K 360
i i X
Ir "\_‘ I’ "\_‘ o
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Z‘ ,l \\ ,l \\ g
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Figure 10: Input and output signal of the clipper after 30 oscillation¥igf(left) and distribution of the lattice
temperature in one of the diodes within the first 30 oscillationgpfright).
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