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Abstract

Discrete transparent boundary conditions (DTBC) and the Perfectly Matched Lay-
ers (PML) method for the realization of open boundary conditions in quantum device
simulations are compared, based on the stationary and time-dependent Schrödinger equa-
tion. The comparison includes scattering state, wave packet, and transient scattering state
simulations in one and two space dimensions. The Schrödinger equation is discretized
by a second-order Crank-Nicolson method in case of DTBC. For the discretization with
PML, symmetric second-, fourth, and sixth-order spatial approximations as well as Crank-
Nicolson and classical Runge-Kutta time-integration methods are employed. In two space
dimensions, a ring-shaped quantum waveguide device is simulated in the stationary and
transient regime. As an application, a simulation of the Aharonov-Bohm effect in this
device is performed, showing the excitation of bound states localized in the ring region.
The numerical experiments show that the results obtained from PML are comparable to
those obtained using DTBC, while keeping the high numerical efficiency and flexibility as
well as the ease of implementation of the former method.

Keywords: Schrödinger equation, Perfectly Matched Layers, discrete transparent
boundary conditions, transient simulations, quantum waveguides, Aharonov-Bohm effect

1. Introduction

The electron transport in nanoscale electronic devices, in which inelastic collisional
effects may be neglected, can be modeled by the stationary or time-dependent Schrödinger
equation. The semiconductor device is typically connected to semi-infinite leads which
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describe the electric contacts. The aim is to solve the Schrödinger problem in the bounded
device domain instead in the whole space. This makes it necessary to prescribe appropriate
open boundary conditions at the interface between the leads and the active region of the
device to avoid unphysical reflections at the boundary. In the literature, several methods
have been proposed to derive transparent boundary conditions. Analytical transparent
boundary conditions are nonlocal in time, and their numerical implementation requires
some care (see the review [2] and references therein). Moreover, inadequate discretizations
may introduce strong reflections at the boundary.

In this paper, we implement and compare two approaches: the discrete transparent
boundary conditions (DTBC), which are completely reflection-free at the boundary but
nonlocal in time, and the Perfectly Matched Layers (PML), which involve an artificial
boundary layer but which can be implemented very efficiently.

In the context of finite-difference discretizations, DTBC were derived by Arnold [4].
They yield unconditionally stable reflection-free numerical discretizations. DTBC include
the discrete convolution of the unknown function with a given kernel, whose numerical
computation is rather involved. The evaluation can be significantly accelerated by ap-
proximating the kernel by a finite sum of exponentials which decay with respect to time
[6]. The limit of vanishing spatial approximation parameters in the DTBC coincides with
the temporally semi-discrete transparent boundary conditions of [22, 19]. DTBC for the
Schrödinger equation were also derived for finite-element [30] and splitting higher-order
schemes [14].

The PML approach was introduced by Bérenger [8] for absorbing boundaries for wave
equations. The idea is to replace the absorbing boundary condition by an absorbing bound-
ary layer which damps out waves using a damping function. The problem of having re-
flections from the absorber boundary was handled by Bérenger by constructing a special
absorbing medium. PML can be seen as the result of a complex coordinate transformation,
being essentially a continuation of the Schrödinger equation into complex spatial coordi-
nates [11]. Later, PML were derived and analyzed for many other equations, like wave
and Helmholtz equations [26] and Schrödinger equations [12]. Nonlinear Schrödinger prob-
lems were investigated in, for instance, [10, 28, 29]. The simulations include (stationary)
scattering state calculations [10] or wave packets [28, 29]. However, transient scattering
states which are needed to describe the time-dependent behavior of quantum devices are
not considered.

In a transient scattering state simulation, the initial wave function is given by a (sta-
tionary) scattering state. When the transient simulation is started, the external potential
is allowed to change over time and hence, the scattering state starts to evolve in time too.

Our aim is to provide a careful numerical comparison between DTBC and PML in
the finite-difference context. We show how PML can be applied in a variety of physical
situations: (stationary) scattering states, wave packets, incoming waves, and transient
scatterings states. In the following, we describe our approach and the main results in more
detail.

Since the open boundary problem for quantum waveguides in several space dimensions
can be reduced to the one-dimensional case, we consider one-dimensional simulations first.

2



The Schrödinger equation is discretized using symmetric finite differences of second, fourth,
and sixth order. The numerical solutions obtained from (second-order) DTBC and (second-
and higher-order) PML are compared in a series of simulations. It turns out that for
second-order discretizations, PML compete well with DTBC for medium to large energies
(10 . . . 1000meV). For very small energies (10−3 . . . 1meV), second-order DTBC perform
significantly better than second-order PML, but the numerical errors for higher-order PML
schemes are comparable to that for second-order DTBC at small energies and they are much
smaller for medium to large energies.

Then we turn to two-dimensional quantum waveguide simulations. The stationary scat-
tering state problem has been solved in [18] using linear finite elements along with exact
transparent boundary conditions. The transient case is considered in [7, 23] using DTBC
based on the Crank-Nicolson scheme. However, transient scattering states are not consid-
ered and the cross sections of the leads need to be infinite square well potentials. In this
paper, we show how to remove these limitations. Although we consider only ring-shaped
two-terminal quantum waveguides, our approach can also be applied to more complicated
multi-terminal devices.

The implementation of open boundary conditions using PML works analogously to the
one-dimensional case. Contrary to DTBC, a decomposition into cross-sectional waveguide
eigenstates is not required, which simplifies the implementation significantly. Our simula-
tions indicate that the numerical error which results from the PML is of the same order
as that resulting from the approximation of the Schrödinger equation itself. In contrast
to DTBC, which are tailored specifically to numerical methods, PML can be applied in
a more flexible way. As an example, we employ second-, fourth-, and sixth-order finite-
difference formulas to approximate the spatial derivatives. For the time integration, we
use the Crank-Nicolson approximation and classical Runge-Kutta methods.

The Runge-Kutta approach has the drawback that the resulting spatio-temporal dis-
cretization is only conditionally stable and that the mass of the particles is not conserved
exactly. Our numerical results suggest, however, that these issues may be overestimated.
The advantages are the competitive computing times, the high accuracy for higher-order
schemes, and the easy implementation. The combination of the classical Runge-Kutta
method, higher-order spatial discretizations, and PML appears to be a very efficient ap-
proach for transient quantum device simulations.

Finally, we apply the above mentioned methods in a simulation of the Aharonov-Bohm
effect [1]. Transient simulations of the Aharonov-Bohm effect were also studied in the
literature. For instance, the electron transport in a quantum ring, using an expansion of
the wave function in a basis of Gaussians and a finite-difference approach, was considered
in [25]. Simulations of ring-quantum interference transistors, where the Aharonov-Bohm
effect is studied in dependence of externally applied electrostatic potentials, are shown in
[16]. However, these works do not include transient scattering state simulations. As far as
we know, we present in this paper the first two-dimensional transient scattering state sim-
ulations of the Aharonov-Bohm effect in a ring-shaped quantum waveguide. Remarkably,
we find that fast variations of the external magnetic field lead to the excitation of bound
states which are localized in the ring region.
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The paper is organized as follows. Section 2 covers stationary scattering states, wave
packets, and transient scattering states in one space dimension. We recall the discretization
of the Schrödinger equation using DTBC, detail the approximation employing PML, and
compare both methods numerically. In Section 3, we consider two-dimensional ring-shaped
quantum waveguide devices. The derivation of DTBC and PML for the stationary and
transient problems is detailed. Section 4 is devoted to the Aharonov-Bohm effect in the
stationary and transient regime.

2. One-dimensional simulations

2.1. Scattering states

Scattering states in one-dimensional simulations represent a beam of electrons injected
at the left or right lead of the device. This beam of particles is identified with a wave
function which solves the stationary Schödinger equation

− ~
2

2m⋆

d2

dx2
φ(x) + V (x)φ(x) = Eφ(x), x ∈ R, (1)

subject to the boundary condition at infinity that the incoming wave function is a plane
wave. Here, E denotes the total energy, V the potential energy, ~ the reduced Planck
constant, andm⋆ the effective mass of the electrons in the semiconductor. In all subsequent
simulations, we choose m⋆ = 0.067me, corresponding to the effective mass of electrons in
GaAs, with me being the electron mass at rest.

The device in (0, L) is assumed to be connected to the semi-infinite leads (−∞, 0] and
[L,∞). In the exterior domain (−∞, 0] ∪ [L,∞), the potential energy is assumed to be
constant, i.e. V (x) = Vℓ for x ≤ 0 and V (x) = Vr for x ≥ L. Without loss of generality
we set Vℓ = 0 and Vr = −eU , where e denotes the elementary charge and U is the applied
voltage at the right contact.

The energy of an electron injected at the left contact is given by E(k) = ~
2k2/(2m⋆),

where k > 0 denotes the electron wave number in the left lead. The incoming electron
is represented by a plane wave exp(ikx) traveling to the right. Accordingly, transparent
boundary conditions read as [5]

φ′(0) + ikφ(0) = 2ik, φ′(L) = i
√
2m⋆(E − Vr)/~2φ(L). (2)

Electrons injected at the right contact traveling to the left are treated analogously.

Discrete transparent boundary conditions. A symmetric second-order finite-diffe-
rence discretization of the stationary Schrödinger equation (1) on the equidistant grid
xj = j△x, j ∈ Z, with xJ = L and △x > 0 is given by

− ~
2

2m⋆

φj−1 − 2φj + φj+1

(△x)2 + Vjφj = Eφj. (3)
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As before, the potential energy in the semi-infinite leads is assumed to be constant, i.e.,
Vj = 0 for j ≤ 0 and Vj = −eU for j ≥ J . We seek for a solution of (3) restricted to the
grid

XDTBC = {xj = j△x, j = 0, . . . , J} , (4)

and hence we have to specify boundary conditions at x0 = 0 and xJ = L. It is well
known that a direct discretization of the transparent boundary conditions in (2) via stan-
dard finite-difference formulas may lead to spurious oscillations in the numerical solution.
These oscillations may be eliminated using DTBC [5]. The idea is to derive the boundary
conditions on the discrete level of equation (3). In the semi-infinite leads, the potential
energy is assumed to be constant and thus, (3) admits two solutions of the form φj = αj

ℓ,r,
where the numbers

αℓ,r = 1−
m⋆Ekin

ℓ,r (k)(△x)2
~2

± i

√
2m⋆Ekin

ℓ,r (k)(△x)2
~2

−
(m⋆)2Ekin

ℓ,r (k)
2(△x)4

~4

depend on the kinetic energy Ekin
ℓ,r (k) = E(k)− Vℓ,r in the left or right lead, respectively.

Depending on |αℓ,r| ≶ 1, the solutions are exponentially decreasing or increasing. In
case |αℓ,r| = 1 the solutions are discrete plane waves (see below) unless αℓ,r = 1 in which
case they are constant. For a wave function injected at the left contact traveling to the
right, the solution to (3) is a superposition of an incoming and a reflected discrete plane
wave, φj = Aαj

ℓ +Bα−j
ℓ in the left contact, and a transmitted wave φj = Cαj

r in the right
contact. The amplitude of the incoming discrete plane wave in the left lead is set to A = 1.
Eliminating B and C yields the desired DTBC

φ0 − αℓφ1 = 1− α2
ℓ , αrφJ−1 − φJ = 0. (5)

Here, we implicitly assumed Vj = 0 for j ≤ 1 and Vj = −eU for j ≥ J − 1 but we could
just as easily state the boundary conditions in terms of φ−1, φ0 and φJ , φJ+1.

On the discrete level of equation (3), we need to replace the continuous E–k–relation

k =
√
2m⋆Ekin/~ (6)

by the discrete E–k–relation

k = arccos
(
1−m⋆(△x/~)2Ekin

)
/△x, (7)

which approximates the continuous relation up to second order. Consequently, the discrete
solutions can be written as φj = exp(±ikj△x) and hence for |α±

0,J | = 1, they are called
discrete plane waves. Plane waves injected at the right contact traveling to the left are
treated analogously. For further details we refer to [5].

Perfectly Matched Layers. PML can be formulated using the complex coordinate
transformation

x 7→ x+ eiπ/4
∫ x

σ(x′) dx′, (8)
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with the absorption function

σ(x) =





σ0(x
⋆
ℓ − x)p for x < x⋆ℓ ,

0 for x⋆ℓ ≤ x ≤ x⋆r,

σ0(x− x⋆r)
p for x⋆r < x.

This coordinate transformation corresponds to the substitution

d

dx
→ c(x)

d

dx
, c(x) :=

1

1 + eiπ/4σ(x)
, (9)

such that the stationary Schrödinger-PML equation reads as

− ~
2

2m⋆
c(x)

d

dx

(
c(x)

d

dx
φ(x)

)
+ V (x)φ(x) = Eφ(x), x ∈ R. (10)

This agrees with the original stationary Schrödinger equation (1) for x ∈ [x⋆ℓ , x
⋆
r], and

hence we require that [0, L] ⊂ [x⋆ℓ , x
⋆
r]. Outside of [x⋆ℓ , x

⋆
r], propagating waves are damped

exponentially fast,

exp(ikx) → exp(ikx) exp

(
ikeiπ/4

∫ x

σ(x′) dx′
)
, (11)

with their distance to the points x⋆ℓ,r. Denoting the thickness of the PML by d0, the
computational domain is given by [x⋆ℓ − d0, x

⋆
r + d0]. We use cubic absorption functions

(p = 3), which we found to give slightly better results than the quadratic functions used
in [28].

A wave propagating through a PML is expected to be practically zero when it hits the
boundary of the computational domain, provided d0 is sufficiently large. Therefore, either
Dirichlet or Neumann boundary conditions can be imposed at the boundary points x⋆ℓ −d0
and x⋆r + d0. We discuss this issue below in more detail.

Propagating waves with different wave numbers k experience different attenuation ac-
cording to (11). A uniform attenuation independent of the wave number can be obtained
by including 1/k in the absorption function. This strategy is typically used in stationary
wave problems [24]. Since we are concerned mainly with transient simulations, we employ
a different strategy.

Any wave packet can be thought of as a superposition of propagating waves of different
energy or different wave number k. For that reason, we seek for PML which are able to
treat all incoming waves simultaneously. In this spirit, the factor exp(iπ/4) appearing in
(8) is meant to give a good effect on average as explained in [28]. The thickness of the
PML will be comparatively large as they are not optimized to absorb waves of a single
energy. In the simulations below, we fix the thickness of the PML first. Then we choose
the absorption strength factor σ0 such that the numerical error becomes sufficiently small
for a given range of energies.
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We use symmetric finite-difference formulas to approximate the modified spatial deriva-
tive c(x)∂x(c(x)∂x) = c(x)c′(x)∂x + c(x)2∂2x in (10). Approximations of second, fourth and
sixth order read as

D̃2,2nd
x φj := c(xj)c

′(xj)D
1,2nd
x φj + c2(xj)D

2,2nd
x φj, (12a)

D̃2,4th
x φj := c(xj)c

′(xj)D
1,4th
x φj + c2(xj)D

2,4th
x φj, (12b)

D̃2,6th
x φj := c(xj)c

′(xj)D
1,6th
x φj + c2(xj)D

2,6th
x φj, (12c)

where the abbreviations

D1,2nd
x φj := (−φj−1 + φj+1)/(2△x), (13a)

D1,4th
x φj := (φj−2 − 8φj−1 + 8φj+1 − φj+2)/(12△x), (13b)

D1,6th
x φj := (−φj−3 + 9φj−2 − 45φj−1 + 45φj+1 − 9φj+2 + φj+3)/(60△x), (13c)

D2,2nd
x φj := (φj−1 − 2φj + φj+1)/(△x)2, (13d)

D2,4th
x φj := (−φj−2 + 16φj−1 − 30φj + 16φj+1 − φj+2)/(12(△x)2), (13e)

D2,6th
x φj := (2φj−3 − 27φj−2 + 270φj−1 − 490φj + 270φj+1 − 27φj+2

+ 2φ
(n)
j+3)/(180(△x)2),

(13f)

are needed frequently in the following. We further introduce the equidistant grid

XPML := {xj = x⋆ℓ − d0 + j△x, j = 0, . . . , JPML} (14)

with xJPML
= x⋆r + d0 and XDTBC ⊂ XPML. Then the discrete stationary Schrödinger-PML

equation reads

− ~
2

2m⋆
D̃2

x φj + Vjφj = Eφj, D̃2
x ∈ {D̃2,2nd

x , D̃2,4th
x , D̃2,6th

x }. (15)

At the boundaries of XPML, we impose homogeneous Dirichlet or Neumann boundary
conditions. In the latter case, D̃2

x is modified accordingly.
We still need to specify how to realize an incoming plane wave at, say, the left contact.

To simplify the presentation, we restrict ourselves to the second-order discretization D̃2
x =

D̃2,2nd
x . Let xj0 = 0 denote the boundary of the left contact. The wave function in the left

contact is given by the sum of an incoming and a reflected wave function φj = φinc
j + φrefl

j .
In the numerical implementation, we eliminate φinc

j in the left lead. Thus, to realize an
incoming plane wave at xj0 , the finite difference equations for j0 − 1 and j0 need to be
modified according to

− ~
2

2m⋆

φj0−2 − 2φj0−1 + (φj0 − φinc
j0
)

(△x)2 + Vj0−1φj0−1 = Eφj0−1, (16a)

− ~
2

2m⋆

(φj0−1 + φinc
j0−1)− 2φj0 + φj0+1

(△x)2 + Vj0φj0 = Eφj0 . (16b)
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We note that the absorption function of the left lead is only active for xj ≤ x⋆ℓ . Choosing
x⋆ℓ slightly smaller than xj0 ensures that the complex function c does not show up in (16).
Therefore, the final numerical problem becomes

− ~
2

2m⋆
D̃2,2nd

x φj + (Vj − E)φj = bj, j = 0, . . . , JPML,

where

bj =





−
(
~
2/(2m⋆(△x)2)

)
φinc
j0

for j = j0 − 1,

+
(
~
2/(2m⋆(△x)2)

)
φinc
j0−1 for j = j0,

0 else.

For higher-order approximations D̃2
x = D̃2,4th

x or D̃2
x = D̃2,6th

x , we proceed in a similar way.
However, due to the extended finite-difference stencils, the vector b involves four or six
non-zero entries, respectively.

The incoming plane wave is given by φinc
j = exp(ikj△x). In case of the second-order

discretization, the wave number is related to the kinetic energy by the discrete E–k–relation
(7). In case of the higher-order discretizations, we simply use (6), since the corresponding
discrete k–E–relations cannot easily be inverted and the differences would be small anyhow.

Simulations. We consider the ramp-like potential energy

V (x) =





0 for x < a0,

− x− a0
a1 − a0

eU for a0 ≤ x < a1,

−eU for x ≥ a1,

(17)

with a0 = 40nm, a1 = 80nm, and U = −25mV. The device extends from 0nm to
L = 120 nm. The electrons are injected at the left contact traveling to the right. At the left
contact, the potential energy is zero, and hence the energy of the incoming electrons is given
by the kinetic energy only, which is denoted by E inc

kin. We choose the width d0 = 40nm of the
PML, the absorption strength factor σ0 = 0.02, and the mesh size △x = 0.5 nm. Unless
stated otherwise, the simulations in this subsection are performed using homogeneous
Neumann boundary conditions at the end points of the PML.

Figure 1 shows the real parts of scattering states computed with DTBC (dotted line)
and PML (solid line) for different energies E inc

kin. The distances of x⋆ℓ and x⋆r to the device
domain are a few times the mesh size △x, which ensures that the discretization inside the
device domain is not altered by the PML. We note that the second-order discretizations
with DTBC and PML coincide exactly inside the device domain. Indeed, Figure 1 shows
that the scattering states of both methods, computed for different values of E inc

kin, can hardly
by distinguished.

Figure 1 (top) corresponds to the energy E inc
kin = 15meV. Since the potential energy

at the right contact amounts to 25meV, all incoming electrons are being reflected and
then absorbed by the PML in the left contact. The discontinuity in the wave function at
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Figure 1: Scattering states for an electron injected at the left contact. The kinetic energy of the incoming
electrons is Ekin

inc
= 15meV (top), 25meV (center), and 35meV (bottom). The points x⋆

ℓ
and x⋆r indicate

the boundaries of the PML in the left and right lead, respectively.

x = 0nm stems from the fact that the incoming plane wave in the left contact has been
eliminated.

The middle figure corresponds to the limiting case E inc
kin = 25meV, i.e., electrons which

reach the contact on the right-hand side have zero kinetic energy. Hence, the wave number
becomes zero and according to (11), the PML in the right contact has no effect on the
wave function. Nonetheless, we obtain a reasonable approximation due to the Neumann
boundary conditions imposed at the boundary of the computational domain. However, the
question arises whether the PML fails when Ekin

inc is very close to this critical energy. This
issue will be addressed below.

Figure 1 (bottom) corresponds to E inc
kin = 35meV. Since the potential energy of the

transmitted electrons is increased by 25meV, the kinetic energy is decreased by this amount
which results in a reduced wave number, or equivalently, in an increased wavelength.

We repeat the same numerical experiment, but this time we compute scattering states
for the whole range of energies E inc

kin ∈ [10−3, 103] meV. Simultaneously, we calculate (quasi)-
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Figure 2: Relative errors of the scattering states as a function of the kinetic energy with applied voltage
U = −25mV (left) and U = 0 (right). The critical energy Einc

kin
= 25meV is marked by the dashed vertical

line.

exact reference solutions. This is possible since the potential energy is a piecewise linear
function [20, 27]. The relative errors in the ℓ2-norm for different numerical methods are
depicted in Figure 2 (left). It turns out that DTBC2nd and PML2nd yield similar results
for medium to large energies. For very small energies, DTBC2nd performs significantly
better than PML2nd. Moreover, the higher-order methods PML4th and PML6th yield much
smaller errors than DTBC2nd for energies E inc

kin & 1meV. We remark that a smaller mesh
size △x yields similar curves which are shifted downwards.

For zero potential energy V = 0, the scattering state solutions to the stationary Schrö-
dinger equation are simple plane waves. The relative errors, to which we will return later,
are shown in Figure 2 (right).

Next, we compute scattering states for the ramp-like potential energy and E inc
kin ∈

[24.9999, 25.0001]meV, i.e., for energies extremely close to the critical energy E inc
kin =

25meV. This time, we use Dirichlet or Neumann boundary conditions at the end points
of the PML and employ two different mesh sizes △x = 0.5 nm and △x = 0.1 nm. The
numerical errors corresponding to Dirichlet boundary conditions are depicted in the left
column of Figure 3 and those corresponding to Neumann boundary conditions are shown
in the right column.

For △x = 0.5 nm (top row), we observe only a small perturbation of the numerical
errors around the critical value. In case of PML2nd, the effect is obscured completely by the
error of the spatial discretization, which is present even if transparent boundary conditions
are used (compare DTBC2nd). For △x = 0.1 nm (bottom row), the effect becomes more
pronounced since the spatial discretization error is greatly reduced. However, the maximum
error is essentially the same. This holds also true for smaller △x and finer sampling of E inc

kin.
For E inc

kin = 25meV the Neumann boundary condition is exact and hence, the numerical
error is minimized.

For that reason we prefer Neumann boundary conditions at the end points of the
computational domain in all subsequent simulations. Apart from this, both boundary
conditions provide essentially the same results. In summary, we found that the accuracy
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Figure 3: Close-up view of the relative errors of the scattering states as a function of the kinetic energy
using Dirichlet (left column) or Neumann boundary conditions (right column) at the end points of the
PML with mesh sizes △x = 0.5 nm (top row) and △x = 0.1 nm (bottom row).

of the numerical methods using PML is reduced if the wave number of an incident wave
function approaches zero. However, in practice this effect is comparatively small.

2.2. Wave packets

We consider the one-dimensional time-dependent Schrödinger equation,

i~
∂

∂t
ψ(x, t) = − ~

2

2m⋆

∂2

∂x2
ψ(x, t) + V (x, t)ψ, ψ(·, 0) = ψ0, x ∈ R, t > 0. (18)

Under the assumptions that the initial wave function is compactly supported in (0, L) and
that the potential in the exterior domain vanishes, V (x, t) = 0 for x ≤ 0 and x ≥ L, t ≥ 0,
it is well known [5] that transparent boundary conditions at x = 0 and x = L read as

∂ψ

∂x
(x, t)

∣∣
x=0,L

= ±
√

2m⋆

π~
e−iπ/4 d

dt

∫ t

0

ψ(x, τ)
∣∣
x=0,L√

t− τ
dτ. (19)

Using (19) one can easily derive transparent boundary conditions for non-zero exterior
potentials which are spatially constant but may change with time [3]. As an example, we
consider V (x, t) = Vr(t) for x ≥ L, t ≥ 0 and Vr(t) = −eU(t), where U(t) is the applied
voltage. To get rid of the potential in the right lead, we define the gauge change

ψ̃(x, t) := exp

(
i

~

∫ t

0

Vr(s) ds

)
ψ(x, t) x ≥ L, t ≥ 0.

11



This function solves the free Schrödinger equation and consequently, (19) yields a trans-
parent boundary condition for a time-dependent exterior potential in the right lead:

∂ψ

∂x
(x, t)

∣∣
x=L

= −
√

2m⋆

π~
e−iπ/4e−i

∫
t

0 Vr(s) ds/~
d

dt

∫ t

0

ei
∫
t

0 Vr(s) ds/~ψ(x, τ)
∣∣
x=L√

t− τ
dτ.

Discrete transparent boundary conditions. The three-point finite-difference dis-
cretization (13d) applied to the time-dependent Schrödinger equation (18) yields the semi-
discretized problem

d

dt
ψj(t) = i

~

2m⋆
D2,2nd

x ψj(t)−
i

~
V (t)ψj(t) =: f(t, ψj(t)), (20)

which is solved by the Crank-Nicolson time-integration method

ψ(n+1) = ψ(n) +△t f
(
(n+ 1/2)△t, ψ(n+1/2)

)
. (21)

Replacing ψ
(n+1/2)
j by the average value (ψ

(n+1)
j + ψ

(n)
j )/2 yields the well-known Crank-

Nicolson scheme
(
I − i~△t

4m⋆
D2

x +
i△t
2~

V
(n+1/2)
j

)
ψ

(n+1)
j =

(
I +

i~△t
4m⋆

D2
x −

i△t
2~

V
(n+1/2)
j

)
ψ

(n)
j (22)

on the equidistant grid xj = j△x, tn = n△t with j ∈ Z and n ∈ N0. For zero exterior
potentials, the corresponding DTBC at the left (x0 = 0) and the right (xJ = L) contact
are given as follows [4]:

ψ
(n+1)
1 − s(0)ψ

(n+1)
0 =

n∑

ℓ=1

s(n+1−ℓ)ψ
(ℓ)
0 − ψ

(n)
1 , n ≥ 0, (23a)

ψ
(n+1)
J−1 − s(0)ψ

(n+1)
J =

n∑

ℓ=1

s(n+1−ℓ)ψ
(ℓ)
J − ψ

(n)
J−1, n ≥ 0, (23b)

with the convolution coefficients

s(n) =

(
1− i

R

2

)
δn,0 +

(
1 + i

R

2

)
δn,1 + αe−inϕPn(µ)− Pn−2(µ)

2n− 1

and the abbreviations

R =
4m(△x)2

~△t , ϕ = arctan
4

R
, µ =

R√
R2 + 16

, α =
i

2
4
√
R2(R2 + 16)eiϕ/2.

Here, Pn denotes the nth-degree Legendre polynomial (P−1 = P−2 = 0), and δn,j is the
Kronecker symbol. The Crank-Nicolson scheme (22) with the DTBC (23) yields an uncon-
ditionally stable discretization which is perfectly free of reflections [4, 5]. The corresponding
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solution coincides exactly with the solution of the discrete whole space problem (22) re-
stricted to the grid XDTBC defined in (4). Time-dependent exterior potentials may be
included like in the continuous case described above (see [21] for details).

Perfectly Matched Layers. We apply the coordinate transformation (8) also in the
transient case, which yields the time-dependent Schödinger-PML equation

i~
∂

∂t
ψ(x, t) = − ~

2

2m⋆
c(x)

∂

∂x

(
c(x)

∂

∂x
ψ(x, t)

)
+ V (x, t)ψ(x, t), (24)

where c(x) is defined in (9). Accordingly, the semi-discretized problem is given by (20),
whereinD2,2nd

x is replaced by D̃2
x ∈ {D̃2,2nd

x , D̃2,4th
x , D̃2,6th

x } (see (12)). The spatial gridXPML

is the same as in the stationary case (see (14)). Using the Crank-Nicolson time-integration
method gives (22) but with the modified spatial differential operator D̃2

x.
Alternatively, we solve this problem via the classical (explicit) Runge Kutta method. In

quantum mechanics simulations, this method is used very rarely. This is probably because
the resulting spatio-temporal discretization is only conditionally stable. Moreover, the
norm of the wave function is not a conserved quantity, i.e., in general ‖ψ(n+1)‖2ℓ2 = ‖ψ(n)‖2ℓ2
does not hold exactly. We address these issues in a simple numerical experiment where we
solve the ordinary time-dependent Schrödinger equation (without PML) for a harmonic
oscillator potential V (x) = m⋆ω∗x

2/2 with ω∗ = 0.25 × 1014 s−1. As a reference solution,
we consider a so called coherent state [15],

ψ(x, t) =

(
m⋆ω∗

π~

)1/4

exp

(
−m

⋆ω∗

2~

(
x2 − 2xx0e

−iω∗t +
x20
2
e−2iω∗t +

x20
2

)
− i

2
ω∗t

)
,

where x0 = 10nm denotes the expectation value of the particle at t = 0. The computa-
tional domain extends from −50 nm to 50 nm. Near the boundaries, the wave function is
zero (to numerical precision) and hence it is reasonable to employ homogeneous Dirichlet
boundary conditions. The initial state ψ(x, 0) is propagated for 100 000 time steps using
the Runge-Kutta scheme. The spatial derivative is approximated by D2,2nd

x , D2,4th
x , or

D2,6th
x . Using △x = 0.5 nm and △t = 0.1 fs, we obtain the deviation from the initial mass,∣∣‖ψ(100 000)‖ℓ2

/
‖ψ(0)‖ℓ2 − 1

∣∣ . 5.9× 10−11, independent of the spatial discretization. More-
over, the relative errors of the final wave functions are given by 2.19×10−1, 6.56×10−4, and
6.42×10−6 corresponding to D2,2nd

x , D2,4th
x , and D2,6th

x , respectively. In the recent paper [9],
the stability bounds △t < κ(△x)2 for the linear and nonlinear Schrödinger equation were
derived for second- and fourth-order spatial discretizations. Remarkably, the constants κ
stated in [9] agree with our experimental findings, even if we solve the Schrödinger-PML
equation. In case of the sixth-order spatial discretization, our numerical experiments sug-
gest that κ needs to be adapted slightly by a factor 3/4 compared to κ in the fourth-order
discretization. In fact, κ = 9m⋆/(8

√
2N~), where N denotes the space dimension, gives

almost sharp bounds for the simulations presented in this paper.

Simulations. We solve the time-dependent Schrödinger equation (18) for zero potential

13



energy. As a reference solution, we choose a superposition of three Gaussian wave packets,

ξp(x, t) =

(
1 + i

t

τ

)−1/2

exp

[(
1 + i

t

τ

)−1(
−
(
x− x0
2σ

)2

+ ikp(x−x0)− iσ2k2p
t

τ

)]
, (25)

where τ = 2m⋆σ2/~ and kp =
√

2m⋆Ep/~, p = 1, 2, 3. At t = 0, each Gaussian is centered
around x0 = L/2. Using σ = 7.5 nm, the initial wave packet is practically zero outside
the device domain [0, L] = [0, 120] nm. The average energy of the first, second, and third
Gaussian is E1 = 0meV, E2 = 25meV, and E3 = 75meV, respectively. Therefore, the
reference solution is a superposition of propagating plane waves exp(ikx− iωt) of very low
to high energies E = (~k)2/(2m⋆) with the wave frequency ω = E/~. We use the same
spatial mesh size △x = 0.5 nm and the same parameters of the PML as for the scattering
state simulations. The time step size is given by △t = 0.1 fs.

Figure 4 shows the relative ℓ2 errors of simulations using DTBC or PML. At the be-
ginning of the simulation, the two second-order methods yield similar results. During this
phase, the numerical error is dominated by the fast traveling parts of the wave packet,
since their oscillations in space and time are difficult to handle by low order methods.
Shortly afterwards, the relative error of the PML solution is stabilizing around the value
3× 10−3. This agrees with the numerical errors presented in Figure 2 (right) since at later
times, the wave packet can be thought of as a superposition of primarily low energy plane
wave scattering states. In contrast, the numerical error of the DTBC solution decreases
continuously.

Figure 4 also shows the numerical errors according to higher-order methods. For exam-
ple, a sixth-order spatial discretization in combination with PML reduces the maximum
relative error by more than two orders of magnitude. The maximum error can be reduced
further by replacing the second-order Crank-Nicolson time-integration method with the
fourth-order Runge-Kutta method. In this case, even the fast temporal oscillations in the
beginning of the simulation are resolved with high accuracy.

PML
CN
2nd PML

CN
4th PML

CN
6th PML

RK4
6th DTBC

CN
2nd
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10−6

10−5
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re
l.
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ro
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0.5 1 1.5 2
time in ps

Figure 4: Relative errors versus time for different numerical methods corresponding to the simulation using
three Gaussian wave packets.
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2.3. Time-dependent incoming waves

Before we turn our attention to transient scattering state simulations, we explain how
to realize an incoming wave at a device boundary. As an example, we consider the free
time-dependent Schrödinger equation, where an incident plane wave

ψinc(x, t) = exp(ikx− iωt), x ≤ 0, ω = ~k2/(2m⋆),

is prescribed at x = 0nm. The transparent boundary condition at x = L is as in (19).
However, at x = 0 we need to prescribe an inhomogenous transparent boundary condition
which follows if we apply (19) to the wave ψ − ψinc [3, 5]:

∂

∂x

(
ψ(x, t)− ψinc(x, t)

) ∣∣
x=0

=

√
2m⋆

π~
e−iπ/4 d

dt

∫ t

0

ψ(0, τ)− ψinc(0, τ)√
t− τ

dτ. (26)

To avoid a discontinuity at (x, t) = (0, 0), we assume compatibility of the initial and
boundary data at this point (see [5] for details).

Discrete transparent boundary conditions. The discrete analogue of (26) for the

Crank-Nicolson scheme (22) follows by replacing ψ
(n)
j by ψ

(n)
j − φ

(n)
j in (23a),

ψ
(n+1)
1 − s(0)ψ

(n+1)
0 =

n∑

ℓ=1

s(n+1−ℓ)
(
ψ

(ℓ)
0 − φ

(ℓ)
0

)
−
(
ψ

(n)
1 − φ

(n)
1

)
+ φ

(n+1)
1 − s(0)φ

(n+1)
0 .

Here,
φ
(n)
j = exp(ikxj − iωn△t) (27)

represents an incoming discrete plane wave, i.e., k is related to E = E inc
kin according to the

discrete E–k–relation (7), and the wave frequency is given by the discrete E–ω–relation

ω =
2

△t arctan
(
E△t
2~

)
, (28)

which is the discrete analogue of ω = E/~ (see [5]).

Perfectly Matched Layers. We solve the transient Schrödinger-PML equation (24),
where an incoming time-dependent plane wave is prescribed at one of the device boundaries.
The incoming wave is realized analogously to the case of the stationary scattering state
simulations. As an example, we consider the Crank-Nicolson scheme (22) with D2

x replaced
by D̃2

x = D̃2,2nd
x . In the vicinity of the device boundary xj0 = 0, the potential energy is

zero, but more importantly, the PML is inactive. The wave function in the left contact
is a superposition of an incoming and a reflected wave. However, the incoming wave (27)

is eliminated in the left lead and hence ψ
(n)
j represents the reflected wave for j < j0.
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Figure 5: An incoming plane wave with energy Einc

kin
= 25meV at the left contact using PML (solid line)

and DTBC (dotted line).

Accordingly, the finite-difference equations for j0−1 and j0 need to be modified as follows:

ψ
(n+1)
j0−1 − i~△t

4m⋆(△x)2
[
ψ

(n+1)
j0−2 − 2ψ

(n+1)
j0−1 +

(
ψ

(n+1)
j0

− φ
(n+1)
j0

)]

= ψ
(n)
j0−1 +

i~△t
4m⋆(△x)2

[
ψ

(n)
j0−2 − 2ψ

(n)
j0−1 +

(
ψ

(n)
j0

− φ
(n)
j0

)]
,

ψ
(n+1)
j0

− i~△t
4m⋆(△x)2

[(
ψ

(n+1)
j0−1 + φ

(n+1)
j0−1

)
− 2ψ

(n+1)
j0

+ ψ
(n+1)
j0+1

]

= ψ
(n)
j0

+
i~△t

4m⋆(△x)2
[(
ψ

(n)
j0−1 + φ

(n)
j0−1

)
− 2ψ

(n)
j0

+ ψ
(n)
j0+1

]
.

(29)

Since φ
(n)
j0

and φ
(n)
j0−1 are known for all n ∈ N0, we collect these values,

b
(n)
j =





− i~△t
4m⋆(△x)2)

(
φ
(n+1)
j0

+ φ
(n)
j0

)
for j = j0 − 1,

+
i~△t

4m⋆(△x)2)
(
φ
(n+1)
j0−1 + φ

(n)
j0−1

)
for j = j0,

0 else

on the right-hand side of (22). In case D̃2
x = D̃2,4th

x and D̃2
x = D̃2,6th

x , we proceed in
a similar way. However, due to the extended finite-difference stencils, four or six finite-
difference equations need to be modified accordingly. If the semi-discretized problem is
solved via the Runge-Kutta method, the incoming wave needs to be taken into account at
each of the four intermediate Runge-Kutta time-steps.

Simulations. An incoming plane wave is depicted in Figure 5 at t = 0ps and t = 0.1 ps.
The potential energy is zero everywhere and the kinetic energy of the incoming electrons
amounts to E inc

kin = 25meV. We note that it would take quite a long time (compared to the
underlying time scale) before the wave function becomes approximately stationary.

2.4. Transient scattering states

A transient scattering state simulation describes a quantum device in which a contin-
uously incoming plane wave is prescribed at one of the device contacts. Moreover, the
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potential energy is allowed to change with time. The lead potentials need to be spatially
constant but may depend on time too. In contrast to the simulation depicted in Figure 5,
one is typically not interested in the initial transient phase. Instead of waiting for the wave
function to become stationary for the first time, it is preferable to initialize the simulation
with a scattering state. This situation is considered in [5] where the potential energy is
switched instantaneously. An extension to continuously time-variable potentials can be
found in [21].

As an example, we consider the time-dependent Schödinger equation with the ramp-
like potential (17), where the applied voltage U is assumed to be time-dependent with
U(t) = U0 for t ≤ 0. The initial wave function is given by the scattering state solution φ of
the stationary Schrödinger equation for the potential energy according to U0. As before,
we consider electrons injected at the left contact with energy E = E inc

kin. For the sake of
completeness, we state the corresponding boundary conditions [5, 21]:

∂

∂x

[
ψ(x, t)− e−iEt/~φ(x)

] ∣∣∣
x=0

= +

√
2m⋆

π~
e−iπ/4 d

dt

∫ t

0

ψ(0, τ)− e−iEτ/~φ(0)√
t− τ

dτ,

(30a)

∂

∂x

[
ei

∫
t

0 Vr(s) ds/~ψ(x, t)− e−i(E−Vr(0))t/~φ(x)
] ∣∣∣

x=L

= −
√

2m⋆

π~
e−iπ/4 d

dt

∫ t

0

ei
∫
τ

0 Vr(s) ds/~ ψ(L, τ)− e−i(E−Vr(0))τ/~φ(L)√
t− τ

dτ.

(30b)

Here, Vr(t) = −eU(t) denotes the potential energy in the right lead.

Discrete transparent boundary conditions. The discrete analogue of (30a) follows

by replacing ψ
(n)
j by ψ

(n)
j − β(n)φj in (23a),

(ψ
(n+1)
1 −β(n+1)φ1)− s(0)(ψ

(n+1)
0 − β(n+1)φ0)

=
n∑

ℓ=1

s(n+1−ℓ)(ψ
(ℓ)
0 − β(ℓ)φ0)− (ψ

(n)
1 − β(n)φ1),

(31)

where φj is a solution of the discrete scattering state problem outlined above. The dis-
cretization of the gauge-change term,

β(n) = exp (−2in arctan (△tE/(2~))) ≈ exp(−iEt/~),

is consistent with the underlying Crank-Nicolson time-integration method [21]. Similarly,

the discrete analogue of (30b) follows by replacing ψ
(n)
j by ǫ(n)ψ

(n)
j − γ(n)φj in (23b):

(ǫ(n+1)ψ
(n+1)
J−1 − γ(n+1)φJ−1)− s(0)(ǫ(n+1)ψ

(n+1)
J − γ(n+1)φJ)

=
n∑

ℓ=1

s(n+1−ℓ)(ǫ(ℓ)ψ
(ℓ)
J − γ(ℓ)φJ)− (ǫ(n)ψ

(n)
J−1 − γ(n)φJ−1).

(32)
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The gauge-change terms are approximated via

γ(n) = exp(2in(arctan(△tV (0)
r /(2~))− arctan(△tE/(2~))))

≈ exp(−i(E − Vr(0))t/~),

ǫ(n) = exp

(
i

~

n−1∑

ℓ=0

arctan(△tV (ℓ+1/2)
r )

)
≈ exp

(
i

~

∫ t

0

Vr(s) ds

)
,

(33)

which is also compatible with the underlying Crank-Nicolson method. We note that the
Crank-Nicolson scheme along with the inhomogeneous DTBC (31) and (32) is still perfectly
free of spurious reflections. In fact, (31) and (32) yield an exact truncation of the discrete
whole-space problem.

Perfectly Matched Layers. No further steps are necessary to realize a transient scat-
tering state simulation using PML. Given the potential energy at t = 0 and the kinetic
energy E inc

kin of the electrons injected at the device contact, we compute a scattering state
solution of the discrete stationary Schödinger-PML equation. This scattering state serves
as the initial state of the transient problem where a time-dependent incoming plane wave
(27) is prescribed at the device contact.

Simulations. Figure 6 shows the time evolution of a transient scattering state. The
incoming plane wave at the left contact represents electrons with a kinetic energy of E inc

kin =
25meV traveling to the right. The applied voltage U(t) is illustrated in Figure 7 (top left).
Accordingly, we initialize the simulation with the scattering state corresponding to an
applied voltage of U0 = −100mV. Until t = 0.5 ps we keep the applied voltage constant
and hence the numerical solution remains the same. More precisely, |ψ|2 remains the same
while Reψ oscillates with time.

From t = 0.5 ps up to t = 12.5 ps, the applied voltage varies corresponding to a medium
oscillation with a large amplitude and a fast oscillation with a smaller amplitude. As a
result, the wave function shows a wild behavior as indicated in the second, third, and
fourth row of Figure 6. For times t ≥ 12.5 ps, the voltage is kept constant at U = 0mV.
The last row of Figure 6 shows that even at t = 20ps, the wave function has not become
perfectly stationary again. The time evolution of the scattering state is available as a movie
at http://www.asc.tuwien.ac.at/~juengel.

The simulation described above was carried out using the second-order Crank-Nicolson
scheme with DTBC or PML with the time step size of △t = 0.1 fs. Inside the device
domain both discretizations coincide exactly. Since DTBC represent an exact truncation
of the discrete whole-space problem, the relative difference of both methods results from
the PML. We repeat the experiment four times corresponding to different values of the
kinetic energy E inc

kin = 0.25meV, 2.5meV, 25meV or 250meV. The relative differences as
a function of time are depicted in the left column of Figure 7 for △x = 0.5 nm (center) or
△x = 0.1 nm (bottom).

In another four simulations, we let the applied voltage oscillate slowly around the critical
values U = −0.25mV, −2, 5mV, −25mV or −250mV as depicted in the right column of
Figure 7 (top). In this way, we trigger waves of arbitrary low energy in the right lead. The
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Figure 6: Transient scattering state |ψ|2 (left column) and Reψ (right column) at selected times for a
continuously incoming plane wave prescribed at the left contact. The incoming plane wave corresponds to
electrons with a kinetic energy of Einc

kin
= 25meV traveling to the right.
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Figure 7: Left column: Relative differences between the solutions computed with DTBC and PML for
△x = 0.5 nm (center) or △x = 0.1 nm (bottom) using the applied voltage U(t) (top). The experiment is
carried out four times corresponding to different values of Einc

kin
= 0.25meV, 2.5meV, 25meV or 250meV.

Right column: Relative differences between the solutions computed with DTBC and PML for △x = 0.5 nm
(center) or △x = 0.1 nm (bottom) using different applied voltages (top). The experiment is carried out
four times corresponding to different values of Einc

kin
= 0.25meV, 2.5meV, 25meV or 250meV. In each

simulation the applied voltage oscillates slowly around a different critical value U = −0.25mV, −2.5mV,
−25mV or −250mV.
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relative differences are depicted in the right column of Figure 7 for △x = 0.5 nm (center)
or △x = 0.1 nm (bottom). It can be seen that the relative differences are alwas localized
around a value of 3× 10−3, showing that PML can handle even the extreme cases.

3. Two-dimensional quantum waveguide simulations

3.1. Scattering states in quantum waveguides

We consider the stationary Schrödinger equation

Ĥφ = Eφ, Ĥ = − ~
2

2m⋆
∆+ V, (34)

on the infinite strip Ω = R × (0, L2) with homogeneous Dirichlet boundary conditions at
x2 = 0 and x2 = L2. For the quantum waveguide simulations, we assume that the potential
energy in the exterior domain depends on the transversal coordinate only,

V (x1, x2) =

{
Vℓ(x2) for x1 ≤ 0,

Vr(x2) for x1 ≥ L1.

In general, Vℓ and Vr may be different, but to simplify the notation, we assume that
Vℓ(x2) = Vr(x2) for x2 ∈ [0, L2]. As an example, we refer to the ring-shaped device
described by the potential energy shown in Figure 8.

0 100 200 300
x1 in nm

0

90

x
2
in

n
m

0 0.75 1.5

V in eV

Figure 8: Potential energy of a ring-shaped quantum waveguide device. The device domain equals
[0, 300]× [0, 90] nm2.

We further assume that the wave function in the leads,

φ(x1, x2) =
∞∑

m=0

c(m)(x1)χ
(m)(x2), x1 ≤ 0, x1 ≥ L1, (35)
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can be decomposed into transversal waveguide eigenstates,

− ~
2

2m⋆

∂2

∂x22
χ(m)(x2) + V (x2)χ

(m)(x2) = E(m)χ(m)(x2), χ
(m)(0) = 0, χ(m)(L2) = 0,

〈χ(m), χ(n)〉 =
∫ L2

0

χ(m)(x2)χ(n)(x2) dx2 = δm,n,

(36)

where the mode coefficients c(m)(x1) = 〈φ(x1, ·), χ(m)〉 satisfy the one-dimensional station-
ary Schrödinger equation

− ~
2

2m⋆

∂2

∂x21
c(m)(x1) + E(m)c(m)(x1) = Ec(m)(x1), m ∈ N0. (37)

In the following discussion, we consider electrons injected at the left terminal traveling
to the right. Let their wave vector be given by (k, 0)⊤ with k > 0. At the time of the
injection, the electrons are assumed to be in the ground state with respect to the cross
section of the waveguide potential in the left lead. Hence, the incoming electrons are
represented by

φinc(x1, x2) := exp(ikx1)χ
(0)(x2), (38)

and their total energy amounts to E = E inc
kin + E(0), where E inc

kin = ~
2k2/(2m⋆).

Discrete transparent boundary conditions. The symmetric second-order finite-dif-
ference approximation of the spatial derivatives in (34) gives

− ~
2

2m⋆

(
φj1−1,j2 − 2φj1,j2 + φj1+1,j2

(△x)2 +
φj1,j2−1 − 2φj1,j2 + φj1,j2+1

(△x)2
)

+ Vj1,j2φj1,j2 = Eφj1,j2

(39)

on the semi-infinite grid Ω△x := {(j1△x, j2△x) : j1 ∈ Z, j2 = 0, . . . , J2}, where J1△x = L1,
J2△x = L2, and φj1,0 = φj1,J2 = 0 for all j1 ∈ Z. In particular, we seek for a solution of
(39) restricted to the grid points of the device domain

ΩDTBC := {(j1△x, j2△x) : j1 = 0, . . . , J1, j2 = 0, . . . , J2} ,

where an incoming plane wave is prescribed at the left boundary. Disregarding open
boundary conditions and the incoming plane wave, we can state the problem as

Sφ = 0, φj = φj1,j2 , j = j1J2 + j2, j1 = 0, . . . , J1, j2 = 0, . . . , J2. (40)

Here, S denotes the sparse matrix S := −~
2/(2m⋆)∆2nd

x1,x2
+ diag(d), where ∆2nd

x1,x2
:=

D2,2nd
x1

⊗ IJ2 + IJ1 ⊗D2,2nd
x2

. The components of the vector d are given by dj = Vj −E, j =
0, . . . , (J1+1)(J2+1)−1, and IJ1 , IJ2 are unit matrices of dimension J1 and J2, respectively.
Finally, D2,2nd

x1
and D2,2nd

x2
are finite-difference matrices defined according to (13d) with

respect to the two spatial directions x1 and x2.
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Figure 9: Reduced mesh of the ring shaped quantum device shown in Figure 8. For visualization
purposes, △x is chosen extremely large. Grid points at which the wave function is practically zero have
been eliminated. For DTBC, the reduced mesh is given by the grid points between x1 = 0nm and
x1 = 300 nm. In case of PML, the reduced mesh contains also the grey points. In both cases, we prescribe
an incoming plane wave at x1 = 0nm.

In order to realize discrete open boundary conditions at the device terminals, we need
to replace those finite-difference equations in (40) which correspond to grid points at the
left and right boundary of ΩDTBC. Furthermore, some of the finite-difference equations can
be eliminated because φj is zero due to the homogeneous Dirichlet boundary conditions
imposed at the top and the bottom boundary of ΩDTBC. In fact, we eliminate even more
equations. Since the wave function φj decreases exponentially within areas where the
potential energy is greater than the total energy of the electron, φj is zero (to numerical
precision) at some distance from the center of the waveguide profile. This allows us to
eliminate the corresponding finite-difference equations. More specifically, we eliminate all
rows S[j, :] and colums S[:, j] of S with j ∈ {j : Vj > 750meV}. Through this elimination
process, we implicitly obtain a reduced mesh and a new numbering of the remaining free
indices. An illustration is given in Figure 9.

We still need to replace the remaining rows of S corresponding to grid points at the
device contacts (open red points in Figure 9). Let us consider the left terminal first. Since
the potential energy in the exterior domain depends solely on the transversal coordinate,
we temporarily define Vj2 := Vj1,j2 for j1 ≤ 0 and j2 = 0, . . . , J2. Analogously to the con-
tinuous case, the wave function in the lead can be decomposed into transversal waveguide
eigenstates:

φj1,j2 =
M−1∑

m=0

c
(m)
j1
χ
(m)
j2
, j1 ≤ 0, j2 = j21, . . . , j22.

The indices j21 and j22 depend on the elimination process described above. In the example
of Figure 9, we have j21 = 2 and j22 = 4. Hence, the number of free indices along the
x2-direction in the left lead is given by M = j22 − j21 + 1. Further, χ(m) denotes the m-th
eigenstate of the discrete eigenvalue problem

− ~
2

2m⋆

χ
(m)
j2−1 − 2χ

(m)
j2

+ χ
(m)
j2+1

(△x)2 + Vj2χ
(m)
j2

= E(m)χ
(m)
j2
, j2 = j21, . . . , j22, m = 0, . . . ,M − 1,
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where we impose homogeneous Dirichlet boundary conditions at x2 = (j21 − 1)△x and
x2 = (j22 + 1)△x. We further ensure that all eigenstates are orthonormal with respect to
the scalar product

〈χ(m), χ(n)〉 = △x
j22∑

j2=j21

χ
(m)
j2
χ
(n)
j2
. (41)

The ground state (m = 0) and the first excited state (m = 1) are shown in Figure 10 (left).
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Figure 10: Left: Ground state and first excited eigenstate corresponding to the cross-sectional potential
energy in the left lead of the quantum waveguide depicted in Figure 8. The vertical dotted lines indicate
the boundaries of the reduced mesh. Right: Sparsity pattern of S corresponding to the example considered
in Figure 9.

In the continuous case, the coefficients c(m) solve (37) for all m ∈ N0. The discrete
analogue of (37) reads as

− ~
2

2m⋆

c
(m)
j1−1 − 2c

(m)
j1

+ c
(m)
j1+1

(△x)2 + E(m)c
(m)
j1

= Ec
(m)
j1
, m = 0, . . . ,M − 1, (42)

which can be identified with the one-dimensional discrete stationary Schrödinger equation
(3) if the potential energy is substituted by E(m). Thus, (42) admits two solutions of the

form c
(m)
j1

= (α(m))j1 , where

α(m) = 1− m⋆(E − E(m))(△x)2
~2

± i

√
2m⋆(E − E(m))(△x)2

~2
− (m⋆)2(E − E(m))2(△x)4

~4
.

Recall that m denotes the mode index and m⋆ the effective mass of the electron and that
we consider electrons which are injected at the left terminal traveling to the right. At the
time of the injection, the electrons are assumed to be in the ground state with respect to
the waveguide profile. Thus, we have

c
(0)
j1

= A
(
α(0)
)j1 + B

(
α(0)
)−j1 ,
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where A and B are the amplitudes of the incoming and the reflected wave projected to the
ground state χ(0), respectively. Writing the above equation for j1 = 0, 1 and eliminating B
yields

c
(0)
0 − α(0)c

(0)
1 = A

(
1−

(
α(0)
)2)

, (43)

which corresponds to equation (5) with A = 1. Here, we use A = 1/△x which gives a
reasonable scaling of the final wave function. In other words, the final wave function will
be of the same order as the transversal waveguide eigenstates. In case of the excited modes
(m > 0), the amplitude of the incoming wave is zero. Thus, we have

c
(m)
0 − α(m)c

(m)
1 = 0, m = 1, . . . ,M − 1. (44)

Again, the mode coefficients are the projections of the wave function onto the transversal
waveguide eigenstates. More precisely, using the scalar product (41) and the fact that all
eigenstates are real-valued, we can write the discrete analogue of c(m) solving (37) as

c
(m)
j1

= △x
j22∑

j2=j21

φj1,j2χ
(m)
j2
, m = 0, . . . ,M − 1. (45)

The remaining free indices corresponding to the grid points at the left boundary of
the device are 0, . . . ,M − 1. Furthermore, the free indices of the adjacent grid points are
M, . . . , 2M − 1 (see Figure 9). Thus, using (43), (44), and (45), DTBC at x1 = 0 become

(
△x

M−1∑

j=0

φjχ
(m)
j

)
− α(m)

(
△x

2M−1∑

j=M

φjχ
(m)
j

)
=

1

△x
(
1−

(
α(0)
)2)

δm,0, (46)

for all m = 0, . . . ,M − 1. Each of these M equations is used to replace one equation
corresponding to a grid point at the left boundary of the reduced mesh. In other words,
we replace the first M rows of S according to the left-hand side of (46).

DTBC at x1 = L1 follow analogously. Since we do not prescribe an incoming wave at
the right contact, the inhomogeneity does not show up, leading to

(
△x

N−1∑

j=N−M

φjχ
(m)
j

)
− α(m)

(
△x

N−M−1∑

j=N−2M

φjχ
(m)
j

)
= 0, m = 0, . . . ,M − 1. (47)

The last M rows of S are replaced according to (47) which finally yields

Sφ = b, φ = (φ0, . . . , φN−1)
⊤, b = (b0, . . . , bN−1)

⊤, (48)

where bj = (1/△x)(1− (α(0))2)δj,0.
In some numerical experiments we noticed that the condition number of S is quite large.

This problem can be easily overcome by scaling all equations (apart from the ones given
in (46) and (47)) with 1/E. The sparsity pattern of S is depicted in Figure 10. Obviously,
S contains two dense submatrices which are a direct consequence of the DTBC (46) and
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(47). For that reason, the symmetry of S is lost and consequently, many iterative methods
cannot be applied to solve (48). However, the simulations considered below can still be
handled by direct solvers and we are not affected by the loss of symmetry of S.

Perfectly Matched Layers. Similarly to the one-dimensional case, we replace the Lapla-
cian in the stationary Schrödinger equation by the Laplace-PML operator

∂2

∂x21
+

∂2

∂x22
→ c(x1)

∂

∂x1
c(x1)

∂

∂x1
+

∂2

∂x22
, (49)

which yields the stationary Schrödinger-PML equation

− ~
2

2m⋆

(
c(x1)

∂

∂x1
c(x1)

∂

∂x1
+

∂2

∂x22

)
φ(x1, x2) + V (x1, x2)φ(x1, x2) = Eφ(x1, x2). (50)

We choose the same function c(x) as in Section 2.1.
According to (12a), a second-order finite-difference discretization of (50) is given by

− ~
2

2m⋆

(
c(xj1)c

′(xj1)
−φj1−1,j2 + φj1+1,j2

2△x + c2(xj1)
φj1−1,j2 − 2φj1,j2 + φj1+1,j2

(△x)2

+
φj1,j2−1 − 2φj1,j2 + φj1,j2+1

(△x)2
)
+ Vj1,j2φj1,j2 = Eφj1,j2 , j1 ∈ Z, j2 = 0, . . . , J2.

In fact, we seek for a solution restricted to the computational domain

ΩPML =
{
(XPML

j1
, j2△x) : j1 = 0, . . . , JPML

1 , j2 = 0, . . . , J2
}
,

where XPML
j1

denotes the j1-th grid point of the one-dimensional grid XPML defined in (14).
Without taking into account a possible incoming plane wave, we can state the problem in
the following form:

SPMLφ = 0, φj = φj1,j2 , j = j1J2 + j2, j1 = 0, . . . , JPML
1 . j2 = 0, . . . , J2.

where SPML := −~
2/(2m⋆)∆̃x1,x2 + diag(d), and ∆̃x1,x2 is one of the sparse matrices

∆̃2nd
x1,x2

:=
(
D̃2,2nd

x1
⊗ IJ2 + IJPML

1
⊗D2,2nd

x2

)
, (51a)

∆̃4th
x1,x2

:=
(
D̃2,4th

x1
⊗ IJ2 + IJPML

1
⊗D2,4th

x2

)
, (51b)

∆̃6th
x1,x2

:=
(
D̃2,6th

x1
⊗ IJ2 + IJPML

1
⊗D2,6th

x2

)
, (51c)

corresponding to second-, fourth-, and sixth-order discretizations of the Laplace-PML op-
erator (49). The finite-difference matrices corresponding to the x1-direction are defined via
(12) and the finite-difference matrices acting on the x2-direction are given in (13d)-(13f).
Finally, the vector d is defined via dj = Vj − E, j = 0, . . . , (JPML

1 + 1)(J2 + 1)− 1.
Before we realize an incoming plane wave at the left terminal, we eliminate all finite-

difference equations corresponding to grid points where the wave function is supposed to
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be zero. Like in the case of DTBC, we eliminate all rows SPML[j, :] and colums SPML[:, j]
of SPML with j ∈ {j : Vj > 750meV}. Let NPML × NPML denote the new size of SPML.
The elimination process implicitly yields a reduced mesh which extends the reduced mesh
considered in the case of DTBC (see Figure 9). The wave function in the left contact is
a superposition of an incoming and a reflected wave, φj1,j2 = φinc

j1,j2
+ φrefl

j1,j2
. The incoming

wave
φinc
j1,j2

= χ
(0)
j2

exp(ikj1△x), j1 ≤ 0, j2 = j21, . . . , j22, (52)

is a discrete representation of (38), where χ(0) is a solution of

− ~
2

2m⋆
D2

x2
χ
(0)
j2

+ Vj2χ
(0)
j2

= E(0), D2
x2

∈
{
D2,2nd

x2
, D2,4th

x2
, D2,6th

x2

}
, j2 = j21, . . . , j22.

Like in the case of DTBC, we impose homogeneous Dirichlet boundary conditions at x2 =
(j21−1)△x and x2 = (j22+1)△x. The wave number k is related to the kinetic energy E inc

kin

according to the discrete E–k–relation (7). In case of the higher-order methods, we simply
use the continuous relation (6). Let again M denote the number of free indices along the
x2-direction in the left lead. Moreover, let j0, . . . , j0 +M − 1 denote the free indices of the
grid points at x1 = 0 with respect to the reduced mesh (j0 = 9 in Figure 9). With these
notations, an incoming plane wave is realized in the same way as in the one-dimensional
case. For the second-order discretization, we find that

SPMLφ = b, φ = (φ0, . . . , φNPML−1)
⊤, b = (b0, . . . , bNPML−1)

⊤,

where

bj =





− ~
2

2m⋆(△x)2φ
inc
j+M for j = j0 −M, . . . , j0 − 1,

+
~
2

2m⋆(△x)2φ
inc
j−M for j = j0, . . . , j0 +M − 1,

0 else.

In case of the higher-order discretizations, b needs to be adapted accordingly.
Since SPML does not contain dense submatrices, it can be assembled more easily than

the corresponding matrix in (48). However, depending on the ratio between the number
of grid points needed to describe the device domain and the number of grid points needed
to realize the PML, the size of SPML may be significantly larger than that of S in (48).
Moreover, SPML is not Hermitian. Thus, like in the case of DTBC, many iterative methods
cannot be applied.

Simulations. Before we turn our attention to the ring-shaped quantum device introduced
above, let us first consider a straight waveguide with parabolic cross section, i.e.,

V (x1, x2) =
1

2
m⋆ω2

∗

(
x2 −

L2

2

)2

, ω∗ = 0.5× 1014 s−1, x1 ∈ R, x2 ∈ [0, L2]. (53)
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Figure 11: Left: Relative errors as a function of Einc

kin
in a numerical scattering state experiment. The

electrons are injected at the left contact of a straight waveguide with parabolic cross section. Right:

Relative differences between the solutions obtained by PML2nd and DTBC2nd as a function of Einc

kin
. The

electrons are injected at the left terminal of the ring-shaped waveguide depicted in Figure 8.

The cross-sectional eigenstates and eigenvalues read as

χ(n)(x2) =

(
m⋆ω∗

π~

)1/4
1√
2nn!

Hn

(√
m⋆ω∗

~

(
x2 −

L2

2

))

× exp

(
−1

2

m⋆ω∗

~

(
x2 −

L2

2

)2
)
, E(n) = ~ω∗

(
n+

1

2

)
, n ∈ N0,

(54)

where Hn denote the Hermite polynomials.
In this trivial example, the solution of the scattering state problem is given by (38),

where χ(0) is substituted according to (54). We compare the exact solution with the results
of the different numerical solvers using the mesh size △x = 0.5 nm. To this end, we set
[0, L1]× [0, L2] = [0, 120]× [0, 60] nm2. The relative errors are depicted in Figure 11 (left)
for the energy range E inc

kin ∈ [10−3, 103] meV. As expected, the results resemble the results
from the corresponding one-dimensional simulation (Figure 2 right). However, while in
the one-dimensional simulation, the errors of DTBC2nd are decreasing continuously for
decreasing E inc

kin, they are now bounded from below. This lower bound results from the
finite numerical resolution of the transversal waveguide eigenstate χ(0).

We now consider the ring-shaped quantum device depicted in Figure 8. A scattering
state solution according to PML2nd is shown in Figure 12 for E inc

kin = 21.5meV. Here and
in all subsequent figures, the wave function is scaled by the maximum of the transversal
waveguide eigenstate χ(0). As can be seen, the electrons are transmitted almost perfectly
through the device. Hence, the reflected wave in the left terminal is practically zero.

Next, we compute scattering state solutions for the energy range E inc
kin ∈ [10−3, 103] meV.

Since exact solutions are not available and our solver using DTBC is restricted to second-
order accuracy, we only compare the solutions corresponding to DTBC2nd and PML2nd.
Their relative differences at a spatial resolution of △x = 0.5 nm are given in Figure 11
(right). For energies up to approximately 100meV, the results are consistent with the
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Figure 12: Scattering state in the ring-shaped quantum waveguide shown in Figure 8. The kinetic energy
of the electrons injected at the left contact is Einc

kin
= 21.5meV. The black solid line indicates an isoline of

the potential energy at 200meV.
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Figure 13: Transmission probability as a function of Einc

kin
for electrons injected at the left terminal of the

ring-shaped device shown in Figure 8.

results shown in Figure 11 (left). For larger energies, the small wavelength of the wave
function can hardly be resolved with second-order methods. Nonetheless, DTBC2nd and
PML2nd yield approximately the same results, even though the relative differences vary
considerably.

Finally, we compute the transmission probability as a function of the kinetic energy
of the incident electrons. The transmission probability is defined as the ratio between
the transmitted and the incident probability current density [13]. In the given situation
(provided E inc

kin is not too large) we have

jtrans
jinc

=
∣∣〈φ(L1, ·), χ(0)〉

∣∣2, (55)

which is depicted in Figure 13.
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3.2. Transient scattering states in quantum waveguides

We consider the time-dependent Schrödinger equation

i~∂tψ = Ĥψ, Ĥ = − ~
2

2m⋆
∆+ V (56)

on the infinite strip Ω = R × (0, L2). Like in the stationary case, we prescribe homoge-
neous Dirichlet boundary conditions at x2 = 0 and x2 = L2. Moreover, we assume that
V (x1, x2, t) = V (x2) for x1 ≤ 0 or x1 ≥ L1 and x2 ∈ [0, L2]. This condition is satisfied for
the potential in Figure 8. In many applications, the potentials in the left and right lead are
not necessarily the same. Furthermore, they may depend on time via an applied voltage,
e.g. V (x1, x2, t) = V (x2)− eU(t). These extensions can be easily included in the following
discussion using the results from Section 2.

In the transient scattering state experiment, the initial wave function is given by a
scattering state solution of the stationary Schödinger equation for the potential energy
V (x1, x2, 0) and the total energy E = E inc

kin + E(0), where E inc
kin = ~

2k2/(2m⋆).
Using time-dependent mode coefficients, the wave function in the leads can still be

decomposed into transversal waveguide eigenstates (36),

ψ(x1, x2, t) =
∞∑

m=0

d(m)(x1, t)χ
(m)(x2), x1 ≤ 0, x1 ≥ L1. (57)

Substituting (57) into (56) shows that each coefficient satisfies the one-dimensional time-
dependent Schrödinger equation

i~
∂

∂t
d(m)(x1, t) = − ~

2

2m⋆

∂2

∂x21
d(m)(x1, t) + E(m)d(m)(x1, t), t ≥ 0, m ∈ N0. (58)

As an eigenstate of the Schrödinger equation, the scattering state evolves in time ac-
cording to exp(−iωt) with ω = E/~. Hence, the time-evolution of the scattering state in
the leads is given by

∞∑

m=0

exp(−iEt/~) c(m)(x1)χ
(m)(x2), x1 ≤ 0, x1 ≥ L1,

where e(m)(x1, t) := exp(−iEt/~)c(m)(x1) solves (58) as well. Hence, exp(iE
(m)t/~)d(m) and

exp(iE(m)t/~)e(m) solve the free time-dependent one-dimensional Schrödinger equation and
therefore transparent boundary conditions at x1 = 0 and x1 = L1 can be derived by the
application of (19) to

exp(iE(m)t/~)d(m) − exp(iE(m)t/~)e(m) (59)

for each m ∈ N0.
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Discrete transparent boundary conditions. Using the same grid ΩDTBC as in the
stationary case, we formulate the Crank-Nicolson scheme for the two-dimensional time-
dependent Schrödinger equation (56) as follows:

Pψ(n+1) = Qψ(n), ψ
(n)
j = ψ

(n)
j1,j2

, j = j1J2 + j2, (60)

where j1 = 0, . . . , J1, j2 = 0, . . . , J2, n ∈ N0, P and Q are the sparse matrices

P := I − i△t~
4m⋆

∆2nd
x1,x2

+
i△t
2~

diag
((
V

(n+1/2)
0 , . . . , V

(n+1/2)
J1J2−1

)⊤)
,

Q := I +
i△t~
4m⋆

∆2nd
x1,x2

− i△t
2~

diag
((
V

(n+1/2)
0 , . . . , V

(n+1/2)
J1J2−1

)⊤)
.

As outlined in Section 3.1, we eliminate all finite-difference equations corresponding to grid
points at which the wave function is zero. Needless to say, we eliminate the same rows and
columns of P and Q which have been eliminated in S (see Section 3.1). Using the same
notations as in Section 3.1, the wave function in the leads of the reduced mesh reads as

ψ
(n)
j1,j2

=
M−1∑

m=0

d
(m,n)
j1

χ
(m)
j2
, j1 ≤ 0, j1 ≥ J1, j2 = j21, . . . , j22.

In order to derive DTBC at x1 = 0 and x1 = L1, we employ the same strategy as in
the continuous case considered above. The discrete analogue of (59) becomes

ǫ(m,n)d
(m,n)
j1

− γ(m,n)c
(m)
j1
, (61)

where the discrete gauge change terms

ǫ(m,n) = exp
(
2in arctan(△tE(m)/(2~))

)
≈ exp

(
iE(m)t/~

)
,

γ(m,n) = exp(2in(arctan(△tE(m)/(2~))− arctan(△tE/(2~))))
≈ exp(iE(m)t/~) exp(−iEt/~), m = 0, . . . ,M − 1, n ∈ N0,

are slight modifications of (33). Applying (23a) and (23b) to (61) yields the DTBC

ǫ(m,n+1)d
(m,n+1)
1 − s(0)ǫ(m,n+1)d

(m,n+1)
0 =

n∑

ℓ=1

s(n+1−ℓ)
(
ǫ(m,ℓ)d

(m,ℓ)
0 − γ(m,ℓ)c

(m)
0

)

−
(
ǫ(m,n)d

(m,n)
1 − γ(m,n)c

(m)
1

)
+ γ(m,n+1)c

(m)
1 − s(0)γ(m,n+1)c

(m)
0 ,

(62a)

ǫ(m,n+1)d
(m,n+1)
J1−1 − s(0)ǫ(m,n+1)d

(m,n+1)
J1

=
n∑

ℓ=1

s(n+1−ℓ)
(
ǫ(m,ℓ)d

(m,ℓ)
J1

− γ(m,ℓ)c
(m)
J1

)

−
(
ǫ(m,n)d

(m,n)
J1−1 − γ(m,n)c

(m)
J1−1

)
+ γ(m,n+1)c

(m)
J1−1 − s(0)γ(m,n+1)c

(m)
J1

(62b)

at the left and right contact, respectively. The mode coefficients appearing on the left-
hand side of (62) are implicitly given by the projection of the new wave function onto the
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transversal waveguide eigenstates

d
(m,n+1)
0 = △x

M−1∑

j=0

ψ
(n+1)
j χ

(m)
j , d

(m,n+1)
1 = △x

2M−1∑

j=M

ψ
(n+1)
j χ

(m)
j ,

d
(m,n+1)
J1−1 = △x

N−M−1∑

j=N−2M

ψ
(n+1)
j χ

(m)
j , d

(m,n+1)
J1

= △x
N−1∑

j=N−M

ψ
(n+1)
j χ

(m)
j .

Finally, all remaining equations in (60), which correspond to grid points at the left and
right device contacts, are replaced. In the particular example of the reduced mesh shown
in Figure 9, the firstM equations are replaced according to (62a) and the lastM equations
are replaced according to (62b). The left-hand sides of (62) cause dense submatrices in
P which need to be updated in each time step. All quantities appearing on the right-
hand side of (62) are already known (at the n-th time step) or can be easily computed.

However, to be able to perform the next time step, we need to store all values of d
(m,ℓ)
0

and d
(m,ℓ)
J1

for m = 0, . . . ,M − 1 and ℓ = 1, . . . , n. Hence, the storage requirements for the
DTBC are in O(Mn⋆), where n⋆ denotes the total number of time steps. Furthermore,
the computational time required for a single evaluation of the discrete convolutions in (62)
increases linearly with n and thus, the total time complexity is in O(Mn2

⋆).

Perfectly Matched Layers. Substituting the Laplacian in the time-dependent Schrö-
dinger equation with the Laplace-PML operator (49) gives the time-dependent Schrödinger-
PML equation for ψ = ψ(x1, x2, t):

i~
∂ψ

∂t
= − ~

2

2m⋆

(
c(x1)

∂

∂x1
c(x1)

∂

∂x1
+

∂2

∂x22

)
ψ + V (x1, x2, t)ψ.

The semi-discretized problem on ΩPML reads as

d

dt
ψj(t) = i

~

2m⋆
∆̃x1,x2ψj(t)−

i

~
V (t)ψj(t), ψj(t) = ψj1,j2(t),

where j = j1J2 + j2, j1 = 0, . . . , JPML
1 , j2 = 0, . . . , J2, and ∆̃x1,x2 denotes one of the sparse

matrices defined in (51). For the time-integration method, we employ the Crank-Nicolson
scheme (21) or the classical Runge-Kutta method. Like in the stationary case, we eliminate
all equations corresponding to grid points at which the wave function is assumed to be zero.
The incoming plane wave (52) used in the stationary problem becomes time-dependent,
i.e., it is multiplied by exp(−iωn△t). In case of the second-order discretization, ω is
related to the total energy E according to (28). Otherwise we simply use ω = E/~. A
time-dependent incoming wave can be included analogously to the one-dimensional case
outlined in Section 2.3. In particular, we refer to the modifications in (29). For the sake of
brevity, we omit the details. The storage requirements for the PML are in O(MJ⋆

1 ), where
J⋆
1 denotes the number of indices j1 with XPML

j1
< 0 or XPML

j1
> L1. Contrary to DTBC,

the computational time required to perform one time step is constant.
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Figure 14: Left: Relative errors of the numerical solutions as a function of time in a transient scattering
state experiment. Right: Time evolution of the numerical errors corresponding to two superimposed wave
packets in a straight waveguide with parabolic cross section.

Simulations. In the simple example of the straight waveguide (53), the solution of the
transient scattering state problem outlined above is given by

ψ(x1, x2, t) = exp(ikx1 − iωt)χ(0)(x2),

where ω = E/~, E = E inc
kin + E(0), E inc

kin = ~
2k2/(2m⋆). Here, χ(0) and E(0) are substituted

according to (54). We compare the exact solution with the results of the different numerical
solvers. For this, we set [0, L1]× [0, L2] = [0, 120] × [0, 60] nm2. The kinetic energy of the
incoming electrons is E inc

kin = 21.5meV. For the time-integration, we either employ the
Crank-Nicolson method or the classical Runge-Kutta method. In the former case, we use
△x = 0.5 nm and △t = 0.25 fs. We note that this choice is rather expensive since a linear
system of equations has to be solved in each time step. For the Runge-Kutta method, we
use the same spatial mesh size but a smaller time step size of △t . 0.05 fs is needed to
ensure stability. However, despite of this small time step size, the computation times are
the shortest compared to those of all other employed solvers. The relative errors are shown
in Figure 14 (left).

The numerical methods derived above can be easily modified to allow for simulations
of wave packets in quantum waveguides. For instance, to simulate wave packets using
the solver corresponding to DTBC, we set c

(m)
0 = c

(m)
1 = c

(m)
J1−1 = c

(m)
J1

= 0 in (62) for
all m = 0, . . . ,M − 1. In case of PML, we simply omit the incoming wave at the device
contact.

In the following experiment, we consider the time evolution of two superimposed wave
packets in the straight waveguide with parabolic cross section. More precisely, we start the
numerical calculations using the exact solution

ψ(x1, x2, t) := ξp(x1, t) exp(−iE(0)t/~)χ(0)(x2) + ξp(x1, t) exp(−iE(1)t/~)χ(1)(x2),

at t = 0ps, where ξp is defined in (25) with the parameters σ = 7.5 nm, x0 = L1/2, and
kp =

√
2m⋆ 21.5meV/~. The transversal waveguide eigenstates and eigenvalues are defined

in (54). We set [0, L1]× [0, L2] = [0, 160]× [0, 60] nm2.
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The relative errors are depicted in Figure 14 (right). We see that DTBCCN
2nd and PMLCN

2nd

yield very similar results which is in contrast to the one-dimensional results shown in Figure
4. In this simulation, the wave packet is confined to a narrow channel and consequently, the
wave function does not only oscillate in the longitudinal direction but also in the vertical
direction. For the given cross section of the waveguide (characterized by ω∗ = 0.5 ×
1014 s−1), we find E(0) ≈ 16.45meV and E(1) ≈ 49.36meV. The oscillation corresponding
to the second energy cannot be easily resolved by second-order methods at the given spatio-
temporal resolution. As a consequence, the discretization of the boundary conditions plays
a minor role and thus DTBCCN

2nd and PMLCN
2nd yield approximately the same results. We

note that for decreasing ω∗, the confinement in the x2-direction becomes less important.
In such a case, the numerical results would indeed be similar to the numerical results of
the one-dimensional calculations considered in Section 2.

3.3. Details of the implementation

All simulations of this article are realized in the Python programming language using
the numerical tools available in SciPy [17]. One of the crucial steps is the assembling of
the sparse matrices related to the solvers using DTBC. Since these matrices contain small
but dense submatrices, one needs to proceed carefully. This task can be realized efficiently
by using fast routines to convert dense to sparse matrices followed by a series of sparse
vstack and hstack operations. Another crucial step is the computation of the discrete
convolution terms in (62a) and (62b). To this end, we employ parallelized C-functions
which can be included easily in Python programs. All linear systems are solved using
direct solvers for sparse matrices which is the most time-consuming part in the stationary
as well as in the transient algorithms. We note that no linear system needs to be solved
if the time evolution is computed from the explicit Runge-Kutta time-integration method.
The timings reported below correspond to an Intel Core i7-4770K CPU @ 3.50GHz × 8.

4. The Aharonov-Bohm effect

We consider the ring-shaped quantum waveguide depicted in Figure 8, but now we
apply an additional homogeneous magnetic field, which is perpendicular to the (x1, x2)-
plane and which is assumed to vanish outside a circle of radius r0 = 10nm centered at
(L1/2, L2/2). For a charged particle in an electromagnetic field, the Hamiltonian of the
Schrödinger equation reads

Ĥ =
1

2m⋆
(p̂− qA)2 + qΦ, p̂ = −i~∇, (63)

where q is the particle charge and A, Φ denote the vector and scalar potential, respectively.
The electric and magnetic fields are expressed in terms of A and Φ via E = −∂tA − ∇Φ
and B = ∇× A. In the simulations below, the vector potential is defined by

A(x1, x2, x2) := B0Ã(x1 − L1/2, x2 − L2/2, x3), (64)
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Figure 15: Vector potential (arrows) and magnetic field (blue disk) in the ring-shaped quantum waveguide
device depicted in Figure 8. The black solid line indicates an isoline of the potential energy at 200meV.

with

Ã(x1, x2, x3) =

{
1
2
(−x2, x1, 0)⊤, if

√
x21 + x22 ≤ r0,

1
2
r20(x

2
1 + x22)

−1(−x2, x1, 0)⊤, if
√
x21 + x22 > r0.

Accordingly, the magnetic field reads as

B =

{
(0, 0, B0)

⊤, if
√
(x1 − L1/2)2 + (x2 − L2/2)2 ≤ r0,

(0, 0, 0)⊤, if
√
(x1 − L1/2)2 + (x2 − L2/2)2 > r0.

An illustration of Ã and B is given in Figure 15. The scalar potential Φ is defined via
V = −eΦ.

In order to fix A and Φ, we impose the Coulomb gauge condition ∇ · A = 0. Then,
using the electron charge q = −e, the Hamiltonian in (63) becomes

Ĥ = − ~
2

2m⋆
∆− i

e~

m⋆
A · ∇+

e2

2m⋆
A2 + V. (65)

Thus, to include the magnetic field into the numerical methods developed in Section 3,
we need to discretize two additional terms. The boundary conditions remain unchanged
provided that the vector potential vanishes in the exterior domains. In the numerical
simulations, we set A(x1, x2, x3) = 0 for x1 < δ and x1 > L1 − δ (δ ≈ 2.5 nm) which is not
consistent with (64). However, the development of DTBC in the presence of the vector
potential in (64), if at all possible, would be a challenging task. Here, we simply choose
L1 such that |A(x1, x2, x3)| becomes small for x1 < δ and x1 > L1 − δ. As a result, the
modelling error becomes small too, which can be verified by further increasing L1. The
term e2A2/(2m⋆) in (65) is discretized in the same way as the potential energy. Using the
notations corresponding to the case of DTBC described in Section 3, the convection term
−(ie~/m⋆)A · ∇ is discretized as follows:

A · ∇ ≈ diag(A1)D
1
x1

⊗ IJ2 + diag(A2)IJ1 ⊗D1
x2
.

Here, D1
x1
, D1

x2
are defined according to (13) and A1, A2 denote the first and second

component of the vector potential A, respectively, i.e., (A1,2)j = (A1,2)j1,j2 , where j =
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Figure 16: Transmission probability as a function of the magnetic flux in multiples of the flux quantum.
The energy of the incoming electrons is fixed at Einc

kin
= 21.5meV.

j1J2+ j2, j1 = 0, . . . , J1, and j2 = 0, . . . , J2. The new terms can be easily included into the
stationary and transient methods outlined in Section 3.

Let us consider the stationary case first. In particular, we are interested in the trans-
mission probability (55) as a function of the magnetic flux ΦB = B0πr

2
0 (not to be confused

with the scalar potential Φ). To this end, we compute scattering state solutions of the sta-
tionary Schrödinger equation using the Hamiltonian (65). Like in Section 3 we consider
electrons injected at the left terminal traveling to the right. While the magnetic flux is
increased in each calculation, we keep the kinetic energy of the incoming electrons fixed at
E inc

kin = 21.5meV.
Figure 16 shows the computed transmission probability as a function of the magnetic

flux in multiples of the flux quantum Φ0 = h/(2e). The transmission probability oscillates
almost perfectly with increasing values of the magnetic flux. These oscillations are a
manifestation of the well-known Aharonov-Bohm effect [1]. In fact, quantum mechanics
implies that electrons traveling along a path P , along which ∇×A = 0, accumulate a phase
shift ϕ = −(e/~)

∫
P
A ·dx. Hence, using Stokes’ theorem, the phase difference between the

beam of electrons taking the upper path P1 and the beam taking the lower path P2 (see
Figure 15) is given by

ϕ1 − ϕ2 = − e

~

(∫

P1

A · dx−
∫

P2

A · dx
)

= − e

~
ΦB.

Therefore, the interference of the two electron beams depends solely on the enclosed mag-
netic flux. The remarkable fact is that the electrons are affected by the vector potential
even in regions where the magnetic field is zero which is in strong contrast to classical
mechanics.

As an example, Figure 17 shows the scattering state solution for ΦB = h/(2e) corre-
sponding to the destructive interference condition |ϕ1 − ϕ2| = π. For the calculations, we
employed second-order spatial discretizations with △x = 0.5 nm corresponding to linear
systems of size NDTBC = 66 264 and NPML = 79 694. The relative difference between the
solutions computed using DTBC and PML is approximately 2 × 10−3. We note that this
value is almost independent from the magnetic flux.
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Figure 17: Scattering state solution in a ring-shaped quantum device using the same colormap as in
Figure 12. The kinetic energy of the electrons injected at the left contact is Einc

kin
= 21.5meV and the

magnetic flux through the encircled area is given by ΦB = h/(2e). The black solid line indicates an isoline
of the potential energy at 200meV.

We finally turn our attention to the Aharonov-Bohm effect in the transient regime. In
particular, we consider a transient scattering state experiment with the time-dependent
vector potential (64). More precisely, we let B0 change in time as illustrated in Figure 18
(left). Like in the stationary case, we keep the kinetic energy of the incoming electrons fixed
at E inc

kin = 21.5meV. Initially, the magnetic field is switched off and thus the initial wave
function corresponds to the scattering state shown in Figure 12. The time evolution of the
wave function is illustrated in Figure 19. Figure 18 presents the transmission probability
as a function of time.

Between t = 2ps and t = 2.25 ps, the magnetic field is increased to a value of B0 =
Φ0/(πr

2
0), which corresponds to the destructive interference condition considered in the

stationary case. The effect on the wave function becomes apparent with a short delay
(Fig. 19, t = 2.5 ps) and, as expected, the transmission probability decreases. Another
1.5 ps later, the wave function has effectively adopted the scattering state corresponding to
the destructive interference condition (Fig. 19, t = 4ps). During the period from t = 6ps
to t = 6.25 ps, the magnetic field is turned off. Again the wave function starts to evolve
in a rather wild manner (Fig. 19, t = 6.25 ps). Only a short time later, the transmission
probability recovers its old value. However, the wave function does not return to its initial
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Figure 18: Magnetic field (left) and transmission probability (right) as a function of time.
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Figure 19: Time evolution of the wave function (probability density) in a transient scattering state
experiment with time-dependent magnetic field. The colormap is the same as in Figure 12.

state. Instead we observe strong oscillations restricted to the interior part of the waveguide.
Even after another 9.75 ps, these oscillations are still present (Fig. 19, t = 16ps) and in
fact they will persist for all time.

This can be demonstrated by decreasing the amplitude of the incoming wave after
the second switching operation (which is realized easily in case of PML). A short time
later, we are left with an oscillating wave packet which is bound to the region of the ring.
The result of such a numerical simulation is depicted in Figure 19 (t⋆ = 16ps). In this
particular example, the amplitude of the incoming wave was multiplied by a factor of
0.999 before each time step with t ≥ 12 ps. The remaining wave packet is supposed to
be a superposition of several eigenstate solutions to the stationary Schrödinger equation.
We note that the probability density of a superposition of several eigenstates is time-
dependent. Two eigenstates corresponding to the eigenvalues E ≈ 33.2meV and E ≈
52.8meV are shown in Figure 20 but in fact, there are many more eigenstates. The
oscillations superimposed to the final wave function are caused by the fast variation of the
magnetic field. When B0 is varied quasi-adiabatically (on the time-scale of about 10 ps),
no bound states are excited and hence no oscillations emerge.

The simulation was carried out using the second-order Crank-Nicolson scheme. Alter-
natively we used the Runge-Kutta time-integration method in combination with a sixth-
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Figure 20: Eigenfunctions to the stationary Schrödinger equation corresponding to the eigenvalues E ≈
33.2meV and E ≈ 52.8meV. The probability densities are scaled by their maximum values.

order spatial discretization and PML. In case of the Crank-Nicolson scheme, we employed a
spatial resolution of △x = 1nm and a time-step size of △t = 0.5 fs. Compared to the sim-
ulations presented in the previous sections, this discretization appears to be rather coarse
but it should be noted that in the example presented above, we have to solve 32 000 linear
systems of size NDTBC = 16 536 and NPML = 20 046. If the time evolution is computed
using the classical Runge-Kutta method, no linear systems needs to be solved at all (except
for the initial scattering state). However, the resulting numerical method is only condi-
tionally stable and hence we cannot use the same time step size as for the Crank-Nicolson
method. At a spatial resolution of △x = 1nm, we are forced to use a time step size not
larger than △t = 0.25 fs which agrees well with the condition κ = 9m⋆/(16

√
2~) discussed

in Section 2.2.
Comparing the simulations on a reduced mesh (see Section 3) with the simulations

using the full grid, we found that the results are practically the same. Hence, we did
not change the underlying physics by imposing artificial Dirichlet boundary conditions
at a distance too close to the center of the waveguides. Eliminating all finite-difference
equations corresponding to grid points where the wave function is effectively zero, reduces
the size of the linear systems by more than 40 percent and, as a consequence, the time
needed to solve the linear systems decreases by more than 50 percent.

The relative difference between the numerical solutions obtained by DTBCCN
2nd and

PMLCN
2nd is shown in Figure 21 (left). Compared to the relative differences seen in the

simulations of the previous sections, the difference of both numerical solutions is relatively
large. This is due to the coarse spatial resolution of △x = 1nm which is twice as large
as the resolution employed before. Indeed, a spatial resolution of △x = 0.5 nm yields the
same level of accuracy as in the previous sections but the simulation becomes extremely
time-consuming.

Finally, we report the computing times corresponding to the above mentioned methods
in Figure 21 (right). Initially, DTBCCN

2nd performs slightly better than PMLCN
2nd. However,

the computing time of DTBCCN
2nd scales quadratically with the number of time steps and

thus, simulations involving even more time steps become very expensive. We note that
this problem could be overcome using approximations of the DTBC which can be evalu-
ated more quickly; see, e.g., [6]. As expected, the computing times of the solvers using
PML increase linearly. Interestingly, PMLRK4

6th performs significantly faster than the other
methods. Moreover, it is the most accurate method and its implementation is relatively
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Figure 21: Left: Relative difference between the numerical solutions of DTBCCN

2nd and PLMCN

2nd as a
function of time. Right: Computing times as a function of the number of time steps.

simple.
A movie showing the temporal evolution of the wave function corresponding to the last

numerical experiment is available at http://www.asc.tuwien.ac.at/~juengel.
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[19] C. Lubich and A. Schädle. Fast convolution for non-reflecting boundary conditions.
SIAM J. Sci. Comput. 24 (2002), 161–182

[20] W. W. Lui and M. Fukuma. Exact solution of the Schrödinger equation across an
arbitrary one-dimensional piecewise-linear potential barrier. J. Appl. Phys. 60 (1986),
1555–1559

41
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