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A steady flow of electrons in a semiconductor between two parallel plane Ohmic contacts is studied
on the basis of the semiconductor Boltzmann equation, assuming a relaxation-time collision term,
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Boltzmann-Poisson system for small Knudsen numbers (scaled mean free paths) is carried out in
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numerical comparison is made between the obtained system and the original Boltzmann-Poisson
system.
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I. INTRODUCTION

Precise simulations of classical carrier
transport in modern semiconductor devices
are usually performed using the semicon-
ductor Boltzmann equation. However, this
equation requires large computing times and
is therefore inconvenient for the solution of
real problems in semiconductor production
mode. Therefore, simpler models have been
derived which focus only on the first few
moments of the velocity distribution func-
tion. For instance, the drift-diffusion model
[1] comprises the first two moments, whereas
the hydrodynamic model [2] contains three
moments and the energy-transport model
[3] four moments (see also Refs. [4, 5]). Also
higher-order models have been investigated
[6, 7].

The drift-diffusion equations and their
variants are the most utilized model in
semiconductor simulations since there exist
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very efficient numerical schemes and since
it gives reasonable results even in far-from-
equilibrium situations for moderate device
lengths. Moreover, higher-order transport
models have not been widely accepted as
a viable substitute since they are numeri-
cally more complex and they contain several
transport parameters, which are not always
easy to determine or to fit to Monte-Carlo
data.

Besides of the choice of the model equa-
tions, the modeling of accurate bound-
ary conditions is another problem which
is rarely addressed in the existing litera-
ture. Yamnahakki [8] derived for the drift-
diffusion model improved boundary condi-
tions of Robin type and showed that the cur-
rent densities for a Schottky diode are closer
to the analytic current values than the cor-
responding drift-diffusion values. However,
no comparison with the current density re-
sulting from the solution of the Boltzmann
equation has been made. Improved inflow-
type boundary conditions for the kinetic
models have been suggested in Refs. [9, 10]
but no macroscopic boundary conditions
have been derived. In this paper, we derive
for the first time boundary conditions up to
second order in the Knudsen number, i.e.,
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the mean free path scaled by the characteris-
tic length, for drift-diffusion-type equations
and compare the results with the direct so-
lution of the Boltzmann-Poisson system.

Our main result can be briefly de-
scribed as follows. The current density
from the macroscopic model with higher-
order boundary conditions, computed for
an n+nn+ ballistic diode, agrees well with
the corresponding current values obtained
from the original Boltzmann-Poisson system
even for Knudsen numbers which are not
too small (i.e., Kn = 0.05). Notice that
the standard drift-diffusion model only gives
sufficiently accurate results for much smaller
Knudsen numbers. In fact, we take into ac-
count corrections due to small (but nonzero)
Knudsen numbers, inspired from kinetic gas
theory, which enables us to obtain the stated
improved results.

Our approach is related to the asymp-
totic analysis of the Boltzmann equation
for small Knudsen numbers employed in ki-
netic gas theory, developed by Sone and co-
workers [11–18]. In these works, no external
force has been imposed. Recently, the same
asymptotic analysis has been used to inves-
tigate a rarefied gas flow between two paral-
lel plates driven by a uniform external force
parallel to the plate [19] on the basis of the
Bhatnagar-Gross-Krook (BGK) model [20–
22] of the Boltzmann equation.

It should be mentioned that, in the
present study, we make rather strong
assumptions in order to simplify the
boundary-value problem. First, we assume
that the collision operator is given by a re-
laxation model similar to the BGK model.
A more general collision term can be em-
ployed (see Ref. [8]), but a specific choice has
to be made in order to compute the Milne
problem arising in the asymptotic analysis.
Second, we suppose a simple geometry of
two parallel plane Ohmic contacts. The
asymptotic method also works for a more
general geometry but the direct solution of
the Boltzmann equation, which is needed
for comparison, becomes much more com-
plicate. Third, for the asymptotic analysis,
we assume that the Debye length is of the
same order as the distance between the con-
tacts and that the applied voltage is of the

same order as the thermal potential. The
latter condition is not restricting in practice
since the drift-diffusion model gives reason-
able results even for larger applied voltages.
However, the former assumption imposes a
condition on the magnitude of the doping
profile, which should not be too large. In
fact, our results are valid in or close to the
channel region of a ballistic diode (where
the doping concentration is indeed small)
and could in particular help for the deriva-
tion of interface conditions for hybrid mod-
els in which the highly doped regions and
the channel region are described by differ-
ent models.

The paper is organized as follows. After
formulating the problem (Sec. II), we carry
out a systematic asymptotic analysis of the
Boltzmann-Poisson system for small Knud-
sen numbers (Sec. III). We derive a system
of fluid-dynamic equations and their bound-
ary conditions on the contacts up to second
order of the Knudsen number. In Sec. IV,
we perform a numerical comparison between
the solutions of the derived fluid-dynamic
systems and the direct solution of the orig-
inal Boltzmann-Poisson system on a simple
n+nn+ diode.

II. FORMULATION OF THE

PROBLEM

A. Problem and basic assumptions

We consider a semiconductor between two
plane Ohmic contacts located at X1 = 0
(contact A) and X1 = L (contact B), where
Xi is a rectangular space coordinate system.
Let T0 be the temperature of the semicon-
ductor lattice as well as that of the contacts,
and let φA and φB be the electric potentials
applied at the contacts A and B, respec-
tively. We investigate the steady behavior
of the electron flow in the X1 direction in-
duced in the semiconductor under the fol-
lowing assumptions: (i) The behavior of the
electrons is described by the semiconductor
Boltzmann equation in the parabolic band
approximation, employing a relaxation-time
collision operator. The electrostatic poten-
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tial is self-consistently computed from the
Poisson equation. (ii) The velocity distri-
bution of the electrons leaving the contact
is described by the corresponding part of
the Maxwellian distribution with tempera-
ture T0 and zero flow velocity, fulfilling the
charge-neutral condition. In the following,
we restrict ourselves to the following phys-
ical situation: (i) The Knudsen number is
small. (ii) The Debye length is of the same
order as the distance between the contacts.
(iii) The potential difference between the
contacts is of the same order as the thermal
potential. Thanks to these assumptions, a
diffusion approximation of the Boltzmann
equation can be performed. This approxi-
mation can be made mathematically rigor-
ous; see, e.g., Refs. [23, 24].

B. Basic equations

Let vi be the electron velocity, f(X1, vi)
the velocity distribution function of the elec-
trons, (E(X1), 0, 0) the electric field, m∗

the effective electron mass, q the elemen-
tary charge, and k the Boltzmann constant.
Then, under the parabolic band approx-
imation, the Boltzmann equation with a
relaxation-time collision operator is written
for the present stationary one-dimensional
problem as

v1
∂f

∂X1
− q

m∗
E

∂f

∂v1
=

1

τ
(ρM − f), (1)

where

M =
1

(2πkT0/m∗)3/2
exp

(
− v2

i

2kT0/m∗

)

(2)
is the Maxwellian,

ρ =

∫
fd3v, (3)

the electron number density, τ(X1) is
the electron relaxation time, and d3v =
dv1dv2dv3. The summation convention is
employed. Here and in the following, the
integral with respect to vi is carried out
over the whole space. The electric field E

is calculated from the electrostatic potential
φ(X1) by

E = − dφ

dX1
, (4)

where φ(X1) solves the Poisson equation

εs
d2φ

dX2
1

= q(ρ − C). (5)

Here, εs is the permittivity of the semi-
conductor and C(X1) is the doping profile
which is assumed to be smooth. We refer
to Refs. [4, 5] for details on the modeling of
semiconductors.

Under the charge neutral condition, the
boundary condition on the contact A (X1 =
0) is given by

f = C(0)M for v1 > 0, (6)

φ = φA, (7)

whereas the boundary condition on the con-
tact B (X1 = L) reads as

f = C(L)M for v1 < 0, (8)

φ = φB . (9)

Finally, let us define some macroscopic
quantities. Let (J(X1), 0, 0) denote the elec-
tron current density, (u(X1), 0, 0) the elec-
tron mean velocity, and T (X1) the electron
temperature. They are defined as

J = −qρu = −q

∫
v1fd3v, (10)

T =
m∗

3kρ

∫
(vi − uδi1)

2fd3v. (11)

Note that the particle flux in the positive
X1 direction is given by −J/q.

C. Dimensionless variables

Let ρ0 and τ0 be, respectively, characteris-
tic values of the electron number density and
of the relaxation time, and let UT = kT0/q
be the thermal potential related to the lat-
tice temperature T0. We introduce the fol-
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lowing dimensionless quantities:

xi =
Xi

L
, ζi =

vi

(2kT0/m∗)1/2
,

f̂ =
(2kT0/m∗)3/2

ρ0
f, τ̂ =

τ

τ0
,

φ̂ =
φ

UT
, Ê =

E

UT /L
, Ĉ =

C

ρ0
,

ρ̂ =
ρ

ρ0
, Ĵ = − J

qρ0(2kT0/m∗)1/2
,

û =
u

(2kT0/m∗)1/2
, T̂ =

T

T0
.

Using these dimensionless quantities, the
Boltzmann-Poisson system (1)–(5) becomes

ζ1
∂f̂

∂x1
− 1

2
Ê

∂f̂

∂ζ1
=

2√
π

1

Kn

1

τ̂
(ρ̂M− f̂),

(12)

M =
1

π3/2
exp(−ζ2

i ), (13)

ρ̂ =

∫
f̂d3ζ, (14)

λ2 d2φ̂

dx2
1

= ρ̂ − Ĉ, (15)

Ê = − dφ̂

dx1
, (16)

Kn =
l0
L

=
2√
π

(2kT0/m∗)1/2τ0

L
, (17)

λ =
λ0

L
=

√
εsUT

qρ0L2
, (18)

where d3ζ = dζ1dζ2dζ3. Again, here and
in the following, the domain of integration
with respect to ζi is the whole space. The di-
mensionless parameter Kn, which is defined
by the ratio of the mean free path of an elec-
tron l0 = (2/

√
π)(2kT0/m∗)1/2τ0 to the dis-

tance L between the contacts, is called the
Knudsen number (or scaled mean free path),
and represents the frequency of collisions of
an electron with other particles (phonons,
impurities etc.). The dimensionless param-
eter λ, defined by the ratio of the Debye
length λ0 = (εsUT /qρ0)

1/2 of the semicon-
ductor to the distance L between the con-
tacts, is called the scaled Debye length. The

dimensionless form of the boundary condi-
tions is written as

f̂ = Ĉ(0)M for ζ1 > 0, (19)

φ̂ = φ̂A, (20)

at x1 = 0, and

f̂ = Ĉ(1)M for ζ1 < 0, (21)

φ̂ = φ̂B, (22)

at x1 = 1, where (φ̂A, φ̂B) = (φA/UT ,
φB/UT ). Finally, the dimensionless macro-
scopic quantities are expressed in terms of
the dimensionless velocity distribution func-
tion as follows:

Ĵ = ρ̂û =

∫
ζ1f̂d3ζ, (23)

T̂ =
2

3ρ̂

∫
(ζi − ûδi1)

2f̂d3ζ. (24)

The functions τ̂(x1) and Ĉ(x1) are speci-
fied according to the specific semiconductor
device. The above boundary-value problem
is characterized by the parameters

Kn, λ, φ̂A − φ̂B.

In the present study, we investigate the be-
havior of the electron flow for small Knud-
sen numbers Kn ¿ 1 when both the scaled
Debye length λ and the (dimensionless) po-

tential difference |φ̂B − φ̂A| are of the order
of unity.

Incidentally, the integration of Eq. (12)
with respect to ζi over the whole space leads
to dĴ/dx1 = 0. and therefore, we have Ĵ =
const for all 0 ≤ x1 ≤ 1.

III. ASYMPTOTIC ANALYSIS AND

FLUID-DYNAMIC EQUATIONS

In this section, we carry out an asymp-
totic analysis of the Boltzmann-Poisson sys-
tem described in the previous section when
the scaled Debye length λ and the potential

difference |φ̂B−φ̂A| are of the order of unity.
In the course of the analysis, we derive some
drift-diffusion-type equations, coupled with
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the Poisson equation, as well as their bound-
ary conditions. In the following, we use

ε =

√
π

2
Kn

as a small parameter rather than the Knud-
sen number Kn itself.

A. Hilbert solution

First, putting aside the boundary con-

ditions, we look for a solution (f̂H , φ̂H)
to Eqs. (12)–(16) which varies moderately
over the distance between the contacts, i.e.,

∂f̂H/∂x1 = O(f̂H) and dφ̂H/dx1 = O(φ̂H).
Such a solution is called the Hilbert solution

and is denoted by the subscript H. We as-

sume that f̂H and φ̂H can be expressed in
powers of ε, i.e.,

f̂H = f̂H0 + f̂H1ε + f̂H2ε
2 + · · · , (25)

φ̂H = φ̂H0 + φ̂H1ε + φ̂H2ε
2 + · · · . (26)

Correspondingly, the macroscopic variables
h (where h = ρ̂H , ĴH , ûH , or T̂H) as well as

the electric field ÊH are expanded in ε as

hH = hH0 + hH1ε + hH2ε
2 + · · · , (27)

ÊH = ÊH0 + ÊH1ε + ÊH2ε
2 + · · · . (28)

The relation between f̂Hm and hm is ob-
tained by substituting Eqs. (25) and (27)
into Eqs. (14), (23), and (24) with h = hH

and f̂ = f̂H and equating the coefficients
with the same power of ε. For h = ρ̂H or
ĴH , we find

ρ̂Hm =

∫
f̂Hmd3ζ, (29)

ĴHm =

∫
ζ1f̂Hmd3ζ (m = 0, 1, . . .). (30)

The results for ûH and T̂H up to order
three are given in Appendix A. Similarly,

the relation between φ̂Hm and ÊHm is ob-
tained by substituting Eqs. (26) and (28)

into Eq. (16) with Ê = ÊH and φ̂ = φ̂H

and equating the coefficients with the same

power of ε. [Here, we keep in mind the prop-

erty dφ̂H/dx1 = O(φ̂H).] Thus, we have

ÊHm = −dφ̂Hm

dx1
(m = 0, 1, . . .). (31)

Since our collision term conserves the num-
ber of particles, it holds

∫
(ρ̂HM− f̂H)d3ζ = 0,

and hence,

∫
(ρ̂HmM− f̂Hm)d3ζ = 0 (m = 0, 1, . . .).

(32)
Substituting Eqs. (25), (27) (with h = ρ̂),

and (28) into Eq. (12) and taking into ac-

count the property ∂f̂H/∂x1 = O(f̂H) gives

the following expressions for f̂Hm:

f̂H0 = ρ̂H0M, (33)

f̂Hm = ρ̂HmM− τ̂
(
ζ1

∂f̂Hm−1

∂x1

− 1

2

m−1∑

n=0

ÊHn
∂f̂Hm−n−1

∂ζ1

)

(m ≥ 1). (34)

Equation (32) provides the compatibility
conditions for Eq. (34), i.e.,

∫ (
ζ1

∂f̂Hm−1

∂x1
−

m−1∑

n=0

ÊHn

2

∂f̂Hm−n−1

∂ζ1

)
d3ζ

= 0 (m ≥ 1), (35)

which reduces to

d

dx1

∫
ζ1f̂Hm−1d

3ζ = 0 (m ≥ 1). (36)

When we use in Eq. (36) the explicit ex-

pressions for f̂Hn (n = 0, 1, . . .) in terms of

ρ̂Hs (s ≤ n) and ÊHs (s ≤ n − 1), which
are obtained successively from Eqs. (33) and
(34), we derive ordinary differential equa-

tions for ρ̂Hn and ÊHn, called here fluid-

dynamic equations.
Furthermore, when we substitute

Eqs. (26) and (27) (with h = ρ̂) into
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Eq. (15) with φ̂ = φ̂H and ρ̂ = ρ̂H

and take into account the property

dφ̂H/dx1 = O(φ̂H) as well as λ = O(1), we
obtain the following sequence of equations:

λ2 d2φ̂H0

dx2
1

= ρ̂H0 − Ĉ,

λ2 d2φ̂Hm

dx2
1

= ρ̂Hm (m ≥ 1).

These equations are coupled with the fluid-
dynamic equations through Eq. (31).

Now let us derive the explicit form of the
fluid-dynamic equations. First, we note that
the compatibility condition (36) is equiva-
lent to

d

dx1
ĴHm−1 = 0 (m ≥ 1). (37)

by the definition of ĴHm [Eq. (30)]. The ex-

plicit form of ĴHm (m = 0, 1, . . .) is obtained
by substituting the explicit expression for

f̂Hm, derived successively from the lowest
order with the aid of Eqs. (33) and (34) and
of the compatibility conditions, into the def-
inition of ĴHm [Eq. (30)]. Thus, we obtain

ĴH0 = 0, (38)

ĴH1 = −1

2
τ̂
(dρ̂H0

dx1
+ ρ̂H0ÊH0

)
, (39)

ĴH2 = −1

2
τ̂
(dρ̂H1

dx1
+ ρ̂H0ÊH1 + ρ̂H1ÊH0

)
,

(40)

ĴH3 = −1

2
τ̂
(dρ̂H2

dx1
+ ρ̂H0ÊH2 + ρ̂H1ÊH1

+ ρ̂H2ÊH0

)
+ τ̂

d

dx1

(
τ̂ ÊH0ĴH1

)
. (41)

We observe that Eq. (37) for m = 1, to-
gether with Eq. (38), does not give any con-
dition for the macroscopic quantities. Equa-
tion (37) for m ≥ 2, together with Eqs. (38)–
(41), gives the desired fluid-dynamic equa-
tions.

In summary, we obtain the following sys-
tems of fluid-dynamic equations: for m = 0,

d

dx1
ĴH1 = 0, (42a)

ĴH1 = −1

2
τ̂
(dρ̂H0

dx1
+ ρ̂H0ÊH0

)
, (42b)

ÊH0 = −dφ̂H0

dx1
, (42c)

λ2 d2φ̂H0

dx2
1

= ρ̂H0 − Ĉ, (42d)

for m = 1,

d

dx1
ĴH2 = 0, (43a)

ĴH2 = −1

2
τ̂
(dρ̂H1

dx1
+ ρ̂H1ÊH0 + ρ̂H0ÊH1

)
,

(43b)

ÊH1 = −dφ̂H1

dx1
, (43c)

λ2 d2φ̂H1

dx2
1

= ρ̂H1, (43d)

and for m = 2,

d

dx1
ĴH3 = 0, (44a)

ĴH3 = −1

2
τ̂
(dρ̂H2

dx1
+ ρ̂H0ÊH2 + ρ̂H1ÊH1

+ ρ̂H2ÊH0

)
+ τ̂

d

dx1

(
τ̂ ÊH0

)
ĴH1,

(44b)

ÊH2 = −dφ̂H2

dx1
, (44c)

λ2 d2φ̂H2

dx2
1

= ρ̂H2. (44d)

Equations (42a)–(42d) are the well-known
drift-diffusion equations for the leading-

order quantities ρ̂H0, ÊH0, and φ̂H0. Equa-
tions (43a)–(43d) for the variables ρ̂H1,

ÊH1, and φ̂H1 also correspond to a drift-
diffusion model, since they can be obtained
from a drift-diffusion system (with the mo-
bility given by µ = qτ/m∗) by means of the
expansion corresponding to Eqs. (25)–(28).
However, the next-order equations (44a)–

(44d) for the variables ρ̂H2, ÊH2, and φ̂H2
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do not constitute a drift-diffusion model due
to the last term in Eq. (44b).

The presence of the last term in Eq. (44b)
[or in Eq. (41)] can be understood in the
following way. Suppose that the first order
current density (or the particle flux) ĴH1 has
been established. Since each electron is ac-
celerated by the electric field and thus ob-
tains a momentum, this produces a momen-
tum flux (or stress) in the positive X1 direc-

tion, which is given by −2τ̂ ÊH0ĴH1 multi-
plied by kρ0T0ε

2. Therefore, if the last term
of Eq. (44b) is nonzero, the force is exerted
on the fluid by the stress, resulting in the
induction of a current flow.

When the compatibility conditions (or the
fluid-dynamic equations) are satisfied, the
velocity distribution functions are expressed
as

f̂H0 = ρ̂H0M, (45)

f̂H1 = M
(
ρ̂H1 + 2ĴH1ζ1

)
, (46)

f̂H2 = M
[
ρ̂H2 + 2ĴH2ζ1

− 2τ̂ ÊH0ĴH1

(
ζ2
1 − 1

2

)]
, (47)

f̂H3 = M
{

ρ̂H3 + 2ĴH3ζ1

− 2τ̂
(
ÊH0ĴH2 + ÊH1ĴH1

)(
ζ2
1 − 1

2

)

+ 2τ̂
( d

dx1

(
τ̂ ÊH0ĴH1

)
+ τ̂ Ê2

H0ĴH1

)

×
(
ζ3
1 − 3

2
ζ1

)}
. (48)

Using these expressions, we readily obtain
the equations for the mean flow velocity
ûHm and the electron temperature T̂Hm.
The results up to m = 3 are given in Ap-
pendix B.

B. Knudsen layers and boundary

conditions for fluid-dynamic equations

In this section we derive the boundary
conditions for the fluid-dynamic equations.

Suppose that ρ̂H0 and φ̂H0 take the follow-

ing values on the boundary:

ρ̂H0 = Ĉ(0), φ̂H0 = φ̂A at x1 = 0 (49)

ρ̂H0 = Ĉ(1), φ̂H0 = φ̂B at x1 = 1. (50)

With this choice of values, the leading-order

velocity distribution function f̂H0 [Eq. (45)]
and the leading-order electrostatic potential

φ̂H0 satisfy the boundary conditions (19)–
(22). Therefore, Eqs. (49) and (50) give con-
sistent boundary conditions for the leading-
order fluid-dynamic equations (42a)–(42d).
For the higher-order quantities, however,
the Hilbert solution does not have enough
freedom to satisfy the boundary conditions.

For example, in order for f̂H1 [Eq. (46)] to
satisfy the corresponding boundary condi-

tion, i.e., f̂H1 = 0 on the boundary, we need
to impose the condition ĴH1 = 0 as well as
ρ̂H1 = 0 on the boundary. The former con-
dition cannot be satisfied in general except
in the trivial case of the thermal equilibrium
state. Therefore, we need to introduce a
so-called Knudsen-layer correction near the
boundary.

From now on, we seek the solution in the
form

f̂ = f̂H + f̂K , (51)

φ̂ = φ̂H + φ̂K , (52)

where (f̂K , φ̂K), which is called the
Knudsen-layer part, is the correction to the

Hilbert solution (f̂H , φ̂H) appreciable only
in thin layers of thickness of order ε (or of
the mean free path in the dimensional X1

variable) adjacent to the boundary. In order
to analyze the Knudsen layers near x1 = 0
and x1 = 1 simultaneously, it is convenient
to introduce the following new variables:

y = x1, η = y/ε, ζy = ζ1,

around x1 = 0 and

y = 1 − x1, η = y/ε, ζy = −ζ1,

around x1 = 1. Here, y, whose origin is on
the boundary, is the coordinate normal to
the boundary pointing to the semiconduc-
tor, η is the stretched coordinate normal to
the boundary, and ζy is the component of ζ1
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in the positive y direction. We assume that

the variations of (f̂K , φ̂K) are of the order
ε, i.e.,

f̂K = f̂K(η, ζy, ζ2, ζ3), φ̂K = φ̂K(η),
(53)

or ∂f̂K/∂η = O(f̂K) and dφ̂K/dη = O(φ̂K),

and that (f̂K , φ̂K) vanishes rapidly as η →
∞. We further suppose that (f̂K , φ̂K) is ex-
panded in ε as

f̂K = f̂K1ε + f̂K2ε
2 + · · · , (54)

φ̂K = φ̂K1ε + φ̂K2ε
2 + · · · . (55)

The expansion starts from order ε because

(f̂H0, φ̂H0) already satisfies the boundary
condition. Corresponding to Eqs. (51), (52),
(54), and (55), the macroscopic quantity h

(where h = ρ̂, Ĵ , û, or T̂ ) and the electric

field Ê are expressed as

h = hH + hK , (56)

Ê = ÊH + ÊK (57)

with

hK = hK1ε + hK2ε
2 + · · · , (58)

ÊK = ÊK0 + ÊK1ε + ÊK2ε
2 + · · · . (59)

The expansion of ÊK starts from order ε0

for the following reason. If we substitute
Eqs. (52) and (57) into Eq. (16) and take

into account that ÊH and φ̂H solve the Pois-
son equation, we obtain

ÊK = ∓1

ε

dφ̂K

dη
, (60)

where the minus (plus) sign corresponds
to the Knudsen layer around x1 = 0
(x1 = 1). This convention is used through-

out the paper. Since φ̂K = O(ε) and

dφ̂K/dη = O(φ̂K) [see the sentence that

contains Eq. (53)], we conclude that ÊK =

O(1) and therefore, the ÊK0 term in the ex-
pansion (59) is not zero.

Substituting the expansions (55) and (59)
into Eq. (60) and equating the coefficients
of the same power of ε yields the following

expression of ÊKm in terms of φ̂Km:

ÊKm−1 = ∓dφ̂Km

dη
(m ≥ 1). (61)

In order to obtain the relation between
hKm and f̂Km, we substitute Eq. (51) [with
Eqs. (25) and (54)] and Eq. (56) [with
Eqs. (27) and (57)] into Eqs. (14), (23), and
(24) and take into account the relation be-

tween hHm and f̂Hm [Eqs. (29), (30), (A1a)–

(A4b)]. Thus, for ρ̂Km and ĴKm, we obtain
the expressions

ρ̂Km =

∫
f̂Kmd3ζ̄, ĴKm =

∫
ζ1f̂Kmd3ζ̄,

(62)
where d3ζ̄ = dζydζ2dζ3. In order to com-

pute ûKm and T̂Km, we employ the follow-
ing expansion of the Hilbert part around the
boundary (y = 0):

hHn =(hHn)B +
(dhHn

dy

)

B
ηε

+
1

2

(d2hHn

dy2

)

B
η2ε2 · · · , (63)

where ( )B denotes the value on the bound-
ary. Then, after equating the terms with
the same power of ε, we obtain the desired
expressions for ûKm and T̂Km. The results
for m = 1 and m = 2 are summarized in
Appendix C.

Now let us derive the equations for

(f̂K , φ̂K). When we substitute Eqs. (51),
(52) and (58) (with h = ρ̂) into Eqs. (12)
[with Eq. (16)] and (15) and take into
account the length scale of variation of

(f̂K , φ̂K) as well as the fact that (f̂H , φ̂H)
is a solution of Eqs. (12) and (15), we ob-
tain

ζy
∂f̂K

∂η
+

1

2

(
dφ̂H

dy

∂f̂K

∂ζy
ε +

dφ̂K

dη

∂f̂H

∂ζy

+
dφ̂K

dη

∂f̂K

∂ζy

)
=

1

τ̂
(ρ̂KM− f̂K),

λ2 d2φ̂K

dη2
= ε2ρ̂K .

Inserting the expansions (25), (26), (54),
(55), and (58) and using the following ex-

pansion for (f̂H , φ̂H) and τ̂ near the bound-
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ary,

ĝH =(ĝH0)B +

[
(ĝH1)B +

(∂ĝH0

∂y

)

B
η

]
ε

+ · · · with g = f, φ, (64)

1

τ̂
=

1

(τ̂)B
− 1

(τ̂)2B

(dτ̂

dy

)

B
ηε + · · · , (65)

yields a sequence of equations for (f̂Km,

φ̂Km) (m ≥ 1). On the other hand, the

boundary conditions for (f̂Km, φ̂Km) are

derived from the requirements (f̂Hm)B +

(f̂Km)B = 0 (for ζy > 0) and (φ̂H)B +

(φ̂Km)B = 0 on the boundary. Further-

more, the condition (f̂Km, φ̂Km) → (0, 0) as
η → ∞ needs to be imposed.

In the following, we present the explicit

equations and boundary conditions for (f̂K1,

φ̂K1) and (f̂K2, φ̂K2):

ζy
∂f̂Km

∂η
+

1

2

dφ̂Km

dη

∂

∂ζy
(f̂H0)B

=
1

(τ̂)B
(ρ̂KmM− f̂Km) + Im, (66)

λ2 d2φ̂Km

dη2
= 0, (67)

f̂Km = −M
[
(ρ̂Hm)B + Lm

]
(for ζy > 0),

(68)

φ̂Km = −(φ̂Hm)B (69)

at η = 0, and

f̂Km → 0, φ̂Km → 0 (70)

as η → ∞. Here, m = 1, 2, and Im and Lm

are given by

I1 = 0, (71a)

I2 = −1

2

(
dφ̂H0

dy

)

B

∂f̂K1

∂ζy
(71b)

+
dφ̂K1

dη

∂

∂ζy

[
(f̂H1)B +

(
df̂H0

dy

)

B

η

+ f̂K1

]
− 1

(τ̂)2B

(
dτ̂

dy

)

B

η(ρ̂K1M− f̂K1),

and

L1 = 2(J̃H1)Bζy, (72a)

L2 = 2(J̃H2)Bζy (72b)

+ 2(τ̂)B

(
dφ̂H0

dy

)

B

(J̃H1)B

(
ζ2
y − 1

2

)
,

where

J̃H1 = − 1

2
τ̂

(
dρ̂H0

dy
− ρ̂H0

dφ̂H0

dy

)
, (73)

J̃H2 = − 1

2
τ̂

(
dρ̂H1

dy
− ρ̂H0

dφ̂H1

dy

− ρ̂H1
dφ̂H0

dy

)
. (74)

We observe that the equations and bound-

ary conditions for φ̂Km (m = 1, 2), i.e.,
Eqs. (67), (69), and (70), are in closed form.
Therefore, we first consider the problem for

φ̂Km. We claim that (φ̂Hm)B vanishes. In-
deed, integrating Eq. (67) and employing
the condition (70), we find

φ̂Km = 0, (75)

for all η ≥ 0. Therefore, in order for the
boundary-value problem to have a solution,

(φ̂Hm)B in Eq. (69) must satisfy

(φ̂Hm)B = 0 (76)

(m = 1, 2). This gives the boundary condi-
tion for Eqs. (43d) and (44d). Moreover, it
implies, by (61), that

ÊK0 = ÊK1 = 0.

Next, we consider the problem for f̂Km

(m = 1, 2). Let us introduce the following
variables:

ΦKm =
f̂Km

M , η′ =
η

(τ̂)B
, y′ =

y

(τ̂)B
.

Then the equation and boundary conditions

for f̂Km, Eqs. (66) [with Eq. (76)], (68),
(70), can be transformed into

ζy
∂ΦKm

∂η′
= ρ̂Km − ΦKm + Im, (77)

ΦKm = −(ρ̂Hm)B + Lm

(for ζy > 0, at η′ = 0), (78)

ΦKm → 0 (as η′ → ∞), (79)
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where

I1 = 0, (80a)

I2 = −1

2

(dφ̂H0

dy′

)

B

(∂ΦK1

∂ζy
− 2ζyΦK1

)

− 1

(τ̂)B

( dτ̂

dy′

)

B
η′(ρ̂K1 − ΦK1), (80b)

and

L1 = −2(J̃H1)Bζy, (81a)

L2 = −2(J̃H1)Bζy

− 2
(dφ̂H0

dy′

)

B
(J̃H1)B

(
ζ2
y − 1

2

)
. (81b)

Equations (77)–(79) form a one-dimensional
boundary-value problem (half-space prob-
lem) of the linear semiconductor Boltz-
mann equation with a relaxation-time col-
lision operator. The problem is also called
the Milne problem. Concerning the prob-
lem with more general Im and Lm [not
necessarily restricted to the forms of Im

and Lm given in Eqs. (80) and (81)],
the following statements holds: (i) For a
given function Im(η′, ζy, ζ2, ζ3) which satis-
fies

∫
ImMd3ζ̄ = 0 and Im → 0 (rapid-

ly) as η′ → 0 and a given function
Lm(η′, ζy, ζ2, ζ3), the solution ΦKm is deter-
mined together with the constant (ρ̂Hm)B

contained in the boundary condition (78).
(ii)

∫
ζyΦKmMd3ζ̄ = 0 holds [this is ob-

vious from (77) and (79)]. The bound-
ary value (ρ̂Hm)B thus determined gives the
boundary condition for the fluid-dynamic
equations (43a), (43b), (44a), and (44b).
We mention that the property of the half-
space problem described above has been
proved for the linear semiconductor Boltz-
mann equation with a general collision oper-
ator in the homogeneous case (i.e., Im = 0)
in Ref. [24]. It follows from (ii) and Eq. (62)
that

ĴKm = 0 (m = 1, 2). (82)

In view of the expressions for Im and Lm,
we can seek the solutions ΦK1 and ΦK2 in
the form

[
ΦK1

(ρ̂H1)B

]
=

[
ψ1

ξ1

]
(J̃H1)B (83)

and
[

ΦK2

(ρ̂H2)B

]
=

[
ψ2a

ξ2a

]
(J̃H2)B (84)

−
[

ψ2b

ξ2b

](dφ̂H0

dy′

)

B
(J̃H1)B

+

[
ψ2c

ξ2c

]
1

(τ̂)B

( dτ̂

dy′

)

B
(J̃H1)B ,

where ξ1, ξ2a, ξ2b, and ξ2c are constants to
be determined together with the solutions.
Each problem is analyzed numerically to de-
termine (ξα, ψα) (α = 1, 2a, 2b, 2c). We refer
to Appendix D for a brief comment on the
numerical solution of this problem. Once we
obtain (ξα, ψα) and thus ΦK1 and ΦK2, the
Knudsen-layer parts of the electron number
density, the mean flow velocity, and the elec-
tron temperature are calculated with the aid
of Eqs. (C1a)–(C2b).

Before presenting the boundary condi-
tions and the Knudsen-layer parts of the
fluid-dynamic equations (42a)–(44d), we
comment on the second-order Knudsen-
layer part of the electric field ÊK2. Since

ÊK2 is determined by φ̂K3 [see Eq. (61) with
m = 3], we need some information from the
Knudsen-layer problem of order ε3 in order
to obtain ÊK2. Namely, the Knudsen-layer

equation for φ̂K3 is given by

λ2 d2φ̂K3

dη2
= ρ̂K1.

Since ρ̂K1 is already known from the lower
order Knudsen-layer problem, integration of
the above equation under the boundary con-

dition φ̂K3 → 0 (as η → ∞) yields an ex-

pression of dφ̂K3/dη. Then, Eq. (61) for
m = 3 immediately gives the desired for-
mula for ÊK2. Incidentally, the integration

of the Knudsen-layer equation for f̂K3 with
respect to (ζy, ζ2, ζ3) over the whole space

yields ĴK3 =
∫

ζ1f̂K3dζ̄ = 0. This re-
lation (and the relation between ûK3 and

f̂K3 which is not given in Appendix C) is
used to derive the expression of ûK3 given
in Eq. (91b) below. In general, from the
analysis of the Knudsen-layer problem for

(f̂Km, φ̂Km), we obtain the boundary values

(ρ̂Hm)B and (φ̂Hm)B and the Knudsen-layer
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parts of φ̂Km, hKm (h = ρ̂, Ĵ , û, or T̂ ), and

ÊKm−1.

Finally, we summarize the boundary con-
ditions for the fluid-dynamic equations and
the computed Knudsen-layer parts. The
boundary conditions for Eqs. (43a)–(44d)
are given by

(ρ̂H1)B = ξ1(J̃H1)B , (85a)

(φ̂H1)B = 0, (85b)

and

(ρ̂H2)B = ξ2a(J̃H2)B − ξ2b(τ̂)B

(dφ̂H0

dy

)

B

× (J̃H1)B + ξ2c

(dτ̂

dy

)

B
(J̃H1)B ,

(86a)

(φ̂H2)B = 0, (86b)

where the numerical values of the slip coef-
ficients ξ1, ξ2a, ξ2b, and ξ2c are given by

ξ1 = ξ2a = −2.03238284,

ξ2b = 1.03264500, and ξ2c = 0.
(87)

The Knudsen-layer parts are as follows. For
m = 0 we have

ÊK0 = 0; (88)

for m = 1,

ρ̂K1 = Ω1(η
′)(J̃H1)B , (89a)

T̂K1 = −1

3

(J̃H1)B

(ρ̂H0)B
Ω1(η

′), (89b)

φ̂K1 = ÊK1 = ĴK1 = ûK1 = 0; (89c)

for m = 2,

ρ̂K2 = Ω1(η
′)(J̃H2)B

− [Ω2(η
′) + Ω3(η

′)](τ̂)B

(dφ̂H0

dy

)

B

× (J̃H1)B + Ω4(η
′)

(dτ̂

dy

)

B
(J̃H1)B ,

(90a)

T̂K2 = − 1

3(ρ̂H0)B

{
Ω1(η

′)(J̃H2)B

−
[
Ω2(η

′) + Ω3(η
′) −

∫ ∞

η′

Ω1(s)ds

]

× (τ̂)B

(dφ̂H0

dy

)

B
(J̃H1)B

+ Ω4(η
′)

(dτ̂

dy

)

B
(J̃H1)B

−
[
(ρ̂H1)B +

(dρ̂H0

dy

)
B

η

+ Ω1(η
′)(J̃H1)B

]
(J̃H1)B

(ρ̂H0)B
Ω1(η

′)

}
,

(90b)

ûK2 = −Ω1(η
′)(ûH1)B(J̃H1)B/(ρ̂H0)B ,

(90c)

ÊK2 = ± (τ̂)B

λ2
(J̃H1)B

∫ ∞

η′

Ω1(s)ds, (90d)

φ̂K2 = ĴK2 = 0; (90e)

and for m = 3,

ĴK3 = 0, (91a)

ûK3 = −Ω1(η
′)

(ûH1)B

(ρ̂H0)B

{
(J̃H2)B

−
[
(ρ̂H1)B

(ρ̂H0)B
− (ûH2)B

(ûH1)B

+ 2
(d ln ρ̂H0

dy

)

B
η

]
(J̃H1)B

}

+ [Ω2(η
′) + Ω3(η

′)](τ̂)B

(dφ̂H0

dy

)

B

× (ûH1)B

(ρ̂H0)B
(J̃H1)B

− Ω4(η
′)

(dτ̂

dy

)

B

(ûH1)B

(ρ̂H0)B
(J̃H1)B

+ (ûH1)B

[
(J̃H1)B

(ρ̂H0)B
Ω1(η

′)

]2

. (91b)

The values of the so-called Knudsen-layer
functions Ωm(η′) (m = 1, 2, 3, 4) as well as
those of the integral

∫ ∞

η′
Ω1(s)ds are dis-

played in Table I.
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IV. NUMERICAL SIMULATION OF

THE ELECTRON FLOW IN AN n+nn+

DIODE FOR SMALL KNUDSEN

NUMBERS

In this section, we consider an elec-
tron flow induced in a semiconductor with
a doping profile corresponding to a one-
dimensional n+nn+ diode. We make a nu-
merical comparison between the asymptotic
solution of the fluid-dynamic system ob-
tained in the previous section and the di-
rect numerical solution of the Boltzmann-
Poisson system.

A. Comments on the numerical

method

The similarity between the present
relaxation-time semiconductor Boltzmann
equation and the Boltzmann equation for
rarefied gases with relaxation collision
terms, like the BGK model [20–22], allows
us to employ numerical techniques devel-
oped for the BGK-Boltzmann equation in
order to solve the semiconductor problem.
For example, we can eliminate the indepen-
dent variables ζ2 and ζ3 from the system (see
Ref. [25]). For this, let us introduce a func-
tion (the so-called marginal velocity distri-
bution function) G(x1, ζ1) by

G(x1, ζ1) =

∫ ∞

−∞

∫ ∞

−∞

f̂dζ2dζ3.

Integrating Eq. (12) with respect to ζ2 and
ζ3 over the whole range of the variables gives

a system of equations for (G, φ̂). The corre-
sponding boundary conditions for G are ob-
tained from Eqs. (19) and (21) in a similar

way. The resulting system for (G, φ̂) is given

by

ζ1
∂G
∂x1

− 1

2
Ê

∂G
∂ζ1

=
2√
πKn

1

τ̂
(
ρ̂e−ζ2

1

π1/2
− G),

(92)

ρ̂ =

∫ ∞

−∞

Gdζ1, (93)

λ2 d2φ̂

dx2
1

= ρ̂ − Ĉ, (94)

Ê = − dφ̂

dx1
(95)

with the boundary conditions

G =
Ĉ(0)

π1/2
exp(−ζ2

1 ) for ζ1 > 0, (96)

φ̂ = φ̂A (97)

at x1 = 0 and

G =
Ĉ(1)

π1/2
exp(−ζ2

1 ) for ζ1 < 0, (98)

φ̂ = φ̂B (99)

at x1 = 1. The system (92)–(99) is solved
numerically by a finite difference method
similar to that used in Ref. [26] but includ-
ing an additional step to solve the Poisson
equation.

It should be noted that T̂ cannot be ex-
pressed in terms of G alone [cf. Eq. (24)]. In

order to compute T̂ , we introduce, in addi-
tion to G, the marginal velocity distribution

function H =
∫ ∞

−∞

∫ ∞

−∞
(ζ2

2 +ζ2
3 )f̂dζ2ζ3. The

equation and the boundary conditions for H
are obtained in the same way as those for
G. It turns out that the form of the equa-
tion and boundary condition for H coincides
with that for G, and therefore, H = G holds.
Thus, we can compute T̂ from the solution
G.

B. Numerical results

The semiconductor device is specified by
the doping profile C(X1) and the relaxation
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time τ(X1). We choose

C(X1) = Nd +
Nd − Nc

2

×
[

tanh
(
40

X1 − L + D

L

)

− tanh
(
40

X1 − D

L

)]
, (100)

[see Fig. 1(a)] modeling an n+nn+ diode.
Here, the positive constants Nd, Nc(< Nd),
and D(< L/2) denote the doping concentra-
tion of the highly doped (n+) region, that of
the channel (n) region, and the position of
the junctions (the doping profile is symmet-
ric with respect to X1 = L/2), respectively.
The relaxation time is assumed to be con-
stant, τ = τ0, such that τ̂ = 1.

We take Nd as the reference value of the
electron number density, i.e., ρ0 = Nd (see
the first sentence of Sec. II C). The present
problem is then characterized by the follow-
ing parameters:

Kn, λ,
φB − φA

UT
,

Nc

Nd
,

D

L
. (101)

For convenience, we introduce φapp = φB −
φA.

We first present some numerical results
for a doping profile with Nc/Nd = 0.2 and
D/L = 0.25 [the solid line in Fig. 1(b)].
Figures 2–4 show the solutions of the fluid-
dynamic equations (42a)–(44d) under the
boundary conditions (49), (50), (85a)–(86b)
for various values of φapp and for λ = 1 and
λ = 0.5.

Once we obtain ρ̂Hm, ÊHm, and φ̂Hm,
the asymptotic solution is readily obtained
from Eqs. (56), (57), (52), (27), (28), (26),
(58), (59), and (55) by specifying ε (or Kn).
The result is shown in Figs. 5 and 6 for
φapp/UT = 1 and 3 in the cases λ = 1
(Fig. 5) and λ = 0.5 (Fig. 6), where the
asymptotic solution of u (up to order Kn3)
and that of T (up to order Kn2) are also in-
cluded [the corresponding Hilbert solutions

are obtained from ρ̂Hm and ÊHm (m =
0, 1, 2) with the aid of the formulas given in
Appendix B]. In Figs. 5 and 6, the direct nu-
merical solutions of the original Boltzmann-
Poisson system (12)–(16), (19)–(22) are also
shown.

The numerical results show that the
asymptotic solutions are in good agreement
with the direct numerical solutions of the
Boltzmann-Poisson system. However, there
are some appreciable differences in the case
Kn = 0.1. The difference increases with
the applied potentials φapp and is more pro-
nounced at the right boundary. This can be
explained as follows.

First, the values of ρ̂H1 and ρ̂H2 as well as
their gradients near X1 = L are increasing
in φapp/UT . This results in a large value of
ûH2 and ûH3 [see Eqs. (B3) and (B4)]. Sec-
ond, the second-order Knudsen-layer cor-
rection contains product terms depending

on (dφ̂H0/dy)B , (J̃H1)B , and (ûH1)B which
are increasing in φapp/UT . Therefore, the
Knudsen-layer part for Kn = 0.1 is not well
confined near the boundary. For these rea-
sons, the validity of the asymptotic expan-
sion is resticted to rather small values of Kn.
We mention that this situation is very simi-
lar to that in Ref. [19], where a similar type
of asymptotic expansion is carried out on
the basis of the BGK model to investigate
the behavior of a rarefied gas flow between
two parallel plates driven by a uniform ex-
ternal force parallel to the plates.

In Figs. 7 and 8, the current-voltage
characteristics obtained from the asymp-
totic solutions are compared with those ob-
tained from the numerical solution of the
Boltzmann-Poisson system for various Kn
and λ. For the doping profile we choose
again Nc/Nd = 0.2 and D/L = 0.25.

In the figures, we have included not only
the asymptotic solution up to the order Kn3,
i.e., Ĵ (3) = ĴH1ε + ĴH2ε

2 + ĴH3ε
3, but also

the asymptotic solutions up to first and sec-
ond order, Ĵ (1) = ĴH1ε and Ĵ (2) = ĴH1ε +
ĴH2ε

2, for comparison. For Kn = 0.02,
the current density Ĵ (3) gives a result very
close to the current-voltage characteristic
obtained from the Boltzmann-Poisson sys-
tem in the entire range of φapp shown in the
figures. For Kn = 0.05 and 0.1, the dif-
ference between Ĵ (3) and the current den-
sity from the Boltzmann-Poisson system be-
comes noticeable for smaller values of φapp

(roughly φapp/UT > 5). The current den-

sity Ĵ (1), which corresponds to the solution
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of the drift-diffusion equation under the con-
ventional non-slip boundary condition, does
not predict correctly the current density of
the Boltzmann-Poisson system except for
very small values of φapp.

Next, we show some results for a differ-
ent doping profile. In Fig. 9, we show the
asymptotic solution of (ρ, E, φ) up to order
Kn2, together with the corresponding nu-
merical solution of the Boltzmann-Poisson
system, for various values of Kn with
(Nc/Nd,D/L) = (0.1, 0.25) [the dashed line
in Fig. 1 (b)]. In Fig. 10, we show the same
quantities for the same values of Kn with
(Nc/Nd,D/L) = (0.2, 0.1) [the dash-dotted
line in Fig. 1 (b)]. The dependence of these
quantities on Nc/Nd and D/L is rather weak
except for the electric field E, whose profile
clearly depends strongly on the position of
the junctions given by D/L. The asymp-
totic solutions u (up to order Kn3) and T
(up to order Kn2) as well as the Boltzmann-
Poisson solutions, computed with the pa-
rameters used in Figs. 9 and 10, are similar
to those presented in Fig. 5.

Finally, we show some results when λ is
relatively small. Figure 11 shows the asymp-
totic solution of (ρ, E, φ, u, T ) (up to or-
der Kn2 for ρ, E, φ, and T , and up to or-
der Kn3 for u), as well as the Boltzmann-
Poisson solutions, for various values of Kn
for λ = 0.2. In Fig. 12, the correspond-
ing current-voltage characteristics are dis-
played. We recall that the asymptotic anal-
ysis carried out in Sec. III assumes that the
scaled Debye length is of order one. There-
fore, the present asymptotic expansion is
theoretically not applicable to the case of
small λ. In spite of this fact, the asymptotic
solutions presented in Figs. 11 and 12 ex-
hibit good agreements with the correspond-
ing numerical solutions of the Boltzmann-
Poisson system.

V. CONCLUSION

In this paper, we have considered the flow
of electrons induced in a semiconductor be-
tween two parallel plane contacts. The dis-
tribution of the electrons is given by the
semiconductor Boltzmann equation with a

relaxation-time collision operator of BGK-
type. Applying a Hilbert expansion method
and Knudsen-layer corrections to the Boltz-
mann equation, we have derived a drift-
diffusion system with higher-order bound-
ary conditions improving results of Ref. [8].
The numerical results show a good agree-
ment between the solution of the drift-
diffusion model up to order Kn2 and that of
the Boltzmann-Poisson system if the Knud-
sen number is not too large and if the De-
bye length is of the same order as the device
length.

This is the first step of deriving higher-
order boundary conditions for fluid-dynamic
equations for semiconductors. We expect
that our results can be improved by consid-
ering more moments in the Boltzmann equa-
tion – leading to energy-transport or hydro-
dynamic models –, a more general geometry,
or improved kinetic inflow boundary condi-
tions [10], for instance.
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APPENDIX A: EXPLICIT FORM OF

ûHm AND T̂Hm

We present the macroscopic variables
ûHm and T̂Hm in terms of the distribution
functions f̂Hm. For m = 0, we obtain

ûH0 =
1

ρ̂H0

∫
ζ1f̂H0d

3ζ, (A1a)

T̂H0 =
2

3ρ̂H0

∫
(ζi − ûH0δi1)

2f̂H0d
3ζ;

(A1b)
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for m = 1,

ûH1 =
1

ρ̂H0

∫
(ζ1 − ûH0)f̂H1d

3ζ, (A2a)

T̂H1 =
2

3ρ̂H0

∫
(ζi − ûH0δi1)

2f̂H1d
3ζ

−
( ρ̂H1

ρ̂H0

)
T̂H0; (A2b)

for m = 2,

ûH2 =
1

ρ̂H0

∫
(ζ1 − ûH0)f̂H2d

3ζ

−
( ρ̂H1

ρ̂H0

)
ûH1, (A3a)

T̂H2 =
2

3ρ̂H0

∫
(ζi − ûH0δi1)

2f̂H2d
3ζ

− 2

3
(ûH1)

2 −
( ρ̂H1

ρ̂H0

)
T̂H1

−
( ρ̂H2

ρ̂H0

)
T̂H0; (A3b)

and finally, for m = 3,

ûH3 =
1

ρ̂H0

∫
(ζ1 − ûH0)f̂H3d

3ζ

−
( ρ̂H1

ρ̂H0

)
ûH2 −

( ρ̂H2

ρ̂H0

)
ûH1, (A4a)

T̂H3 =
2

3ρ̂H0

∫
(ζi − ûH0δi1)

2f̂H3d
3ζ

− 2

3

( ρ̂H1

ρ̂H0

)
(ûH1)

2 − 4

3
ûH1ûH2

−
( ρ̂H1

ρ̂H0

)
T̂H2 −

( ρ̂H2

ρ̂H0

)
T̂H1

−
( ρ̂H3

ρ̂H0

)
T̂H0. (A4b)

APPENDIX B: MEAN FLOW

VELOCITY AND ELECTRON

TEMPERATURE OF THE HILBERT

SOLUTION

We summarize the Hilbert part of the
mean flow velocity,

ûH0 = 0, (B1)

ûH1 = −1

2
τ̂

(
d ln ρ̂H0

dx1
+ ÊH0

)
, (B2)

ûH2 = −1

2
τ̂

(
ρ̂H1

ρ̂H0

d ln(ρ̂H1/ρ̂H0)

dx1
+ ÊH1

)
,

(B3)

ûH3 = −1

2
τ̂

[
ρ̂H2

ρ̂H0

d ln(ρ̂H2/ρ̂H0)

dx1

−
(

ρ̂H1

ρ̂H0

)2
d ln(ρ̂H1/ρ̂H0)

dx1
+ ÊH2

− 2ûH1
d

dx1
(τ̂ ÊH0)

]
, (B4)

and of the electron temperature,

T̂H0 = 1, (B5)

T̂H1 = 0, (B6)

T̂H2 = −2

3
τ̂ ÊH0ûH1 −

2

3
û2

H1, (B7)

T̂H3 = −2

3
τ̂
(
ÊH0ûH2 + ÊH1ûH1

)

− 4

3
ûH1ûH2. (B8)

APPENDIX C: EXPLICIT FORM OF

ûKm AND T̂Km

We summarize the expressions for ûKm

and T̂Km when m = 1 and m = 2. In the
following expressions, Eqs. (B1), (B5), and
(B6) are used. It holds for m = 1,

ûK1 =
1

(ρ̂H0)B

∫
ζ1f̂K1d

3ζ̄, (C1a)

T̂K1 =
2

3(ρ̂H0)B

∫
(ζ2 − 3

2
)f̂K1d

3ζ̄; (C1b)
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and for m = 2,

ûK2 =
1

(ρ̂H0)B

{ ∫
ζ1f̂K2d

3ζ̄

−
[
(ρ̂H1)B +

(dρ̂H0

dy

)

B
η

]
ûK1

− (ûH1)B ρ̂K1 − ρ̂K1ûK1

}
, (C2a)

T̂K2 =
1

(ρ̂H0)B

{
2

3

∫
(ζ2 − 3

2
)f̂K2d

3ζ̄

−
[
(ρ̂H1)B +

(dρ̂H0

dy

)

B
η

]
T̂K1

− ρ̂K1T̂K1

}
− 4

3
(ûH1)BûK1

− 2

3
û2

K1. (C2b)

Here, ζ2 = ζ2
y + ζ2

2 + ζ2
3 , d3ζ̄ = dζydζ2dζ3,

and ( )B denotes the value on the boundary
(y = 0).

APPENDIX D: COMMENTS ON THE

NUMERICAL SOLUTION OF THE

KNUDSEN-LAYER PROBLEMS

Let us introduce the functions
gm(η′, ζy, ζ2, ζ3) (m = 1, 2, 3, 4) which
are the solutions of the following half-space
boundary-value problems:

ζy
∂gm

∂η′
= Ωm − gm + Ihm, (D1)

Ωm(η′) =

∫
gmMd3ζ̄, (D2)

gm = −am + Jm (for ζy > 0, at η′ = 0),
(D3)

gm → 0, (as η′ → ∞), (D4)

with

Ih1 = Ih2 = 0, Ih3 =
1

2

∂g1

∂ζy
− ζyg1,

Ih4 = −η′(Ω1 − ψ1)

and

J1 = −2ζy, J2 = 2ζ2
y , J3 = J4 = 0.

Here, am are constants to be determined to-
gether with the solutions. Then (ξ1, ψ1),

(ξ2a, ψ2a), (ξ2b, ψ2b), and (ξ2c, ψ2c) intro-
duced in the main text [Eqs. (83) and (84)]
are given by

(ξ1, ψ1) = (ξ2a, ψ2a) = (a1, g1),

(ξ2b, ψ2b) = (a2 + a3 − 1, g2 + g3),

(ξ2c, ψ2c) = (a4, g4).

Our aim is to obtain the slip coefficients am

and the Knudsen-layer functions Ωm(η′) nu-
merically. In this appendix, we give a brief
comment on the numerical method.

By taking advantage of the simple expres-
sion of the relaxation-time collision oper-
ator, we can transform the equation and
boundary conditions (D1)–(D4) to an in-
tegral equation for Ωm(η′). This is done
by integrating Eq. (D1) formally under the
boundary conditions (D3) and (D4), insert-
ing the result into Eq. (D2), and carrying
out the integration with respect to the ve-
locity space. The result reads as

π1/2Ωm(η′) =

∫ ∞

0

Ωm(s)J−1(|η′ − s|)ds

− amJ0(η
′) + Sm(η′) (D6)

with

S1(η
′) = −2J1(η

′), (D7a)

S2(η
′) = 2J2(η

′), (D7b)

S3(η
′) =

π1/2

2

∫ ∞

η′

Ω1(s)ds − a1J1(η
′)

− 4J2(η
′) + J0(η

′), (D7c)

S4(η
′) = π1/2

∫ ∞

η′

∫ ∞

s2

∫ ∞

s1

Ω1(s0)d
3s

− π1/2

∫ ∞

η′

Ω1(s)ds − π1/2η′Ω1(η
′)

− 2J2(η
′), (D7d)

where d3s = ds0ds1ds2 and Jn(x) is given
by [27]

Jn(x) =

∫ ∞

0

tn exp
(
−t2 − x

t

)
dt.

In deriving Eqs. (D7c) and (D7d), Eq. (D6)
with m = 1 has been used. Since we
have to deal with a function only de-
pending on η′, the problem simplifies sig-
nificantly. Moreover, we can avoid the
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singularity contained in Ih3 of the origi-
nal form [note that g1 or, in general, gm

has a discontinuity at η′ = 0 with re-
spect to ζy, i.e. limζy→0+ g1(0, ζy, ζ2, ζ3) 6=
limζy→0− g1(0, ζy, ζ2, ζ3)].

The integral equations (D6) for m = 1
and m = 2 are identical with those for
the Knudsen-layer problems of rarefied gas
flows around a boundary, derived from the
linearized BGK model of the Boltzmann
equation. More precisely, Eq. (D6) with
m = 1 and m = 2, respectively, are identi-
cal with the equation for the Knudsen layer
in shear flow over a flat wall [28–31] and
in thermal-creep flow over a flat wall [32].
The numerical solutions to these equations
are obtained in Refs. [12, 29–31] (also see

Refs. [11, 17, 33]). Concerning m = 3,
the same type of equation as Eq. (D6) has
been solved numerically in Ref. [34]. There-
fore, we can make use of the numerical
data given in these references. For exam-
ple, [a1,Ω1(x)] = [2k0, 2Y0(x)] in Refs. [11,
17, 33], [a2,Ω2(x)] = [1 − 4K1,−2Y1(x)]
in Refs. [17, 33], and [a3,Ω3(x)] = [a2 +

2k2
0 + 8K1,−2Ỹ0(x) + 2k0Y0(x) + 4Y1(x)] in

Ref. [17]. In the cited works, the integral
equations are solved by means of a moment
method devised by Sone [29, 35] and im-
proved by Sone and Onishi [33, 36]. We
employ this method in order to obtain the
numerical solution of Eq. (D6) for m = 4 in
the present study.
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TABLE I: Knudsen-layer functions. The Knudsen-layer functions generally have the singularity
η′ ln η′ at η′ = 0. Their coefficients are also shown.

η′ Ω1 −Ω2 Ω3 Ω4

∫
∞

η′ Ω1(s)ds

0.00 0.61817 1.09553 0.78144 0.00000 0.46736

0.05 0.51453 0.96234 0.68806 0.00174 0.43948

0.10 0.45655 0.87923 0.62444 0.00492 0.41529

0.20 0.37755 0.75753 0.52794 0.01288 0.37386

0.30 0.32227 0.66650 0.45441 0.02147 0.33901

0.40 0.28006 0.59357 0.39526 0.02996 0.30898

0.50 0.24632 0.53303 0.34629 0.03804 0.28272

0.60 0.21858 0.48163 0.30500 0.04557 0.25951

0.70 0.19529 0.43730 0.26973 0.05248 0.23885

0.80 0.17546 0.39864 0.23931 0.05876 0.22034

0.90 0.15836 0.36460 0.21287 0.06442 0.20367

1.00 0.14349 0.33441 0.18975 0.06948 0.18859

1.20 0.11895 0.28333 0.15152 0.07790 0.16245

1.40 0.09965 0.24193 0.12154 0.08429 0.14066

1.60 0.08418 0.20788 0.09776 0.08892 0.12234

1.80 0.07160 0.17956 0.07874 0.09205 0.10680

2.00 0.06127 0.15580 0.06341 0.09392 0.09355

2.50 0.04235 0.11103 0.03657 0.09440 0.06799

3.00 0.02996 0.08056 0.02041 0.09079 0.05012

3.50 0.02157 0.05929 0.01059 0.08483 0.03737

4.00 0.01574 0.04413 0.00464 0.07770 0.02813

5.00 0.00867 0.02512 −0.00097 0.06263 0.01631

6.00 0.00494 0.01471 −0.00263 0.04878 0.00969

8.00 0.00173 0.00537 −0.00242 0.02798 0.00361

10.00 0.00065 0.00208 −0.00148 0.01543 0.00142

12.00 0.00026 0.00084 −0.00082 0.00835 0.00059

15.00 0.00007 0.00023 −0.00031 0.00328 0.00016

coeff. of η′ ln η′ 0.79788 0.81080 0.40540 0 0
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FIG. 1: (a) The doping profile C. (b) The doping profile C normalized by Nd with Nc/Nd = 0.2,
D/L = 0.25 (solid line); Nc/Nd = 0.1, D/L = 0.25 (dashed line); Nc/Nd = 0.2, D/L = 0.1
(dash-dotted line).
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FIG. 2: The solution ρ̂H0, ÊH0, and φ̂H0 for various applied potentials φapp with Nc/Nd = 0.2,
D/L = 0.25, and (a) λ = 1, (b) λ = 0.5.
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FIG. 3: The solution ρ̂H1, ÊH1, and φ̂H1 for various applied potentials φapp with Nc/Nd = 0.2,
D/L = 0.25, and (a) λ = 1, (b) λ = 0.5.
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FIG. 4: The solution ρ̂H2, ÊH2, and φ̂H2 for various applied potentials φapp with Nc/Nd = 0.2,
D/L = 0.25, and (a) λ = 1, (b) λ = 0.5.



ρ
/N

d
0.9

0.94

0.98

1.02

1.06

Kn = 0.1
HHHA
A
AA0.05 HHHH

@
@

@0.02 HHH

E
/(

U
T
/L

)

−1.2

−1.1

−1

−0.9

−0.8

0.02
A

AA

0.05
A

A
A

A
A

Kn = 0.1
A

A
A

A
A

A
A

φ
/U

T

0

0.2

0.4

0.6

0.8

1

Kn = 0.1

0.05

0.02
@

@
@@

u
/(

2k
T

0
/m

∗ )
1
/2

0.01

0.02

0.03

0.04

Kn = 0.1
A

A
A

@
@

@

0.05
�

�

0.02
�

�

X1/L

0 0.5 1

T
/T

0

0.992

0.996

1

1.004

1.008

Kn = 0.1
A

A
A

@
@ 0.02

A
AA

0.05
A

A
A

(a) φapp/UT = 1

ρ
/N

d

0.75

0.85

0.95

1.05

1.15

Kn = 0.1
HHHA
A
A

0.05
@

@
@

@
@
@

A
A
A
A
A
A

0.02
@

@
@

E
/(

U
T
/L

)

−3.2

−3.1

−3

−2.9

−2.8

0.02
A

A
A

0.05
A

A
A

AA

Kn = 0.1
A

A
A

A
AA

φ
/U

T

0

0.5

1

1.5

2

2.5

3

Kn = 0.1

0.05

0.02
@

@@

u
/(

2k
T

0
/m

∗ )
1
/2

0.02

0.06

0.1

0.14

Kn = 0.1
����

0.05
�

�

0.02
�

�

X1/L

0 0.5 1

T
/T

0

0.98

0.99

1

1.01

1.02
Kn = 0.1

A
A

@
@

0.02
A

A

0.05
A

A
AA

@
@

@@

(b) φapp/UT = 3

FIG. 5: The profiles of the electron density ρ, electric field E, electrostatic potential φ, mean flow
velocity u, and electron temperature T for Kn = 0.1, 0.05, and 0.02 with λ = 1, Nc/Nd = 0.2, and
D/L = 0.25. The solid line indicates the asymptotic solution up to order Kn2 (up to order Kn3 in
the case of u), and the dashed lines indicate the corresponding numerical solutions of the original
Boltzmann-Poisson system.
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FIG. 6: The profiles of the electron density ρ, electric field E, electrostatic potential φ, mean flow
velocity u, and electron temperature T for Kn = 0.1, 0.05, and 0.02 with λ = 0.5, Nc/Nd = 0.2,
and D/L = 0.25. See the caption of Fig. 5.
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FIG. 7: Current density J versus applied potential φapp for various Kn with λ = 1, Nc/Nd = 0.2,
and D/L = 0.25. The asymptotic solutions up to order Kn3 (solid line), Kn2 (dashed line), and
Kn (dash-dotted line) are shown. The direct numerical solution of the Boltzmann-Poisson system
is indicated by the symbol “◦”.
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FIG. 8: Current density J versus applied potential φapp for various Kn with λ = 0.5, Nc/Nd = 0.2,
and D/L = 0.25. See the caption of Fig. 7.
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FIG. 9: The profiles of the electron density ρ, electric field E, electrostatic potential φ for Kn = 0.1,
0.05, and 0.02 with λ = 1, Nc/Nd = 0.1, and D/L = 0.25. The solid line indicates the asymptotic
solution up to the order Kn2 and the dashed line the numerical solution of the original Boltzmann-
Poisson system.
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FIG. 10: The profiles of the electron density ρ, electric field E, electrostatic potential φ for Kn = 0.1,
0.05, and 0.02 with λ = 1, Nc/Nd = 0.2, and D/L = 0.1. See the caption of Fig. 9.
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FIG. 11: The profiles of the electron density ρ, electric field E, electrostatic potential φ, mean flow
velocity u, and electron temperature T for Kn = 0.1, 0.05, and 0.02 with λ = 0.2, Nc/Nd = 0.2,
and D/L = 0.25. See the caption of Fig. 5.
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FIG. 12: Current density J versus applied potential φapp for various Kn with λ = 0.2, Nc/Nd = 0.2,
and D/L = 0.25. See the caption of Fig. 7.


