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Abstract. The stationary energy-transport equations for semiconductors in three space dimen-
sions are numerically discretized. The physical variables are the electron density, the energy density,
and the electric potential. Physically motivated mixed Dirichlet-Neumann boundary conditions are
employed. The numerical approximation is based on an hybridized mixed finite-element method
using Raviart-Thomas elements, applied to the dual-entropy formulation of the energy-transport
model. For the solution of the nonlinear discrete system, a Newton scheme with adaptive potential
stepping and two decoupling Gummel-type strategies with reduced rank extrapolation are proposed.
Multi-gate field-effect transistors in 2D and 3D are numerically simulated.
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1. Introduction. The production of actual semiconductor devices is mainly
based on a planar technology. The down-scaling of the devices, however, leads to
severe problems, like an increase of the power density and noise effects. A possible
solution to reduce the noise is the use of multi-gate field-effect transistors in which the
gate contact encloses the channel region from different sides, leading to smaller no-
signal currents. Such devices have to be usually modeled in three space dimensions.
In order to avoid thermal effects like hot spots, the devices need to be simulated by
transport equations involving the particle temperature as an independent variable.
A model which satisfies this requirement are the energy-transport equations. In this
paper, we present for the first time a mixed finite-element approximation of the sta-
tionary energy-transport equations in three space dimensions for the simulation of
multi-gate field-effect transistors.

The (scaled) stationary energy-transport equations for the electron density n, the
electron energy density e, and the electric potential V read as follows [24]:

−divJn = 0, Jn = ∇n −
n

T
∇V, (1.1)

−divJe = −Jn · ∇V + W (n, T ), Je =
3

2
(∇(nT ) − n∇V ), (1.2)

λ2∆V = n − C(x), (1.3)

where Jn is the particle current density, Je the energy current density, e = 3
2nT

the energy density with the electron temperature T , C(x) the doping concentration
characterizing the device, W (n, T ) = 3

2n(T − T0)/τ0 the relaxation term with the
lattice temperature T0 and the relaxation time τ0, and λ is the scaled Debye length.
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The equations are solved in a bounded domain Ω ⊂ R
3 and are complemented by

the physically motivated boundary conditions

n = nD, T = TD, V = VD on ΓD, (1.4)

Jn · ν = Je · ν = ∇V · ν = 0 on ΓN , (1.5)

modeling the contacts ΓD and the insulating boundary parts ΓN , where nD > 0 and
TD > 0. We have assumed that ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ and that the exterior
normal unit vector ν exists a.e. on ∂Ω.

The first energy-transport model was presented by Stratton in 1962 [34]. The
model can be derived from the semiconductor Boltzmann equation by means of the
Hilbert expansion method [4]. The derivation of (1.1)-(1.2) assumes parabolic energy
bands and nondegenerate Boltzmann statistics [14]. A rigorous derivation can be
found in [5].

In the mathematical literature, there are only a few results concerning the exis-
tence and uniqueness of solutions to (1.1)–(1.5), due to difficulties coming from the
strong coupling and the lack of a maximum principle. Existence of weak solutions for
the transient or stationary equations was proved in near-equilibrium situations or for
special diffusion coefficients only [12, 13, 15, 19].

The numerical discretization of energy-transport models was investigated in the
physical literature for quite some time, see, e.g., [2, 11, 17, 33]. Mathematicians
started to pay attention to these models in the 1990s, using essentially nonoscillatory
numerical schemes [23], finite-difference methods [29], mixed finite-volume schemes [6],
or mixed finite-element techniques [10, 14, 20, 21, 27] (see also [8] for an overview).
An essential advantage of the mixed finite-element discretization is the “current con-
servation”, i.e., the normal component of the discrete current density is continuous
across inter-element boundaries [7].

The finite-element approximation of the 2D energy-transport model in [20, 21] is
based on the observation that the energy-transport equations (1.1)-(1.2) are given in
drift-diffusion form, which allows to use well-understood discrete schemes developed
originally for the drift-diffusion model [9]. On the other hand, the drift-diffusion
formulation (1.1)-(1.2) involves dominant convective terms in case of high electric
fields, and special discretization techniques become necessary in order to maintain
the positivity-preserving property of the scheme [25, 26].

This disadvantage can be avoided by using a formulation of the equations in terms
of the dual entropy variables w1 = (µ − V )/T and w2 = −1/T , where the chemical
potential µ relates to the electron density by n = T 3/2eµ/T . In these variables, the
convective parts involving the electric field −∇V disappear and the system (1.1)-(1.2)
becomes symmetric:

−div I1 = 0, −div I2 = W, Ii = Di1∇w1 + Di2∇w2, i = 1, 2, (1.6)

where the diffusion coefficients Dij are given by

D11 = n, D12 = D21 = −
(
V +

3

2w2

)
n, D22 =

((
V +

3

2w2

)2

+
3

2w2
2

)
n,

and the electron density n = (−w2)
−3/2ew1−V w2 can be written as a function of V , w1,

and w2. This formulation was the basis of analytical studies [12, 19] and numerically
discretized in one space dimension in [27]. Notice that the diffusion matrix D = (Dij)
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is symmetric and positive definite (if n > 0 and T > 0) and that (1.6) becomes an
elliptic cross-diffusion system.

In this paper, we discretize the three-dimensional energy-transport equations in
the dual-entropy formulation (1.3)-(1.6) using Raviart-Thomas finite elements. In
order to reduce the number of variables in the mixed-hybrid formulation, we employ
static condensation as in [20]. The resulting nonlinear algebraic system is solved by
three different iterative schemes.

The first scheme is based on the full Newton method with a continuation in the
applied voltage, i.e., the solution of the previous voltage U is used as the initial
guess in the Newton method to compute the solution with applied voltage U + △U .
Usually, the voltage step △U is chosen constant during the iterations [20, 21]. Here,
we implement a path-following algorithm in order to allow for adaptive voltage steps.

The Newton method has the drawbacks that a large linear system has to be solved
in each step, which is numerically expensive, and that it is unflexible with respect to
changes of the model. Therefore, the second and third iteration schemes are concerned
with decoupling strategies of Gummel type, which are easy to implement and easy to
modify. Moreover, in contrast to the Jacobian coming from the Newton method, the
diffusion matrix remains symmetric and positive definite during the iterations, such
that efficient linear solvers can be used. The Gummel method can be regarded as an
approximate Newton method, where the information about the strong coupling of the
unknowns is incorporated into the Poisson equation (1.3), and the Jacobian of the
system is replaced by a diagonal matrix [22].

The idea of the first decoupling is as follows. We write the diffusion matrix D as
M − N, where

M = n

(
1 −(V + 3

2w−1
2 )

−(V + 3
2w−1

2 ) (V + 3
2w−1

2 )2 + 3
2 (1 + α)w−2

2

)
, N = n

(
0 0
0 3

2αw−2
2

)
,

(1.7)
and α is some nonnegative parameter. This formulation has the effect that it increases
the “ellipticity” of the system in the sense that the determinant of M becomes larger.
The iteration matrix, which would correspond to a linear algebraic system, reads as

I = M
−1

N =
α

1 + α

(
0 V + 3

2w−1
2

0 1

)
.

Hence, we expect that large values of α entail slow convergence. In order to improve
the convergence property, we combine the decoupled scheme with a reduced rank
extrapolation method.

In the above Gummel-type scheme, the current continuity equations (1.6) are
still coupled. In order to achieve a completely decoupled system, we propose a second
Gummel-type iteration. The idea consists in a decoupling of the current continuity
equations by backward substitution, which corresponds to a nonlinear Gauß-Seidel
iteration for the entire system. More precisely, we rewrite (1.6) as

−div I1 = 0, I1 = D11∇w1 + D12∇w2, (1.8)

−div Ĩ2 =
W

1 + α
−

3

2

α

1 + α
div (nw−2

2 ∇w2), Ĩ2 =
D21

1 + α
∇w1 + D̃22(α)∇w2, (1.9)

where Ĩ2 = I2/(1+α) and D̃22(α) = n(1+α)−1(V + 3
2w−1

2 )2+ 3
2nw−2

2 . For large values
of α, we have reduced coupling and the new diffusion matrix is “almost” triangular
if α is large, since then, D21/(1 + α) is small compared to one. It turns out that the
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completely decoupled Gummel iteration scheme together with the vector extrapolation
technique leads to an algorithm which converges superlinearly.

The paper is organized as follows. In section 2 we describe the finite-element
discretization and the static condensation. Moreover, the evaluation of the terminal
particle current is explained. Section 3 is concerned with the iteration schemes and
some details of the implementation. In section 4 we simulate various MESFET (metal-
semiconductor field-effect transistor) devices in 2D and 3D. We conclude in section
5.

2. Numerical approximation. In this section we describe the finite-element
discretization of the energy-transport system (1.6) and the iterative methods.

2.1. Mixed finite-element discretization. We discretize (1.3) and (1.6) em-
ploying Raviart-Thomas finite elements. Let Ω ⊂ R

3 be a polyhedral domain and
let (Th) be a regular family of simplicial finite-element partitions of tetrahedra of Ω.
Furthermore, we denote by Eh the set of all faces of the elements of Th, by E ′

h the set
of all inner faces, and by E(ΓD) the set of all faces lying on the Dirichlet boundary.
We assume here that ΓD consists only of faces of elements in Th. Finally, we set
E(K) = {S ∈ Eh : S ⊂ ∂K} for K ∈ Th.

For a given element K ∈ Th, we introduce the following (local) vector-valued
approximation space for the current densities:

Σ(K) = span{(1, 0, 0)⊤, (0, 1, 0)⊤, (0, 0, 1)⊤, (x − xs, y − ys, z − zs)
⊤},

where (xs, ys, zs)
⊤ denotes the barycenter of K. The global ansatz space is

Xh = {τ ∈ L2(Ω)3 : τ|K ∈ Σ(K) ∀K ∈ Th}.

The hybridization procedure involves two different approximation spaces for wi,

Yh = {φ ∈ L2(Ω) : φ|K = const. ∀K ∈ Th},

Zh,ξ =
{

µ ∈ L2(∪S∈Eh
S) : µ|S = const. ∀S ∈ Eh,

∫

S

(µ − ξ) ds = 0 ∀S ∈ E(ΓD)
}

,

where ξ ∈ L2(ΓD). These spaces represent a hybridized version of the mixed finite-
element method with Raviart-Thomas elements of lowest order [28].

We present the mixed-hybrid formulation of the current continuity equations (1.6).
The discretization of the Poisson equation is done in a similar way. For this, we define
the inverse (Aij) of the diffusion matrix D = (Dij),

A11 =
2w2

2

3n2
D22, A12 = A21 = −

2w2
2

3n2
D21, A22 =

2w2
2

3n2
D11,

the electron density as a function of V , w1, and w2,

n = n(V,w1, w2) = (−w2)
−3/2ew1−V w2 , (2.1)

and the Dirichlet boundary data

w1D = log
( nD

T
3/2
D

)
−

VD

TD
, w2D = −

1

TD
. (2.2)



Numerical approximation of the energy-transport equations 5

The mixed-hybrid formulation of (1.6) is as follows: Find I1h, I2h ∈ Xh, v1h,
v2h ∈ Yh, and w1h ∈ Zh,w1D

, w2h ∈ Zh,w2D
such that for all τi ∈ Xh, φi ∈ Yh, and

µi ∈ Zh,0, i = 1, 2,

0 =
∑

K∈Th

∫

K

(Ai1,KI1h + Ai2,KI2h) · τi dx +

∫

K

vihdiv τi dx −
∑

S∈E(K)

∫

S

wihτi · ν ds,

(2.3)

0 =
∑

K∈Th

∫

K

div Iihφi dx + (i − 1)

∫

K

WKφi dx, (2.4)

0 =
∑

K∈Th

∑

S∈E(K)

∫

S

µiIih · ν ds. (2.5)

Here, we have employed the abbreviations Aij,K = Aij(VK , w1K , w2K) and WK =
W (VK , w1K , w2K) = 3nK(1 + w−1

2K)/2τ , where nK = (−w2K)−3/2ew1K−VKw2K . The
functions VK , w1K , and w2K are defined as follows. Let |Si| denote the measure of
the face Si of a tetrahedron and let V1, . . . , V4 be the nodal values of Vh associated
with the faces. Then we set

VK =
|S1|

2V1 + |S2|
2V2 + |S3|

2V3 + |S4|
2V4

|S1|2 + |S2|2 + |S3|2 + |S4|2
.

In a similar way, we define w1K and w2K . This choice is motivated from the results
of [3]. Instead of averaging over faces, averaging over edges is also possible, and the
results differ only slightly.

Eq. (2.3) is a discrete weak version of the last equation in (1.6). The second equa-
tion (2.4) corresponds to a discrete version of the first two equations in (1.6). Finally,
(2.5) imposes the continuity requirement of Iih · ν at the inter-element boundaries. It
follows from this equation that the mean value of the jump Iih · ν equals zero, since
the test functions µi are constant on every face. Hence, conservation of the current
densities holds in a weak sense.

Denoting by Iih, vih, and wih the vectors of the nodal values, the nonlinear
system associated with the mixed-hybrid formulation is




A11 A12 B 0 −C 0

A21 A22 0 B 0 −C

B⊤ 0 0 0 0 0

0 B⊤ 0 0 0 0

C⊤ 0 0 0 0 0

0 C⊤ 0 0 0 0







I1h

I2h

v1h

v2h

w1h

w2h




=




0

0

0

−F

0

0




.

The matrices Aij , B, and C and the vector F correspond to

∫

K

τi · τjdx,

∫

K

div τiφjdx,

∫

∂K

τiµjds,

∫

K

WKφidx,

respectively, where τi, φi, and µi are the basis functions of the respective spaces.
By static condensation, the variables Ijh and vjh can be eliminated, and we obtain

a nonlinear system acting only on the Lagrange multipliers w1h = (w1i) and w2h =
(w2i). The nodal values of the current densities I1h and I2h can be reconstructed
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from w1h and w2h by the formulae

(I1h)j =





−
D11,K

|K|

4∑

i=1

ni,j(w1i)|Si
−

D12,K

|K|

4∑

i=1

ni,j(w2i)|Si
if j = 1, 2, 3,

0 if j = 4,

(2.6)

(I2h)j =





−
D21,K

|K|

4∑

i=1

ni,j(w1i)|Si
−

D22,K

|K|

4∑

i=1

ni,j(w2i)|Si
if j = 1, 2, 3,

1

3

1

|K|
W (VK , w1K , w2K), if j = 4,

(2.7)

where we have set Dji,K = Dji(VK , w1K , w2K), ni,j = |Si|νi,j , and νi,j is the j-th
component of the unit vector νi.

2.2. Evaluation of the terminal currents. An important output of the device
simulations are the fluxes through the Ohmic contacts. In this subsection, we make
precise how these fluxes are determined. We proceed similarly as in [16]. Let c ⊂ ΓD

be a contact, separated from the other contacts by a positive distance. The discrete
electron current is defined by

Ih
1,c =

∑

S∈E(c)

∫

S

I1h · ν ds,

where E(c) = {S ∈ Eh : S ⊂ c}. The continuity of the normal component of I1h

across the inter-element faces allows for an expansion of the above formula, involving
all faces. In order to show this, let µ0 ∈ Zh,ξ, where ξ ∈ L2(ΓD) is such that ξ(x) = 1
for x ∈ c and ξ(x) = 0 else. Then

Ih
1,c =

∑

S∈E(c)

∫

S

µ0I1h · ν ds =
∑

S∈Eh

∫

S

µ0I1h · ν ds −
∑

S∈E′

h

∫

S

µ0I1h · ν ds

=
∑

S∈Eh

∫

S

µ0I1h · ν ds =
∑

K∈Th

∑

S∈E(K)

∫

S

µ0I1h · ν ds.

By means of (2.6) and the fact that µ0 is piecewise constant on the faces,

Ih
1,c = −

∑

K∈Th

(D11,K

|K|

∑

S,S̃∈E(K)

(nS · nS̃)w1Sµ0S̃ +
D12,K

|K|

∑

S,S̃∈E(K)

(nS · nS̃)w2Sµ0S̃

)
,

(2.8)
where w1S denotes the value of w1h associated with the face S (similar for µ0S̃) and
nS = |S|νS is the scaled outward normal on S. In the numerical tests, we have

choosen µ0 ∈ Zh,ξ satisfying µ0S̃ = 0 if S̃ ∈ E ′
h. Then (2.8) reduces to

Ih
1,c = −

∑

S̃∈E(c)

µ0S̃

∑

K∈Th

(D11,K

|K|

∑

S∈E(K)

(nS · nS̃)w1S +
D12,K

|K|

∑

S∈E(K)

(nS · nS̃)w2S

)
.

3. Iterative schemes. In this section we present the iterative methods em-
ployed for the solution of the nonlinear algebraic systems. We introduce three schemes:
a Newton method, combined with a path-following technique for the voltage step, and
two Gummel-type methods, combined with vector extrapolation.
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3.1. Newton method and adaptive voltage stepping. The Newton method
is combined with a continuation in the applied voltage. First, the system is solved
(by Newton’s method) using zero applied bias. Given a solution of the problem with
applied voltage U , this solution is taken as an initial guess to solve the problem with
applied voltage U + △U . Usually, the step size △U is constant. A more advanced
strategy is to adjust the step size automatically. This is done by the path-following
method which we describe now.

Let the Dirichlet boundary consist of the two contacts ΓD,1 and ΓD,2. Further-
more, let VA be an extension of the applied voltage defined at the contact ΓD,1 into
Ω, given by

∆VA = 0 in Ω, VA = U on ΓD,1, VA = 0 on ΓD,2, ∇VA · ν = 0 on ΓN , (3.1)

where the voltage is assumed to be constant on the contact. We consider the energy-
transport equations (1.6), where V , w1, and w2 are replaced by Vρ + ρVA, u1 +
ρVAw2, and u2, respectively, where ρ ∈ [0, 1] is a parameter. The transformed system
has to be solved for Vρ, u1, and u2. Adapting the Dirichlet boundary conditions
appropriately, V = Vρ + VA, w1 = u1 + VAu2, and w2 = u2 solves the original
problem. We observed in the numerical experiments that this transformation improves
the convergence properties.

Let u = (Vh, u1h, u2h) be a discrete solution of this system, written as G(u, ρ) = 0
for some function G. The solution set L = {(u, ρ) : G(u, ρ) = 0} generically consists
of one-dimensional paths. In order to approximate the component L0 of L, which
is defined by an initial solution (u(0), ρ(0)) ∈ L, so-called predictor-corrector path-
following methods can be used. For tracing the solution path L0 of G(u, ρ) = 0, we
employ the pseudo-arglength method [30]. The successor (u(k+1), ρ(k+1)) to (u(k), ρ(k))
in L0 is then defined as the solution of

G(u, ρ) = 0, (c(k))⊤(u − u(k)) + γ(k)(ρ − ρ(k)) = τ (k), (3.2)

where τ (k) > 0 is a step size and the vectors c(k) and γ(k) are chosen such that
(c(k), γ(k)) is not orthogonal to the one-dimensional kernel of G′(u(k), ρ(k)). The choice
of these vectors is made precise in section 3.3.

Then Newton’s method is applied to (3.2) in order to solve the energy-transport
system and to obtain the parameter ρ. The Jacobian matrix of the entire system
is neither symmetric nor definite. Therefore, we use direct elimination to solve the
linear systems. By reduction of the band width, the fill-in is reduced.

3.2. Gummel-type methods and vector extrapolation. We propose two
Gummel-type methods. The first scheme only decouples the Poisson equation and the
linearized current continuity equations are solved in each iteration step as a coupled
system. In the second scheme, the two current continuity equations are decoupled such
that only linear scalar equations have to be solved in each step. Since Gummel-type
iteration procedures have a low convergence rate, we employ a vector extrapolation
technique in order to improve the convergence.

The first Gummel-type method is based on the idea to split the diffusion matrix
as explained in the introduction (see (1.7)). Splitting the relaxation term in a similar
way, the energy-transport equations (1.6) take the form

−div I1 = 0, I1 = D11∇w1 + D12∇w2,

−div I2 + σ(w2)w2 = W1(w2), I2 = D21∇w1 +
(
D22 +

3

2
αnw−1

2

)
∇w2,
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where

σ(w2) = −
3

2
(1 + α)

n

τ
w−1

2 > 0, (3.3)

W1(w2) =
3

2

n

τ
(1 − αw2)w

−1
2 − αdiv

(3

2
nw−1

2 ∇w2

)
.

Notice that we have not renamed the variables. This idea can be used to define the
following fixed-point iteration.

Algorithm 1: Assign the starting values w
(0)
1 and w

(0)
2 and compute V (0) as the

solution of the corresponding Poisson equation. Assign real numbers c, d, η, ε > 0,

α(0) ≥ 0, δα ≥ 0, and vectors w
(−1)
1 , w

(−1)
2 . Let V (ℓ), w

(ℓ)
1 , w

(ℓ)
2 , and α(ℓ) be given.

The Gummel-type iteration is as follows:

1. Set V = V (ℓ), v1 = w
(ℓ)
1 , and v2 = w

(ℓ)
1 .

2. Set V1 = V + δV , where δV is the solution of

λ2∆(δV ) − n(V, v1, v2)δV = −λ2∆V + n(V, v1, v2) − C(x) in Ω, (3.4)

δV = 0 on ΓD, ∇V · ν = 0 on ΓN , (3.5)

where n(V, v1, v2) is defined in (2.1). If ‖δV ‖L∞ ≥ max{ε, c‖(w
(ℓ)
1 , w

(ℓ)
2 ) −

(w
(ℓ−1)
1 , w

(ℓ−1)
2 )‖d

L∞} then set V = V1 and repeat step 2; otherwise proceed
with step 3.

3. Set V = V1. Let w1 and w2 be the solutions of the linear system

− div I1 = 0, I1 = D11∇w1 + D12∇w2,

− div I2 + σ(v2)w2 = W1(v2), I2 = D21∇w1 +
(
D22 +

3

2
αnv−1

2

)
∇w2,

w1 = wD1, w2 = w2D on ΓD, I1 · ν = I2 · ν = 0 on ΓN ,

where Dij = Dij(V, v1, v2) and the boundary data are defined in (2.2).

4. Set V (ℓ+1) = V , w
(ℓ+1)
1 = w1, w

(ℓ+1)
2 = w2, and α(ℓ+1) = α(ℓ) + δα. If

‖(w
(ℓ+1)
1 , w

(ℓ+1)
2 ) − (w

(ℓ)
1 , w

(ℓ)
2 )‖L∞ ≥ η then ℓ := ℓ + 1 and repeat step 1;

otherwise stop.
The above linear systems are solved using the mixed finite-element discretization

described in section 2. Gummel-type iteration schemes are very sensitive to the choice
of initial data, in particular far from thermal equilibrium. Therefore, the above algo-
rithm is coupled to a continuation in the applied bias (with uniform steps). Moreover,
we have chosen for simplicity the damping parameter α(ℓ) to be independent of the
solution. In numerical tests, we observed that the error tolerance in step 2 of the
above algorithm has to be chosen rather small in order to achieve global convergence.
The choice of the parameters is specified in section 4.

The second Gummel scheme consists in a decoupling of the current continuity
equations by backward substitution according to (1.8)-(1.9):

Algorithm 2: Assign the starting values w
(0)
1 and w

(0)
2 . Compute V (0) as the

solution of the Poisson equation. Assign numbers c, d, η, ε > 0, α(0) ≥ 0, δα ≥ 0,

and vectors w
(−1)
1 and w

(−1)
2 . Let V (ℓ), w

(ℓ)
1 , w

(ℓ)
2 , and α(ℓ) be given.

1. Set V = V (ℓ), v1 = w
(ℓ)
2 , and v2 = w

(ℓ)
2 .

2. Set V1 = V + δV , where δV is the solution of the linear Poisson problem

(3.4)-(3.5). If ‖δV ‖L∞ ≥ max{ε, c‖(w
(ℓ)
1 , w

(ℓ)
2 ) − (w

(ℓ−1)
1 , w

(ℓ−1)
2 )‖d

L∞} then
set V = V1 and repeat step 2; otherwise proceed with step 3.
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3. Set V = V1 and find δw2 such that

−div (δI2) + σ(v2)δw2 = div (D21∇v1 + D22∇v2) + W (V, v1, v2), (3.6)

δI2 =
3

2
nv−2

2 ∇(δw2),

subject to the boundary conditions δw2 = 0 on ΓD and (δI2) · ν = 0 on ΓN ,
where σ(v2) is defined in (3.3), n = n(V, v1, v2), and Dij = Dij(V, v1, v2). Set
w2 = v2 + δw2/(1 + α).

4. Set V1 = V + δV , where δV is the solution of the linear Poisson problem

(3.4)-(3.5) with v2 replaced by w2. If ‖δV ‖L∞ ≥ max{ε, c‖(w
(ℓ)
1 , w

(ℓ)
2 ) −

(w
(ℓ−1)
1 , w

(ℓ−1)
2 )‖d

L∞} then set V = V1 and repeat step 4; otherwise proceed
with step 5.

5. Set V = V1 and find w1 such that

−div I1 = 0, I1 = D11(V,w1, w2)∇w1 + D12(V,w1, w2)∇w2,

subject to the boundary conditions w1 = w1D on ΓD and I1 · ν = 0 on ΓN .

6. Set V (ℓ+1) = V , w
(ℓ+1)
1 = w1, w

(ℓ+1)
2 = w2, and α(ℓ+1) = α(ℓ) + δα. If

‖(w
(ℓ+1)
1 , w

(ℓ+1)
2 ) − (w

(ℓ)
1 , w

(ℓ)
2 )‖L∞ ≥ η then ℓ := ℓ + 1 and repeat step 1;

otherwise stop.
Although the right-hand side of the decoupled equation (3.6) is only an H−1

function, the above algorithm worked well in the numerical simulations. Notice that
the order in which we solve the linear problems matters. If we would solve the equation
for v1 first and then that for v2, the algorithm did not work.

Both iterative schemes are combined with vector extrapolation. Let x0 = (w
(ℓ)
1 ,

w
(ℓ)
2 ) be a discrete solution defined by step 4 of Algorithm 1 or by steps 3 and 5 of

Algorithm 2. We generate a finite sequence xj = (w
(ℓ+j)
1 , w

(ℓ+j)
2 ), j = 1, . . . ,K, and

apply reduced rank extrapolation to these vectors [32]. More precisely, we introduce
the following algorithm:

1. Set s0 = (w
(ℓ)
1 , w

(ℓ)
2 ), j = 0, and let K ∈ N be given.

2. Set j := j + 1 and compute (w
(ℓ+j)
1 , w

(ℓ+j)
2 ) by applying Algorithm 1 or 2.

If ‖(w
(ℓ+j)
1 , w

(ℓ+j)
2 ) − (w

(ℓ+j−1)
1 , w

(ℓ+j−1)
2 )‖L∞ ≤ η or j ≥ K then stop and

proceed with step 3; otherwise, repeat step 2.
3. Apply reduced rank extrapolation according to [32] to compute a vector

(w∗
1 , w∗

2).

4. Set si = (w∗
1 , w∗

2), i := i + 1, replace (w
(ℓ)
1 , w

(ℓ)
2 ) by (w∗

1 , w∗
2) and return to

step 2.
The number K of base sequence vectors is related to the number of “dominant”

eigenvalues of the linearization of the fixed-point map (see [32]). We still have to make
clear how K is chosen. In the simulations, a value of K is accepted if the least-square
residuals are smaller than 10−8, a value which proved to be useful. In the reduced
rank extrapolation, usually a pseudo-inverse has to be computed. Instead we have
solved the corresponding least-square problem.

The reduced rank extrapolation can be also applied to the vector sequences gen-
erated in the inner iteration for solving the Poisson equation (step 2 of Algorithm 1).
The number of base sequence vectors of this inner iteration will be denoted by K1.
This iteration is actually needed for the algorithm to be implementable. The global
convergence of this modified algorithm is accelerated if carefully designed. Since the
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convergence of the global iteration is very sensitive to the convergence of this inner
iteration, generally a large number of vectors xj has to be generated to ensure rapid
convergence of the extrapolated values. On the other hand, the number of these vec-
tors should not be chosen too large, since in each inner cycle a large linear system has
to be solved.

3.3. Remarks on the implementation. In this subsection, we give some de-
tails of the numerical implementation. More details can be found in [18]. The source
code of the algorithm is implemented in MATLAB. The 3D grid is generated by FEM-
LAB. The linear problems, occuring in Algorithms 1 and 2 above, are solved with a
preconditioned conjugate gradient method. An incomplete Cholesky factorization
with a problem-dependent drop tolerance is used as preconditioner. The MATLAB
command cholinc realizes this factorization. The extension VA of the applied voltage
U (see (3.1)) is computed by means of the preconditioned conjugate gradient method
employing the same preconditioner as mentioned before.

The matrices arising in both the Newton and the Gummel-type methods are
generally badly conditioned, in particular for three-dimensional domains. A simple
scaling of rows and columns improves the condition of the system. The Jacobian is
scaled by dividing each row by the corresponding diagonal entry, which is assumed
to be nonzero. For the Gummel-type methods, we multiply the rows and columns
by the square root of the diagonal entry, which is generally positive. This allows to
retain the symmetry and positive definiteness of the matrix.

For the integration of the doping profile C(x) on the elements K of the trian-
gulation Th, we employ an adaptive Simpson quadrature, provided by the MATLAB
command triplequad, together with an appropriate transformation to K. The con-
vergence of the iterative methods can be improved by smoothing the doping profile.
More precisely, for all K ∈ Th, we average the approximations CK =

∫
K

C(x)dx with

those of the neighboring tetrahedra, yielding CK . This ensures that the smoothing
depends on the mesh parameter h such that for h → 0, it holds

∑

K∈Th

CK →

∫

Ω

C(x)dx.

For the path-following method, we employ a constant step size τ = τ (k) (specified
in section 4). Furthermore, we choose γ = γ(k) = 1 and

c = c(k) = −(c/N, . . . , c/N︸ ︷︷ ︸
2N entries

, 0, . . . , 0︸ ︷︷ ︸
N entries

)⊤,

where N denotes the degrees of freedom and c is a positive number independent of
N whose value varies with the simulations. If c = 0, the step control reduces to the
method of continuation in the applied bias with an increment which is only controlled
by the step size τ .

4. Numerical examples. We present simulations of silicon metal-semiconduc-
tor field-effect transistors (MESFETs) in two and three space dimensions using the
discretization and the iterative schemes described in the previous sections. MESFETs
are voltage-driven devices which are used as a switch or amplifier. They consist of two
highly-doped n+ regions near the Ohmic contacts (called source and drain) and an n
region with one or several Schottky contacts (called gates) in a sandwich configuration.
The behavior of the device is mainly governed by the size of the depletion region (a
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region with very low electron density) that develops around the Schottky contacts.
The depletion region enlarges if the gate voltage is decreased and therefore diminishes
the channel width leading to a reduced current for a fixed applied drain voltage (closed
state). For a larger gate voltage, the depletion region becomes smaller and a significant
current can flow (open state).

4.1. 2D double-gate MESFET. The model parameters of the silicon MES-
FET of size 0.6µm×0.24µm are taken from [21] for comparison (see Figure 4.1). The
source and drain contact lengths are 0.24µm; the gate length is 0.2µm. The length
of the low doped (channel) region is 0.36µm. The doping profile takes the value
3 · 1017 cm−3 in the n+-regions and 1017 cm−3 in the channel. At the source and
drain, the particle density is equal to the equilibrium density [24]. The boundary
values for the potential at the Ohmic contacts are the sum of the built-in potential
Vbi and the applied voltage. At the Schottky contacts, the Schottky barrier height is
substracted, i.e., V|Gate = U + Vbi − VB . A barrier height of 0.8 V is used as a typical
value for an n-type silicon-metal contact. The temperature at the contacts is equal
to the ambient temperature of 300 K. The particle density at the Schottky contacts
is computed from formula (5.1-19) in [31]. Thus, the Dirichlet boundary conditions
read as follows:

Gate 

S
ou

rc
e 

D
ra

in

Gate 

n+n+ n

Fig. 4.1. Geometry of the 2D double-gate MESFET.

• at the source: n = 3 · 1017 cm−3, V = Vbi;
• at the drain: n = 3 · 1017 cm−3, V = Vbi + 2V;
• at the gates: n = 3.9 · 105 cm−3, V = 0V + Vbi − 0.8V (open state),

n = 2.4 · 105 cm−3, V = −1.2V + Vbi − 0.8V (closed state).
The remaining physical parameters are as in [21] except for the energy relaxation

time which equals τ0 = 10−13 s.
We have applied the Gummel-type schemes (Algorithms 1 and 2) and the full

Newton method (combined with path following). For the Newton scheme, we have
used the following parameters: c = 0.125, τ = 0.02 (open state) or c = 0.05, τ = 0.008
(closed state). For the Gummel-type schemes, it holds: δα = 0.5, c = 10−5, d = 0.7,
η = 10−6, ε = 10−9, and K1 = 15. For Algorithm 1 (or 2), we have chosen α(0) = 5
(α(0) = 20), and K = 50 (K = 80). We recall that the parameters c and τ are needed
for the path-following method, c, d, η, ε determine the tolerances of the Gummel
iterations, δα and α(0) determine the damping in the Gummel iterations, and K and
K1 are the number of base sequence vectors for the vector extrapolation in the global
and inner iterations, respectively.

In Figure 4.2 (left) the effect of the path-following method used in the Newton
scheme is shown for an open state MESFET. For small applied voltage (i.e., the
number of continuation steps is small), the step control reduces the voltage step,
whereas the voltage step is allowed to be larger far from thermal equilibrium. The
dashed line indicates the value of ρ when no step control is active, i.e., the voltage is
uniformly increased according to (3.2) with c = 0 and τ = 0.025. In closed state, the
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step control suggests smaller values for ρ compared to the uniform voltage step (see
Figure 4.2, right). Due to the enlarged depletion region, in which the electron density
is rather small, more continuation steps are necessary.
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Fig. 4.2. Effect of the path-following method on the voltage step. Left: open state; right: closed
state.

Figure 4.3 shows the absolute error in the discrete L∞ norm depending on the
number of Newton cycles. After four cycles, the error tolerance of 10−6 is achieved,
independently of the step control parameter ρ (if ρ < 1). For comparison, the ab-
solute errors for the Gummel-type algorithms, combined with vector extrapolation,
are presented in Figure 4.4. The convergence of Algorithm 1 (left) seems to be only
linear, whereas that of Algorithm 2 is superlinear (even quadratic). Quadratic conver-
gence is expected if the number of base sequence vectors in the vector extrapolation
method is close to the number of “dominant” eigenvalues. It seems that the number
of dominant eigenvalues varies over a wide range for Algorithm 1, and this may cause
the suboptimal linear convergence.
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Fig. 4.3. Convergence of the full Newton method (open state).

The relative errors in the L2 norm of the variables computed from the Newton
scheme are presented in Table 4.1. Here, ℓ∗ = 6.462 · 10−5 cm is the device diameter,
and the reference solution is computed on a fine grid with h/ℓ∗ = 0.0025. The tem-
perature Th is obtained by linear interpolation from −1/w2. The values are verifying
the quadratic convergence behavior.

In Figure 4.5 the electron density, temperature, and energy density are shown.
We see that the electron density becomes very small in the depletion region near the
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Fig. 4.4. Convergence of the Gummel-type methods. Left: Algorithm 1, right: Algorithm 2
(open state).

h/ℓ∗ RE for Vh RE for w1h RE for w2h RE for Th

0.08 0.071 0.065 0.120 0.110
0.04 0.033 0.039 0.081 0.058
0.02 0.035 0.021 0.051 0.047
0.01 0.0062 0.011 0.032 0.024

Table 4.1

Relative errors computed from the Newton method.

gate contacts. In open state, we can clearly observe the channel between the depletion
regions. The velocity of the electrons, which travel from left to right, is significantly
reduced when the electrons enter the drain region. The kinetic energy is transformed
into thermal energy which explains the temperature rise at the end of the channel.
Since the number of high-temperature electrons in the channel is rather small, the
energy density is large in the source and drain regions in which the temperature is
small but the number of electrons is large.

Finally, the electron current density is presented in Figure 4.6. There is a small
current flow through the channel even in the closed state (right figure), but the current
is significantly larger in the open state (left figure). In fact, the maximal drain current
in closed state is only 6.3 ·10−8 A. In a single-gate MESFET with the same geometry,
the maximal drain current equals 7.6 · 10−5 A which is much larger than the value for
the double-gate device. This shows that the double-gate MESFET is more efficient
in the closed state than a single-gate device.

4.2. Quasi-2D double-gate MESFET. The quasi-2D MESFET is a three-
dimensional device which is uniform in one direction (see Figure 4.7). We have used
a similar geometry like the 2D MESFET of section 4.1 such that the results of the
3D simulation can be compared with the 2D simulation. The values for the doping
profile and the boundary conditions are as in section 4.1 for the open state. For the
Gummel-type algorithms, we have chosen the following values: c = 0.01, d = 0.7,
η = 0.001, ε = 10−6, K = 150, K1 = 15, α(0) = 2, δα = 2 (Algorithm 1), and
α(0) = 15, δα = 3 (Algorithm 2).

The particle density, temperature, and energy density are depicted in Figure 4.8
for the open-state case. We see that the values are uniform in the z-direction. The
values are similar to those for the 2D MESFET.
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Fig. 4.5. Electron density n in cm−3 (first row), electron temperature T in K (middle row),
and energy density 3

2
nT in eV cm−3 (last row) for the double-gate MESFET in open state (left

column) and in closed state (right column).
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Fig. 4.6. Electron current density in open (top) and closed state (bottom).
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Fig. 4.7. Geometry of the quasi-2D double-gate MESFET.

4.3. 3D gate-all-around MESFET. The gate-all-around MESFET is a true
3D device since the gate is on all four sides of the transistor. This geometry allows for
a very efficient switching behavior. The geometry of the device is shown in Figure 4.9.
The channel length is 0.4µm; the gate length is 0.33µm. The source and the drain
regions are highly doped with 3 ·1018 cm−3, and the channel is doped with 1018 cm−3.
The boundary conditions for the open state are similar as for the 2D MESFET of
section 4.1, i.e., the temperature equals 300 K at all contacts and

• at the source: n = 3 · 1018 cm−3, V = Vbi;
• at the drain: n = 3 · 1018 cm−3, V = Vbi + 2V;
• at the gates: n = 3.9 · 105 cm−3, V = Vbi − 0.8V.

We have employed the same iteration parameters as in section 4.2 except α(0) = 5
and τ = 0.0133 for Algorithm 1.

The particle density, temperature, and energy density are depicted in Figure
4.10. The electron density is larger in the middle of the channel than close to the gate
contacts since the transistor operates in the open state. These electrons contribute
to the thermal energy which is large at the end of the channel region.

The current-voltage characteristic for the MESFET is presented in Figure 4.11.
The current increases rapidly with the voltage and saturates for voltages larger than
about 1 V. The current flow is smaller close to the gate contacts than in the middle
of the channel due to the depletion region (Figure 4.12).

4.4. 3D single-gate MESFET. As final example we present some simulations
for a 3D non-uniform single-gate MESFET of size 1µm×0.55µm×0.42µm. The ge-
ometry is adapted from [1] (see Figure 4.13). The n+-region is doped with 5·1017 cm−3

and surrounded by a lightly doped substrate with doping 5 · 1015 cm−3. The temper-
ature at the contacts equals 300 K, and the remaining boundary conditions are as
follows:

• at the source: n = 5 · 1017 cm−3, V = Vbi;
• at the drain: n = 5 · 1017 cm−3, V = Vbi + 2V;
• at the gates: n = 3.9 · 105 cm−3, V = Vbi − 0.8V.

For the Gummel schemes, we have employed the same parameters like in section 4.2
except α(0) = 5, τ = 0.0133, and K1 = 25.

The physical variables are shown in Figure 4.14. Due to the depletion region, the
electron density is rather small close to the gate. The temperature is again large at
the end of the channel. The current flow is large in the region between the source
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Fig. 4.8. Electron density n in cm−3 (top), electron temperature T in K (middle), and energy
density 3

2
nT in eV cm−3 (bottom) in the quasi-2D double-gate MESFET.
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Fig. 4.9. Geometry of the 3D gate-all-around MESFET.

and gate contact since the electrons are accelerated from the electric field (see Figure
4.15). In fact, the current flow shows a true three-dimensional behavior.

5. Conclusion. In this paper we have discretized the 3D stationary energy-
transport equations for semiconductors in the dual-entropy formulation by using
Raviart-Thomas mixed finite elements. The main feature of the numerical scheme
is the current conservation, in the sense that the jump of the normal component of
the current at the inter-element boundaries vanishes.

Three iteration schemes are proposed: a full Newton method, combined with an
adaptive voltage stepping computed by a path-following technique, and two Gummel-
type methods, combined with reduced rank extrapolation. Although the Gummel-
type schemes need more iteration cycles than the Newton method, they are more
flexible from a programming view point. Moreover, the vector extrapolation tech-
nique allows to improve their convergence properties. In particular, the completely
decoupled scheme converges superlinearly.

Various two- and three-dimensional MESFET transistors are numerically simu-
lated, verifying the good properties of the numerical schemes. Our approach allows to
simulate modern complex 3D structures which are becoming of increasing importance
in the near future. Future research is concerned with the coupling of the energy-
transport equations with a heat equation for the lattice temperature, which models
the transfer of the thermal energy of the charge carriers to the semiconductor crystal.
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[25] L. D. Marini and P. Pietra, An abstract theory for mixed approximations of second order

elliptic problems, Mat. Apl. Comput., 8 (1989), pp. 219–239.
[26] L. D. Marini and P. Pietra, New mixed finite element schemes for current continuity equa-

tions, COMPEL, 9 (1990), pp. 257–268.
[27] A. Marrocco, P. Montarnal, and B. Perthame, Simulation of the energy-transport and

simplified hydrodynamic models for semiconductor devices using mixed finite elements, in
Proceedings of ECCOMAS 96, John Wiley, London, 1996.

[28] P. Raviart and J. Thomas, A mixed finite element method for second order elliptic equations,
in Mathematical Aspects of the Finite Element Method, vol. 606 of Lecture Notes in Math.,
Springer, 1977, pp. 292–315.

[29] C. Ringhofer, An entropy-based finite difference method for the energy transport system,
Math. Models Methods Appl. Sci., 11 (2001), pp. 769–796.

[30] H. Schwetlick, G. Timmermann, and R. Lösche, Path following for large nonlinear equa-
tions by implicit block elimination based on recursive projections, in Lecture Appl. Math.,
32 (1996), pp. 715–732.

[31] S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Vienna, 1984.
[32] D. Smith, W. Ford, and A. Sidi, Extrapolation methods for vector sequences, SIAM Review,

29 (1987), pp. 199–233.
[33] K. Souissi, F. Odeh, H. Tang, and A. Gnudi, Comparative studies of hydrodynamic and



Numerical approximation of the energy-transport equations 21

Fig. 4.14. Electron density n in cm−3 (top) and electron temperature T in K (bottom) in the
3D non-uniform single-gate MESFET.

Fig. 4.15. Electron current density in the 3D non-uniform single-gate MESFET.



22 S. GADAU AND A. JÜNGEL
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