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Abstract. In this paper, we consider spin-diffusion Landau–Lifshitz–Gilbert equations
(SDLLG), which consist of the time-dependent Landau–Lifshitz–Gilbert (LLG) equation cou-
pled with a time-dependent diffusion equation for the electron spin accumulation. The model
takes into account the diffusion process of the spin accumulation in the magnetization dy-
namics of ferromagnetic multilayers. We prove that in the limit of long times, the system
reduces to simpler equations in which the LLG equation is coupled to a nonlinear and nonlo-
cal steady-state equation, referred to as SLLG. As a by-product, the existence of global weak
solutions to the SLLG equation is obtained. Moreover, we prove weak-strong uniqueness
of solutions of SLLG, i.e., all weak solutions coincide with the (unique) strong solution as
long as the latter exists in time. The results provide a solid mathematical ground to the
qualitative behavior originally predicted by Zhang, Levy, and Fert in [44] in ferromagnetic
multilayers.

Keywords: Micromagnetics, Landau–Lifshitz–Gilbert equation, spin diffusion, asymptotic
analysis, existence of solutions, weak-strong uniqueness.

2010 Mathematics Subject Classification. 35C20, 35D30, 35G20, 35G25 49S05.

1. Introduction and Physical Motivations

In the last decades, the study of ferromagnetic materials and their magnetization processes
has been the focus of considerable research for its application to magnetic recording technology.
Below the Curie temperature, ferromagnetic media possess a spontaneous magnetization state
(which is the result of a spontaneous alignment of the elementary magnetic moments in the
medium) that can be controlled through appropriate external magnetic fields. The magnetic
recording technology exploits the magnetization of ferromagnetic media to store information.

The giant magnetoresistance effect (GMR), for which Fert and Grünberg have been
awarded the Nobel prize in 2007, has introduced new solutions in the design of magnetic
random access memories (MRAMs). In a typical MRAM device, the binary information is
stored in elementary cells that can be addressed via two perpendicular arrays of parallel
conducting lines, called word lines and bit lines. A schematic of the MRAM architecture is
depicted in Figure 1.

The GMR allows for a giant change in the resistance of a conductor in response to an applied
magnetic field, and it is the primary mechanism behind the reading process in MRAMs.
Furthermore, the switching (writing) process of an MRAM cell can be achieved by magnetic
field pulses produced by the sum of horizontal and vertical currents. The magnetic pulse
induces a magnetic torque, whose strength depends on the angle between the field and the
magnetization, which permits the switching of the cell.

This behavior is conceptually simple, but it is tough to realize in practice on the nanoscale.
One of the fundamental issues connected with the downscaling of magnetic storage devices is
the thermal stability of magnetization states. In principle, the problem can be circumvented
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Figure 1. (Left) In a typical MRAM device, the binary information is stored in elemen-
tary cells that can be addressed via two perpendicular arrays of parallel conducting lines,
called word lines and bit lines. (Right) A schematic picture of an MRAM cell. In its sim-
plest form, an MRAM cell consists of two ferromagnetic layers ωF (the free layer) and ωP

(the pinned layer), separated by a thin insulator ωB (the tunnel barrier). Such a multilayer
structure is compatible with the GMR effect. The logical states ‘0’ and ‘1’ are coded into the
direction of the magnetization in the free layer ωF. Note that MRAM cells usually have an
ellipsoidal cross-section. This is quite common in applications because ellipsoidal particles
support single-domain magnetization states [4,10,13,17] which allow for a qualitative analysis
of the system dynamics in the framework of ODEs.

by increasing the magnetic anisotropy of the material, but as a consequence, higher magnetic
fields are required to reverse the magnetization states. However, these magnetic fields typically
act on a long-range, whereas the desire is that the field produced by the two currents can
switch only the target cell. For this reason, considerable attention has recently been paid
to design new strategies of magnetization switching in which the applied field is assisted
by additional external actions. Examples of these new approaches are heat and microwave-
assisted switchings [12,28].

Fairly recently, Slonczewski [40] and Berger [7] proposed a novel model for magneti-
zation reversal based on the use of spin-polarized currents injected directly in the magnetic
free layer. The new mechanism proved extremely valuable to overcome the difficulties im-
posed by the use of strong magnetic fields. Since its introduction, it has been the object of
much research work in the spintronics community as a candidate to assist the switching of the
magnetization in MRAMs cells. In this new approach, each MRAM cell hosts a multilayer
structure, called magnetic tunnel junction, which in its simplest form consists of two ferromag-
netic layers ωF (the so-called free layer, where the magnetization can change freely) and ωP

(the pinned layer, where the magnetization is pinned by exchange interactions), separated by
a thin insulator ωB (the tunnel barrier). A current is injected perpendicular to the multilayer.
The electron spin is polarized in the pinned layer ωP. When the electrons reach the free layer
ωF, the spin exerts an additional torque on the underlying magnetization, which assists the
switching process.

The model proposed by Slonczewski [40] does not take into account the effects of spin
diffusion, which have been found to be important in understanding magnetoresistance in
magnetic multilayers. This motivated the work of Zhang, Levy, and Fert [44] (see also [39]),
where a new spin-transfer model for the relaxation of the coupled system spin-magnetization
is proposed. Their model includes spatial variations in both spin and magnetization, but is
derived under the assumption that the magnetization is uniform in each of the layers and,
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therefore, essentially one-dimensional. Later, Garcıa-Cervera and Wang (cf. [23], see
also [1]) generalized the model to the three-dimensional setting.

1.1. The spin-diffusion Landau–Lifshitz–Gilbert equation. In this section, we intro-
duce the model proposed in [23]. For that, we set Ω := ωF ∪ ωP, Ω ⊂ R

3, and denote by
Ω′ := Ω ∪ ωB, Ω′ ⊂ R

3, the region occupied by the multilayer. The spin accumulation S
is defined on Ω′, and the magnetization M is supported on the region Ω occupied by the
two magnetic layers. The magnetization is zero in ωB (i.e., outside the magnetic samples).
We assume that the temperature is constant and well below the Curie temperature so that
the magnetization M is of constant modulus in Ω, i.e., |M| = Ms with Ms ∈ R+ being the
saturation magnetization in Ω. To shorten notation, we set s = S/Ms and m := M/Ms.

The spin-diffusion Landau–Lifshitz–Gilbert equation (SDLLG) consists of a quasilinear
diffusion equation for the evolution of the spin accumulation coupled to the well-established
equation for magnetization dynamics. In strong form, SDLLG reads as (cf. [1, 21,22])

∂ts = div [J (∇s, mχΩ)] −
2D0

λ2
sf

s −
2D0

λ2
J

s × mχΩ in Ω′ × R+, (1)

∂tm = −γ0m × (heff [m] + j0s + f) + αm × ∂tm in Ω × R+. (2)

Here, s : Ω′ × R+ → R
3 is the spin accumulation, m : Ω × R+ → S

2 is the magnetization,
and mχΩ denotes the extension of m by zero to the whole R

3. From now on, to simplify
the notation, we will identify m with its extension mχΩ as long as no ambiguities can arise.
The first equation (1) models the spin-polarized transport in the multilayer Ω′ as a diffusive
process [23, 39, 44]. The second equation (2) is a variant of the Landau–Lifshitz–Gilbert
(LLG) equation [24,29] and describes the relaxation process of the magnetization. Since the
modulus of the magnetization is preserved by LLG, we have normalized the magnetization to
take values on the 2-sphere S

2. The system (1)–(2) is supplemented with the initial/boundary
conditions

{

m(x, 0) = m∗(x) in Ω,
∂nm = 0 on ∂Ω × R+,

{

s(x, 0) = s∗(x) in Ω′,
∂ns = 0 on ∂Ω′ × R+,

for some given initial states m∗ : Ω → S
2, s∗ : Ω′ → R

3. A detailed description of the terms
involved in SDLLG follows.

The spin-diffusion equation. In the spin-diffusion equation (1), J (∇s, m) is the spin current,
D0 ∈ L∞(Ω) is the diffusion coefficient, λsf ∈ R+ is the characteristic length for spin-flip
relaxation, and λJ ∈ R+ is related to the electron’s mean free path. The spin current is given
by

J (∇s, m) := 2D0 [∇s − ββ′(∇s · m) ⊗ m] −
βµB

e
je ⊗ m,

where je is the applied electric current, 0 < β, β′ < 1 are the dimensionless spin-polarization
parameters of the magnetic layers, µB > 0 is the Bohr magneton, and e > 0 is the charge of
the electron. With given γ ∈ R+, the diffusion coefficient D0 ∈ L∞(Ω) satisfies D0(x) > γ for
almost all x ∈ Ω. The last term in (1) represents the interaction between the spin accumulation
and the background magnetization, and it is responsible for the transfer of angular momentum
between them.

The Landau–Lifshitz–Gilbert equation. In (2), γ0 ∈ R+ is the gyromagnetic ratio, j0 models
the strength of the interaction between the spin and the magnetization, and α is the dimen-
sionless damping parameter. The first term on the right-hand side of (2) describes a precession
around the field heff [m] + j0s+f , whereas the (phenomenological) second term accounts for
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dissipation in the system. The time-dependent vector field f is the so-called applied field,
and it is assumed to be unaffected by variations of m. The effective field heff includes con-
tributions originating from different spatial scales and is defined by the negative first-order
variation of the micromagnetic energy functional GΩ, i.e.

heff [m] := −∂mGΩ.

For single-crystal ferromagnets, the micromagnetic energy functional reads as (cf. [9,27])

GΩ(m) :=
cex

2

∫

Ω
|∇m|2

=:EΩ(m)

+ κ

∫

Ω
φan(m)

=:AΩ(m)

−
µ0

2

∫

Ω
hd [mχΩ] · m

=:WΩ(m)

(3)

with m ∈ H1(Ω, S2), and recall that mχΩ is the extension by zero of m to R
3. Combining

(1.1) and (3), we obtain the following expression for the effective field:

heff [m] = cex∆m − κ∇φan(m) + µ0hd [mχΩ] . (4)

In (3), the exchange energy EΩ penalizes nonuniformities in the orientation of the magnetiza-
tion, and cex > 0 is the exchange stiffness constant. The magnetocrystalline anisotropy energy

AΩ accounts for the existence of preferred directions of the magnetization: its energy density
φan : S2 → R

+ vanishes only on a finite set of directions (the so-called easy directions); κ is the
anisotropic constant. The third term WΩ is the magnetostatic self-energy, i.e., the energy due
to the demagnetizing field hd generated by m. The operator hd : m 7→ hd[m] provides, for
every m ∈ L2(R3,R3), the unique solution in L2(R3,R3) of the Maxwell–Ampère equations
of magnetostatics [8, 15,35]:







div b[m] = 0,
curl hd[m] = 0,
b[m] = µ0 (hd[m] + m) ,

(5)

where b[m] denotes the magnetic flux density, and µ0 is the magnetic permeability of vacuum.

Remark 1.1. In what follows we assume that Ω = Ω′ (see, e.g., [25] and [36]). This permits to
simplify the notation and to state the weak-strong uniqueness result in a more elegant form.
Everything we are going to prove still holds in the case Ω ⊂ Ω′. However, slight modifications
may be required depending on the degree of smoothness one agrees to impose to a weak
solution in order to elevate it to the rank of a strong solution (cf. Lemma 1 and Remark 3.1).

1.2. Contributions of the present work: SDLLG in the limit of long times. Already
Zhang, Levy, and Fert [44] observed that in the non-ballistic regime, the time scales
involved in SDLLG (1)–(2) are very different. For the spin accumulation s the characteristic
time scales are of the order of λ2

sf/ (2D0) and λ2
J/ (2D0). Given the typical spatial scales

involved in spintronic applications, these quantities are of the order of picoseconds. On the
other hand, the characteristic time scale for the magnetization dynamics depends on the
inverse of the modulus of the precessional term γ0mε × (heff [mε] + j0sε + f). In typical
spintronic applications, this time scale is of the order of nanoseconds. Therefore, «as long as

one is interested in the magnetization process of the local moments, one can always treat the

spin accumulation in the limit of long times» [44].

Formally, the observations in [44] can be summarized in the claim that as long as the main
interest is in magnetization dynamics, one can forget about the term ∂ts in (1) and focus on
the analysis of the SLLG equation

∂tm = −γ0m × (heff [m] + j0s + f) + αm × ∂tm in Ω × R+,
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with the spin accumulation s satisfying the steady-state equation

div [J (∇s, mχΩ)] −
2D0

λ2
sf

s −
2D0

λ2
J

s × mχΩ = 0 in Ω × R+,

One of the aims of this paper is to turn this observation into a quantitative statement.

For that, one has to rescale the original domain Ω by a scaling factor ℓ to be of size one
(without relabelling) and treat D0/λ2

sf , D0/λ2
J , µBje/e, and D0/ℓ2 as quantities of the same

order. Moreover, we also assume that j0, f , cex/ℓ2 are of the same order and γ0cex/ℓ2 ≪
D0/ℓ2. We introduce the small parameter ε = γ0cex/D0 and note that in typical spintronic
applications ε ≪ 1 is of the order 10−2 . . . 10−4.

After rescaling the time of the system by the order of γ0cex/ℓ2 (see [1, sec. 2.2] for a detailed
analysis), one can rewrite the SDLLG equation (1)–(2) under the form

ε∂tsε = div [J (∇sε, mε)] − γ1sε − γ2sε × mε in Ω × R+, (6)

∂tmε = −mε × (heff [mε] + j0sε + f ε) + αmε × ∂tmε in Ω × R+, (7)

with the spin current given by

J (∇s, m) := D0 [∇s − ββ′(∇s · m) ⊗ m] −
β

2
je ⊗ m. (8)

Here, γ1 and γ2 are positive constants of order one, while ε ≪ 1 is a small parameter. In (6)
and (7), to avoid introducing new notation, we denoted by the very same symbols the rescaled
version of the physical quantities appearing in the SLLG equation (1)–(2).

For the diffusion coefficient D0 ∈ L∞(Ω) we assume, as always, the existence of a positive
constant γ ∈ R+ such that D0(x) > γ for almost all x ∈ Ω. However, without loss of generality
in our arguments, we assume that γ1, γ2 are positive constants.

We note that, formally, if sε → s, mε → m, and ε∂tsε → 0 then we recover the SLLG
equation predicted in [44], i.e.,

∂tm = m × (heff [m] + j0s + f) + αm × ∂tm in Ω × R+, (9)

with the spin accumulation s satisfying the steady-state equation

div [J (∇s, m)] − γ1s − γ2s × m = 0 in Ω × R+, (10)

and the spin current J given by (8).

The main aim of the paper is to show that this is indeed the case, i.e., that in the limit of
long times, the rescaled SDLLG (6)–(7) reduces to the simpler SLLG (9)–(10), in which LLG
is coupled to the nonlinear (but still nonlocal) steady-state equation. The result provides
a solid mathematical ground to the qualitative analysis of Zhang, Levy, and Fert [44] in
the context of magnetic multilayers. Besides, the argument shows the existence (but possibly
nonuniqueness) of global weak solutions of SLLG.

We complete the paper by proving the weak-strong uniqueness of the solutions of the re-
duced SDLLG, i.e., weak solutions coincide with the (unique) strong solution as long as the
latter exists in time. Weak-strong uniqueness results are of particular relevance in the nu-
merical integration of LLG systems. Indeed, available unconditionally convergent integrators
assure that subsequences of the computed discrete solutions converge weakly towards a weak
solution of LLG. Weak-strong uniqueness results guarantee that all these numerical schemes
will converge towards the same limit (even for the full sequence of computed solutions), at
least as long as a strong solution exists. We refer to [3, 6] for some seminal works on the
numerical analysis of plain LLG and to [1, 16] for the analysis of some coupled LLG systems.
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In [2, 38], the observations in [44] are empirically validated through a comparative numeri-
cal analysis of SDLLG and SLLG models: It is underlined how SLLG can be more effective
in describing magnetization dynamics, since it leads to the same experimental results as for
SDLLG, but allows for larger time steps of the numerical integrator.

1.3. State of the art. Many research works contributed to the study of solutions of LLG.
Existence and nonuniqueness of global weak solutions to LLG (2) date back to [5]. In [42]
(see also [43]), the Maxwell–Landau–Lifshitz equation coupled with spin accumulation is
considered, and a suitable regularization procedure is used to obtain the existence of global
weak solutions. For the system we are interested in, the existence (and nonuniqueness) of
global weak solutions is proved in [23] (see also [1]). SDLLG (6)–(7) is a rescaled version of
the three-dimensional model introduced in [23].

The uniqueness of weak solutions depends on the regularity class they belong to. Indeed,
in the class of smooth functions, there exists at most one solution of LLG (see, e.g., [11]).
Therefore, a natural question is whether existing smooth and weak solutions coincide, rather
than coexist, i.e., whether a weak-strong uniqueness result holds for LLG. Such a question is
ubiquitous in the analysis of PDEs since the positive answer given by Leray for the Navier–
Stokes equations [34]. For LLG, weak-strong uniqueness has only been investigated recently.
In [18], weak-strong uniqueness is proved in the simplified setting where Ω = R

3 (i.e., possi-
ble boundary conditions are neglected) and heff consists only of the leading-order exchange
contribution. Despite the simplified setting, the proof already involves much tedious algebra.
In [14], weak-strong uniqueness for the solutions of LLG is obtained for the full relevant 3d
setting. In particular, the analysis accounts for the Dzyaloshinskii–Moriya interaction, which
is the primary mechanism behind the emergence of magnetic skyrmions, as well as for the
demagnetizing field hd from (5). However, no coupling of LLG with other nonlinear PDE
systems is taken into account. In section 4, we show how the approximation argument in [14]
can be used to derive weak-strong uniqueness of solutions of the reduced SLLG.

From the above discussion, there emerges the need for regularity results for LLG. In that
regard, we recall that LLG is intimately related to the harmonic map heat flow from Ω into
S

2 and stationary harmonic maps, for which one cannot expect to have general regularity
results in dimensions higher than two [37]. For sufficiently small initial data, there exists a
(unique) strong solution which is global in time [11,20], whereas for general initial data, even
in 2d, solutions may develop finitely many point singularities in finite time [26]. In [25], the
authors prove the existence of global smooth solutions of the spin-polarized transport equation
(SDLLG) in dimension two for small initial data. For general dimensions, partial regularity
has been investigated in [31,33,41] for LLG, and, more recently, in [36] for SDLLG.

1.4. Outline. The paper is organized as follows. In section 2, we state our main results:
Theorem 1 concerns the analysis of SDLLG in the limit of long times, whereas Theorem 2
states the weak-strong uniqueness result for the limiting equation. The proofs of Theorems 1
and 2 are given in sections 3 and 4, respectively.

1.5. Notation. For Ω ⊂ R
3 open and bounded, we denote by H1(Ω)∗ the dual space of

H1(Ω) and by 〈·, ·〉Ω the corresponding duality pairing, understood in the sense of the Gelfand
triple H1(Ω) ⊂ L2(Ω) ⊂ H1(Ω)∗. In particular, if u, v ∈ L2(Ω), then 〈u, v〉Ω denotes the
usual inner product in L2(Ω) and ‖ · ‖Ω is the induced L2(Ω) norm. Vector-valued functions
are denoted in boldface, but we do not embolden the function spaces they belong to; the
context will clarify what we mean. Instead, we use the symbol H1(Ω, S2) to denote the metric
subspace of H1(Ω) consisting of S

2-valued functions. When dealing with time-dependent
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vector fields u : Ω × R+ → R
3, we will often use the symbol u(t) to denote the section

u(·, t) : x ∈ Ω 7→ u(x, t) ∈ R
3; again, the context will clarify the meaning. Finally, for every

T ∈ R+ we set ΩT := Ω × (0, T ).

2. Statement of main results

We recall the definition of a global weak solution of the SDLLG system (6)–(7) as given
in [1,23], where also existence results are shown. The definition naturally extends the notion
of global weak solution of LLG introduced in [5]. To simplify the notation, we neglect the
contributions from crystalline anisotropy and the external applied field f . It is straightforward
to include them in the analysis, and details are left to the reader.

Definition 1. Let Ω ⊂ R
3 be a bounded domain, m∗ ∈ H1(Ω, S2) and s∗ ∈ H1(Ω). For ε > 0,

the pair (mε, sε) ∈ L∞(R+, H1(Ω, S2)) × L∞(R+, L2(Ω)) is called a global weak solution of

the SDLLG system (6)–(7) if for every T > 0 the following properties (i)–(v) are satisfied:

(i) mε ∈ H1(ΩT , S2) and mε(0) = m∗ in the sense of traces;

(ii) sε ∈ L2(R+, H1(Ω)), ∂tsε ∈ L2(R+, H1(Ω)∗), and sε(0) = s∗ in the sense of traces;

(iii) for every ϕ ∈ H1(ΩT ), there holds
∫ T

0
〈∂tmε, ϕ〉Ω =

∫ T

0
α〈∂tmε, ϕ × mε〉Ω + cex 〈∇mε, ∇(ϕ × mε)〉Ω

−µ0

∫ T

0
〈hd[mε], ϕ × mε〉Ω −

∫ T

0
j0〈sε, ϕ × mε〉Ω; (11)

(iv) for all ϕ ∈ L2(R+, H1(Ω)), there holds

ε

∫ T

0
〈∂tsε, ϕ〉Ω = −

∫ T

0
〈J (∇sε, mε) , ∇ϕ〉Ω − γ1

∫ T

0
〈sε, ϕ〉Ω

−γ2

∫ T

0
〈sε × mε, ϕ〉Ω −

β

2

∫ T

0

∫

∂Ω
(mε · ϕ)(je · n), (12)

where je ∈ L2(R+, H1(Ω)) is a prescribed current and J is given by (8);
(v) the following energy inequality holds:

FΩ (mε (T )) + α

∫ T

0
‖∂tmε‖2

Ω 6 FΩ(m∗) +

∫ T

0
〈∂tmε, j0sε〉Ω, (13a)

with

FΩ (mε (T )) =
cex

2

∫

Ω
|∇mε|2 −

µ0

2

∫

Ω
hd [mεχΩ] · mε.

Remark 2.1. If (mε, sε) is a weak solution of SDLLG, then standard results guarantee that
mε ∈ C(0, T ; L2(Ω)) and sε ∈ C(0, T ; L2(Ω)), cf., e.g., [19, Section 5.9.2, Theorems 2 and 3].

Remark 2.2. Since the seminal paper [5], the definition of global weak solutions of LLG
includes the energy requirement (v), which even holds with equality for strong solutions of
LLG. However, in the definition of weak solutions of SDLLG given in [23], the condition (v)
has been omitted. It was later shown in [1, Thm. 24] that this requirement can be satisfied.

Remark 2.3. Here ∇s = (∂isj)3
i,j=1 stands for the matrix whose columns are the gradients

of the components of s, i.e., the transposed of the Jacobian matrix of s. In our notation,
the Jacobian matrix is thus denoted by ∇⊤s. The same remark applies to ∇m. The vector
div operator acts on the columns of ∇s: If A : Ω → R

3×3 is a matrix-valued function, then
div A =

∑3
i=1 div (Aei)ei, with (ei)

3
i=1 the canonical basis of R

3, is the vector having for
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components the scalar divergence of the columns of A. In particular, div ∇s = ∆s. Also, if
ϕ : Ω → R

3 is a vector field, then

div A · ϕ =
3
∑

i=1

ϕidiv (Aei) =
3
∑

i=1

[div (ϕiAei) − ∇ϕi · Aei] = div (Aϕ) − A:∇ϕ. (14)

According to the divergence theorem, this leads to
∫

Ω
div A · ϕ =

∫

∂Ω
Aϕ · n −

∫

Ω
A:∇ϕ. (15)

From the previous considerations, it is clear that (12) is the natural weak formulation of (6).
Indeed, applying (15) and (14) to (8), we have

∫

Ω
div [(∇s · m) ⊗ m] · ϕ = −

∫

Ω
(∇s · m) ⊗ m:∇ϕ +

∫

∂Ω
((∇s · m) ⊗ m)ϕ · n

and the last integrand gives

((∇s · m) ⊗ m)ϕ · n = (m · ϕ)(∇s · m) · n = (m · ϕ)(∂ns · m) = 0 on ∂Ω .

Similarly, integration by parts of the term div (je ⊗ m) · ϕ gives the boundary term

(je ⊗ m)ϕ · n = (m · ϕ)(je · n).

For future reference, we collect here the mathematical assumptions on the physical param-
eters of the SDLLG system (11)–(12) that will be assumed throughout the paper:

(H1)

Assumptions on the physical parameters of the system. In what follows, we assume
that α, cex, j0, µ0 are positive constants (cf. (11)). Also, we assume that D0 ∈
L∞(Ω) as well as the existence of a positive constant γ ∈ R+ such that D0(x) > γ
for almost all x ∈ Ω. The coefficients γ1, γ2 are assumed to be positive constants
(cf. (12)). Finally, we assume that 0 < β, β′ < 1 (cf. (8)).

Our first contribution is the following result concerning the behavior of the spin transport
equation in the limit ε → 0. For the sake of clarity, we will often write the equations in strong
form, although their weak counterpart is meant.

Theorem 1. Let Ω ⊂ R
3 be a bounded Lipschitz domain, and assume (H1). For every ε > 0,

let (mε, sε) ∈ L∞(R+, H1(Ω, S2)) × L∞(R+, L2(Ω)) be a weak solution of the SDLLG system

(11)–(12). Then, there exists a vector field m0 ∈ L2(R+, H1(Ω, S2)) such that

mε ⇀ m0 weakly in L2
loc(R+, H1(Ω, S2)),

and m0 ∈ H1(ΩT , S2) for every T > 0. Moreover, the vector field m0 satisfies the SLLG
equation

∂tm0 = −m0 × (heff [m0] + j0Hs[m0] + f) + αm0 × ∂tm0 in Ω × R+, (16)

with
{

m0(0) = m∗(x) in Ω,
∂nm0 = 0 on ∂Ω × R+.

Here, Hs : m ∈ H1(Ω, S2) 7→ Hs[m] ∈ H1(Ω,R3) denotes the nonlinear operator which

maps every m ∈ H1(Ω, S2) to the unique solution s := Hs[m] ∈ H1(Ω,R3) of the stationary

spin-diffusion equation

− div [J (∇s, m)] + γ1s + γ2s × m = 0 in Ω, subject to ∂ns = 0 on ∂Ω. (17)
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We have written the reduced equations (16)–(17) in strong form to improve the readability
(their weak formulation is immediate to derive). As for the system (6)–(7), uniqueness of
weak solutions is, in general, out of the question. In fact, when je ≡ 0, the system SLLG
reduces to the classical LLG equation for which possible nonuniqueness has been shown in [5].

In the statement of Theorem 1, we assumed that Ω is a Lipschitz domain. Our second
contribution is the following weak-strong uniqueness result, for which higher regularity of the
domain Ω, as well as regularity assumptions on the diffusion coefficient D0 become essential.

Theorem 2. Let Ω ⊂ R
3 be a bounded domain with a smooth boundary, and assume that

(H1) holds with D0 ∈ C∞(Ω). Let m∗ ∈ C∞(Ω, S2) and T > 0. Suppose that m1, m2 ∈
L∞(R+, H1(Ω, S2)) are two global weak solutions of (16). If m1 ∈ C∞(ΩT , S2), then

m1 ≡ m2 a.e. in ΩT .

Remark 2.4. A closer look to the proof of Theorem 2 shows that it is sufficient to assume
m∗ ∈ C3(Ω, S2), D0 ∈ C3(Ω), and m1 ∈ C3(ΩT , S2), but we do not dwell on this. Also, we
provide a proof of the weak-strong uniqueness result in a more general form (see section 4.2).

In the proof of Theorems 1 and 2 we will make use of some properties of the demagnetizing
field operator hd that we recall here (cf. [15]). If Ω is a bounded domain, m ∈ L2(Ω,R3), and
hd[mχΩ] ∈ L2(R3,R3) is a solution of the Maxwell–Ampère equations (5) then, by Poincaré’s
lemma, hd[mχΩ] = ∇vm, where vm is the unique solution in H1(R3) of the Poisson’s equation

− ∆vm = div (mχΩ) in R
3. (18)

Therefore, the demagnetizing field can be described as the map which to every magnetization
m ∈ L2(R3,R3) associates the distributional gradient of the unique solution of (18) in H1(R3).
It is easily seen that the map −hd : m ∈ L2(Ω,R3) 7→ −∇vm ∈ L2(R3,R3) defines a self-
adjoint and positive-definite bounded linear operator from L2(R3,R3) into itself:

−

∫

Ω
hd[m1χΩ] · m2 = −

∫

Ω
hd[m2χΩ] · m1 (19)

and

−

∫

Ω
hd[m1χΩ] · m1 =

∫

R3

|hd[m1χΩ]|2 6

∫

Ω
|m1|2 (20)

for every m1, m2 ∈ L2(Ω,R3). Is the constant in the last inequality equal to one?

3. From SDLLG to SLLG: Proof of Theorem 1

For convenience, we split the proof in three steps.

Step 1 (Uniform estimates). For T > 0, we test (12) against ϕ = sε to obtain

ε

∫ T

0
〈∂tsε, sε〉 = −

∫ T

0

∫

Ω
J (∇sε, mε) :∇sε − γ1

∫ T

0
‖sε‖2

Ω

−
β

2

∫ T

0

∫

∂Ω
(mε · sε)(je · n). (21)

An integration by parts gives
∫ T

0
〈∂tsε, sε〉 =

1

2

∫ T

0
∂t‖sε‖2

Ω =
1

2
‖sε(T )‖2

Ω −
1

2
‖s∗‖2

Ω.
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On the other hand,
∫

Ω
J (∇sε, mε) :∇sε =

∫

Ω
D0 |∇sε|2 − D0ββ′mε ⊗ (∇sε · mε) :∇sε

−
β

2
(je ⊗ mε):∇sε

=

∫

Ω
D0

(

|∇sε|2 − ββ′ |∇sε · mε|2
)

−
β

2
(je ⊗ mε):∇sε. (22)

Recall that ββ′ < 1 (see [44]). Let γβ := (1 − ββ′) > 0 and γ := ess infΩ D0 > 0. With

|∇sε|2 − ββ′ |∇sε · mε|2 > γβ |∇sε|2 , (23)

the estimates (21) and (22) lead to

ε

2
‖sε (T )‖2

Ω + γ1

∫ T

0
‖sε‖2

Ω + γγβ

∫ T

0
‖∇sε‖2

Ω

6
ε

2
‖s∗‖2

Ω +
β

2

∫ T

0

∫

Ω
(je ⊗ mε):∇sε −

β

2

∫ T

0

∫

∂Ω
(mε · sε)(je · n)

6
ε

2
‖s∗‖2

Ω +
β

2

∫ T

0
‖je‖Ω ‖∇sε‖Ω −

β

2

∫ T

0

∫

∂Ω
(mε · sε)(je · n), (24)

The continuous embedding of H1(Ω) into L2(∂Ω) implies the existence of δ > 0 such that (we
use Young’s inequality)

ε ‖sε (T )‖2
Ω + γ1‖sε‖2

ΩT
+ cδ

∫ T

0
‖∇sε‖2

Ω 6 ε‖s∗‖2
Ω + δ

(

‖je‖2
Ω×R

+
+ ‖je‖2

∂Ω×R+

)

(25)

for some constant cδ > 0 which depends only on δ, β, γ, γβ, and Ω. Taking the supremum over
T > 0, we infer that

γ1‖sε‖2
Ω×R+

+ cδ

∫

R+

‖∇sε‖2
Ω 6 ε‖s∗‖2

Ω + δ
(

‖je‖2
Ω×R

+
+ ‖je‖2

∂Ω×R+

)

. (26)

Therefore, (sε) is uniformly bounded in L2(R+, H1(Ω)).

Step 2 (The steady-state limit). The uniform bound on (sε) implies the existence of a (not
relabeled) subsequence (sε) in L2(R+; H1(Ω)) such that sε ⇀ s0 weakly in L2(R+, H1(Ω)) as
ε → 0. In particular, for every T > 0, we have sε ⇀ s0 weakly in L2(ΩT ,R3) as ε → 0. Next,
for every ϕ ∈ C∞(ΩT ,R3), equation (12) reads, in expanded form, as

∫

ΩT

J (∇sε, mε) :∇ϕ + γ1

∫

ΩT

sε · ϕ + γ2

∫

ΩT

(sε × mε) · ϕ

+
β

2

∫ T

0

∫

∂Ω
(mε · ϕ)(je · n)

(12)
= ε

∫ T

0
〈sε, ∂tϕ〉 − ε

[

〈sε(T ), ϕ(T )〉 − 〈s∗, ϕ(0)〉
]

(27)

with
∫

Ω
J (∇sε, mε) :∇ϕ

(8)
=

∫

Ω
D0 (∇sε:∇ϕ − ββ′ (∇sε · mε) ⊗ mε : ∇ϕ)

−
β

2

∫

Ω
(je ⊗ mε):∇ϕ. (28)

Now, we use the energy inequality (13a). By Young’s inequality, we can absorb a part of
|〈∂tmε, sε〉| into the left-hand side of (13a). With positive constants α0, α1 > 0, we find that

FΩ (mε (T )) + α0

∫ T

0
‖∂tmε‖2

Ω

(13a)

6 FΩ(m∗) + α1‖sε‖2
Ω×R+

. (29)
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Thus, from the uniform bound (26) on ‖sε‖2
Ω×R+

and (20), we infer a uniform bound on the

family (mε) in L∞(R+, H1(Ω, S2)), as well as a uniform bound on (∂tmε) in L2(R+, L2(Ω)).
By the Aubin–Lions–Simon lemma, there hence exists m0 ∈ L∞(R+, H1(Ω, S2)) such that,
up to a subsequence,

mε → m0 strongly in C0(0, T ; L2(Ω, S2)), (30)

∂tmε ⇀ ∂tm0 weakly in L2(R+, L2(Ω)). (31)

In particular, mε → m0 strongly in L2(ΩT ), from which it follows that mε ⊗ mε → m0 ⊗ m0

strongly in L2(ΩT ). Indeed, |mε| = 1 = |m0| a.e. in ΩT guarantees that

|mε ⊗ mε − m0 ⊗ m0| 6 |mε ⊗ (mε − m0)| + |(mε − m0) ⊗ m0|

6 2|mε − m0|. (32)

Hence, for every ϕ ∈ C∞(ΩT ,R3), we have
∫ T

0
(J (∇sε, mε) , ∇ϕ)Ω →

∫ T

0
(J (∇s0, m0) , ∇ϕ)Ω . (33)

Overall, using that mε ⇀ m0 weakly in L2(0, T ; L2(∂Ω)), we obtain

− lim
ε→0

ε (sε (T ) , ϕ (T ))Ω

(27)
=

∫ T

0
(J (∇s0, m0) , ∇ϕ)Ω +

∫ T

0
(γ1s0 + γ2s0 × m0, ϕ)Ω

+
β

2

∫ T

0

∫

∂Ω
(m0 · ϕ)(je · n), (34)

since limε→0
∫ T

0 〈sε, ∂tϕ〉 =
∫ T

0 〈s0, ∂tϕ〉.

It remains to compute the limit on the left-hand side of (34). To this end, we observe that
(25) leads to ‖sε (T )‖2

Ω 6 ‖s∗‖2
Ω + ε−1δ(‖je‖2

Ω×R
+

+ ‖je‖2
∂Ω×R+

). This gives the estimate

ε ‖sε (T )‖Ω 6

[

ε2‖s∗‖2
Ω + εδ

(

‖je‖2
Ω×R

+
+ ‖je‖2

∂Ω×R+

)]
1

2 , (35)

from which it follows that

ε |(sε (T ) , ϕ (T ))Ω| 6 ε ‖sε (T )‖Ω ‖ϕ (T )‖Ω → 0.

Summarizing, for every ϕ ∈ C∞(ΩT ,R3), the family (sε, mε)ε∈R+
converges, for ε → 0, to a

solution of the equation
∫ T

0
(J (∇s0, m0) , ∇ϕ)Ω +

∫ T

0
(γ1s0 + γ2s0 × m0, ϕ)Ω

+
β

2

∫ T

0

∫

∂Ω
(m0 · ϕ)(je · n) = 0. (36)

By density, the previous relation holds for every ϕ ∈ L2(R+, H1(Ω)). This gives the limit
equation (17).

Finally, (16) follows by a standard application of the convergence relations (30) and (31)
to the weak formulation of LLG given in (11).

Step 3 (Unique solvability of the limit spin diffusion equation (17). The proof is
completed as soon as we show that for every m ∈ H1(Ω, S2) there exists a unique solution
s := Hs[m] of the stationary spin-diffusion equation (17). This is the content of the next
lemma, which also provides some details on the regularity of the operator Hs that is exploited
in the proof of the weak-strong uniqueness theorem.
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Lemma 1. Let Ω ⊂ R
3 be a bounded Lipschitz domain. For any m ∈ H1(Ω, S2) and J given

by (8), there exists a unique solution s := Hs[m] ∈ H1(Ω,R3) of the stationary spin-diffusion

equation

− div [J (∇s, m)] + γ1s + γ2s × m = 0 in Ω, subject to ∂ns = 0 on ∂Ω. (37)

Moreover, the operator Hs : H1(Ω, S2) → H1(Ω,R3) maps the space Ck+1(Ω, S2) into the

space Ck(Ω̄,R3) provided that D0, je ∈ Ck+1(Ω) and Ω is of class Ck+1,1.

Remark 3.1. Lemma 1 is the only point where a difference arise if one assumes that Ω is
strictly included in Ω′. In this case, since m ≡ 0 in Ω′ \ Ω, a similar result on the regularity
in Ω (but up to the boundary ∂Ω) of the solutions of (37) cannot be inferred due to the
jump discontinuity of the m-dependent coefficients. This is the reason why, when dealing
with partial regularity results for weak solutions of the SDLLG equation, one assumes that
Ω = Ω′ (cf. [25, 36]). That said, everything we state still works in the case Ω ⊂ Ω′ as soon
as one agrees that strong solutions have a smooth induced spin accumulation on the interface
∂Ω ∩ Ω′.

Proof. First, we note that the spin-diffusion equation can be rearranged in a more convenient
form. The weak formulation of (17) gives the relation

∫

Ω
D0 [∇s − ββ′(∇s · m) ⊗ m] :∇ϕ +

∫

Ω
(γ1s + γ2s × m) · ϕ

= −
β

2
〈div (je ⊗ m), ϕ〉Ω (38)

for every ϕ ∈ H1(Ω). We observe that

D0 [∇s − ββ′(∇s · m) ⊗ m] :∇ϕ = D0

[

∇⊤s − ββ′(m ⊗ m)∇⊤s
]

:∇⊤ϕ

= D0

[

(I − ββ′(m ⊗ m)) ∇⊤s
]

:∇⊤ϕ. (39)

Therefore, (17) can be written as

−
3
∑

i=1

∂i (D0 (I − ββ′(m ⊗ m)) ∂is) + γ1s + γ2s × m = −
β

2
div (je ⊗ m). (40)

For every ξ ∈ R
3, it holds that

[I − ββ′(m ⊗ m)]ξ · ξ = |ξ|2 − ββ′(m · ξ)2 = (1 − ββ′)|ξ|2 + ββ′|ξ × m|2 . (41)

Therefore, the matrix Am := D0[I − ββ′(m ⊗ m)] is uniformly positive definite, i.e.,

Am(x)ξ · ξ > γ(1 − ββ′)|ξ|2 for all ξ ∈ R
3 (42)

with γ := ess infΩ D0 > 0. Hence, if we set fm := −(β/2)div (je ⊗ m) and denote by Km

the matrix in R
3×3 such that Kmη = γ1η + γ2η × m for every η ∈ R

3, we can rearrange (40)
into the form of a strongly elliptic system:

−
3
∑

i=1

∂i(Am∂is) + Kms = fm. (43)

Note that Kmη · η > 0 for every η ∈ R
3. Therefore, the bilinear form on the left-hand

side of (43) is uniformly elliptic in the sense of the Lax–Milgram lemma. It follows that, for
every m ∈ H1(Ω, S2), there exists a unique sm ∈ H1(Ω) that satisfies the elliptic system
(43) and, therefore, (38). Moreover, by elliptic regularity [32, Thm. 4.18, p. 137], we obtain
sm ∈ Hk+2(Ω) provided that Am, Km ∈ Ck,1(Ω) and fm ∈ Hk(Ω). Thus, if m, je ∈ Ck+1(Ω)
then fm ∈ Ck(Ω) and sm ∈ Hk+2(Ω). Eventually, by Morrey’s inequality in dimension three
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[30, Thm. 12.55 p. 384], we conclude that sm ∈ Ck(Ω) provided that m, je, D0 ∈ Ck+1(Ω).
This completes the proof. �

4. Weak-Strong uniqueness of solutions (proof of Theorem 2)

4.1. A regularity result. The proof of the weak-strong uniqueness of the solutions of LLG
is given in section 4.2. Our argument allows us to obtain weak-strong uniqueness for a class
of nonlinearities more general than that one introduced by Hs. A precise definition of the
type of nonlinearities covered by our result is given in the next section and is motived by the
following result.

Lemma 2. For m1 ∈ C2(Ω, S2) and m2 ∈ H1(Ω, S2), the following estimate holds:

‖Hs[m1] − Hs[m2]‖2
H1(Ω) 6 c2

L

(

‖Hs[m1]‖2
C1(Ω)

+ ‖je‖
C0(Ω)

)

‖m1 − m2‖2
H1(Ω), (44)

with c2
L depending only on D0, β, β′, γ1, γ2, and Ω.

Proof. With s1 := Hs[m1] and s2 := Hs[m2], the following relations hold in a weak sense:

−div [D0∇s1] +ββ′div [D0(∇s1 · m1) ⊗ m1]

+ γ1s1 + γ2s1 × m1 = −
β

2
div (je ⊗ m1) , (45)

−div [D0∇s2] +ββ′div [D0(∇s2 · m2) ⊗ m2]

+ γ1s2 + γ2s2 × m2 = −
β

2
div (je ⊗ m2) . (46)

We recall that the div operator acts on columns. In a weak sense, it follows that

− div (D0∇(s1 − s2)) + ββ′div [D0((∇s1 · m1) ⊗ m1 − (∇s2 · m2) ⊗ m2)]

+ γ1(s1 − s2) + γ2(s1 × m1 − s2 × m2) = −
β

2
div [je ⊗ (m1 − m2)]. (47)

We note that s1 × m1 − s2 × m2 = s1 × (m1 − m2) + (s1 − s2) × m2, where the last term
disappears when dot multiplied by (s1 − s2). Hence, we have

∫

Ω
|[s1 × m1 − s2 × m2] · (s1 − s2)| =

∫

Ω
|s1 · [(m1 − m2) × (s1 − s2)]|

6 ‖s1‖C(Ω̄)‖m1 − m2‖Ω‖s1 − s2‖Ω

6
‖s1‖C(Ω̄)

2δ2
‖m1 − m2‖2

Ω +
δ2

2
‖s1 − s2‖2

Ω. (48)

Also, we have

[(∇s1 · m1) ⊗ m1 − (∇s2 · m2) ⊗ m2]⊤ = (m1 ⊗ m1)∇⊤s1 − (m2 ⊗ m2)∇⊤s2

= ((m1 − m2) ⊗ m1)∇⊤s1 + (m2 ⊗ m1)∇⊤s1 − (m2 ⊗ m2)∇⊤s2

= ((m1 − m2) ⊗ m1)∇⊤s1 + (m2 ⊗ (m1 − m2))∇⊤s1 + (m2 ⊗ m2)∇⊤(s1 − s2). (49)

Multiplying (49) by ϕ := s1 − s2 and applying the Young inequality shows for any δ > 0 that

|(∇s1 · m1) ⊗ m1 − (∇s2 · m2) ⊗ m2]:∇(s1 − s2)|

6 2 ‖∇s1‖C(Ω̄) |m1 − m2| |∇(s1 − s2)| + |∇(s1 − s2)|2

6
‖∇s1‖2

C(Ω̄)

δ2
|m1 − m2|2 + (1 + δ2) |∇(s1 − s2)|2 . (50)
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It follows that

|∇(s1 − s2)|2 − ββ′[(∇s1 · m1) ⊗ m1 − (∇s2 · m2) ⊗ m2]:∇(s1 − s2)

> |∇(s1 − s2)|2 −
ββ′

δ2
‖∇s1‖2

C(Ω̄) |m1 − m2|2 − ββ′(1 + δ2) |∇(s1 − s2)|2

= (1 − ββ′(1 + δ2)) |∇(s1 − s2)|2 −
ββ′

δ2
‖∇s1‖2

C(Ω̄) |m1 − m2|2 .

The first term on the right-hand side is positive for δ2 sufficiently small. Also, the following
estimate holds:

|〈div [je ⊗ (m1 − m2)], s1 − s2〉Ω|

6

∫

Ω
|je ⊗ (m1 − m2):∇(s1 − s2)| +

∫

∂Ω
|(je · n)(m1 − m2) · (s1 − s2)|

6 ‖je‖C(Ω̄)‖m1 − m2‖Ω ‖∇(s1 − s2)‖Ω + ‖je‖C(Ω̄)‖m1 − m2‖∂Ω‖s1 − s2‖∂Ω

6
‖je‖2

C(Ω̄)

δ2
‖m1 − m2‖2

H1(Ω) + c2
∂Ωδ2‖s1 − s2‖2

H1(Ω)

for some positive constant c2
∂Ω arising from the continuity of the trace operator.

Next, we observe that equation (47) gives
∫

Ω
D0

(

|∇(s1 − s2)|2 − ββ′[(∇s1 · m1) ⊗ m1 − (∇s2 · m2) ⊗ m2]:∇(s1 − s2)
)

+ γ1‖s1 − s2‖2
Ω + γ2

∫

Ω
s1 · [(m1 − m2) × (s1 − s2)]

= −
β

2
〈div [je ⊗ (m1 − m2)], s1 − s2〉 .

Taking into account estimates (48) and (50) and recalling that infΩ D0 > γ,

γ
(

1 − ββ′(1 + δ2)
)

‖∇(s1 − s2)‖2
Ω − ‖D0‖C(Ω̄)

ββ′

δ2
‖∇s1‖2

C(Ω̄) ‖m1 − m2‖2
Ω + γ1‖s1 − s2‖2

Ω

6
β

2

[

‖je‖2
C(Ω̄)

δ2
‖m1 − m2‖2

H1(Ω) + c2
∂Ωδ2‖s1 − s2‖2

H1(Ω)

]

+ |γ2|

[

‖s1‖2
C(Ω̄)

2δ2
‖m1 − m2‖2

Ω +
δ2

2
‖s1 − s2‖2

Ω

]

. (51)

Collecting the terms in the previous expression, we have
[

γ
(

1 − ββ′(1 + δ2)
)

− δ2 β

2
c2

∂Ω

]

‖∇(s1 − s2)‖2
Ω +

(

γ1 − δ2
(

β

2
c2

∂Ω + |γ2|

))

‖s1 − s2‖2
Ω

6
1

δ2

(

|γ2|‖s1‖2
C(Ω̄)

2
+ ‖D0‖C(Ω̄)ββ′ ‖∇s1‖2

C(Ω̄) +
β

2
|je|2∞

)

‖m1 − m2‖2
H1(Ω). (52)

Since 0 < ββ′ < 1, there exists δ > 0 such that

‖s1 − s2‖2
H1(Ω) 6 c2

L

(

‖s1‖2
C(Ω̄)

+ ‖∇s1‖2
C(Ω̄) + ‖je‖2

C(Ω̄)

)

‖m1 − m2‖2
H1(Ω) (53)

with c2
L depending only on D0, β, β′, γ1, γ2, and c∂Ω. This concludes the proof. �
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4.2. Weak-strong uniqueness (energy estimate). Our proof of the weak-strong unique-
ness of solutions of LLG relies on Lemma 3 stated below. Our argument permits us to prove a
more general form of the weak-strong uniqueness result that we explain now. First, we deduce
from the self-adjointness of hd (cf. (19)) that

1

2

∫ T

0
∂t 〈m, hd[m]〉Ω =

∫ T

0
〈∂tm, hd[m]〉Ω . (54)

Hence, integrating by parts (in time) the energy inequality (13a), we infer that weak solutions
of SLLG (16) satisfy, for every T > 0, the following form of the energy inequality:

E [m](T ) :=
cex

2
‖∇m (T )‖2

Ω +

∫ T

0
α‖∂tm‖2

Ω

6
cex

2
‖∇m∗‖2

Ω +

∫ T

0
〈∂tm, µ0hd[m] + j0Hs[m]〉Ω . (55)

Second, due to Lemma 2 and (20), we know that if m1 ∈ C2(Ω, S2) and m2 ∈ H1(Ω, S2),
then the nonlinear operator π[m] := µ0hd[m]+j0Hs[m] satisfies the Lipschitz-type condition

‖π[m1] − π[m2]‖2
L2(Ω) 6 c2

π‖m1 − m2‖2
H1(Ω). (56)

We stress the fact that here cπ may depend on the smooth vector field m1 (other than the
physical parameters of the system) and, therefore, condition (56) is weaker than the classical
Lipschitz condition.

Our proof of weak-strong uniqueness works in this more general setting. Therefore, for the
rest of the paper, we will assume that our LLG equation has the more general form

∂tm = −m × K[m] (57)

with K[m] := cex∆m + π[m] − α∂tm, and π : H1(Ω, S2) → L2(Ω,R3) a nonlinear operator
satisfying the following two properties:

(a) The operator π maps C∞(Ω, S2) into C∞(Ω,R3).

(b) For every m1 ∈ C∞(Ω, S2) and m2 ∈ H1(Ω, S2) the Lipschitz-type condition (56) holds
for some cπ which may depend on m1 but not on m2.

It is important to stress that condition (56) is not symmetric in m1 and m2 because of the
special role played by the smooth vector field m1.

It has been already pointed out that the operator µ0hd[m] + j0Hs satisfies (b). But it also
satisfies (a): this is a consequence of Lemma 2 for what concerns Hs, and of [14, Lemma 8] for
what concerns hd. Other than for SLLG, the present framework covers in particular the case
in which, as in (4), the effective field comprises an external applied field f and the crystal
anisotropy contribution κ∇φan(m).

Generally speaking, the precise form of the LLG equation depends on the type of inter-
actions involved in the magnetic system. Such interactions are accounted for through the
effective field heff . In its basic form, the effective field takes into account exchange interac-
tions only, and further interactions can be described by suitable linear/nonlinear/local/non-
local terms into the effective field. In that respect, the current setting promotes a unified
treatment of weak-strong uniqueness results for LLG.

We give the following definition.

Definition 2. Let Ω ⊂ R
3 be a bounded domain, and let π : H1(Ω, S2) → L2(Ω,R3) be a

nonlinear operator satisfying the properties (a) and (b) above. Let m∗ ∈ H1(Ω, S2) be the

initial value of the magnetization at time t = 0. We say that m ∈ L∞(R+, H1(Ω, S2)) is
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a weak solution of the LLG equation (57), if the following properties (i)–(iii) hold for every

T > 0:

(i) m ∈ H1(ΩT , S2) and m(0) = m∗ in the sense of traces,

(ii) for every ϕ ∈ H1(ΩT ),

∫ T

0
〈∂tm, ϕ〉Ω =

∫ T

0
α〈∂tm, ϕ × m〉Ω + cex 〈∇m, ∇(ϕ × m)〉Ω

−

∫ T

0
〈π[m], ϕ × m〉Ω , (58)

(iii) the following energy inequality holds:

E [m](T ) :=
cex

2
‖∇m (T )‖2

Ω +

∫ T

0
α‖∂tm‖2

Ω 6
cex

2
‖∇m∗‖2

Ω +

∫ T

0
〈∂tm, π[m]〉Ω . (59)

We prove Theorem 2 in this more general setting. The main ingredient is contained in the
next result.

Lemma 3. Let m2 be a global weak solution of the LLG equation (in the sense of Definition 2).
Let m1 ∈ C∞(ΩT ∗ , S2) be a strong solution of the LLG on ΩT ∗ for some T ∗ > 0. Set

v := m2 − m1. For a.e. T ∈ R such that 0 6 T < T ∗, it holds that

E [v](T ) 6 −cex

∫ T

0
〈v × ∇K[m1], ∇v〉Ω

+

∫ T

0
〈πm1

[v] − α∂tv, v × K[m1]〉Ω +

∫ T

0
〈∂tv, πm1

[v]〉Ω . (60)

Here, v × ∇K[m1] := (v × ∂1K[m1], v × ∂2K[m1], v × ∂3K[m1]), K[m] := cex∆m + π[m] −
α∂tm, and πm1

[v] := π[m1 + v] − π[m1].

Proof. Note that m2 = m1 + v. Since π is nonlinear, it is convenient to write

π[m1 + v] = π[m1] + πm1
[v] . (61)

By the energy inequality (59) as well as the boundary condition ∂nm1 = 0 on ∂Ω, it holds
for every T > 0 that

E [v](T ) = E [m1](T ) + E [m2](T ) − cex 〈∇m1 (T ) , ∇m2 (T )〉Ω − 2

∫ T

0
α〈∂tm1, ∂tm2〉Ω

(59)

6 −cex 〈∇m1 (T ) , ∇m2 (T )〉Ω + cex ‖∇m∗‖2
Ω +

∫ T

0
〈∂tm1, π[m1]〉Ω

+ 〈∂tm2, π[m2]〉Ω − 2

∫ T

0
α〈∂tm1, ∂tm2〉Ω. (62)

Let 0 < T < T ∗. Since m2 ∈ H1(ΩT , S2), there exists a family of vector-valued functions
mε ∈ C∞(ΩT ,R3) such that mε → m2 strongly in H1(ΩT ,R3) as ε → 0. Since both m1 and
mε are smooth, integration by parts yields that

cex 〈∆∂tm1, mε〉Ω = −cex 〈∇∂tm1, ∇mε〉Ω

= b1,ε + cex 〈∂tm1, ∆mε〉Ω . (63)
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where b1,ε := −cex〈∂tm1, ∂nmε〉∂Ω. Hence, the first two terms on the right-hand side of (62)
read as

cex

∫ T

0
∂t 〈∆m1, m2〉Ω = −cex 〈∇m1 (T ) , ∇m2 (T )〉Ω + cex ‖∇m∗‖2

Ω

=

∫ T

0
〈∂tm2, cex∆m1〉Ω + cex lim

ε→0

∫ T

0
〈∆∂tm1, mε〉Ω

(63)
=

∫ T

0
〈∂tm2, cex∆m1〉Ω + lim

ε→0

∫ T

0
(〈∂tm1, cex∆mε〉Ω + b1,ε) .

Thus, we can rearrange (62) to obtain

E [v](T )
(62)

6

∫ T

0
〈∂tm2, cex∆m1〉Ω + lim

ε→0

∫ T

0
(〈∂tm1, cex∆mε〉Ω + b1,ε)

+

∫ T

0
〈∂tm1, π[m1]〉Ω + 〈∂tm2, π[m2]〉Ω − 2

∫ T

0
α〈∂tm1, α∂tm2〉Ω. (64)

Collecting the terms in the previous expression, we arrive at

E [v](T )
(64)

6 lim
ε→0

∫ T

0
(〈∂tm1, cex∆mε + π[m1] − α∂tm2〉Ω + b1,ε)

+

∫ T

0
〈∂tm2, cex∆m1 + π[m2] − α∂tm1〉Ω . (65)

Define K̃[mε] := cex∆mε + π[m2] − α∂tm2, where the tilde script is used to emphasize that
the Laplacian acts on mε and not on m2. Since ∂tm1 satisfies the strong form of LLG (57)
with K[m1] = cex∆m1 +π[m1]−α∂tm1 and π[m1] = π[m2]−πm1

[v], the previous estimate
leads to

E [v](T )
(65)

6 lim
ε→0

∫ T

0
(〈∂tm1, cex∆mε + π[m2] − α∂tm2 − πm1

[v]〉Ω + b1,ε)

+

∫ T

0
〈∂tm2, K[m1] + πm1

[v]〉Ω

= lim
ε→0

∫ T

0

( 〈

∂tm1, K̃[mε] − πm1
[v]
〉

Ω + b1,ε

)

+

∫ T

0
〈∂tm2, K[m1] + πm1

[v]〉Ω ,

= lim
ε→0

∫ T

0

(

〈−m1 × K[m1], K̃[mε]〉Ω + 〈∂tm2, K[m1]〉Ω + b1,ε

)

+

∫ T

0
〈∂tv, πm1

[v]〉Ω , (66)

On the other hand, m2 is a weak solution of LLG (58). From the relation

cex 〈∇mε, ∇(ϕ × mε)〉Ω = −cex 〈mε × ∆mε, ϕ〉Ω + b2,ε[ϕ], (67)



THE SPIN-DIFFUSION MODEL FOR MICROMAGNETICS IN THE LIMIT OF LONG TIMES 18

where b2,ε[ϕ] := cex〈mε × ∂nmε, ϕ〉∂Ω, we infer that
∫ T

0
〈∂tm2, ϕ〉Ω

(58)
= lim

ε→0

∫ T

0

(

〈α∂tm2, ϕ × mε〉Ω − 〈π[m2], ϕ × mε〉Ω

+ cex 〈∇mε, ∇(ϕ × mε)〉Ω

)

= lim
ε→0

∫ T

0

(

〈mε × (α∂tm2 − cex∆mε − π[m2]) , ϕ〉Ω + b2,ε[ϕ]
)

= lim
ε→0

∫ T

0

(

〈−mε × K̃[mε], ϕ〉Ω + b2,ε[ϕ]
)

. (68)

To further estimate the energy E [v](T ), we use ϕ = K[m1] in (68) and plug the result in
(66). To shorten the notation, we collected the two boundary terms into the term

bε := b1,ε + b2,ε[K[m1]]

= −cex〈∂tm1, ∂nmε〉∂Ω + cex〈mε × ∂nmε, K[m1]〉∂Ω. (69)

With vε := mε − m1 (and observing that vε → v strongly in H1(ΩT ,R3)), we find that

E [v](T )
(66)

6 lim
ε→0

∫ T

0

(

〈−m1 × K[m1], K̃[mε]〉Ω + 〈−mε × K̃[mε], K[m1]〉Ω

+ 〈∂tv, πm1
[v]〉Ω + bε

)

= lim
ε→0

∫ T

0

(

〈−m1 × K[m1], K̃[mε]〉Ω + 〈mε × K[m1], K̃[mε]〉Ω

+ 〈∂tv, πm1
[v]〉Ω + bε

)

= lim
ε→0

∫ T

0

(

〈vε × K[m1], K̃[mε]〉Ω + 〈∂tv, πm1
[v]〉Ω + bε

)

= lim
ε→0

∫ T

0

(

〈vε × K[m1], K̃[mε] − K[m1]〉Ω + 〈∂tv, πm1
[v]〉Ω + bε

)

. (70)

We now expand the quantity K̃[mε] − K[m1]. Since πm1
[v] = π[m2] − π[m1], we have

K̃[mε] − K[m1] = cex∆mε + π[m2] − α∂tm2 − cex∆m1 − π[m1] + α∂tm1

= cex∆vε − α∂tv + πm1
[v].

Summarizing, we have reached the following estimate:

E [v](T )
(70)

6 lim
ε→0

∫ T

0
(〈vε × K[m1], cex∆vε − α∂tv + πm1

[v]〉Ω + bε)

+

∫ T

0
〈∂tv, πm1

[v]〉Ω

= lim
ε→0

∫ T

0
(〈vε × K[m1], cex∆vε〉Ω + bε)

+

∫ T

0
〈v × K[m1], −α∂tv + πm1

[v]〉Ω +

∫ T

0
〈∂tv, πm1

[v]〉Ω . (71)

Now we have to take care of the boundary terms in bε defined in (69). An integration by
parts gives

〈vε × K[m1], cex∆vε〉Ω = −cex 〈∇(vε × K[m1], ∇vε〉Ω + cex

∫

∂Ω
∂nvε · (vε × K[m1]). (72)
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Next, we expand the boundary term in the previous expression. Recalling that ∂nm1 = 0,
we find that

∫

∂Ω
∂nvε · (vε × K[m1]) =

∫

∂Ω
∂nmε · ((mε − m1) × K[m1])

=

∫

∂Ω
K[m1] · (∂nmε × mε) −

∫

∂Ω
K[m1] · (∂nmε × m1)

=

∫

∂Ω
K[m1] · (∂nmε × mε) −

∫

∂Ω
∂nmε · (m1 × K[m1])

(57)
= −

∫

∂Ω
(mε × ∂nmε) · K[m1] +

∫

∂Ω
∂nmε · ∂tm1

(69)
= −bε/cex. (73)

By (72) and (73), we can rewrite (71) into the form

E [v](T )
(71)

6 lim
ε→0

∫ T

0
−cex 〈∇(vε × K[m1], ∇vε〉Ω

+

∫ T

0
〈v × K[m1], −α∂tv + πm1

[v]〉Ω +

∫ T

0
〈∂tv, πm1

[v]〉Ω . (74)

Finally, we observe that, as ε → 0,

〈∇(vε × K[m1], ∇vε〉Ω = 〈vε × ∇K[m1], ∇vε〉Ω → 〈v × ∇K[m1], ∇v〉Ω . (75)

This concludes the proof. �

4.3. Proof of Theorem 2. Thanks to the energy estimate stated in Lemma 3, the weak-
strong uniqueness result follows from a classical argument based on the Gronwall lemma and
the Poincaré inequality. We start by the energy inequality (60). In expanded form, it reads
as follows:

cex

2
‖∇v (T )‖2

Ω +

∫ T

0
α‖∂tv‖2

Ω 6

∫ T

0
〈∂tv, πm1

[v]〉Ω − cex

∫ T

0
〈v × ∇K[m1], ∇v〉Ω (76)

+

∫ T

0
〈v × K[m1], πm1

[v]〉Ω −

∫ T

0
〈v × K[m1], α∂tv〉Ω.

We recall that by hypothesis

‖πm1
[v]‖Ω = ‖π[m1 + v] − π[m1]‖Ω

(56)

6 cπ‖v‖H1(Ω) . (77)

Setting c1 := ‖K[m1]‖
C1(ΩT ), we obtain, for every 0 < δ < 1, the following estimates:

|〈∂tv, πm1
[v]〉Ω| 6

δ2

2
‖∂tv‖2

Ω +
c2

π

2δ2
‖v‖2

Ω +
c2

π

2δ2
‖∇v‖2

Ω , (78)

|〈v × K[m1], α∂tv〉Ω| 6
αδ2

2
‖∂tv‖2

Ω +
c2

1

2αδ2
‖v‖2

Ω,

|〈v × K[m1], πm1
[v]〉Ω| 6 c1cπ‖v‖Ω‖v‖H1(Ω) 6 c1cπ‖v‖2

Ω +
1

2
c1cπ‖∇v‖2

Ω, (79)

|〈v × ∇K[m1], ∇v〉Ω| 6
c1

2
‖v‖2

Ω +
c1

2
‖∇v‖2

Ω . (80)
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We conclude from (76) and the previous bounds that

0 6
cex

2
‖∇v (T )‖2

Ω + αδ

∫ T

0
‖∂tv‖2

Ω

6 c2
(1,π,α,δ)

∫ T

0
‖v‖2

Ω +

(

c1

2
+

c2
π

2δ2
+

1

2
c1cπ

)
∫ T

0
‖∇v‖2

Ω , (81)

with c2
(1,π,α,δ) := c2

π

2δ2 +
c2

1

2αδ2 + c1

2 + c1cπ and α2
δ := α

(

1 − δ2

2

)

− δ2

2 . We assume δ small enough

so that α2
δ > 0. We infer from the Poincaré inequality that

cex

2
‖∇v (T )‖2

Ω + α2
δ

∫ T

0
‖∂tv‖2

Ω 6 c2
(1,π,α,δ)T

2
∫ T

0
‖∂tv‖2

Ω +

(

c1

2
+

c2
π

2δ2
+

1

2
c1cπ

)
∫ T

0
‖∇v‖2

Ω .

(82)
Thus, for any T sufficiently small, say for any T < T∗ < T ∗ with T∗ depending only on
c2

(1,π,α,δ), we have α2
δ > c2

(1,π,α,δ)T
2. Hence,

cex

2
‖∇v (T )‖2

Ω 6

(

c1

2
+

c2
π

2δ2
+

1

2
c1cπ

)
∫ T

0
‖∇v‖2

Ω . (83)

According to the Gronwall lemma, we infer that ‖∇v (T )‖2
Ω = 0 for any T < T∗. But then,

for every T < T∗ relation (82) reduces to

(

α2
δ − c2

(1,π,α,δ)T
2
)

∫ T

0
‖∂tv‖2

Ω 6 0. (84)

This implies that ‖∂tv‖2
Ω = 0 in (0, T∗) and hence m1 ≡ m2 in (0, T∗). Since T∗ depends

essentially only on T ∗ (more precisely, on the C3 norm of the smooth function m1, and
the physical parameters of the problem), we can repeat the argument finitely many times to
conclude that m1 ≡ m2 in (0, T ∗).
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