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Abstract. A mean-field-type limit from stochastic moderately interacting many-particle
systems with singular Riesz potential is performed, leading to nonlocal porous-medium
equations in the whole space. The nonlocality is given by the inverse of a fractional
Laplacian, and the limit equation can be interpreted as a transport equation with a
fractional pressure. The proof is based on Oelschläger’s approach and a priori estimates
for the associated diffusion equations, coming from energy-type and entropy inequalities
as well as parabolic regularity. An existence analysis of the fractional porous-medium
equation is also provided, based on a careful regularization procedure, new variants of
fractional Gagliardo–Nirenberg inequalities, and the div-curl lemma. A consequence of
the mean-field limit estimates is the propagation of chaos property.

1. Introduction

The aim of this paper is to derive and analyze the following nonlocal porous-medium
equation:

(1) ∂tρ = div(ρ∇P ), P = (−∆)−sf(ρ), ρ(0) = ρ0 in R
d,

where 0 < s < 1, d ≥ 2, and f ∈ C1([0,∞)) is a nondecreasing function satisfying f(0) = 0.
This model describes a particle system that evolves according to a continuity equation for
the density ρ(x, t) with velocity v = −∇P . The velocity is assumed to be the gradient
of a potential, which expresses Darcy’s law. The pressure P is related to the density in a
nonlinear and nonlocal way through P = (−∆)−sf(ρ). The nonlocal operator (−∆)−s can
be written as a convolution operator with a singular kernel,

(2) (−∆)−su = K ∗ u, K(x) = cd,−s|x|2s−d, x ∈ R
d,

where cd,−s = Γ(d/2 − s)/(4sπd/2Γ(s)) and Γ denotes the Gamma function [46, Theorem
5].

Date: September 17, 2021.
2000 Mathematics Subject Classification. 35K65, 35R11, 60H10, 60H30.
Key words and phrases. Fractional diffusion, nonlocal porous-medium equation, existence analysis,

mean-field limit, interacting particle systems, propagation of chaos.
The second and third authors have been partially supported by the Austrian Science Fund (FWF),

grants P30000, P33010, F65, and W1245. The fourth author acknowledges support from the Alexander
von Humboldt Foundation. This work has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, ERC Advanced Grant
no. 101018153.

1



2 L. CHEN, A. HOLZINGER, A. JÜNGEL, AND N. ZAMPONI

If s = 0, we recover the porous-medium equation (for nonnegative solutions), while the
case s = 1 was investigated in [10, 19] with f(u) = u for the evolution of the vortex
density in a superconductor. Other applications include particle systems with long-range
interactions and dislocation dynamics as a continuum [48, Sec. 6.2].
Equation (1) was first analyzed in [8] with f(u) = u for nonnegative solutions and in [2]

with f(u) = |u|m−2u (m > 1) for sign-changing solutions. The nonnegative solutions have
the interesting property that they propagate with finite speed, which is not common in
other fractional diffusion models [8, 44]. Equation (1) was probabilistically interpreted in
[38], and it was shown that the probability density of a so-called random flight process is
given by a Barenblatt-type profile. Previous mean-field limits leading to (1) were concerned
with the linear case f(u) = u only; see [18] (using the technique of [40]) and [36] (including
additional diffusion as in (7) below). In [13], equation (1) (with f(u) = u) was derived in
the high-force regime from the Euler–Riesz equations, which can be derived in the mean-
field limit from interacting particle systems [41]. A direct derivation from particle systems
with Lévy noise was proved in [17] for cross-diffusion systems, but still with f(u) = u. Up
to our knowledge, a rigorous derivation of (1) from stochastic interacting particle systems
for general nonlinearities f(u) like power functions is missing in the literature. In this
paper, we fill this gap.

1.1. Problem setting. Equation (1) is derived from an interacting particle system with
N particles, moving in the whole space Rd. Because of the singularity of the integral kernel
and the degeneracy of the nonlinearity, we approximate (1) using three levels. First, we
introduce a parabolic regularization adding a Brownian motion to the particle system with
diffusivity σ ∈ (0, 1) and replacing f by a smooth approximation fσ. Second, we replace
the interaction kernel K by a smooth kernel Kζ with compact support, where ζ > 0.
Third, we consider interaction functions Wβ with β ∈ (0, 1), which approximate the delta
distribution. (We refer to Subsection 1.3 for the precise definitions.)
The particle positions are represented on themicroscopic level by the stochastic processes

XN
i (t) evolving according to

(3)
dXN

i (t) = −∇Kζ ∗ fσ
(

1

N

N∑

j=1, j 6=i

Wβ(X
N
j (t)−XN

i (t))

)
dt+

√
2σdBN

i (t),

XN
i (0) = ξi, i = 1, . . . , N,

where the convolution has to be understood with respect to xi, (B
N
i (t))t≥0 are independent

d-dimensional Brownian motions defined on a filtered probability space (Ω,F ,Ft,P), and
ξi are independent identically distributed random variables in R

d with the same probability
density function ρ0σ (defined in (12) below).
The mean-field-type limit is performed in three steps. First, for fixed (σ, β, ζ), system

(3) is approximated for N → ∞ on the intermediate level by

(4)
dX̄N

i (t) = −∇Kζ ∗ fσ
(
Wβ ∗ ρσ,β,ζ(X̄N

i (t), t)
)
dt+

√
2σdBN

i (t),

X̄N
i (0) = ξi, i = 1, . . . , N,
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where ρσ,β,ζ is the probability density function of X̄N
i and a strong solution to

(5) ∂tρσ,β,ζ − σ∆ρσ,β,ζ = div
(
ρσ,β,ζ∇Kζ ∗ fσ(Wβ ∗ ρσ,β,ζ)

)
, ρσ,β,ζ(0) = ρ0σ in R

d.

System (4) is uncoupled, since X̄N
i depends on N only through the initial datum.

Second, passing to the limit (β, ζ) → 0 in the intermediate system leads on the macro-
scopic level to

(6)
dX̂N

i (t) = −∇K ∗ fσ(ρσ(X̂N
i (t), t))dt+

√
2σdBN

i (t),

X̂N
i (0) = ξi, i = 1, . . . , N,

where ρσ is the density function of X̂N
i and a weak solution to

(7) ∂tρσ = σ∆ρσ + div(ρσ∇(−∆)−sfσ(ρσ)), ρσ(0) = ρ0σ in R
d.

We perform the limits N → ∞ and (β, ζ) → 0 simultaneously. The logarithmic scaling
β ∼ (logN)−µ for some µ > 0 corresponds to the moderately interacting particle regime,
according to the notation of Oelschläger [34], while the smoothing parameter ζ is allowed
to depend algebraically on N , i.e. ζ ∼ N−ν for some ν > 0; see Theorem 2 for details. Our
approach also implies the two-step limit but leading to weak convergence only, compared
to the convergence in expectation obtained in Theorem 2.
Third, the limit σ → 0 is performed on the level of the diffusion equation, based on a

priori estimates uniform in σ and the div-curl lemma.

1.2. State of the art. We already mentioned that the existence of weak solutions to (1)
with f(u) = u was proved first in [8]. The convergence of the weak solution to a self-similar
profile was shown by the same authors in [7]. The convergence becomes exponential, at
least in one space dimension, when adding a confinement potential [9]. Equation (1) with
f(u) = u was identified as the Wasserstein gradient flow of a square fractional Sobolev norm
[30], implying time decay as well as energy and entropy estimates. The Hölder regularity
of solutions to (1) was proved in [6] for f(u) = u and in [25] for f(u) = um−1 and m ≥ 2.
In the literature, related equations have been analyzed too. Equation (1) for f(u) = u

and the limit case s = 1 was shown in [1] to be the Wasserstein gradient flow on the space of
probability measures, leading to the well-posedness of the equation and energy-dissipation
inequalities. The existence of local smooth solutions to the regularized equation (7) are
proved in [14]. The solutions ∂tρ = div(ρm−1∇P ) with P = (−∆)−sρ in R

d propagate with
finite speed if and only if m ≥ 2 [44]. The existence of weak solutions to this equation
with P = (−∆)−s(ρn) and n > 0 is proved in [31] (in bounded domains). While (1) has a
parabolic-elliptic structure, parabolic-parabolic systems have been also investigated. For
instance, the global existence of weak solutions to ∂tρ = div(ρ∇P ) and ∂tP+(−∆)sP = ρβ,
where β > 1, was shown in [5]. In [16], the algebraic decay towards the steady state was
proved in the case β = 2. We also mention that fractional porous-medium equations
of the type ∂tρ + (−∆)s/2f(ρ) = 0 in R

d have been studied in the literature; see, e.g.,
[37]. Compared to (1), this problem has infinite speed of propagation. For a review and
comparison of this model and (1), we refer to [47].
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There is a huge literature concerning mean-field limits leading to diffusion equations, and
the research started already in the 1980s; we refer to the reviews [23, 26] and the classical
works of Sznitman [42, 43]. Oelschläger proved the mean-field limit in weakly interacting
particle systems [33], leading to deterministic nonlinear processes, and moderately interact-
ing particle systems [35], giving porous-medium-type equations with quadratic diffusion.
First investigations of moderate interactions in stochastic particle systems with nonlinear
diffusion coefficients were performed in [27]. The approach of moderate interactions was
extended in [11, 12] to multi-species systems, deriving population cross-diffusion systems.
Reaction-diffusion equations with nonlocal terms were derived in the mean-field limit in
[24]. The large population limit of point measure-valued Markov processes leads to non-
local Lotka–Volterra systems with cross diffusion [22]. Further references can be found in
[36, Sec. 1.3].
Compared to previous works, we consider a singular kernel K and derive a partial differ-

ential equation without Laplace diffusion by taking the limit σ → 0. The authors of [21]
derived the viscous porous-medium equation by starting from a stochastic particle system
with a double convolution structure in the drift term, similar to (4). The main difference to
our work is that (besides different techniques for the existence and regularity of solutions
to the parabolic problems) we consider a singular kernel in one part of the convolution
and a different scaling for the approximating regularized kernel Kζ = Kωζ ∗Wζ , where ωζ

is a W 1,∞(Rd) cutoff function (see Section 1.3 for the exact definition), in comparison to
the interaction scaling Wβ ∗ ρσ,β,ζ . The two different scalings β and ζ allow us to establish
a result, for which the kernel regularization on the particle level does not need to be of
logarithmic type but of power-law type only.

1.3. Main results and key ideas. We impose the following hypotheses:

(H1) Data: Let 0 < s < 1, d ≥ 2.
(H2) ρ0 ∈ L∞(Rd) ∩ L1(Rd) satisfies ρ0 ≥ 0 in R

d and
∫
Rd ρ

0(x)|x|2d/(d−2s)dx <∞.
(H3) Nonlinearity: f ∈ C1([0,∞)) is nondecreasing, f(0) = 0, and u 7→ uf(u) for u > 0

is strictly convex.

Let us discuss these assumptions. We assume that d ≥ 2; the case d = 1 can be treated
if s < 1/2; see [8]. Extending the range of s to s < 0 leads to the fractional (higher-order)
thin-film equation, which is studied in [29]. The case 1 < s < d/2 may be considered too,
since it yields better regularity results; we leave the details to the reader. On the other
hand, the case s ≥ d/2 is more delicate since the multiplier in the definition of (−∆)−s

using Fourier transforms does not define a tempered distribution. The case s = d/2 for
d ≤ 2 (with a logarithmic Riesz kernel) was analyzed in [18]. We need the moment bound
for the initial datum ρ0 to prove the same moment bound for ρσ, which in turn is used
several times, for instance to show the entropy balance and the convergence ρσ → ρ as
σ → 0 in the sense of C0

weak([0, T ];L
1(Rd)). The monotonicity of f and the strict convexity

of u 7→ uf(u) are needed to prove the strong convergence of (ρσ), which then allows us
to identify the limit of (fσ(ρσ)). An example of a function satisfying Hypothesis (H3) is
f(u) = uβ with β ≥ 1.
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Our first main result is concerned with the existence analysis of (1). We write ‖ · ‖p for
the Lp(Rd) norm.

Theorem 1 (Existence of weak solutions to (1)). Let Hypotheses (H1)–(H3) hold. Then
there exists a weak solution ρ ≥ 0 to (1) satisfying (i) the regularity

ρ ∈ L∞(0,∞;L1(Rd) ∩ L∞(Rd)), ∇(−∆)−s/2f(ρ) ∈ L2(0,∞;L2(Rd)),

∂tρ ∈ L2(0,∞;H−1(Rd)),

(ii) the weak formulation

(8)

∫ T

0

〈∂tρ, φ〉dt+
∫ T

0

∫

Rd

ρ∇(−∆)−sf(ρ) · ∇φdxdt = 0

for all φ ∈ L2(0, T ;H1(Rd)) and T > 0, (iii) the initial datum ρ(0) = ρ0 in the sense of
H−1(Rd), and (iv) the following properties for t > 0:

• Mass conservation: ‖ρ(t)‖1 = ‖ρ0‖1,
• Dissipation of the L∞ norm: ‖ρ(t)‖∞ ≤ ‖ρ0‖∞,
• Moment estimate: sup0<t<T

∫
Rd ρ(x, t)|x|2d/(d−2s)dx ≤ C(T ),

• Entropy inequality:
∫

Rd

h(ρ(t))dx+

∫ t

0

∫

Rd

|∇(−∆)−s/2f(ρ)|2dxds ≤
∫

Rd

h(ρ0)dx.

Note that the Hardy–Littlewood–Sobolev-type inequality (68) (see Appendix B) implies
that

‖ρ∇(−∆)−sf(ρ)‖2 = ‖ρ(−∆)−s/2[∇(−∆)−s/2f(ρ)]‖2 ≤ C‖ρ‖d/(2s)‖∇(−∆)−s/2f(ρ)‖2,

such that ρ∇(−∆)−sf(ρ) ∈ L2(Rd), and the weak formulation (8) is defined.
The key ideas of the proof of Theorem 1 are as follows. A priori estimates for strong

solutions ρσ to the regularized equation (7) are derived from mass conservation, the en-
tropy inequality, and energy-type bounds. The energy-type bound allows us to show, for
sufficiently small σ > 0, that the L∞ norm of ρσ is bounded by the L∞ norm of ρ0, up to
some factor depending on the moment bound for ρ0. The existence of a strong solution ρσ
is proved by regularizing (7) in a careful way to deal with the singular kernel. The regular-
ized equation is solved locally in time by Banach’s fixed-point theorem. Entropy estimates
allow us to extend this solution globally in time and to pass to the de-regularization limit.
The second step is the limit σ → 0 in (7). Since the bounds only provide weak convergence
of (a subsequence of) ρσ, the main difficulty is the identification of the nonlinear limit
fσ(ρσ). This is done by applying the div-curl lemma and exploiting the monotonicity of f
and the strict convexity of u 7→ uf(u) [20].
We already mentioned that the existence of local smooth solutions ρσ to (7) has been

proven in [13]. However, we provide an independent proof that allows for global strong
solutions and that yields a priori estimates needed in the mean-field limit.
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Our second main result is concerned with the mean-field-type limit. For this, we need
some definitions. Define

(9) fσ(u) =

∫ u

0

(Γσ ∗ (f ′1[0,∞)))(w)Ξ̃(σw)dw u ∈ R,

where the mollifier Γσ for σ > 0 is given by Γσ(x) = σ−1Γ1(x/σ), and Γ1 ∈ C∞
0 (R) satisfies

Γ1 ≥ 0, ‖Γ1‖1 = 1, while the cutoff function Ξ̃ ∈ C∞
0 (R) satisfies 0 ≤ Ξ̃ ≤ 1 in R and

Ξ̃(x) = 1 for |x| ≤ 1. Then fσ ∈ C∞(R), f ′
σ ≥ 0, fσ(0) = 0, and the derivatives Dkfσ

are bounded and compactly supported for all k ≥ 1. In a similar way, we introduce the
mollifier function Wβ for β > 0 and x ∈ R

d by

(10) Wβ(x) = β−dW1(x/β), W1 ∈ C∞
0 (Rd) is symmetric, W1 ≥ 0, ‖W1‖1 = 1.

Let us define the cutoff version of the singular kernel K by

K̃ζ := Kωζ , where the cut-off function ωζ ∈ W 1,∞(Rd) is such that

0 ≤ ωζ(x) ≤ 1 for x ∈ R
d, ‖∇ωζ‖∞ ≤ 2ζ,(11)

ωζ(x) = 1 for all |x| ≤ ζ−1, ωζ(x) = 0 for all |x| ≥ 2ζ−1.

Then the regularized kernel Kζ is given by

Kζ(x) := K̃ζ ∗Wζ(x) for all x ∈ R
d,

where ζ > 0. Let the cutoff function Ξ ∈ C∞
0 (Rd) satisfy 0 ≤ Ξ ≤ 1 in R

d and Ξ(x) = 1
for |x| ≤ 1. Then we define the regularized initial datum for x ∈ R

d by

(12) ρ0σ(x) = κσ(Wσ ∗ ρ0)(x)Ξ(σx), where κσ =

∫
Rd ρ

0(y)dy∫
Rd(Wσ ∗ ρ0)(y)Ξ(σy)dy

.

This definition guarantees the mass conservation since ‖ρ0σ‖1 = ‖ρ0‖1; see Section 2.1.

Theorem 2 (Error estimate for the stochastic system). Let XN
i and X̂N

i be the solutions
to (3) and (6), respectively. We assume that ζ−2s−1 ≤ C1N

1/4 for some constant C1 > 0.
Let δ ∈ (0, 1/4) and a := min{1, d− 2s} > 0. Then there exist constants ε > 0, depending
on σ and δ, and C2 > 0, depending on σ and T , such that if β−3d−7 ≤ ε logN then

E

(
sup

0<s<T
max

i=1,...,N
|(XN

i − X̂N
i )(s)|

)
≤ C2(β + ζa) → 0 as (N, ζ, β) → (∞, 0, 0).

The theorem is proved by estimating the differences

E1(t) := E

(
sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)|
)
,

E2(t) := E

(
sup
0<s<t

max
i=1,...,N

|(X̄N
i − X̂N

i )(s)|
)
,

and applying the triangle inequality. For the first difference, we estimate expressions like
‖DkKζ ∗ u‖∞ for appropriate functions u and ‖DkWβ‖∞ for k ∈ N in terms of negative
powers of β (here, Dk denotes the kth-order partial derivatives). Using properties of Riesz
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potentials, in particular Hardy–Littlewood–Sobolev-type inequalites (see Lemmas 21 and
22), we show that for some µi > 0 (i = 1, 2, 3),

E1(t) ≤ C(σ)β−µ1

∫ t

0

E1(s)ds+ C(σ)β−µ2ζ−µ3N−1/2.

By applying the Gronwall lemma and choosing a logarithmic scaling for β and an algebraic
scaling for ζ with respect to N , we infer that E1(t) ≤ C(σ)N−µ4 for some µ4 ∈ (0, 1/4).
For the second difference E2, we need the estimates ‖Wβ ∗ u − u‖∞ ≤ C(σ)β (Lemma
20), and ‖(Kζ − K) ∗ ρσ‖ ≤ C(σ)ζa, ‖ρσ,β,ζ − ρσ‖∞ ≤ C(σ)(β + ζa) (Proposition 13),
recalling that a = min{1, d − 2s}. The proof of these estimates is very technical. The
idea is to apply several times fractional Gagliardo–Nirenberg inequalities that are proved
in Appendix B and Hardy–Littlewood–Sobolev inequalities that are recalled in Lemmas
21–22. Then, after suitable computations,

E2(t) ≤ C(σ)(β + ζa) + C(σ)

∫ t

0

E2(s)ds,

and we conclude with Gronwall’s lemma that E2(t) ≤ C(σ)(β + ζa).
Theorem 2 and calculations for σ → 0 yield the following propagation of chaos result.

Theorem 3 (Propagation of chaos for (1)). Let the assumptions of Theorem 2 hold and
let Pk

N,σ,β,ζ(t) be the joint distribution of (XN
1 (t), . . . , XN

k (t)) for a fixed t ∈ (0, T ). Then
there exists a subsequence in σ such that

lim
σ→0

lim
N→∞, (β,ζ)→0

Pk
N,σ,β,ζ(t) = P⊗k(t),

where the limit is locally uniform in t, the limit N → ∞, (β, ζ) → 0 has to be understood
in the sense of Theorem 2, and the measure P(t) is absolutely continuous with respect to
the Lebesgue measure with the probability density function ρ(t) that is a weak solution to
(1).

If equation (1) was uniquely solvable, we would obtain the convergence of the whole
sequence in σ. Unfortunately, the regularity of the solution ρ to (1) is too weak to conclude
the uniqueness of weak solutions. Up to our knowledge, none of the known methods, such
as [3, 15], seem to be applicable to equation (1).
The paper is organized as follows. The existence of global nonnegative weak solutions to

(1) is proved in Section 2 by establishing an existence analysis for (7) and performing the
limit σ → 0. Some uniform estimates for the solution ρρ,β,ζ to (5) and for the difference
ρσ,β,ζ −ρσ are shown in Section 3. Section 4 is devoted to the proof of the error estimate in
Theorem 2 and the propagation of chaos in Theorem 3. In Appendices A–C we recall some
auxiliary results and Hardy–Littlewood–Sobolev-type inequalities, prove new variants of
fractional Gagliardo–Nirenberg inequalities, and formulate a result on parabolic regularity.

Notation. We write ‖·‖p for the Lp(Rd) or Lp(R) norm with 1 ≤ p ≤ ∞. The ball around
the origin with radius R > 0 is denoted by BR. The partial derivative ∂/∂xi is abbreviated
as ∂i for i = 1, . . . , d, and Dα denotes a partial derivative of order |α|, where α ∈ N

d
0 is a



8 L. CHEN, A. HOLZINGER, A. JÜNGEL, AND N. ZAMPONI

multiindex. The notation Dk refers to the kth-order tensor of partial derivatives of order
k ∈ N. In this situation, the norm ‖Dku‖p is the sum of all Lp norms of partial derivatives
of u of order k. Finally, C > 0, C1 > 0, etc. denote generic constants with values changing
from line to line.

2. Analysis of equation (1)

In this section, we prove the existence of global nonnegative weak solutions to (1) and
an estimate for the difference ρσ,β,ζ−ρσ of the solutions to (5) and (7), respectively, needed
in the mean-field limit. We first prove the existence of a solution ρσ to (7) by a fixed-point
argument and then perform the limit σ → 0. Recall definition (12) of the number κσ,
which is stated in (iv) below.

Theorem 4. Let Hypotheses (H1)–(H3) hold. Then for all σ > 0, there exists a unique
weak solution ρσ ≥ 0 to (7) satisfying (i) the regularity

ρσ ∈ L∞(0,∞;L1(Rd) ∩ L∞(Rd)) ∩ C0([0,∞);L2(Rd)),

∇ρσ ∈ L2(0,∞;L2(Rd)), ∂tρσ ∈ L2(0,∞;H−1(Rd)),

(ii) the weak formulation of (7) with test functions φ ∈ L2(0, T ;H1(Rd)), (iii) the inital
datum ρσ(0) = ρ0σ in L2(Rd), and (vi) the following properties for t > 0, which are uniform
in σ for sufficiently small σ > 0:

• Mass conservation: ‖ρσ(t)‖1 = ‖ρ0‖1.
• Dissipation of the L∞ norm: ‖ρσ‖L∞(0,∞;L∞(Rd)) ≤ κσ‖ρ0‖L∞(Rd) ≤ C‖ρ0‖L∞(Rd).

• Moment estimate: supt∈[0,∞)

∫
Rd ρσ(x, t)|x|

2d
d−2sdx ≤ CT .

• Entropy inequality:

∫

Rd

h(ρσ(T ))dx+ 4σ

∫ T

0

∫

Rd

f ′
σ(ρσ)|∇

√
ρσ|2dxdt

+

∫ T

0

∫

Rd

|∇(−∆)−s/2fσ(ρσ)|2dxdt ≤
∫

Rd

h(ρ0σ)dx for all T > 0.

Additionally, for any T > 0, 1 < p < ∞, and 2 ≤ q < ∞, there exists C > 0, depending
on T , σ, p, and q, such that

‖ρσ‖Lp(0,T ;W 3,p(Rd)) + ‖∂tρσ‖Lp(0,T ;W 1,p(Rd)) + ‖ρσ‖C0([0,T ];W 2,1(Rd)∩W 3,q(Rd)) ≤ C,

i.e., ρσ is even a strong solution to (7) and ρσ ∈ C0([0, T ];W 2,1(Rd)∩W 3,q(Rd)) for q ≥ 2.

2.1. Basic estimates for ρσ. We prove a priori estimates in Lp spaces and an energy-type
estimate. Let σ ∈ (0, 1) and let ρσ be a nonnegative strong solution to (7). Integration of
(7) in R

d and the definition of ρ0σ immediately yield the mass conservation

(13) ‖ρσ(t)‖1 = ‖ρ0σ‖1 = ‖ρ0‖1 for t > 0.
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Lemma 5 (Energy-type estimate). Let F ∈ C2([0,∞)) be convex and let F (ρ0σ) ∈ L1(Rd).
Then

d

dt

∫

Rd

F (ρσ)dx = −σ
∫

Rd

F ′′(ρσ)|∇ρσ|2dx(14)

− cd,1−s

2

∫

Rd

∫

Rd

(G(ρσ(x))−G(ρσ(y)))(fσ(ρσ(x))− fσ(ρσ(y)))

|x− y|d+2(1−s)
dxdy ≤ 0,

where G(u) :=
∫ u

0
vF ′′(v)dv for u ≥ 0 and cd,1−s is defined after (2).

Proof. First, we assume that F ′′ is additionally bounded. Then F ′(ρσ) − F ′(0) is an
admissible test function in the weak formulation of (7), since |F ′(ρσ)−F ′(0)| ≤ ‖F ′′‖∞|ρσ|.
It follows from definition (66) of the fractional Laplacian and integration by parts that

d

dt

∫

Rd

F (ρσ)dx+ σ

∫

Rd

F ′′(ρσ)|∇ρσ|2dx = −
∫

Rd

F ′′(ρσ)ρσ∇ρσ · ∇(−∆)−sfσ(ρσ)dx

= −
∫

Rd

∇G(ρσ) · ∇(−∆)−sfσ(ρσ)dx = −
∫

Rd

G(ρσ)(−∆)1−sfσ(ρσ)dx

= −cd,1−s

∫

Rd

∫

Rd

G(ρσ(x))
fσ(ρσ(x))− fσ(ρσ(y))

|x− y|d+2(1−s)
dxdy.

A symmetrization of the last integral yields (14).
In the general case, we introduce Fk(u) = F (0)+F ′(0)u+

∫ u

0

∫ v

0
min{F ′′(w), k}dwdv for

k > 0. Then F ′′
k (u) is bounded and (14) follows for F replaced by Fk. The result follows

after taking the limit k → ∞ using monotone convergence. �

We need a bound on κσ, defined in (12), to derive uniform L∞(Rd) bounds for ρσ.

Lemma 6 (Bound for κσ). There exists C > 0 such that, for sufficiently small σ > 0,

1 ≤ κσ ≤ 1

1− CσE
, where E :=

1

‖ρ0‖1

∫

Rd

(1 + |x|2d/(d−2s))ρ0(x)dx.

Proof. By Young’s convolution inequality (Lemma 18), we have
∫

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≤ ‖Wσ ∗ ρ0‖1 ≤ ‖Wσ‖1‖ρ0‖1 = ‖ρ0‖1,

which shows that κσ ≥ 1. To prove the upper bound, we use the triangle inequality
|x| ≤ |x− y|+ |y|:

∫

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≥
∫

{|x|≤1/σ}

∫

Rd

Wσ(x− y)ρ0(y)dydx

=

∫

Rd

(∫

Rd

Wσ(x− y)dx

)
ρ0(y)dy −

∫

{|x|>1/σ}

∫

Rd

Wσ(x− y)ρ0(y)dydx

≥
∫

Rd

ρ0(y)dy − σ2d/(d−2s)

∫

{|x|>1/σ}

∫

Rd

|x|2d/(d−2s)Wσ(x− y)ρ0(y)dydx
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≥
∫

Rd

ρ0(y)dy − σ2d/(d−2s)

∫

Rd

∫

Rd

|x− y|2d/(d−2s)Wσ(x− y)ρ0(y)dydx

− σ2d/(d−2s)

∫

Rd

∫

Rd

|y|2d/(d−2s)Wσ(x− y)ρ0(y)dydx.

Using the property
∫
Rd |z|2d/(d−2s)Wσ(z)dz ≤ Cσ2d/(d−2s) for the second term on the right-

hand side and ‖Wβ‖L1(Rd) = 1 for the third term, we find that
∫

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≥
∫

Rd

ρ0(y)dy − Cσ4d/(d−2s)

∫

Rd

ρ0(y)dy

− σ2d/(d−2s)

∫

Rd

|y|2d/(d−2s)ρ0(y)dy.

Because of σ2d/(d−2s) ≤ σ for σ ≤ 1, we obtain

‖ρ0‖1
κσ

=

∫

Rd

(Wσ ∗ ρ0)(x)Ξ(σx)dx ≥
∫

Rd

ρ0(y)dy − Cσ

∫

Rd

(1 + |y|2d/(d−2s))ρ0(y)dy

≥
∫

Rd

ρ0(y)dy − Cσ

∫

Rd

ρ0(y)dy · E = ‖ρ0‖1(1− CσE),

which proves the lemma. �

Lemma 7 (Bounds for ρσ). The following bounds hold:

‖ρσ(t)‖∞ ≤ κσ‖ρ0‖∞ ≤ C‖ρ0‖∞, t > 0,(15)
√
σ‖ρσ‖L2(0,T ;H1(Rd)) ≤ C(T, ‖ρ0‖1, ‖ρ0‖2),(16)

where (15) holds for sufficiently small σ > 0.

Lemma 7 and mass conservation imply that ‖ρσ(t)‖p is bounded for all t > 0 and
1 ≤ p ≤ ∞. Observe that κσ → 1 as σ → 0. So, if ρσ(t) → ρ(t) a.e., the dissipation of the
L∞ norm follows, as stated in Theorem 1 (iv).

Proof. The convexity of F shows that G, defined in Lemma 5, is nondecreasing. Therefore,
(d/dt)

∫
Rd F (ρσ)dx ≤ 0 and

sup
t>0

∫

Rd

F (ρσ(t))dx ≤
∫

Rd

F (ρ0σ)dx.

We choose a convex function F ∈ C2([0,∞)) such that F (u) = 0 for u ≤ ‖ρ0σ‖∞, F (u) > 0
for u > ‖ρ0σ‖∞ and satisfying F (u) ≤ Cu for u→ ∞. Then

0 ≤
∫

Rd

F (ρσ(t))dx ≤
∫

Rd

F (ρ0σ)dx = 0 for t > 0.

Consequently, ρσ(x, t) ≤ ‖ρ0σ‖∞ ≤ κσ‖ρ0‖∞ for t > 0, showing the L∞(Rd) bound. Finally,
choosing F (u) = u2 in Lemma 5, the L2(0, T ;H1(Rd)) estimate follows. �
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2.2. Entropy and moment estimates. We need a fractional derivative estimate for
fσ(ρσ), which is not an immediate consequence of Lemma 5. To this end, we define the
entropy density

hσ(u) =

∫ u

0

∫ v

1

f ′
σ(w)

w
dwdv, u ≥ 0.

Lemma 8 (Entropy balance). It holds for all t > 0 that

d

dt

∫

Rd

hσ(ρσ)dx+ 4σ

∫

Rd

f ′
σ(ρσ)|∇ρ1/2σ |2dx+

∫

Rd

|∇(−∆)−s/2fσ(ρσ)|2dx = 0.

In particular, for all T > 0, there exists C > 0 such that

(17) ‖fσ(ρσ)‖L2(0,T ;H1−s(Rd)) ≤ C.

Proof. The idea is to apply Lemma 5. Since hσ 6∈ C2([0,∞)), we cannot use the lemma
directly. Instead, we apply it to the regularized function

hδσ(u) =

∫ u

0

∫ v

1

f ′
σ(w)

w + δ
dwdv, u ≥ 0,

where δ > 0. Choosing F = hδσ in Lemma 5 gives

d

dt

∫

Rd

hδσ(ρσ)dx+ 4σ

∫

Rd

f ′
σ(ρσ)

ρσ
ρσ + δ

|∇ρ1/2σ |2dx(18)

= −cd,1−s

2

∫

Rd

∫

Rd

(f δ
σ(ρσ(x))− f δ

σ(ρσ(y)))(fσ(ρσ(x))− fσ(ρσ(y))

|x− y|d+2(1−s)
dxdy,

where f δ
σ(u) :=

∫ u

0
(v/(v + δ))f ′

σ(v)dv for u ≥ 0.

Step 1: Estimate of hδσ. The pointwise limit hδσ(ρσ) → hσ(ρσ) holds a.e. in R
d × (0, T )

as δ → 0. We observe that for all 0 < u ≤ 1,

|hδσ(u)| ≤ sup
0<v<1

f ′(v)

∫ u

0

∫ 1

v

dw

w
dv ≤ Cu(| log u|+ 1),

while for all u > 1, since f ′
σ ≥ 0 in [0,∞),

|hδσ(u)| ≤
∫ 1

0

∫ 1

v

f ′
σ(w)

w + δ
dwdv +

∫ u

1

∫ v

1

f ′
σ(w)

w + δ
dwdv

≤ C +

∫ u

1

∫ v

1

f ′
σ(w)dwdv ≤ C +

∫ u

0

fσ(v)dv ≤ C + ufσ(u).

The last inequality follows after integration of fσ(v) ≤ fσ(v)+ vf ′
σ(v) = (vfσ(v))

′ in (0, u).
Therefore, since ρσ ≤ ‖ρ0σ‖∞ a.e. in R

d × (0,∞), we find that

|hδσ(ρσ)| ≤ Cρσ(| log ρσ|+ 1)1{ρσ≤1} + C1{ρσ>1} ≤ C(ρθσ + ρσ),

where θ ∈ (0, 1) is arbitrary, and consequently, because of mass conservation,

(19)

∫

Rd

|hδσ(ρσ)|dx ≤ C + C

∫

Rd

ρθσdx.
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Step 2: Estimate of
∫
Rd ρ

θ
σdx. Let 0 < α < 1 and d/(d+ α) < θ < 1. Then, by Young’s

inequality,
∫

Rd

ρθσdx =

∫

Rd

(1 + |x|2)αθ/2ρθσ(1 + |x|2)−αθ/2dx

≤
∫

Rd

(1 + |x|2)α/2ρσdx+ C

∫

Rd

(1 + |x|2)−αθ/(2(1−θ))dx

≤
∫

Rd

(1 + |x|2)α/2ρσdx+ C,

since the choice of θ guarantees that −αθ/(2(1−θ)) < −d/2, so
∫
Rd(1+|x|2)−αθ/(2(1−θ))dx <

∞. To control the right-hand side, we need to bound a suitable moment of ρσ. For this,
we use the test function (1 + |x|2)α/2 in the weak formulation of (7). (Actually, we need
to use a cutoff to guarantee integrability, but we leave the technical details to the reader.)
We find that

∫

Rd

(1 + |x|2)α/2ρσ(x, t)dx =

∫

Rd

(1 + |x|2)α/2ρ0σdx+ σ

∫ t

0

∫

Rd

ρσ∆(1 + |x|2)α/2dxds

− α

∫ t

0

∫

Rd

ρσ(1 + |x|2)α/2−1x · ∇(−∆)−sfσ(ρσ)dxds.

Since α < 1, the terms ∆(1+ |x|2)α/2 and x(1+ |x|2)α/2−1 are bounded in R
d. Thus, taking

into account the assumption on ρ0 and mass conservation,

sup
0<t<T

∫

Rd

(1 + |x|2)α/2ρσ(x, t)dx ≤ C + C

∫ T

0

∫

Rd

ρσ(−∆)−s/2|∇(−∆)−s/2fσ(ρσ)|dxdt.

Next, we apply the Hardy–Littlewood–Sobolev inequality (see Appendix B) and the Young
inequality (see Lemma 21) and use the fact that ρσ(t) is bounded in any Lp(Rd):

sup
0<t<T

∫

Rd

(1 + |x|2)α/2ρσ(x, t)dx

≤ C +

∫ T

0

‖ρσ‖2d/(d+2s)‖(−∆)−s/2[∇(−∆)−s/2fσ(ρσ)]‖2d/(d−2s)dt

≤ C +

∫ T

0

‖ρσ‖2d/(d+2s)‖∇(−∆)−s/2fσ(ρσ)‖2dt

≤ C(η) + η

∫ T

0

‖∇(−∆)−s/2fσ(ρσ)‖22dt

for all η > 0. This proves that

∫

Rd

ρθσdx ≤ C(η) + η

∫ T

0

‖∇(−∆)−s/2fσ(ρσ)‖22dt.
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Step 3: A priori estimate. Inserting the previous estimate into (19) leads to

sup
0<t<T

∫

Rd

|hδσ(ρσ(x, t))|dx ≤ C(η) + η

∫ T

0

‖∇(−∆)−s/2fσ(ρσ)‖22dt.

We integrate (18) in time and use the previous estimate:

4σ

∫ T

0

∫

Rd

f ′
σ(ρσ)

ρσ
ρσ + δ

|∇ρ1/2σ |2dxdt

+
cd,1−s

2

∫ T

0

∫

Rd

∫

Rd

(f δ
σ(ρσ(x))− f δ

σ(ρσ(y)))(fσ(ρσ(x))− fσ(ρσ(y))

|x− y|d+2(1−s)
dxdydt

≤
∫

Rd

|hδσ(ρσ(T ))|dx+
∫

Rd

|hδσ(ρ0σ)|dx ≤ C(η) + η

∫ T

0

‖∇(−∆)−s/2fσ(ρσ)‖22dt.

We wish to pass to the limit δ → 0 in the previous inequality. We deduce from dominated
convergence that f δ

σ(ρσ) → fσ(ρσ) a.e. in R
d × [0,∞). The integrand of the second term

on the left-hand side is nonnegative, and we obtain from Fatou’s lemma that

4σ

∫ T

0

∫

Rd

f ′
σ(ρσ)|∇ρ1/2σ |2dxdt+ cd,1−s

2

∫ T

0

∫

Rd

∫

Rd

(fσ(ρσ(x))− fσ(ρσ(y)))
2

|x− y|d+2(1−s)
dxdydt(20)

≤ C(η) + η

∫ T

0

‖∇(−∆)−s/2fσ(ρσ)‖22dt.

By the integral representation of the fractional Laplacian,

cd,1−s

2

∫

Rd

∫

Rd

(fσ(ρσ(x))− fσ(ρσ(y)))
2

|x− y|d+2(1−s)
dxdy = ‖∇(−∆)−s/2fσ(ρσ)‖22,

the last term in (20) can be absorbed for sufficiently small η > 0 by the second term on
the left-hand side. This leads to the estimate

4σ

∫ T

0

∫

Rd

f ′
σ(ρσ)|∇ρ1/2σ |2dxdt+

∫ T

0

∫

Rd

|∇(−∆)−s/2fσ(ρσ)|2dxdt ≤ C.

Thus, we can pass to the limit δ → 0 in (18) giving the desired entropy balance. Finally,
bound (17) follows from the definition of the H1−s(Rd) norm and the facts that fσ(ρσ) ∈
L2(Rd) since fσ is locally Lipschitz continuous, fσ(0) = 0, and ρσ is bounded both in
L∞(Rd) and L2(Rd) independently of σ. �

Lemma 9 (Moment estimate). It holds that

sup
0<t<T

∫

Rd

ρσ(x, t)|x|2d/(d−2s)dx ≤ C,

where C > 0 depends on T and the L1(Rd) norms of ρ0 and | · |2d/(d−2s)ρ0.

Proof. For the following computations, we would need to use cut-off functions to make
the calculations rigorous. We leave the details to the reader, as we wish to simplify the
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presentation. Let m = 2d/(d−2s). Since | · |mρ0 ∈ L1(Rd) by assumption, we can compute

d

dt

∫

Rd

ρσ(t)
|x|m
m

dx = σ(m− 2 + d)

∫

Rd

|x|m−2ρσdx−
∫

Rd

ρσ|x|m−2x · ∇(−∆)−sfσ(ρσ)dx

≤ C‖| · |m−2ρσ‖1 + ‖| · |m−1ρσ‖2d/(d+2s)‖∇(−∆)−sfσ(ρσ)‖2d/(d−2s).(21)

By Young’s inequality and mass conservation, we have

‖| · |m−2ρσ‖1 ≤ C

∫

Rd

(1 + |x|m)ρσdx ≤ C + C

∫

Rd

|x|mρσdx.

It follows from (17) that ∇(−∆)−sfσ(ρσ) is bounded in L2(0, T ;Hs(Rd)). In particular,
because of the Sobolev embedding Hs(Rd) →֒ Lm(Rd),

‖∇(−∆)−sfσ(ρσ)‖L2(0,T ;Lm(Rd)) ≤ C.

Furthermore, using ρσ ∈ L∞(0,∞;L∞(Rd)), Young’s inequality, and the property 2d/(d+
2s) ≥ 1 (recall that d ≥ 2)

∥∥| · |m−1ρσ
∥∥2d/(d+2s)

2d/(d+2s)
=

∫

Rd

ρ2d/(d+2s)
σ |x|2d(m−1)/(d+2s)dx

≤ C + C

∫

Rd

ρσ|x|2d(m−1)/(d+2s)dx.

Thus, we infer from (21) and the identity 2d(m− 1)/(d+ 2s) = m that

d

dt

∫

Rd

ρσ(t)
|x|m
m

dx ≤ C + C

∫

Rd

ρσ(t)|x|mdx,

and Gronwall’s lemma concludes the proof. �

2.3. Higher-order estimate. We need some estimates in higher-order Sobolev spaces.

Proposition 10 (Higher-order regularity). Let T > 0, 1 < p < ∞ and 2 ≤ q < ∞. Then
there exists C > 0, depending on T , σ, p, and q, such that

‖ρσ‖Lp(0,T ;W 3,p(Rd)) + ‖∂tρσ‖Lp(0,T ;W 1,p(Rd)) + ‖ρσ‖C0([0,T ];W 2,q(Rd)) ≤ C.

Proof. Step 1: Case s > 1/2. If s > 1/2 then w := ρσ∇(−∆)−sfσ(ρσ) does not involve
any derivative of ρσ. Thus w ∈ Lp(0, T ;Lp(Rd)) for p < ∞ and Lemma 25 in Appendix
C implies that ρσ ∈ Lp(0, T ;W 1,p(Rd)). Iterating the argument leads to the conclusion.
Thus, in the following, we can assume that 0 < s ≤ 1/2.
Step 2: Estimate of divw in Lp(0, T ;W−1,p(Rd)). We claim that w can be estimated in

Lp(0, T ;Lp(Rd)) for any p <∞. Then, by Lemma 25, ∇ρσ ∈ Lp(0, T ;Lp(Rd)). We use the
L∞ bound for ρσ, the fractional Gagliardo–Nirenberg inequality (Lemma 23), and Young’s
inequality to find that

‖w‖p ≤ C‖∇(−∆)−sfσ(ρσ)‖p ≤ C‖fσ(ρσ)‖2sp ‖∇fσ(ρσ)‖1−2s
p ≤ C(η) + η‖∇ρσ‖p,

where η > 0 is arbitrary. By estimate (72) in Lemma 25,

‖ρσ∇(−∆)−sfσ(ρσ)‖p = ‖w‖p ≤ C(η) + η
(
‖ρσ∇(−∆)−sfσ(ρσ)‖p + T 1/p‖∇ρ0‖p

)
.
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Choosing η > 0 sufficiently small shows the claim.
Step 3: Estimate of divw in Lp(0, T ;Lp(Rd)). We use Hölder’s inequality with 1/p =

2s/(d+ p) + 1/q to obtain

‖ divw‖p ≤ ‖∇ρσ · ∇(−∆)−sfσ(ρσ)‖p + ‖ρσ(−∆)1−sfσ(ρσ)‖p
≤ ‖∇ρσ‖(d+p)/(2s)‖∇(−∆)−sfσ(ρσ)‖q + C‖(−∆)1−sfσ(ρσ)‖p.

By the fractional Gagliardo–Nirenberg inequality (Lemma 24 with θ = 1+ d/p− d/q − 2s
and Lemma 23 with s replaced by 1− s) and Young’s inequality, it follows that

‖ divw‖p ≤ C‖∇ρσ‖(d+p)/(2s)‖fσ(ρσ)‖1−θ
p ‖∇fσ(ρσ)‖θp + C‖fσ(ρσ)‖sp‖D2fσ(ρσ)‖1−s

p

≤ C‖∇ρσ‖(d+p)/(2s)‖∇ρσ‖θp + C‖f ′
σ(ρσ)D

2ρσ + f ′′
σ (ρσ)∇ρσ ⊗∇ρσ‖1−s

p

≤ C(η) + C‖∇ρσ‖1/(1−θ)
(d+p)/(2s) + C‖∇ρσ‖p + C‖∇ρσ‖22p + η‖D2ρσ‖p,

where η > 0 is arbitrary. Taking the Lp(0, T ) norm of the previous inequality and observing
that p/(1− θ) = (d+ p)/(2s) (because of θ = d(1/p− 1/q) + 1− 2s), it follows that

‖ divw‖Lp(0,T ;Lp(Rd)) ≤ C + C‖∇ρσ‖1/(1−θ)

L(d+p)/(2s)(0,T ;L(d+p)/(2s)(Rd))
+ C‖∇ρσ‖Lp(0,T ;Lp(Rd))

+ C‖∇ρσ‖2L2p(0,T ;L2p(Rd)) + η‖D2ρσ‖Lp(0,T ;Lp(Rd)).

Lemma 25 and Step 2 (∇ρσ ∈ Lp(0, T ;Lp(Rd))) show that

‖∂tρσ‖Lp(0,T ;Lp(Rd)) + (1− Cη)‖D2ρσ‖Lp(0,T ;Lp(Rd)) ≤ C.

Choosing η > 0 sufficiently small, this yields ∂tρσ ∈ Lp(0, T ;Lp(Rd)) and ρσ ∈ Lp(0, T ;
W 2,p(Rd)). We deduce from Lemma 19, applied to ∇ρσ, that ∇ρσ ∈ L∞(0, T ;Lq(Rd)) for
any 2 ≤ q <∞. (At this point, we need the restriction q ≥ 2.)
Step 4: Higher-order regularity. To improve the regularity of ρσ, we differentiate (7) in

space. Recall that ∂i = ∂/∂xi, i = 1, . . . , d. Then

∂t∂iρσ − σ∆∂iρσ =
d∑

j=1

∂i∂j
(
ρσ∂j(−∆)−sfσ(ρσ)

)
=

d∑

j=1

(
∂2ijρσ∂j(−∆)sfσ(ρσ)

+ ∂iρσ∂
2
jj(−∆)−sfσ(ρσ) + ∂jρσ∂

2
ij(−∆)−sfσ(ρσ) + ρσ∂

3
ijj(−∆)−sfσ(ρσ)

)
.(22)

We estimate the right-hand side term by term. Let 0 < s ≤ 1/2. First, by Hölder’s
inequality with 1/p = 1/q + 1/r, 1 < p < q < ∞, max{2, p} < r < ∞ and the fractional
Gagliardo–Nirenberg inequality (Lemma 23),

‖∂2ijρσ∂j(−∆)sfσ(ρσ)‖pLp(0,T ;Lp(Rd))
≤

∫ T

0

‖∂2ijρσ‖pq‖∂j(−∆)sfσ(ρσ)‖prdt

≤ C

∫ T

0

‖∂2ijρσ‖pq‖fσ(ρσ)‖(1−2s)p
r ‖∇fσ(ρσ)‖2spr dt

≤ C‖fσ(ρσ)‖(1−2s)p

L∞(0,T ;Lr(Rd))
‖∇fσ(ρσ)‖2spL∞(0,Lr(Rd))

∫ T

0

‖∂2ijρσ‖pqdt ≤ C.



16 L. CHEN, A. HOLZINGER, A. JÜNGEL, AND N. ZAMPONI

The second and third term on the right-hand side of (22) can be treated in a similar way,
observing that ∂2ij(−∆)−s = ∂j(−∆)−s∂i. The last term is estimated according to

‖ρσ∂3ijj(−∆)−sfσ(ρσ)‖p ≤ C‖∂3ijj(−∆)−sfσ(ρσ)‖p ≤ C‖∂2jjfσ(ρσ)‖2sp ‖∇∂2jjfσ(ρσ)‖1−2s
p

≤ C(η)‖∂2jjfσ(ρσ)‖p + η‖∇∂2jjfσ(ρσ)‖p,

and the last expression can be absorbed by the corresponding estimate of ∆∂iρσ from the
left-hand side of (22). Then we deduce from Lemma 25 that ∂t∂iρσ, ∂

3
ijjρσ ∈ Lp(0, T ;

Lp(Rd)) for all p > 1 and Lemma 19, applied to ∂2ijρσ, yields ∂
2
ijρσ ∈ C0([0, T ];Lq(Rd)) for

all q ≥ 2.
Next, if 1/2 < s < 1, we use the second inequality in Lemma 23 and argue similarly as

before. This finishes the proof. �

Lemma 11. Under the assumptions of Proposition 10, for every q ≥ 2, there exists a
constant C = C(q) > 0, depending on σ, such that

‖ρσ‖C0([0,T ];W 2,1(Rd)∩W 3,q(Rd)) ≤ C.

The embedding W 3,q(Rd) →֒ W 2,∞(Rd) for q > d yields a bound for ρσ in C0([0, T ];
W 2,∞(Rd)).

Proof. We first prove the bound in C0([0, T ];W 3,q(Rd)). By differentiating (7) twice in
space, estimating similarly as in Step 4 of the previous proof, and using the regularity
results of Proposition 10, we can show that ρσ is bounded in L∞(0, T ;W 3,q(Rd)) for any
q ≥ 2.
It remains to show the C0([0, T ];W 2,1(Rd)) bound for ρσ. In view of mass conservation

and Gagliardo–Nirenberg–Sobolev’s inequality, it suffices to show a bound for D2ρσ in
L∞(0, T ;L1(Rd)). To this end, we define the weights γn = (1 + |x|2)n/2 for n ≥ 0 and test
equation (7) for ρσ with vn := γnρσ. Then

∂tvn − σ∆vn = div
(
vn∇K ∗ fσ(ρσ)

)
+ In, vn(0) = γnρ

0
σ in R

d,

where In = −2σ∇γn · ∇ρσ − σρσ∆γn − ρσ∇γn · ∇K ∗ fσ(ρσ).

Arguing as in Step 4 of the previous proof, we can find a bound in L∞(0, T ;W 2,p(Rd))
for vn. Indeed, we can proceed by induction over n, since the additional terms in In can
be controlled by Sobolev norms of v0, . . . , vn−1. The definition of ρ0σ implies that γnρ

0
σ,

γn∇ρ0σ ∈ L∞(Rd) ∩ L1(Rd) for every n ≥ 0. Then choosing n > d yields, for 0 ≤ t ≤ T ,
that

‖γnD2ρσ‖p ≤ ‖D2(γnρσ)‖p + 2‖∇γn · ∇ρσ‖p + ‖ρσD2γn‖p ≤ C(T ).

We conclude from γ−1
n ∈ L∞(Rd) ∩ L1(Rd) that

‖D2ρσ‖1 ≤ ‖γ−1
n ‖p/(p−1)‖γnD2ρσ‖p ≤ C(T ).

This proves the desired bound. �
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2.4. Existence of solutions to (7). We show that the regularized equation (7) possesses
a unique strong solution ρσ.
Step 1: Existence for an approximated system. Let T > 0 arbitrary, define the spaces

XT := L2(0, T ;H1(Rd)) ∩H1(0, T ;H−1(Rd)) →֒ YT := C0([0, T ];L2(Rd)),

YT,R := {u ∈ YT : ‖u− ρ0σ‖L∞(0,T ;L2(Rd)) ≤ R},
and consider the mapping S : v ∈ YT 7→ u ∈ YT ,

(23)
∂tu− σ∆u = div(u∇K(δ)

s ∗ f (η)
σ (v)) in R

d × (0, T ),

u(0) = ρ0σ in R
d,

where K(δ)
s : Rd → R+ is a regularized version of Ks, defined by

K(δ)
s = K̃(δ)

s/2 ∗ K̃
(δ)
s/2,

K̃(δ)
s/2(x) = cd,−s/2





δs−d + (s− d)δs−d−1(|x| − δ) for |x| < δ,

|x|s−d for δ ≤ |x| ≤ δ−1,

[δd−s + (s− d)δd+1−s(|x| − δ−1)]+ for |x| > δ−1,

and f
(η)
σ is given by

f (η)
σ (ρ) =

∫ |ρ|

0

f ′
σ(u)min(1, uη−1)du+

η

2
ρ2, ρ ∈ R.

The regularization with parameter η is needed for the entropy estimates.

We derive some estimates for f
(η)
σ . First, we have 0 ≤ f

(η)
σ (ρ) ≤ Cηρ

2 for ρ ∈ R, since

f (η)
σ (ρ) ≤

(
η + η−1 max

[0,η]
f ′
σ

)
ρ2

2
for |ρ| ≤ η,

f (η)
σ (ρ) ≤ fσ(|ρ|) +

η

2
ρ2 ≤

(
‖fσ‖∞η−2 +

η

2

)
ρ2 for |ρ| > η.

Furthermore,

|Df (η)
σ (ρ)| =

∣∣∣∣
ρ

|ρ|f
′
σ(|ρ|)min(1, |ρ|η−1) + ηρ

∣∣∣∣ ≤ (η + η−1‖f ′
σ‖∞)|ρ|,

which implies that |Df (η)
σ (ρ)| ≤ Cη|ρ| for ρ ∈ R. This shows that there exists C(η) > 0

such that for any ρ1, ρ2 ∈ R,

|f (η)
σ (ρ1)− f (η)

σ (ρ2)| ≤ C(η)(|ρ1|+ |ρ2|)|ρ1 − ρ2|.

It follows that f
(η)
σ (v) ∈ L∞(0, T ;L1(Rd)) for v ∈ YT .

Since ∇K(δ)
s ∈ L∞(Rd), a standard argument shows that (23) has a unique solution

u ∈ XT →֒ YT . Therefore, the mapping S is well-defined. Additionally, the nonnegativity
of u follows immediately after by testing (23) with min(0, u).
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We show now that S is a contraction on YT,R for sufficiently small T > 0. We start with

a preparation. By testing (23) with u and taking into account the L∞ bound for ∇K(δ)
s ,

we deduce from Young’s inequality for products and convolutions that
∫

Rd

u(t)2dx+
σ

2

∫ t

0

∫

Rd

|∇u|2dxdτ ≤
∫

Rd

|ρ0σ|2dx+ C(δ, η, σ)

∫ t

0

‖u‖22‖v‖42dτ,

since ‖f (η)
σ (v)‖1 ≤ Cη‖v‖22 for v ∈ YT . Then, if v ∈ YT,R, we infer from Gronwall’s lemma

that

(24)

∫

Rd

u(t)2dx+ σ

∫ t

0

∫

Rd

|∇u|2dxdτ ≤ eC(σ,δ,η)R4t

∫

Rd

|ρ0σ|2dx for 0 ≤ t ≤ T.

Let vi ∈ YT,R and set ui = S(vi), i = 1, 2. We compute

‖u1∇K(δ)
s ∗ f (η)

σ (v1)− u2∇K(δ)
s ∗ f (η)

σ (v2)‖2
≤ ‖(u1 − u2)∇K(δ)

s ∗ f (η)
σ (v1)‖2 + ‖u2∇K(δ)

s ∗ (f (η)
σ (v1)− f (η)

σ (v2))‖2
≤ ‖u1 − u2‖2‖∇K(δ)

s ∗ f (η)
σ (v1)‖∞ + ‖u2‖2‖∇K(δ)

s ∗ (f (η)
σ (v1)− f (η)

σ (v2))‖∞
≤ ‖u1 − u2‖2‖∇K(δ)

s ‖∞‖f (η)
σ (v1)‖1 + ‖u2‖2‖∇K(δ)

s ‖∞‖f (η)
σ (v1)− f (η)

σ (v2)‖1
≤ C(δ, η)

(
‖u1 − u2‖2‖v1‖22 + ‖u2‖2(‖v1‖2 + ‖v2‖2)‖v1 − v2‖2

)
.

Therefore, using (24), for v1, v2 ∈ YT,R,

(25) ‖u1∇K(δ)
s ∗ f (η)

σ (v1)− u2∇K(δ)
s ∗ f (η)

σ (v2)‖2 ≤ C(δ, η, R, T )(‖u1 − u2‖2 + ‖v1 − v2‖2).
Next, we write (23) for (ui, vi) in place of (u, v), i = 1, 2, take the difference between the

two equations, and test the resulting equation with u1 − u2:

1

2
‖u1 − u2‖22(t) + σ

∫ t

0

∫

Rd

|∇(u1 − u2)|2dxdτ

= −
∫ t

0

∫

Rd

∇(u1 − u2) · (u1∇K(δ)
s ∗ f (η)

σ (v1)− u2∇K(δ)
s ∗ f (η)

σ (v2))dxdτ

≤ σ

2

∫ t

0

∫

Rd

|∇(u1 − u2)|2dxdτ +
1

2σ

∫ t

0

‖u1∇K(δ)
s ∗ f (η)

σ (v1)− u2∇K(δ)
s ∗ f (η)

σ (v2)‖22dτ.

It follows from (25) that

‖u1−u2‖22(t)+σ
∫ t

0

∫

Rd

|∇(u1−u2)|2dxdτ ≤ C(δ, η, R, T, σ)

∫ t

0

(‖u1−u2‖22+‖v1−v2‖22)dτ,

and we conclude from Gronwall’s lemma that

‖u1 − u2‖22(t) ≤ eC(δ,η,R,T,σ)t

∫ T

0

‖v1 − v2‖22dτ for 0 ≤ t ≤ T.

This inequality implies that S is a contraction in YT,R, provided that T is sufficiently small.
Therefore, by Banach’s theorem, S admits a unique fixed point u ∈ YT,R ⊂ YT for T > 0
sufficiently small.
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It remains to show that the local solution can be extended to a global one. To this end,
we note that the function u ∈ XT satisfies (23) with v = u:

(26)
∂tu− σ∆u = div(u∇K(δ)

s ∗ f (η)
σ (u)) in R

d × (0, T ),

u(·, 0) = ρ0σ in R
d.

Then, defining the truncated entropy density

h(η)(ρ) =

∫ ρ

0

∫ u

0

Df (η)
σ (v)v−1dvdu, ρ ≥ 0,

and testing (26) with Dh(η)(u) yields, in view of the definition of K(δ)
s , that

∫

Rd

h(η)(u(t))dx+ σ

∫ t

0

∫

Rd

Df (η)
σ (u)u−1|∇u|2dxdτ(27)

+

∫ t

0

∫

Rd

|∇K̃(δ)
s/2 ∗ f (η)

σ (u)|2dxdτ =

∫

Rd

h(η)(ρ0σ)dx

for 0 ≤ t ≤ T . This inequality and the definitions of f
(η)
σ and h(η) yield a (δ, T )-uniform

bound for u in L2(0, T ;H1(Rd)), which in turn (together with (26)) implies a (δ, T )-uniform
bound for u in XT , and a fortiori in YT . This means that the solution u can be prolonged
to the whole time interval [0,∞) and exists for all times.

Finally, we point out that, since∇K(δ)
s ∈ L2(Rd), then∇K(δ)

s ∗f (η)
σ (u) ∈ L∞(0, T ;L2(Rd))

and so u∇K(δ)
s ∗ f (η)

σ (u) ∈ L∞(0, T ;L1(Rd)). This fact yields the conservation of mass for
u, i.e.

∫
Rd u(t)dx =

∫
Rd ρ

0
σdx for t > 0. Indeed, it is sufficient to test (26) with a cutoff

ψR ∈ C1
0(R

d) satisfying ψR(x) = 1 for |x| < R, ψR(x) = 0 for |x| > 2R, |∇ψR(x)| ≤ CR−1

for x ∈ R
d, and then to take the limit R → ∞.

Step 2: Limit δ → 0. Let u(δ) be the solution to (26). An adaption of the proof of [5,
Lemma 1] shows that the embedding H1(Rd)∩L1(Rd; (1 + |x|2)κ/2) →֒ L2(Rd) is compact.
Thus, because of the δ-uniform bounds for u(δ), the Aubin–Lions Lemma implies that (up
to a subsequence) u(δ) → u strongly in L2(0, T ;L2(Rd)) for every T > 0. We wish now to
study the convergence of the nonlinear and nonlocal terms in (26)–(27) as δ → 0.
It follows from (27) that (up to a subsequence)

(28) ∇K̃(δ)
s/2 ∗ f (η)

σ (u(δ))⇀ U weakly in L2(Rd × (0, T )) as δ → 0.

In order to identify the limit U , we first notice that, by construction, 0 ≤ K̃(δ)
s/2 ր Ks/2

a.e. in R
d. Furthermore, the Hardy–Littlewood–Sobolev inequality, the bound for f

(η)
σ , and

then the Gagliardo-Nirenberg-Sobolev inequality yield that

‖Ks/2 ∗ f (η)
σ (u)‖(d+2)/(d−s) ≤ C‖f (η)

σ (u)‖(d+2)/(d+2s/d) ≤ C(η)‖u‖2(2d+4)/(d+2s/d)

≤ C(η)‖u‖2(s+2)/(d+2)
2 ‖∇u‖2(d−s)/(d+2)

2 .
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Therefore, since u ∈ L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)),
∫ T

0

‖Ks/2 ∗ f (η)
σ (u)‖(d+2)/(d−s)

(d+2)/(d−s)dt ≤ C(η)‖u‖2(s+2)/(d−s)

L∞(0,T ;L2(Rd))

∫ T

0

‖∇u‖22dt ≤ C(η, T ),

meaning that Ks/2∗f (η)
σ (u) ∈ L(d+2)/(d−s)(Rd×(0, T )). Taking into account that f

(η)
σ (u) ≥ 0,

we deduce from monotone convergence that

(29) K̃(δ)
s/2 ∗ f (η)

σ (u) → Ks/2 ∗ f (η)
σ (u) strongly in L(d+2)/(d−s)(Rd × (0, T )).

Furthermore, arguing as before and using the estimates for Df
(η)
σ leads to

‖K̃(δ)
s/2 ∗ (f (η)

σ (u(δ))− f (η)
σ (u))‖(d+2)/(d−s) ≤ ‖K̃s/2 ∗ |f (η)

σ (u(δ))− f (η)
σ (u)|‖(d+2)/(d−s)

≤ C‖f (η)
σ (u(δ))− f (η)

σ (u)‖(d+2)/(d+2s/d)

≤ C(η)
∥∥|u|+ |u(δ)|

∥∥
(2d+4)/(d+2s/d)

‖u− u(δ)‖(2d+4)/(d+2s/d)

≤ C(η)
(
‖u‖(s+2)/(d+2)

2 ‖∇u‖(d−s)/(d+2)
2 + ‖u(δ)‖(s+2)/(d+2)

2 ‖∇u(δ)‖(d−s)/(d+2)
2

)

× ‖u− u(δ)‖(s+2)/(d+2)
2 ‖∇(u− u(δ))‖(d−s)/(d+2)

2 .

Since u(δ) is bounded in L∞(0, T ;L2(Rd)) ∩ L2(0, T ;H1(Rd)), it follows that (up to a sub-

sequence) K̃(δ)
s/2 ∗ (f

(η)
σ (u(δ)) − f

(η)
σ (u)) converges weakly to some limit in L(d+2)/(d−s)(Rd ×

(0, T )). However, Hölder’s inequality and the fact that u(δ) → u strongly in Lp(0, T ;L2(Rd))
for every 2 ≤ p <∞, which follows from

∫ T

0

‖u(δ) − u‖p2dt ≤ sup
0<t<T

‖(u(δ) − u)(t)‖p−2
2

∫ T

0

‖u(δ) − u‖22dt→ 0 as δ → 0,

imply that

K̃(δ)
s/2 ∗ (f (η)

σ (u(δ))− f (η)
σ (u)) → 0 strongly in Lp(0, T ;L(d+2)/(d−s)(Rd)), p <

d+ 2

d− s
.

We conclude that

(30) K̃(δ)
s/2 ∗ (f (η)

σ (u(δ))− f (η)
σ (u))⇀ 0 weakly in L(d+2)/(d−s)(Rd × (0, T )).

We deduce from (29)–(30) that

K̃(δ)
s/2 ∗ f (η)

σ (u(δ))−Ks/2 ∗ f (η)
σ (u)

=
(
K̃(δ)

s/2 ∗ f (η)
σ (u)−Ks/2 ∗ f (η)

σ (u)
)
+ K̃(δ)

s/2 ∗ (f (η)
σ (u(δ))− f (η)

σ (u))

⇀ 0 weakly in L(d+2)/(d−s)(Rd × (0, T )),

which, together with (28), implies that U = ∇Ks/2 ∗ f (η)
σ (u), that is,

(31) ∇K̃(δ)
s/2 ∗ f (η)

σ (u(δ))⇀ ∇Ks/2 ∗ f (η)
σ (u) weakly in L2(Rd × (0, T )).

Let ψ ∈ C∞
0 (Rd × (0, T )). Because of

∇K(δ)
s ∗ f (η)

σ (u(δ)) = K̃(δ)
s/2 ∗

(
∇K̃(δ)

s/2 ∗ f (η)
σ (u(δ))

)
,
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we find that∫ T

0

∫

Rd

ψ · ∇K(δ)
s ∗ f (η)

σ (u(δ))dxdt =

∫ T

0

∫

Rd

(
∇K̃(δ)

s/2 ∗ f (η)
σ (u(δ))

)
·
(
K̃(δ)

s/2 ∗ ψ
)
dxdt.

Our goal is to show that K̃(δ)
s/2 ∗ ψ → Ks/2 ∗ ψ strongly in L2(Rd × (0, T )) as δ → 0. We

can assume without loss of generality that ψ ≥ 0 a.e. in R
d × (0, T ). Indeed, for general

functions ψ, we may write ψ = ψ++ψ−, where ψ+ = max{0, ψ} and ψ− = min{0, ψ}, and
we have K̃(δ)

s/2 ∗ ψ = K̃(δ)
s/2 ∗ ψ+ − K̃(δ)

s/2 ∗ (−ψ−). Once again, since K̃(δ)
s/2 ր K̃s/2 a.e. in R

d,

it is sufficient to show that Ks/2 ∗ ψ ∈ L2(Rd × (0, T )). The Hardy–Littlewood–Sobolev
inequality (see Appendix B) yields

∫ T

0

‖Ks/2 ∗ ψ‖22dt ≤ C

∫ T

0

‖ψ‖22d/(d+2s)dt.

It follows from (31), the previous argument, and the fact that Ks ∗ u = (−∆)−su =
Ks/2 ∗ Ks/2 ∗ u that

∫ T

0

∫

Rd

ψ · ∇K(δ)
s ∗ f (η)

σ (u(δ))dxdt→
∫ T

0

∫

Rd

(
∇Ks/2 ∗ f (η)

σ (u)
)
· (Ks/2 ∗ ψ)dxdt

=

∫ T

0

∫

Rd

ψ · ∇Ks ∗ f (η)
σ (u)dxdt

for every ψ ∈ L2(0, T ;L2d/(d+2s)(Rd)), which means that

(32) ∇K(δ)
s ∗ f (η)

σ (u(δ))⇀ ∇Ks ∗ f (η)
σ (u) weakly in L2(0, T ;L2d/(d−2s)(Rd)).

Since u(δ) → u strongly in L2(0, T ;L2(Rd)) and (u(δ)) is bounded in L∞(0, T ;L1(Rd))
(via mass conservation), it also holds that u(δ) → u strongly in L2(0, T ;L2d/(d+2s)(Rd)).
Therefore, the convergence (32) is sufficient to pass to the limit δ → 0 in (26).
Step 3: Limit η → 0 and conclusion. The limit δ → 0 in (26) shows that the limit u

solves

(33)
∂tu− σ∆u = div(u∇Ks ∗ f (η)

σ (u)) in R
d × (0, T ),

u(·, 0) = ρ0σ in R
d.

Fatou’s Lemma and the weakly lower semicontinuity of the L2 norm allow us to infer from
(27) that for t > 0,

∫

Rd

h(η)(u(t))dx+ σ

∫ t

0

∫

Rd

Df (η)
σ (u)u−1|∇u|2dxdτ(34)

+

∫ t

0

∫

Rd

|∇Ks/2 ∗ f (η)
σ (u)|2dxdτ ≤

∫

Rd

h(η)(ρ0σ)dx.

At this point, all the bounds for u, derived in the previous subsections, and the moment
estimate, contained in Lemma 9, can be proved like in Sections 2.1–2.2. All these estimates
are uniform in η. It is rather straightforward to perform the limit η → 0 in (33)–(34) to
obtain a weak solution to (7). However, the higher regularity bounds obtained in Section
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2.3 imply that u is actually a strong solution to (7), which in turn yields the uniqueness
of u as a weak solution to (7). This finishes the proof of Theorem 4.

2.5. Limit σ → 0. We prove that there exists a subsequence of (ρσ) that converges strongly
in L1(Rd × (0, T )) to a weak solution ρ to (1).
The uniform L∞(Rd × (0, T )) bound for ρσ in Lemma 7 implies that, up to a sub-

sequence, ρσ ⇀∗ ρ weakly* in L∞(Rd × (0, T )) as σ → 0. We deduce from the uni-
form L∞(0, T ;L1(Rd)) bound (13) and the moment bound for ρσ in Lemma 9 that (ρσ)
is equi-integrable. Thus, by the Dunford–Pettis theorem, again up to a subsequence,
ρσ ⇀ ρ weakly in L1(Rd × (0, T )). It follows from the L2(0, T ;H1(Rd)) estimate (16) that
σ∆ρσ → 0 strongly in L2(0, T ;H−1(Rd)). The estimates in (17) and Lemma 7 show that
(∂tρσ) is bounded in L2(0, T ;H−1(Rd)) and consequently, up to a subsequence, ∂tρσ ⇀ ∂tρ
weakly in L2(0, T ;H−1(Rd)). Therefore, the limit σ → 0 in (7) leads to

(35) ∂tρ = div(ρσ∇(−∆)−sfσ(ρσ)) in L2(0, T ;H−1(Rd)),

where the overline denotes the weak limit of the corresponding sequence.
We need to identify the weak limit on the right-hand side. The idea is to use the div-curl

lemma [20, Theorem 10.21]. For this, we define the vector fields with d+ 1 components

Uσ :=
(
ρσ,−ρσ∇(−∆)−sfσ(ρσ)

)
, Vσ :=

(
fσ(ρσ), 0, . . . , 0

)
.

Let R > 0 be arbitrary and write BR for the ball around the origin with radius R. The
L∞(Rd) bound (15) for ρσ and the L2(0, T ;H1−s(Rd)) bound (17) for fσ(ρσ) show that (Uσ)
is bounded in Lp(BR × (0, T )) for some p > 1, while (Vσ) is bounded in L∞(BR × (0, T )).
Furthermore, by (17),

div(t,x) Uσ = σ∆ρσ → 0 strongly in L2(0, T ;H−1(BR)) →֒ H−1(BR × (0, T )),

‖ curl(t,x) Vσ‖L2(0,T ;H−s(BR)) ≤ C‖∇fσ(ρσ)‖L2(0,T ;H−s(BR)) ≤ C,

where curl(t,x) Vσ is the antisymmetric part of the Jacobian matrix of Vσ. Hence, by the
compact embedding H−s(BR × (0, T )) →֒ W−1,r(BR × (0, T )) (since L2(0, T ;H−s(BR)) ⊂
H−s(BR × (0, T ))), the sequence (curl(t,x) Vσ) is relatively compact in W−1,r(BR × (0, T ))

for some r > 1. Therefore, we can apply the div-curl lemma giving Uσ · Vσ = Uσ · Vσ or

ρσfσ(ρσ) = ρfσ(ρσ) a.e. in BR × (0, T ).

By definition (9) of fσ(ρσ), it follows for arbitrary ρσ ∈ [0, L] and sufficiently large L > 0,
that

fσ(ρσ) =

∫ ρσ

0

(Γσ ∗ (f ′1[0,∞)))(u)Ξ̃(σu)du =

∫ ρσ

0

∫ ∞

0

Γσ(u− w)f ′(w)dwΞ̃(σu)du

=

∫ ρσ

0

∫ ∞

0

Γ′
σ(u− w)f(w)dwΞ̃(σu)du =

∫ ∞

0

(∫ ρσ

0

Γ′
σ(u− w)Ξ̃(σu)du

)
f(w)dw.
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We use the properties that (ρσ) is uniformly bounded and Ξ̃ = 1 in [−1, 1]. Then, choosing
σ > 0 sufficiently small,

fσ(ρσ) =

∫ ∞

0

(∫ ρσ

0

Γ′
σ(u− w)du

)
f(w)dw

=

∫ ∞

0

Γσ(ρσ − w)f(w)dw −
∫ ∞

0

Γσ(−w)f(w)dw

=

∫

R

Γσ(ρσ − w)f̃(w)dw −
∫

R

Γσ(−w)f̃(w)dw,

setting f̃ := f1[0,∞). Hence, using f(0) = 0, we find that

fσ(ρσ)− f(ρσ) =

∫

R

Γσ(u)(f̃(u+ ρσ)− f̃(ρσ))du−
∫

R

Γσ(−w)(f̃(w)− f̃(0))dw.

Taking into account the fundamental theorem of calculus for the function f̃ ∈ C0∩W 1,1(R),
we can estimate as follows:

|fσ(ρσ)− f(ρσ)| ≤ ess sup
u∈supp(Γσ)\{0}

( |f̃(u+ ρσ)− f̃(ρσ)|
|u| +

|f̃(u)− f̃(0)|
|u|

)∫

R

Γσ(w)|w|dw

≤
(

max
ξ∈supp(Γσ)∩[0,∞)

(f ′(ξ + ρσ) + f ′(ξ))

)∫

R

Γσ(w)|w|dw.

Then, since Γσ(u) = σ−1Γ1(σ
−1u), supp(Γσ) ⊂ Bσ(0) is compact, f ∈ C1([0,∞)), and (ρσ)

is uniformly bounded, we conclude that

|fσ(ρσ)− f(ρσ)| ≤ Cσ.

This means that fσ(ρσ) − f(ρσ) → 0 strongly in L∞(BR × (0, T )), and it shows that

ρσf(ρσ) = ρf(ρσ) a.e. in BR × (0, T ). As f is nondecreasing, we can apply [20, Theorem

10.19] to infer that f(ρσ) = f(ρ) a.e. in BR × (0, T ). Consequently, ρσf(ρσ) = ρf(ρ). As
u 7→ uf(u) is assumed to be strictly convex, we conclude from [20, Theorem 10.20] that
(ρσ) converges a.e. in BR × (0, T ). Since (ρσ) is bounded in L∞(Rd × (0, T )), it follows
that ρσ → ρ strongly in Lp(BR × (0, T )) for all p < ∞. Using the moment estimate from
Lemma 9, we infer from

lim sup
σ→0

∫ T

0

∫

Rd

|ρσ − ρ|dxdt = lim sup
σ→0

∫ T

0

∫

Rd\BR

|ρσ − ρ|dxdt

≤ R−2d/(d−2s) lim sup
σ→0

∫ T

0

∫

Rd\BR

ρσ(t, x)|x|2d/(d−2s)dx

≤ R−2d/(d−2s)C → 0 as R → ∞

that ρσ → ρ strongly in Lp(Rd × (0, T )) for all p <∞. The strong convergences of ρσ and
fσ(ρσ) in L

p(Rd × (0, T )) for all p <∞ allow us to identify the weak limit in (35), proving
the weak formulation (8).



24 L. CHEN, A. HOLZINGER, A. JÜNGEL, AND N. ZAMPONI

Finally, we deduce from the uniform L2(0, T ;H−1(Rd)) bound for ∂tρσ and the fact
that ρσ → ρ strongly in Lp(Rd) for any p < ∞ that ρ(0) = ρ0 in the sense of H−1(Rd).
Properties (iv) of Theorem 1 follow from the corresponding expressions satisfied by ρσ in
the limit σ → 0.
The following lemma is needed in the proof of Theorem 3.

Corollary 12. Under the assumptions of Theorem 1, it holds for all φ ∈ L∞(Rd) that,
possibly for a subsequence,

∫

Rd

ρσφdx→
∫

Rd

ρφdx uniformly in [0, T ].

Proof. Let φ ∈ C1
0(R

d) and 0 ≤ t1 < t2 ≤ T . The uniform L2(0, T ;H−1(Rd)) bound of ∂tρσ
implies that

∣∣∣∣
∫

Rd

ρσ(t2)φdx−
∫

Rd

ρσ(t1)φdx

∣∣∣∣ =
∣∣∣∣
∫ t2

t1

〈∂tρσ, φ〉dt
∣∣∣∣

≤ |t2 − t1|1/2‖∂tρσ‖L2(0,T ;H−1(Rd))‖φ‖H1(Rd) ≤ C|t2 − t1|1/2‖φ‖H1(Rd).

Hence, the sequence of functions t 7→
∫
Rd ρσ(t)φds is bounded and equicontinuous in [0, T ].

By the Ascoli–Arzelá theorem, up to a φ-depending subsequence,
∫
Rd ρσφdx→ ξφ strongly

in C0([0, T ]) as σ → 0. Since ρσ ⇀
∗ ρ weakly* in L∞(0, T ;L∞(Rd)), we can identify the

limit, ξφ =
∫
Rd ρφdx. Since H

1(Rd) is separable, a Cantor diagonal argument together with
a density argument allows us to find a subsequence (which is not relabeled) such that for
all φ ∈ H1(Rd),

(36)

∫

Rd

ρσφdx→
∫

Rd

ρφdx strongly in C0([0, T ]).

Since (ρσ) is bounded in L∞(0, T ;L2(Rd)), another density argument shows that this limit
also holds for all φ ∈ L2(Rd).
Now, let φ ∈ L∞(Rd). Using φ1{|x|<R} ∈ L2(Rd), it follows from (36) and the moment

estimate for ρσ that

lim sup
σ→0

sup
0<t<T

∣∣∣∣
∫

Rd

ρσ(t)φdx−
∫

Rd

ρ(t)φdx

∣∣∣∣

≤ lim sup
σ→0

sup
0<t<T

∣∣∣∣
∫

Rd

ρσ(t)φ1{|x|>R}dx−
∫

Rd

ρ(t)φ1{|x|>R}dx

∣∣∣∣

≤ R−2d/(d−2s)‖φ‖∞ lim sup
σ→0

sup
0<t<T

∫

Rd

(ρσ(x, t) + ρ(x, t))|x|2d/(d−2s)dx

≤ C(T )R−2d/(d−2s)‖φ‖∞ → 0 as R → ∞.

This shows that

lim
σ→0

sup
0<t<T

∣∣∣∣
∫

Rd

ρσ(t)φdx−
∫

Rd

ρ(t)φdx

∣∣∣∣ = 0,

concluding the proof. �
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3. Analysis of equation (5)

This section is devoted to the analysis of equation (5),

(37)
∂tρσ,β,ζ − σ∆ρσ,β,ζ = div

(
ρσ,β,ζ∇Kζ ∗ fσ(Wβ ∗ ρσ,β,ζ)

)
, t > 0,

ρσ,β,ζ(0) = ρ0σ in R
d,

where Kζ = K̃ζ ∗Wζ and Wβ is defined in (10), as well as to an estimate for the difference
ρσ,β,ζ − ρσ, which is needed in the mean-field analysis. The existence and uniqueness of
a strong solution to (37) follows from standard parabolic theory, since we regularized the
singular kernel and smoothed the nonlinearity.

Proposition 13 (Uniform estimates). Let Hypotheses (H1)–(H3) hold and let T > 0,
p > d. Set a := min{1, d − 2s}, let ρσ be the strong solution to (7), and let ρσ,β,ζ be the
strong solution to (5). Then there exist constants C1 > 0, and ε0 > 0, both depending on
σ, p, and T , such that if β + ζa < ε0 then

‖ρσ,β,ζ − ρσ‖L∞(0,T ;W 2,p(Rd)) ≤ C1(β + ζa),(38)

‖ρσ,β,ζ‖L∞(0,T ;W 2,p(Rd)) ≤ C1.(39)

Furthermore, for every q ≥ 2, there exists C2 = C2(q) > 0, depending on σ and T , such
that

‖(Kζ −K) ∗ ρσ‖L∞(0,T ;L∞(Rd)) ≤ C2ζ
a,(40)

‖ρσ,β,ζ‖L∞(0,T ;W 2,1(Rd)∩W 3,q(Rd)) ≤ C2.(41)

The proof is presented in the following subsections.

3.1. Proof of (38). We introduce the difference u := ρσ,β,ζ − ρσ, which satisfies

∂tu− σ∆u = div
[
(u+ ρσ)∇Kζ ∗ fσ(Wβ ∗ (u+ ρσ))− ρσ∇K ∗ fσ(ρσ)

]
(42)

= D[u] +R[ρσ, u] + S[ρσ, u] in R
d, t > 0,

and the initial datum u(0) = 0 in R
d, where

D[u] = div
[
u∇K ∗ fσ(Wβ ∗ u)

]
,

R[ρσ, u] = div
[
u∇K ∗

(
fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ u)

)

+ ρσ∇K ∗
(
fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ)

)
+ ρσ∇K ∗

(
fσ(Wβ ∗ ρσ)− fσ(ρσ)

)]
,

S[ρσ, u] = div
[
(u+ ρσ)∇(Kζ −K) ∗ fσ(Wβ ∗ (u+ ρσ))

]
.

We show first an estimate for D2u that depends on a lower-order estimate for u.

Lemma 14 (Conditional estimate for u). For any p > d, there exists a number Γp ∈ (0, 1)
such that, if sup0<t<T ‖u(t)‖W 1,p(Rd) ≤ Γp then

‖D2u‖Lp(0,T ;Lp(Rd)) ≤ C
(
‖u‖Lp(0,T ;W 1,p(Rd)) + β + ζa

)
,

recalling that a = min{1, d− 2s}, and where C > 0 is independent of u, β, and ζ, but may
depend on σ.
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Proof. Let Γp ∈ (0, 1) be such that sup0<t<T ‖u(t)‖W 1,p(Rd) ≤ Γp. We will find a constraint
for Γp at the end of the proof. The aim is to derive an estimate for the right-hand side
of (42) in Lp(0, T ;Lp(Rd)). We observe that ‖u(t)‖1 ≤ ‖ρσ,β,ζ‖1 + ‖ρσ‖1 ≤ 2‖ρ0‖1 for
t ∈ [0, T ]. In the following, we denote by C > 0 a generic constant that may depend on σ,
without making this explicit. Furthermore, we denote by µ a generic exponent in (0, 1),
whose value may vary from line to line.
Step 1: Estimate of D[u]. Let 1/2 < s < 1. Then, by the Hardy–Littlewood–Sobolev-

type inequality (68),

‖D[u]‖p ≤ ‖∇u · ∇K ∗ fσ(Wβ ∗ u)‖p + ‖u∇K ∗ [f ′
σ(Wβ ∗ u)Wβ ∗ ∇u]‖p

≤ C‖∇u‖p‖fσ(Wβ ∗ u)‖d/(2s−1) + C‖u‖d/(2s−1)‖f ′
σ(Wβ ∗ u)‖∞‖∇u‖p.

We use the Young convolution inequality, the Gagliardo–Nirenberg inequality, the smooth-
ness of fσ, the property fσ(0) = 0, and the fact ‖Wβ‖L1(Rd) = 1 to estimate the terms on
the right-hand side:

‖Wβ ∗ u‖∞ ≤ ‖u‖∞ ≤ ‖u‖1−λ
1 ‖∇u‖λp ≤ CΓλ

p ≤ C,

‖fσ(Wβ ∗ u)‖∞ ≤ max
U

|f ′
σ| ‖Wβ ∗ u‖∞ ≤ C,

‖f ′
σ(Wβ ∗ u)‖∞ ≤ |f ′

σ(0)|+max
U

|f ′′
σ |‖Wβ ∗ u‖∞ ≤ C,

‖u‖d/(2s−1) ≤ ‖u‖1−µ
1 ‖u‖µ∞ ≤ C‖u‖µ

W 1,p(Rd)
≤ CΓµ

p ≤ C,

where U := [−‖Wβ ∗ u‖∞, ‖Wβ ∗ u‖∞] and λ > 0, µ > 0. Therefore, ‖D[u]‖p ≤ C‖∇u‖p
and

(43) ‖D[u]‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)).

Next, let 0 < s ≤ 1/2. Then we write

D[u] = ∇u · K ∗ [f ′
σ(Wβ ∗ u)Wβ ∗ ∇u] + uK ∗ [f ′′

σ (Wβ ∗ u)|Wβ ∗ ∇u|2]
+ uK ∗ [f ′

σ(Wβ ∗ u)Wβ ∗∆u] =: D1 +D2 +D3.

By the Hardy–Littlewood–Sobolev-type inequality (Lemma 21),

‖D1‖p ≤ C‖∇u‖d/(2s)‖f ′
σ(Wβ ∗ u)Wβ ∗ ∇u‖p ≤ C‖∇u‖d/(2s)‖∇u‖p.

Next, we apply the Gagliardo–Nirenberg inequality with λ = (1+1/d−2s/d)/(1+2/d−1/p):

‖∇u‖d/(2s) ≤ C‖u‖1−λ
1 ‖D2u‖λp ≤ C‖D2u‖λp ,

which is possible as long as λ ≥ 1/2 or equivalently d ≥ 2s, which is true. Consequently,
using Γp ≤ 1,

‖D1‖p ≤ C‖∇u‖p‖D2u‖λp ≤ CΓλ
p‖∇u‖1−λ

p ‖D2u‖λp ≤ C(δ)‖∇u‖p + δ‖D2u‖p,
where δ > 0 is arbitrary. It follows from the Hardy-Littlewood-Sobolev-type inequality
and the Gagliardo–Nirenberg inequality

‖∇u‖22p ≤ C‖D2u‖d/pp ‖∇u‖2−d/p
p ≤ CΓp‖D2u‖d/pp ‖∇u‖1−d/p

p
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that

‖D2‖p ≤ C‖u‖d/2sΓp‖D2u‖d/pp ‖∇u‖1−d/p
p ≤ C(δ)‖∇u‖p + δ‖D2u‖p.

Finally, using similar ideas, we obtain

‖D3‖p ≤ C‖u‖d/(2s)‖∆u‖p ≤ CΓµ
p‖D2u‖p.

Summarizing the estimates for D1, D2, and D3 and integrating in time leads to

(44) ‖D[u]‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)).

Step 2: Estimate of R[ρσ, u]. We write R[ρσ, u] = R1 + R2 + R3 for the three terms in
the definition of R[ρσ, u] below (42).
Step 2a: Estimate of R1. If s > 1/2, we can argue similarly as in the derivation of (43),

which gives

‖R1‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)).

If 0 < s ≤ 1/2, we write R1 = R11 + · · ·+R16, where

R11 = ∇u · K ∗
[
f ′
σ(Wβ ∗ (u+ ρσ))Wβ ∗ ∇ρσ

]
,

R12 = uK ∗
[
f ′′
σ (Wβ ∗ (u+ ρσ))(Wβ ∗ ∇ρσ) · (Wβ ∗ ∇(u+ ρσ))

]
,

R13 = uK ∗
[
f ′
σ(Wβ ∗ (u+ ρσ))Wβ ∗∆ρσ

]
,

R14 = ∇u · K ∗
[(
f ′
σ(Wβ ∗ (u+ ρσ))− f ′

σ(Wβ ∗ u)
)
Wβ ∗ ∇u

]
,

R15 = uK ∗
[(
f ′′
σ (Wβ ∗ (u+ ρσ))Wβ ∗ ∇(u+ ρσ)

− f ′′
σ (Wβ ∗ u)(Wβ ∗ ∇u)

)
· (Wβ ∗ ∇u)

]
,

R16 = uK ∗
[(
f ′
σ(Wβ ∗ (u+ ρσ))− f ′

σ(Wβ ∗ u)
)
Wβ ∗∆u

]
.

All terms except the last one can be treated by the Hardy–Littlewood–Sobolev and Ga-
gliardo–Nirenberg inequalities as before. For the last term, we use these inequalities and
the L∞(Rd) bound for ρσ:

‖R16‖p ≤ C‖u‖d/(2s)
∥∥(f ′

σ(Wβ ∗ (u+ ρσ))− f ′
σ(Wβ ∗ u)

)
Wβ ∗∆u

∥∥
p

≤ C‖u‖d/(2s)‖f ′′
σ‖∞‖Wβ ∗ ρσ‖∞‖Wβ ∗∆u‖p ≤ C‖u‖d/(2s)‖∆u‖p ≤ CΓµ

p‖D2u‖p.
We infer that (possibly with a different µ > 0 than before)

‖R1‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)).

Step 2b: Estimate of R2. Since |f ′
σ| is bounded on the interval [−‖u‖∞−‖ρσ‖∞, ‖u‖∞+

‖ρσ‖∞], we obtain for s > 1/2,

‖R2‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)).

For 0 < s ≤ 1/2, we write R2 = R21 + · · ·+R27, where

R21 = ∇ρσ · K ∗
[
f ′
σ(Wβ ∗ (u+ ρσ))Wβ ∗ ∇u

]
,

R22 = ρσK ∗
[
f ′′
σ (Wβ ∗ (u+ ρσ))Wβ ∗ ∇(u+ ρσ) · (Wβ ∗ ∇u)

]
,

R23 = ρσK ∗
[
f ′
σ(Wβ ∗ (u+ ρσ))Wβ ∗∆u

]
,
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R24 = ∇ρσ · K ∗
[(
f ′
σ(Wβ ∗ (u+ ρσ))− f ′

σ(Wβ ∗ ρσ)
)
Wβ ∗ ∇ρσ

]
,

R25 = ρσK ∗
[
f ′′
σ (Wβ ∗ (u+ ρσ))(Wβ ∗ ∇u) · (Wβ ∗ ∇ρσ)

]
,

R26 = ρσK ∗
[(
f ′′
σ (Wβ ∗ (u+ ρσ))− f ′′

σ (Wβ ∗ ρσ)
)
|Wβ ∗ ∇ρσ|2

]
,

R27 = ρσK ∗
[(
f ′
σ(Wβ ∗ (u+ ρσ))− f ′

σ(Wβ ∗ ρσ)
)
Wβ ∗∆ρσ

]
.

Similar estimations as before allow us to treat all terms except the third one:

‖R23‖p ≤
∥∥ρσK ∗

[(
f ′
σ(Wβ ∗ (u+ ρσ))− f ′

σ(Wβ ∗ ρσ)
)
Wβ ∗∆u

]∥∥
p

+ ‖ρσK ∗ [f ′
σ(Wβ ∗ ρσ)Wβ ∗∆u]‖p =: Q231 +Q232.

The first term can be estimated similarly as above by Q231 ≤ CΓµ
p‖D2u‖p, while

Q232 ≤ ‖ρσ∆K ∗ [f ′
σ(Wβ ∗ ρσ)Wβ ∗ u]‖p + ‖ρσK ∗ [∆f ′

σ(Wβ ∗ ρσ)Wβ ∗ u]‖p
+ 2‖ρσK ∗ [∇f ′

σ(Wβ ∗ ρσ) · (Wβ ∗ ∇u)]‖p.
It follows from −∆K ∗ v = (−∆)1−sv and the fractional Gagliardo–Nirenberg inequality
(Lemma 23) that

Q232 ≤ C‖u‖W 1,p(Rd) + ‖ρσ(−∆)1−s[f ′
σ(Wβ ∗ ρσ)Wβ ∗ u]‖p

≤ C‖u‖W 1,p(Rd) + C‖ρσ‖∞‖f ′
σ(Wβ ∗ ρσ)Wβ ∗ u‖sp‖D2[f ′

σ(Wβ ∗ ρσ)Wβ ∗ u]‖1−s
p

≤ C‖u‖W 1,p(Rd) + C‖u‖sp
(
‖u‖1−s

p + ‖∇u‖1−s
p + ‖D2u‖1−s

p

)

≤ C‖u‖W 1,p(Rd) + CΓp‖D2u‖p.
This shows that ‖R23‖p ≤ C‖u‖W 1,p(Rd) + CΓµ

p‖D2u‖p, and we conclude that

‖R2‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)).

Step 2c: Estimate of R3. We write R3 = R31 + · · ·+R37, where

R31 = ∇ρσ · K ∗
[(
f ′
σ(Wβ ∗ ρσ)− f ′

σ(ρσ)
)
Wβ ∗ ∇ρσ

]
,

R32 = ρσK ∗
[(
f ′′
σ (Wβ ∗ ρσ)− f ′′

σ (ρσ)
)
|Wβ ∗ ∇ρσ|2

]
,

R33 = ρσK ∗
[
f ′′
σ (ρσ)(Wβ ∗ ∇ρσ −∇ρσ) · (Wβ ∗ ∇ρσ)

]
,

R34 = ∇ρσ · K ∗
[
f ′
σ(ρσ)(Wβ ∗ ∇ρσ −∇ρσ)

]
,

R35 = ρσK ∗
[
f ′′
σ (ρσ)∇ρσ · (Wβ ∗ ∇ρσ −∇ρσ)

]
,

R36 = ρσK ∗
[
f ′
σ(ρσ)(Wβ ∗∆ρσ −∆ρσ)

]

R37 = ρσK ∗
[
(f ′

σ(Wβ ∗ ρσ)− f ′
σ(ρσ))Wβ ∗∆ρσ

]

We start with the estimate of R31. We use the Hardy–Littlewood–Sobolev inequality
(Lemma 21) and Lemma 20 to estimate Wβ ∗ ρσ − ρσ:

R31 ≤ C‖∇ρσ‖d/s‖f ′
σ(Wβ ∗ ρσ)− f ′

σ(ρσ)‖p‖Wβ ∗ ∇ρσ‖d/s
≤ C‖∇ρσ‖2d/s max

[0,2‖ρσ‖∞]
|f ′′

σ | ‖Wβ ∗ ρσ − ρσ‖p ≤ C(σ)β,
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also taking into account the L∞(0, T ;Lq(Rd)) bound for∇ρσ; see Proposition 10. With this
regularity, we can estimate all other terms except R34 and R36. Since they have similar
structures, we only treat R34. This term is delicate since the factor f ′

σ(ρσ) cannot be
bounded in Lq(Rd) for any q < ∞. Therefore, one might obtain via Hardy–Littlewood–
Sobolev’s inequality factors like ‖∇ρσ‖q1 and ‖D2ρσ‖q2 with either q1 < 2 or q2 < 2.
However, for such factors, an L∞ bound in time is currently lacking (Proposition 10 provides
such a bound only for q ≥ 2). Our idea is to add and subtract the term f ′

σ(0) since

|f ′
σ(ρσ)− f ′

σ(0)| ≤ ρσ max
[0,‖ρσ‖∞]

|f ′′
σ | ≤ Cρσ

can be controlled. This leads to

‖R34‖p ≤ ‖∇ρσ · K ∗ [(f ′
σ(ρσ)− f ′

σ(0))(Wβ ∗ ∇ρβ −∇ρβ)‖p
+ ‖f ′

σ(0)∇ρσ · K ∗ (Wβ ∗ ∇ρσ −∇ρσ)‖p
≤ Cβ + |f ′

ρ(0)|‖∇ρσ · K ∗ (Wβ ∗ ∇ρσ −∇ρσ)‖p =: Cβ +Q341,

as the first term can be estimated in a standard way. For the estimate of Q341, we need to
distinguish two cases.
If 1/2 < s ≤ 1, we infer from the Hardy–Littlewoord–Sobolev-type inequality (68) that

Q341 ≤ C‖∇ρσ‖d/(2s−1)‖Wβ ∗ ρσ − ρσ‖p ≤ C‖∇ρσ‖d/(2s−1)‖∇ρσ‖pβ ≤ Cβ.

Next, let 0 < s ≤ 1/2. Then we apply the Hardy–Littlewoord–Sobolev-type inequality
(67), the standard Gagliardo–Nirenberg inequality for some λ > 0, and Lemma 20:

Q341 ≤ C‖∇ρσ‖d/(2s)‖Wβ ∗ ∇ρσ −∇ρσ‖p ≤ C‖ρσ‖1−λ
1 ‖D2ρσ‖λp(β‖D2ρσ‖p) ≤ Cβ.

We conclude that ‖R34‖p ≤ Cβ and eventually

‖R3‖Lp(0,T ;Lp(Rd)) ≤ Cβ.

Summarizing the estimates for R1, R2, and R3 finishes this step:

(45) ‖R[ρσ, u]‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + Cβ + CΓµ
p‖D2u‖Lp(0,T ;W 1,p(Rd)).

Step 3: Estimate of S[ρσ, u]. We formulate this term as S[ρσ, u] = S1 + · · ·+ S4, where

S1 = div
[
u∇(Kζ −K) ∗

(
fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ)

)]
,

S2 = div
(
u∇(Kζ −K) ∗ fσ(Wβ ∗ ρσ)

)
,

S3 = div
[
ρσ∇(Kζ −K) ∗

(
fσ(Wβ ∗ (u+ ρσ))− fσ(Wβ ∗ ρσ)

)]
,

S4 = div
(
ρσ∇(Kζ −K) ∗ fσ(Wβ ∗ ρσ)

)
.

The terms S1, S2, and S3 can be treated as the terms in R[ρσ, u], since they have the same
structure and the techniques used to estimate integrals involving K can be applied to those
involving Kζ . This leads to (for some µ > 0)

(46) ‖S1 + S2 + S3‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)).

It remains to estimate S4. We write S4 = S41 + S42 + S43, where

S41 = ∇ρσ · (Kζ −K) ∗
[
f ′
σ(Wβ ∗ ρσ)Wβ ∗ ∇ρσ

]
,
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S42 = ρσ(Kζ −K) ∗
[
f ′′
σ (Wβ ∗ ρσ)|Wβ ∗ ∇ρσ|2

]
,

S43 = ρσ(Kζ −K) ∗
[
f ′
σ(Wβ ∗ ρσ)Wβ ∗∆ρσ

]
.

Observe that, because of the definition of Kζ = K̃ζ ∗Wζ with K̃ζ = Kωζ (defined in (11)),
we have (Kζ − K) ∗ v = K ∗ (Wζ ∗ v − v) − (K(1 − ωζ)) ∗Wζ ∗ v for every function v for
which the convolution is defined, and therefore, by the Hardy–Littlewood–Sobolev-type
inequality (67), Young’s convolution inequality, and Lemma 20,

‖ρσ(Kζ −K) ∗ v‖p ≤ C‖ρσ‖d/(2s)‖Wζ ∗ v − v‖p + C‖ρσ‖p‖(K(1− ωζ)) ∗ v‖∞
≤ C‖ρσ‖d/(2s)‖∇v‖pζ + C‖ρσ‖p‖K1Rd\B(0,ζ−1)‖∞‖v‖1
≤ C‖ρσ‖d/(2s)‖∇v‖pζ + Cζd−2s‖ρσ‖p‖v‖1,

Given the regularity properties of ρσ (see Lemma 11) and the assumptions on fσ, it follows
that

(47) ‖S4‖Lp(0,T ;Lp(Rd)) ≤ Cζmin{1,d−2s}.

We conclude from (46) and (47) that

(48) ‖S[ρσ, u]‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + Cζa + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)),

where a := min{1, d− 2s}.
Step 4: End of the proof. Summarizing (44), (45), and (48), we infer that the right-hand

side of (42) can be bounded (for some µ > 0) by

‖D[u] +R[ρσ, u] + S[ρσ, u]‖Lp(0,T ;Lp(Rd))

≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + C(β + ζa) + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)).

By parabolic regularity (71),

‖D2u‖Lp(0,T ;Lp(Rd)) ≤ C‖u‖Lp(0,T ;W 1,p(Rd)) + C(β + ζa) + CΓµ
p‖D2u‖Lp(0,T ;Lp(Rd)).

Choosing Γp > 0 sufficiently small finishes the proof. �

It remains to estimate the Lp(0, T ;W 1,p(Rd)) norm of u. This is done in the following
lemma.

Lemma 15 (Unconditional estimate for u). For any p > d, there exist constants C > 0,
and ε0 > 0, both depending on σ, p, and T , such that for β + ζa < ε0,

‖u‖L∞(0,T ;W 1,p(Rd)) ≤ C(β + ζa).

recalling that a := min{1, d− 2s}.
Proof. The idea is to test (42) with p|u|p−2u− p div(|∇u|p−2∇u). Integration by parts and
some elementary computations lead to

∫

Rd

p div(|∇u|p−2∇u)∆udx = −p
∑

i,j

∫

Rd

|∇u|p−2∂iu∂i∂
2
jjudx



POROUS-MEDIUM EQUATION WITH FRACTIONAL DIFFUSION 31

= p
∑

i,j

∫

Rd

∂j(|∇u|p−2∂iu)∂
2
ijudx

= p

∫

Rd

|∇u|p−2|D2u|2dx+ p

2

∑

j

∫

Rd

∂j(|∇u|p−2)∂j(|∇u|2)dx

= p

∫

Rd

|∇u|p−2|D2u|2dx+
∑

j

∫

Rd

4

p
(p− 2)

(
∂j(|∇u|p/2)

)2
dx.

Consequently, we have

p‖u(t)‖p
W 1,p(Rd)

+ σp(p− 1)

∫ t

0

∫

Rd

|u|p−2|∇u|2dxds(49)

+ σ

∫ t

0

∫

Rd

(
p|∇u|p−2|D2u|2 + 4(p− 2)p−1

∣∣∇(|∇u|p/2)
∣∣2)dxds

= p

∫ t

0

∫

Rd

(
|u|p−2u− div(|∇u|p−2∇u)

)(
D[u] +R[ρσ, u] + S[ρσ, u]

)
dxds

=: Q[u].

We infer from Lemmas 19 and 25 that u ∈ C0([0, T ];W 1,p(Rd)). Therefore, since
u(0) = 0, it holds that ‖u(t)‖W 1,p(Rd) ≤ Γp for all t ∈ [0, T ∗] and T ∗ := sup{t0 ∈ (0, T ) :
‖u(t)‖W 1,p(Rd) ≤ Γp for 0 ≤ t ≤ t0}. Let t ∈ [0, T ∗]. We have shown in the proof of the
previous lemma that

‖D[u] +R[ρσ, u] + S[ρσ, u]‖Lp(0,t;Lp(Rd)) ≤ C‖u‖Lp(0,t;W 1,p(Rd)) + C(β + ζa).

Hence, we can estimate the right-hand side Q[u] of (49) as follows:

Q[u] ≤ C

∫ t

0

∫

Rd

(
|u|p−1 + |∇u|p−2|D2u|

)∣∣D[u] +R[ρσ, u] + S[ρσ, u]
∣∣dx

≤ C
(
‖u‖p−1

Lp(0,t;Lp(Rd))
+ ‖∇u‖p/2−1

Lp(0,t;Lp(Rd))
‖|∇u|p/2−1|D2u|‖L2(0,t;L2(Rd))

)

×
(
‖u‖Lp(0,t;W 1,p(Rd)) + β + ζa

)

≤ C(δ, p, t)
(
‖u‖p

Lp(0,t;W 1,p(Rd))
+ (β + ζa)p

)
+ δ‖|∇u|p/2−1|D2u|‖2L2(0,t;L2(Rd)),

where δ > 0. Choosing δ sufficiently small, the last term is absorbed by the corresponding
expression on the left-hand side of (49), and we infer from (49) that for 0 ≤ t ≤ T ∗,

‖u(t)‖p
W 1,p(Rd)

≤ C(p, t)

∫ t

0

‖u‖p
W 1,p(Rd)

ds+ C(p, t)(β + ζa)p.

We assume without loss of generality that C(p, t) is nondecreasing in t. Then Gronwall’s
lemma implies that for 0 ≤ t ≤ T ∗,

‖u(t)‖p
W 1,p(Rd)

≤ C(p, T )(β + ζa)p
∫ t

0

eC(p,T )(t−s)ds ≤ (β + ζa)eC(p,T )t.
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Choosing ε0 = 1
2
Γp exp(−C(p, T )T/p) < 1, we find that ‖u(t)‖W 1,p(Rd) ≤ Γp/2 for β +

ζa < ε0 and 0 ≤ t ≤ T ∗. By definition of T ∗, it follows that T ∗ = T . In particular,
‖u(t)‖W 1,p(Rd) ≤ C(β + ζa) for 0 < t < T , which finishes the proof. �

3.2. Proof of (38) and (39). Combining Lemmas 14 and 15 leads to

(50) ‖u‖Lp(0,T ;W 2,p(Rd)) ≤ C(σ, p, T )(β + ζa), where a = min{1, d− 2s},
as long as β + ζa < ε0 and p > d. Next, we differentiate (42) with respect to xi (writing ∂i
for ∂/∂xi):

∂t(∂iu)− σ∆(∂iu) = ∂i
(
D[u] +R[ρσ, u] + S[ρσ, u]

)
, ∂iu(0) = 0 in R

d.

Taking into account estimate (50) and arguing as in the proof of Lemma 14, we can show
that for δ > 0,

‖∂i(D[u] +R[ρσ, u] + S[ρσ, u])‖Lp(0,T ;Lp(Rd)) ≤ C(p, σ, δ)(β + ζa) + δ‖D3u‖Lp(0,T ;Lp(Rd)).

We infer from parabolic regularity (Lemma 25) for sufficiently small δ > 0 that

‖∂tDu‖Lp(0,T ;Lp(Rd)) + ‖D3u‖Lp(0,T ;Lp(Rd)) ≤ C(p, σ)(β + ζa).

Then Lemma 19, applied to Du, leads to (38), which with Proposition 10 implies (39).

3.3. Proof of (40). Let x ∈ R
d. We use the definitions of Kζ and Wζ to find that

|(Kζ −K) ∗ ρσ(x)| =
∣∣∣∣
∫

Rd

Wζ(x− y)
(
(K ∗ ρσ)(x)− ((Kωζ) ∗ ρσ)(y)

)
dy

∣∣∣∣

≤
∫

Rd

Wζ(x− y)|x− y| |(K ∗ ρσ)(x)− (K ∗ ρσ)(y)|
|x− y| dy + ‖(K(1− ωζ)) ∗ ρσ‖∞

≤ ‖∇K ∗ ρσ‖∞
∫

Rd

Wζ(z)|z|dz + ‖K1Rd\B(0,ζ−1)‖∞‖ρσ‖1

≤ ζ‖∇K ∗ ρσ‖∞
∫

Rd

W1(y)|y|dy + ζd−2s‖ρσ‖1.

Let φ ∈ C∞
0 (Rd) be such that supp(φ) ⊂ B2 and φ = 1 in B1. Then (since we can assume

without loss of generality that ζ < 1), by arguing like in the derivation of (47), we obtain

|(Kζ −K) ∗ ρσ(x)| ≤ Cζmin{1,d−2s}
(
‖∇(Kφ) ∗ ρσ‖∞ + ‖∇(K(1− φ)) ∗ ρσ‖∞ + ‖ρσ‖1

)
,

A computation shows that for p > max{d/(2s), 2},
‖∇(Kφ) ∗ ρσ‖∞ = ‖(Kφ) ∗ ∇ρσ‖∞ ≤ ‖Kφ‖p/(p−1)‖∇ρσ‖p ≤ C‖∇ρσ‖p,

‖∇(K(1− φ)) ∗ ρσ‖∞ ≤ ‖∇(K(1− φ))‖∞‖ρσ‖1 ≤ C‖ρσ‖1,
where we note that K1B2 ∈ Lp/(p−1) if p > d/(2s). Then, in view of the regularity of ρσ in
Lemma 11, we find that

‖(Kζ −K) ∗ ρσ‖L∞(0,T ;L∞(Rd)) ≤ Cζa.

3.4. Proof of (41). The L∞(0, T ;W 2,1(Rd) ∩ W 3,q(Rd)) bound for ρσ,β,ζ is shown in a
similar way as the corresponding bound for ρσ in Lemma 11.
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4. Mean-field analysis

This section is devoted to the proof of Theorems 2 and 3.

4.1. Existence of density functions. We claim that the solution X̂N to (6) is absolutely
continuous with respect to the Lebesgue measure, which implies that this process possesses
a probability density û ∈ L∞(0, T ;L1(Rd)). The claim follows from [32, Theorem 2.3.1]

if the coefficients of the stochastic differential equation (6), satisfied by X̂N , are globally
Lipschitz continuous and of at most linear growth. The latter condition follows from

|∇K ∗ fσ(ρσ(x, t))| ≤ ‖K ∗ ∇fσ(ρσ)‖L∞(0,T ;L∞(Rd))

≤ C‖K ∗ ∇fσ(ρσ)‖L∞(0,T ;W 1,p(Rd)) ≤ C‖∇fσ(ρσ)‖L∞(0,T ;W 1,r(Rd)) ≤ C(σ),

where p > d and r = dp/(d + 2s) according to the Hardy–Littlewood–Sobolev inequality,
and we used the regularity bounds for ρσ from Lemma 25. The global Lipschitz continuity
is a consequence of the mean-value theorem, the Hardy–Littlewood–Sobolev inequality,
and the W 2,∞(Rd) regularity of ρσ from Lemma 11:

sup
0<t<T

∣∣∇K ∗ fσ(ρσ(x, t))−∇K ∗ fσ(ρσ(y, t))
∣∣ ≤ sup

0<t<T
‖D2K ∗ fσ(ρσ(·, t))‖∞|x− y|

= sup
0<t<T

∥∥K ∗
(
f ′′
σ (ρσ)∇ρσ ⊗∇ρσ + f ′

σ(ρσ)D
2ρσ

)
(·, t)

∥∥
∞
|x− y| ≤ C(σ)|x− y|.

Similar arguments show that X̄N
i (t) has a density function ū ∈ L∞(0, T ;L1(Rd)).

Next, we show that û and ū can be identified with the weak solutions ρσ and ρσ,β,ζ ,
respectively, using Itô’s lemma. Indeed, let φ ∈ C∞

0 (Rd × [0, T ]). We infer from Itô’s
formula that

φ(X̂N
i (t), t) = φ(X̂N

i (0), 0) +

∫ t

0

∂sφ(X̂
N
i (s), s)ds+ σ

∫ t

0

∆φ(X̂N
i (s), s)ds

−
∫ t

0

∇K ∗ fσ(ρσ(X̂N
i (s), s)) · ∇φ(X̂N

i (s), s)ds+
√
2σ

∫ t

0

∇φ(X̂N
i (s), s) · dBN

i (s).

Taking the expectation, the Itô integral vanishes, and we end up with
∫

Rd

φ(x, t)û(x, t)dx =

∫

Rd

φ(x, 0)ρ0σ(x)dx+

∫ t

0

∫

Rd

∂sφ(x, s)û(x, s)dxds

+ σ

∫ t

0

∫

Rd

∆φ(x, s)û(x, s)dxds−
∫ t

0

∫

Rd

∇K ∗ fσ(ρσ(x, s)) · ∇φ(x, s)û(x, s)dxds.(51)

Hence, û is a very weak solution in the space L∞(0, T ;L1(Rd)) to the linear equation

(52) ∂tû = σ∆û+ div(û∇K ∗ fσ(ρσ)), û(0) = ρ0σ in R
d,

where ρσ is the unique solution to (7).
It can be shown that (52) is uniquely solvable in the class of functions in L∞(0, T ;L1(Rd)).

This implies that û = ρσ in R
d × (0, T ) (and similarly ū = ρσ,β,ζ). The proof is technical

but standard; see, e.g., [11, Theorem 7] for a sketch of a proof.
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Another approach is as follows. Because of the linearity of (51), it is sufficient to
prove that û ≡ 0 in R

d × (0, T ) if ρ0σ = 0. First, we verify that v := ∇K ∗ fσ(ρσ) ∈
L∞(0, T ;W 1,∞(Rd)) and û ∈ Lp(0, T ;Lp(Rd)) for p < d/(d − 1). Then, by density, (51)
holds for all φ ∈ W 1,q(0, T ;Lq(Rd))∩Lq(0, T ;W 2,q(Rd)) with q > d and φ(T ) = 0. Choosing
ψ to be the unique strong solution to the dual problem

∂tψ + σ∆ψ = v · ∇ψ + g, ψ(T ) = 0 in R
d

in the very weak formulation of (51), we find that
∫ T

0

∫
Rd ûgdxdt = 0 for all g ∈ C∞

0 (Rd ×
(0, T )), which implies that û = 0.

4.2. Estimate of XN
i −X

N

i .

Lemma 16. Let XN
i and X̄N

i be the solutions to (3) and (4), respectively, and let δ ∈
(0, 1/4). Under the assumptions of Theorem 2 on β and ζ, it holds that

E

(
sup

0<s<T
max

i=1,...,N
|(XN

i − X̄N
i )(s)|

)
≤ CN−1/4+δ.

Proof. To simplify the presentation, we set

Ψ(x, t) := fσ

(
1

N

N∑

j=1, j 6=i

Wβ(X
N
j (t)− x)

)
, Ψ̄(x, t) := fσ

(
1

N

N∑

j=1, j 6=i

Wβ(X̄
N
j (t)− x)

)
,

and we write ρ := ρσ,β,ζ . Taking the difference of equations (3) and (4) in the integral
formulation leads to

sup
0<s<t

|(XN
i − X̄N

i )(s)| ≤
∫ t

0

∣∣∇Kζ ∗
(
Ψ(XN

i (s), s)− fσ(Wβ ∗ ρ(X̄N
i (s), s))

)∣∣ds(53)

≤
∫ t

0

∣∣∇Kζ ∗
(
Ψ(XN

i (s), s)− Ψ̄(X̄N
i (s), s)

)∣∣ds

+

∫ t

0

∣∣∇Kζ ∗
(
Ψ̄(X̄N

i (s), s)− fσ(Wβ ∗ ρ(X̄N
i (s), s))

)∣∣ds =: I1 + I2.

Step 1: Estimate of I1. To estimate I1, we formulate I1 = I11 + I12 + I13, where

I11 =

∫ t

0

∣∣∇Kζ ∗
(
Ψ(XN

i (s), s)−Ψ(X̄N
i (s), s)

)∣∣ds,

I12 =

∫ t

0

∣∣∇Kζ ∗
(
Ψ(X̄N

i (s), s)− Ψ̄(XN
i (s), s)

)∣∣ds,

I13 =

∫ t

0

∣∣∇Kζ ∗
(
Ψ̄(XN

i (s), s)− Ψ̄(X̄N
i (s), s)

)∣∣ds.

We start with the first integral:

I11 ≤
∫ t

0

‖D2Kζ ∗Ψ(·, s)‖∞ sup
0<r<s

max
i=1,...,N

|(XN
i − X̄N

i )(r)|ds.
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We claim that

(54) ‖DkKζ ∗Ψ(·, s)‖∞ ≤ C(σ)β−(k+1)(d+k)−1, k ∈ N.

For the proof, we introduce

Φ(x, y) := fσ

(
1

N

N−1∑

j=1

Wβ(yj − x)

)
for x ∈ R

d, y = (y1, . . . , yN−1) ∈ R
(N−1)d.

Then, by definition of Kζ ,

‖DkKζ ∗Ψ(·, t)‖∞ ≤ sup
y∈RN−1

‖Wζ ∗ Kωζ ∗DkΦ(·, y)‖∞.

We estimate the right-hand side:

‖Wζ ∗ (Kωζ ∗DkΦ(·, y))‖∞ ≤ ‖Wζ‖1‖Kωζ ∗DkΦ(·, y)‖∞ ≤ C‖Kωζ ∗DkΦ(·, y)‖W 1,p(Rd)

≤ C‖K ∗ |DkΦ(·, y)|‖p + C‖K ∗ |Dk+1Φ(·, y)|‖p
≤ C‖DkΦ(·, y)‖r + C‖Dk+1Φ(·, y)‖r,

where we used the Hardy–Littlewood–Sobolev inequality for r = dp/(d + 2ps) in the last
step. It follows from the Faà di Bruno formula, after an elementary computation, that the
last term is estimated according to

‖Dk+1Φ(·, y)‖rr =
∫

Rd

∣∣∣∣D
k+1

(
fσ

(
1

N

N−1∑

j=1

Wβ(yj − x)

))∣∣∣∣
r

dx

≤ C(k,N) max
ℓ=1,...,k+1

‖f (ℓ)
σ ‖r∞‖DkWβ‖kr∞ max

0≤j≤k

∫

Rd

|Dj+1Wβ(x)|rdx

≤ C(k,N) max
ℓ=1,...,k+1

‖f (ℓ)
σ ‖r∞β−(d+k)krβ−(d+k+1)r+d ≤ C(k,N, σ)β−(d+k)(k+1)r−r,

since ‖DkWβ‖∞ ≤ Cβ−(d+k) and ‖Dj+1Wβ‖r ≤ Cβ−(d+j+1)+d/r. This verifies (54). We infer
from (54) with k = 2 that

I11 ≤ Cβ−3d−7

∫ t

0

sup
0<r<s

max
i=1,...,N

|(XN
i − X̄N

i )(r)|ds.

The term I13 is estimated in a similar way, with Ψ replaced by Ψ̄:

I13 ≤ Cβ−3d−7

∫ t

0

sup
0<r<s

max
i=1,...,N

|(XN
i − X̄N

i )(r)|ds.

The estimate of the remaining term I12 is more involved. Since Wβ is assumed to be
symmetric, we find that

I12 =

∣∣∣∣
∫ t

0

∫

Rd

Kζ(y)∇
{
fσ

(
1

N

N∑

j=1, j 6=i

Wβ(X
N
j (s)− X̄N

i (s) + y)

)
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− fσ

(
1

N

N∑

j=1, j 6=i

Wβ(X̄
N
j (s)−XN

i (s) + y)

)}
dyds

∣∣∣∣

≤ C

∫ t

0

∫

Rd

Kζ(y)

∣∣∣∣f
′
σ

(
1

N

∑

j 6=i

Wβ(X
N
j (s)− X̄N

i (s) + y)

)

× 1

N

∑

j 6=i

∇
(
Wβ(X

N
j (s)− X̄N

i (s) + y)−Wβ(X̄
N
j (s)−XN

i (s) + y)
)

+

{
f ′
σ

(
1

N

∑

j 6=i

Wβ(X
N
j (s)− X̄N

i (s) + y)

)
− f ′

σ

(
1

N

∑

j 6=i

Wβ(X̄
N
j (s)−XN

i (s) + y)

)}

× 1

N

∑

j 6=i

∇Wβ(X̄
N
j (s)−XN

i (s) + y)

∣∣∣∣dyds

≤ C‖f ′
σ‖∞

∫ t

0

sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)| 1
N

∑

j 6=i

∫

Rd

Kζ(y)|D2Wβ(y + ξij(s))|dyds

+ C‖f ′′
σ‖∞

∫ t

0

sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)| ‖Kζ ∗ ∇Wβ‖∞ds,

where ξij(s) is a random value. We write K1 = K|B1 , K2 = K|Rd\B1
and note that K̃ζ ≤ K

for all ζ > 0. Then
∫

Rd

Kζ(y)|D2Wβ(y + ξij(s))|dy ≤
∫

B1+ζ

(K1 ∗Wζ)(y)|D2Wβ(y + ξij(s))|dy

+

∫

Rd\B1−ζ

(K2 ∗Wζ)(y)|D2Wβ(y + ξij(s))|dy

≤ ‖K1 ∗Wζ‖Lθ/(θ−1)(B1+ζ)
‖D2Wβ(·+ ξij(s))‖Lθ(B1+ζ)

+ ‖K2 ∗Wζ‖∞‖D2Wβ(·+ ξij(s))‖L1(Rd\B1−ζ)

≤ ‖K1‖Lθ/(θ−1)(B1)‖D2Wβ(·+ ξij(s))‖Lθ(B1+ζ) + ‖K2‖∞‖D2Wβ(·+ ξij(s))‖L1(Rd)

≤ C
(
‖D2Wβ‖∞ + ‖D2Wβ‖1

)
≤ Cβ−d−2.

Observe that we did not use the compact support for K̃ζ (which depends on ζ), because
a negative exponent of ζ at this point would lead to a logarithmic connection between ζ
and N in the end, which we wish to avoid.
Furthermore, by the convolution, Sobolev, and Hardy–Littlewood–Sobolev inequalities

as well as the fact that |K̃ζ ∗ ∇Wβ| = |(Kwζ) ∗Wζ ∗ ∇Wβ| ≤ K ∗ |Wζ | ∗ |∇Wβ|,

‖Kζ ∗ ∇Wβ‖∞ = ‖Wζ ∗ K̃ζ ∗ ∇Wβ‖∞ ≤ ‖K̃ζ ∗ ∇Wβ‖∞ ≤ ‖K̃ζ ∗ ∇Wβ‖∞
≤ C‖K̃ζ ∗ ∇Wβ‖W 1,p(Rd) ≤ C(‖K ∗ |∇Wβ|‖pp + ‖K ∗ |D2Wβ|‖pp)1/p

≤ C‖∇Wβ‖W 1,r(Rd) ≤ Cβ−d−2+d/r,
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where we recall that r > d/(2s) and we choose p > d satisfying 1/p = 2s/d − 1/r. The
previous two estimates lead to

I12 ≤ C(σ)β−d−2

∫ t

0

sup
0<r<s

max
i=1,...,N

|(XN
i − X̄N

i )(r)|ds.

We summarize:

(55) I1 ≤ C(σ)β−3d−7

∫ t

0

sup
0<r<s

max
i=1,...,N

|(XN
i − X̄N

i )(r)|ds.

Step 2: Estimate of I2. We take the expectation of I2 and use the mean-value theorem:

E(I2) =

∫ t

0

E

∣∣∣∣
∫

Rd

∇Kζ(y)

{
fσ

(
1

N

∑

j 6=i

Wβ(X̄
N
j (s)− X̄N

i (s) + y)

)
(56)

− fσ
(
Wβ ∗ ρ(X̄N

i (s)− y, s)
)}
dy

∣∣∣∣ds

≤ N−1‖f ′
σ‖∞‖K̃ζ ∗ ∇Wζ‖1

∫ t

0

sup
y∈Rd

E

(∑

j 6=i

|bij(y, s)|
)
ds,

where

bij(y, s) = Wβ(X̄
N
j (s)− X̄N

i (s) + y)− N

N − 1
Wβ ∗ ρ(X̄N

i (s)− y, s).

We deduce from ‖∇Wζ‖L1(Rd) ≤ Cζ−1 that

‖K̃ζ ∗ ∇Wζ‖1 ≤ Cζ−1‖K̃ζ‖1 ≤ Cζ−2s−1,

due to the compact support of K̃ζ(x) = |x|2s−dωζ(x) ≤ C|x|2s−d1|x|≤2ζ−1 and
∫

{|x|<2/ζ}

|x|2s−ddx =

∫

{|y|<2}

ζ−d|y/ζ|2s−ddy = Cζ−2s.

We claim that E(
∑

j 6=i |bij(y, s)|) ≤ C(σ)β−d/2N1/2 for all y ∈ R
d. To show the claim,

we compute the expectation E[(
∑

j 6=i bij(y, s))
2]. We estimate first the terms with k 6= j

(omitting the argument (y, s) to simplify the notation). Then an elementary but tedious
computation leads to

E(bjibki) =

∫

Rd

∫

Rd

∫

Rd

(
Wβ(xj − xi + y)− N

N − 1
Wβ ∗ ρ(xi − y)

)

×
(
Wβ(xk − xi + y)− N

N − 1
Wβ ∗ ρ(xi − y)

)
ρ(xi)ρ(xj)ρ(xk)dxidxjdxk

=

∫

Rd

(
Wβ ∗ ρ(xi − y)− N

N − 1
Wβ ∗ ρ(xi − y)

)2

ρ(xi)dxi

≤ N−2‖ρ‖L∞(0,T ;L∞(Rd))‖Wβ ∗ ρ‖2L∞(0,T ;L2(Rd))

≤ C(σ)N−2‖Wβ‖21 ≤ C(σ)N−2.
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The diagonal terms contribute in the following way:

E(b2ji) =

∫

Rd

∫

Rd

(
Wβ(xj − xi + y)− N

N − 1
Wβ ∗ ρ(xi − y)

)2

ρ(xi)ρ(xj)dxidxj

=

∫

Rd

(
(W 2

β ∗ ρ)(xi − y)− 2N

N − 1
(Wβ ∗ ρ)(xi − y)2

+
N2

(N − 1)2
(Wβ ∗ ρ)(xi − y)2

)
ρ(xi)dxi

≤ C(σ)
(
‖W 2

β ∗ ρ‖L∞(0,T ;L1(Rd)) + ‖Wβ ∗ ρ‖2L∞(0,T ;L2(Rd))

)
≤ C(σ)β−d,

since ‖W 2
β ∗ ρ‖2 ≤ ‖W 2

β‖1‖ρ‖2 ≤ C‖Wβ‖22 ≤ β−dC. This shows that

E

(∑

j 6=i

|bji(y, s)|
)

≤
(
E

[∑

j 6=i

bji(y, s)

]2)1/2

≤ C(σ)β−d/2N1/2.

We infer that (56) becomes

(57) I2 ≤ C(σ)ζ−2s−1β−d/2N−1/2.

Step 3: End of the proof. We insert (55) and (57) into (53) to infer that

E1(t) := E

(
sup
0<s<t

max
i=1,...,N

|(XN
i − X̄N

i )(s)|
)

≤ C(σ)β−3d−7

∫ t

0

E1(s)ds+ C(σ)ζ−2s−1β−d/2N−1/2.

By Gronwall’s lemma,

E1(t) ≤ C(σ)ζ−2s−1β−d/2N−1/2 exp
(
C(σ)β−3d−7T

)
, 0 ≤ t ≤ T.

We choose ε = δ̃/(C(σ)T ) for some arbitrary δ̃ ∈ (0, 1/4). Then, since by assumption,
β−d/2 ≤ β−3d−7 ≤ ε logN and ζ−2s−1 ≤ C1N

1/4, we find that

E1(t) ≤ C(σ)C1ε log(N)N−1/4 exp
(
C(σ)Tε logN

)
=
C1δ̃

T
log(N)N−1/4+δ̃,

proving the result. �

4.3. Estimate of X̄N
i − X̂N

i .

Lemma 17. Let X̄N
i and X̂N

i be the solutions to (4) and (6), respectively. Then there
exists a constant C > 0, depending on σ, such that

E

(
sup

0<t<T
max

i=1,...,N
|(X̄N

i − X̂N
i )(t)|

)
≤ C(β + ζa),

where a := min{1, d− 2s}.
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Proof. We compute the difference

|(X̄N
i − X̂N

i )(t)| =
∣∣∣∣
∫ t

0

(
∇Kζ ∗ fσ(Wβ ∗ ρ(X̄N

i (s), s))−∇K ∗ fσ(ρσ(X̂N
i (s), s))

)
ds

∣∣∣∣
≤ J1 + J2 + J3,

where ρ := ρσ,β,ζ , the convolution is taken with respect to xi, and

J1 =

∣∣∣∣
∫ t

0

∇Kζ ∗
(
fσ(Wβ ∗ ρ(X̄N

i (s), s))− fσ(Wβ ∗ ρ(X̂N
i (s), s))

)
ds

∣∣∣∣,

J2 =

∣∣∣∣
∫ t

0

∇Kζ ∗
(
fσ(Wβ ∗ ρ(X̂N

i (s), s))− fσ(ρσ(X̂
N
i (s), s))

)
ds

∣∣∣∣,

J3 =

∣∣∣∣
∫ t

0

∇(Kζ −K) ∗ fσ(ρσ(X̂N
i (s), s))ds

∣∣∣∣.

Step 1: Estimate of J1. We write ∇Kζ ∗ fσ(· · · ) = Kζ ∗ ∇fσ and add and subtract the

expression f ′
σ(Wβ ∗ ρ(X̄N

i − y))∇Wβ ∗ ρ(X̂N
i − y):

J1 =

∫ t

0

∫

Rd

Kζ(y)
(
f ′
σ(Wβ ∗ ρ(X̄N

i (s)− y))∇Wβ ∗
[
ρ(X̄N

i (s)− y)− ρ(X̂N
i (s)− y)

]

−
[
f ′
σ(Wβ ∗ ρ(X̂N

i (s)− y))− f ′
σ(Wβ ∗ ρ(X̄N

i (s)− y))
]
∇Wβ ∗ ρ(X̂N

i (s)− y)
)
dyds

≤ ‖f ′
σ‖∞

∫ t

0

∫

Rd

∣∣∣Kζ(y)∇Wβ ∗
(
ρ(X̄N

i (s)− y)− ρ(X̂N
i (s)− y)

)∣∣∣dyds

+ ‖f ′′
σ‖∞‖∇Wβ ∗ ρ‖L∞(0,T ;L∞(Rd))

×
∫ t

0

∫

Rd

∣∣Kζ(y)Wβ ∗
(
ρ(X̂N

i (s)− y)− ρ(X̄N
i (s)− y)

)∣∣dyds.

By the mean-value theorem and using ‖Wβ‖1 = 1, we obtain for some random variable
ξij(s),

J1 ≤ ‖fσ‖W 2,∞(R)‖∇ρ‖L∞(0,T ;L∞(Rd))

∫ t

0

sup
0<r<s

sup
i=1,...,N

|(X̄N
i − X̂N

i )(r)|(58)

×
∫

Rd

2∑

k=1

∣∣Kζ(y)D
kWβ ∗ ρ(y + ξij(s), s)

∣∣dyds.

We need to estimate the last integral. For this, we write for k = 1, 2∫

Rd

∣∣Kζ(y)D
kWβ ∗ ρ(y + ξij(s), s)

∣∣dy ≤ Kk
1 +Kk

2 , where

Kk
1 :=

∫

B1+ζ

∣∣K1 ∗Wζ(y)D
kWβ ∗ ρ(y + ξij(s), s)

∣∣dy,

Kk
2 :=

∫

Rd\B1−ζ

∣∣K2 ∗Wζ(y)D
kWβ ∗ ρ(y + ξij(s), s)

∣∣dy,
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where K1 = K|B1 and K2 = K|Rd\B1
. Note that K̃ζ ≤ K. A similar argument as for the

estimate of I12 in the proof of Lemma 16 shows that for θ > max{d/(2s), d},
Kk

1 +Kk
2 ≤ C

(
‖DkWβ ∗ ρ‖L∞(0,T ;Lθ(Rd)) + ‖DkWβ ∗ ρ‖L∞(0,T ;L1(Rd))

)

≤ C
(
‖Dkρ‖L∞(0,T ;Lθ(Rd)) + ‖Dkρ‖L∞(0,T ;L1(Rd))

)
≤ C(σ),

where we used Proposition 13 ((39) and (41)) with p = θ in the last inequality. We conclude
from (58) that

(59) J1 ≤ C(σ)

∫ t

0

sup
0<r<s

max
i=1,...,N

|(X̄N
i − X̂N

i )(r)|ds.

Step 2: Estimate of J2. We treat the two cases s < 1/2 and s ≥ 1/2 separately. Let first
s ≥ 1/2. Then

J2 =

∣∣∣∣
∫ t

0

∇K̃ζ ∗Wζ ∗
(
fσ(Wβ ∗ ρ(X̂N

i (s), s))− fσ(ρσ(X̂
N
i (s), s))

)
ds

∣∣∣∣

≤ T‖∇K̃ζ ∗ (fσ(Wβ ∗ ρ)− fσ(ρσ))‖L∞(0,T ;L∞(Rd)).

Recalling the definition of K̃ζ = Kωζ in (11) and writing ∇K̃ζ ∗u = ∇K∗u− [(1−ωζ)∇K]∗
u+ [K∇ωζ ] ∗ u for u = fσ(Wβ ∗ ρ)− fσ(ρσ), we find that

J2 ≤ C(T )
(
‖∇K ∗ u‖L∞([0,T ];L∞(Rd)) + ‖[(1− ωζ)∇K] ∗ u‖L∞([0,T ];L∞(Rd))(60)

+ ‖[K∇ωζ ] ∗ u‖L∞(0,T ;L∞(Rd))

)
.

We estimate the right-hand side term by term. Because of

∇K ∗ v =

{
∇(−∆)−1/2v for s = 1/2

(∇K) ∗ v for s > 1/2,

we use Sobolev’s embedding W 1,p(Rd) →֒ L∞(Rd) for any p > d and then the boundedness
of the Riesz operator ∇(−∆)−1/2 : Lp(Rd) → Lp(Rd) [45, Chapter IV, §3.1] in case s = 1/2
or the Hardy–Littlewood–Sobolev inequality for α̃ = α − 1/2 > 0 (see Lemma 21) in case
s > 1/2 to control the first norm in (60) by

‖∇K ∗ u‖L∞(0,T ;L∞(Rd)) ≤ C

(
‖∇K ∗ u‖L∞(0,T ;Lp(Rd)) +

d∑

j=1

‖∇K ∗Dju‖L∞(0,T ;Lp(Rd))

)

≤ C‖u‖L∞(0,T ;W 1,r(Rd)) = C‖fσ(Wβ ∗ ρ)− fσ(ρσ)‖L∞(0,T ;W 1,r(Rd)),

where r = p in case s = 1/2 and r = pd/(d + 2s − 1) in case s > 1/2. Choosing
p > d+ (2s− 1) guarantees that r > d always holds.
For the second norm in (60), Hölder’s inequality yields for q > d and 1/q+1/q′ = 1, for

every t > 0,

‖[(1− ωζ)∇K] ∗ u(t)‖L∞(Rd) ≤ ‖1− ωζ‖L∞(Rd)‖∇K‖Lq′ ({|x|>2ζ−1})‖u(t)‖Lq(Rd)

≤ ‖∇K‖Lq′ ({|x|>2ζ−1})‖u(t)‖Lq(Rd),
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which can be bounded by Cζ1−2s+d/q‖u(t)‖Lq(Rd), since

‖∇K‖q′
Lq′ ({|x|>2ζ−1})

≤ C

∫

{|x|>2ζ−1}

|x|(2s−d−1)q′dx = Cζ−d

∫

{|y|>2}

|y/ζ|(2s−d−1)q′dy

≤ Cζ−d+(1+d−2s)q′ .

By similar arguments and the fact that ‖∇ωζ‖L∞ ≤ Cζ, we find that

‖K∇ωζ‖Lq′ ({|x|<2ζ−1}) ≤ Cζ1+d−2s−d/q′ ,

and hence, using q′ = q/(q − 1), we conclude for the second and third term in (60) that

‖[(1− ωζ)∇K] ∗ u(t)‖L∞(Rd) + ‖[K∇ωζ ] ∗ u(t)‖L∞(Rd) ≤ Cζ1−2s+d/q‖u(t)‖Lq(Rd).

The choice d < q ≤ d/(2s − 1) guarantees on the one hand that q > d and on the other
hand that the exponent 1−2s+d/q is strictly positive (which allows us to use the property
ζ1−2s+d/q < 1).
Using these estimates in (60), we arrive (for s ≥ 1/2) at

J2 ≤ C(T )
(
‖fσ(Wβ ∗ ρ)− fσ(ρσ)‖L∞(0,T ;W 1,r(Rd)) + ‖fσ(Wβ ∗ ρ)− fσ(ρσ)‖L∞(0,T ;Lq(Rd))

)
,

where we recall that r, q > d. These norms can be estimated by ‖fσ(Wβ ∗ ρ(t)) −
fσ(ρσ(t))‖Lq(Rd) ≤ ‖f ′

σ‖∞‖Wβ ∗ ρ(t)− ρσ(t)‖Lq(Rd) and

‖∇(fσ(Wβ ∗ ρ)− fσ(ρσ))(t)‖Lr(Rd) ≤ ‖f ′
σ‖∞‖(Wβ ∗ ∇ρ−∇ρσ)(t)‖Lr(Rd)

+ ‖f ′′
σ‖∞‖(Wβ ∗ ρ− ρσ)(t)‖Lr(Rd)‖∇ρσ(t)‖L∞(Rd).

The L∞(Rd × (0, T )) bound for ∇ρσ from Lemma 11 and the definition of fσ finally show
for s ≥ 1/2 and r, q > d that

(61) J2 ≤ C(σ, T )
(
‖Wβ ∗ ρ− ρσ‖L∞(0,T ;W 1,r(Rd)) + ‖Wβ ∗ ρ− ρσ‖L∞(0,T ;Lq(Rd))

)
.

Now, let s < 1/2. In this case, we cannot estimate ∇K and put the gradient to the
second factor of the convolution. Adding and subtracting an appropriate expression as in
Step 1, using the embedding W 1,p(Rd) →֒ L∞(Rd) for p > d, the estimate Kζ ≤ K, and
the Hardy–Littlewood–Sobolev inequality, we find that

J2 =

∣∣∣∣
∫ t

0

∫

Rd

Kζ(y)
((
f ′
σ(Wβ ∗ ρ(X̂N

i (s)− y))− f ′
σ(ρσ(X̂

N
i (s)− y))

)
∇Wβ ∗ ρ(X̂N

i (s)− y)

− f ′
σ(ρσ(X̂

N
i (s)− y))

(
∇ρσ(X̂N

i (s)− y)−∇Wβ ∗ ρ(X̂N
i (s)− y)

))
dyds

∣∣∣∣

≤ ‖f ′′
σ‖∞‖Wβ ∗ ∇ρ‖∞

∫ t

0

∫

Rd

Kζ(y)
∣∣ρσ(X̂N

i (s)− y)−Wβ ∗ ρ(X̂N
i (s)− y)

∣∣dyds

+ ‖f ′
σ‖∞

∫ t

0

∫

Rd

Kζ(y)
∣∣∇ρσ(X̂N

i (s)− y)−Wβ ∗ ∇ρ(X̂N
i (s)− y)

∣∣dyds

≤ max{‖∇ρ‖L∞(0,T ;L∞(Rd)), 1}‖f ′
σ‖W 1,∞T

(
‖K ∗ |(Wβ ∗ ρ− ρσ)|‖L∞(0,T ;L∞(Rd))

+ ‖K ∗ |(Wβ ∗ ∇ρ−∇ρσ)|‖L∞(0,T ;L∞(Rd))

)
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≤ C(σ, T )
(
‖∇ρ‖L∞(0,T ;L∞(Rd)) + 1

) ∑

|α|≤2

‖Wβ ∗Dαρ−Dαρσ‖L∞(0,T ;Lr(Rd)),

where r > d is such that 1/r = 2s/d + 1/p (this is needed for the Hardy–Littlewood–
Sobolev inequality) and p > d (because of Sobolev’s emebdding). Note that r > d can be
only guaranteed if s < 1/2. Together with the fact that ‖∇ρ‖L∞(0,T ;L∞(Rd)) ≤ C(σ) (choose
q > d in (41) and use Sobolev’s embedding), this shows that for s < 1/2,

(62) J2 ≤ C(σ, T )
∑

|α|≤2

‖Wβ ∗Dαρ−Dαρσ‖L∞(0,T ;Lr(Rd)).

It follows from estimate (38) and Lemma 20 in Appendix A for p > d that

‖(Wβ ∗Dαρ−Dαρσ)(t)‖Lp(Rd) ≤ C
(
‖Dα∇ρ‖Lp(Rd)β + β + ζa

)
≤ C(σ, T )(β + ζa),

where we used the L∞(0, T ;W 3,p(Rd)) estimate for ρ = ρσ,β,ζ in (41). Then we deduce
from estimates (61) and (62) that for all 0 < s < 1,

J2 ≤ C(σ, T )(β + ζa),

where we recall that a = min{1, d− 2s}.
Step 3: Estimate of J3 and end of the proof. Arguing similarly as in Section 3.3, we have

‖(Kζ −K) ∗ ∇ρσ‖L∞(0,T ;L∞(Rd)) ≤ Cζa
(
‖D2ρσ‖L∞(0,T ;Lp(Rd)) + ‖∇ρσ‖L∞(0,T ;L1(Rd))

)
.

This implies that

(63) J3 ≤ ‖f ′
σ‖∞‖(Kζ −K) ∗ ∇ρσ‖L∞(0,T ;L∞(Rd)) ≤ C(σ)ζa.

Taking the expectation, we infer from (59)–(63) that

E2(t) := E

(
sup
0<s<t

max
i=1,...,N

|(X̄N
i − X̂N

i )(s)|
)

≤ C(σ)(β + ζa) + C(σ)

∫ t

0

E2(s)ds,

An application of Gronwall’s lemma gives the result. �

4.4. Proof of Theorems 2 and 3. Lemmas 16 and 17 show that

E

(
sup

0<s<T
max

i=1,...,N
|(XN

i − X̂N
i )(s)|

)
≤ C(N−1/4+δ + β + ζmin{1,d−2s}),

and this expression converges to zero as N → ∞ and (β, ζ) → 0 under the conditions
stated in Theorem 2. This result implies the convergence in probability of the k-tuple

(XN
1 , . . . , X

N
k ) to (X̂N

1 , . . . , X̂
N
k ). Since convergence in probability implies convergence in

distribution, we obtain

lim
N→∞, (β,ζ)→0

Pk
N,β,σ(t) = P⊗k

σ (t) locally uniform in time,

where Pk
N,β,σ(t) and P⊗k

σ (t) denote the joint distributions of (XN
1 , . . . , X

N
k )(t) and (X̂N

1 , . . . ,

X̂N
k )(t), respectively. By Section 4.1, Pσ(t) is absolutely continuous with the density
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function ρσ(t). Using the test function φ = 1(−∞,x]d in Corollary 12, we have, up to a
subsequence,

Pσ(t, (−∞, x]d) =

∫

(−∞,x]d
ρσ(y, t)dy →

∫

(−∞,x]d
ρ(y, t)dy =: P(t, (−∞, x]d)

locally uniformly for t > 0. Since the convergence also holds for the initial condition, the
result is shown.

Appendix A. Auxiliary results

We recall some known results. The following result is proved in [4, Theorem 4.33].

Lemma 18 (Young’s convolution inequality). Let 1 ≤ p, r ≤ ∞, u ∈ Lp(Rd), v ∈ Lq(Rd),
and 1/p+ 1/q = 1 + 1/r. Then u ∗ v ∈ Lr(Rd) and

‖u ∗ v‖r ≤ ‖u‖p‖v‖q.
The following lemma slightly extends [39, Lemma 7.3] from the L2 to the Lp setting.

Lemma 19. Let p ≥ 2 and T > 0. Then the following embedding is continuous:

Lp(0, T ;W 1,p(Rd)) ∩W 1,p(0, T ;W−1,p(Rd)) →֒ C0([0, T ];Lp(Rd)).

Proof. Let u ∈ Lp(0, T ;W 1,p(Rd)) ∩W 1,p(0, T ;W−1,p(Rd)) and 0 ≤ t1 ≤ t2 ≤ T . Then
∣∣∣∣
∫

Rd

|u(t2)|pdx−
∫

Rd

|u(t1)|pdx
∣∣∣∣ =

∣∣∣∣
∫ t2

t1

〈∂tu, p|u|p−2u〉dt
∣∣∣∣(64)

≤ p‖∂tu‖Lp(t1,t2;W−1,p(Rd))‖|u|p−2u‖Lp′ (t1,t2;W 1,p′ (Rd)),

where p′ = p/(p− 1). Direct computations using Young’s inequality lead to

‖|u|p−2u‖p′
Lp′ (t1,t2;W 1,p′ (Rd))

= C

∫ t2

t1

∫

Rd

(
|u|p + |u|p′(p−2)|∇u|p′

)
dxdt

≤ C

∫ t2

t1

‖u(t)‖p
W 1,p(Rd)

dt.

We infer from (64) and the continuity of the integrals with respect to the time integration
boundaries that t 7→ ‖u(t)‖p is continuous and

(65) sup
0<t<T

‖u(t)‖p ≤ ‖u(0)‖p + C‖∂tu‖Lp(t1,t2;W−1,p(Rd)) + C‖u‖Lp(0,T ;W 1,p(Rd)).

Next, let t ∈ [0, T ] be arbitrary and let τn → 0 as n → ∞ such that t + τn ∈ [0, T ].
Estimate (65) implies that (u(t + τn))n∈N is bounded in Lp(Rd). Thus, there exists a
subsequence (τn′) of (τn) such that u(t + τn′) ⇀ v(t) weakly in Lp(Rd) as n′ → ∞ for
some v(t) ∈ Lp(Rd). We can show, using estimate (65) and dominated convergence for the
integral ∫ T

0

∫

Rd

(u(t+ τn′ , x)− v(t, x))φ(t, x)dx for φ ∈ C∞
0 (Rd × (0, T ))
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that in the limit n′ → ∞
∫ T

0

∫

Rd

(u(t, x)− v(t, x))φ(t, x)dx = 0,

which yields v(t) = u(t).
Moreover, since t 7→ ‖u(t)‖p is continuous, we have ‖u(t + τn′)‖p → ‖u(t)‖p. Since

Lp(Rd) is uniformly convex, we deduce from [4, Prop. 3.32] that u(t+ τn′) → u(t) strongly
in Lp(Rd). Since the limit is unique, the whole sequence converges. Together with (65),
this concludes the proof. �

LetW1 ∈ C∞
0 (Rd) be nonnegative with

∫
Rd W1(x)dx = 1 and defineWβ(x) = β−dW1(x/β)

for x ∈ R
d and β > 0.

Lemma 20. Let 1 ≤ p <∞ and u ∈ W 1,p(Rd). Then

‖Wβ ∗ u− u‖p ≤ Cβ‖∇u‖p.
Proof. We use Hölder’s inequality and the fact that ‖Wβ‖L1(Rd) = 1 to find that

‖Wβ ∗ u− u‖pp =
∫

Rd

∣∣∣∣
∫

Rd

Wβ(x− y)(u(x)− u(y))dy

∣∣∣∣
p

dx

≤
∫

Rd

(∫

Rd

Wβ(x− y)dy

)p−1(∫

Rd

Wβ(x− y)|u(x)− u(y)|pdy
)
dx

=

∫

Rd

∫

Rd

Wβ(z)|z|p
|u(y + z)− u(y)|p

|z|p dydz

≤ ‖∇u‖pp
∫

Rd

Wβ(z)|z|pdz ≤ Cβp‖∇u‖pp,

which shows the lemma. �

Appendix B. Fractional Laplacian

We recall that the fractional Laplacian (−∆)s for 0 < s < 1 can be written as the
pointwise formula

(66) (−∆)su(x) = cd,s

∫

Rd

u(x)− u(y)

|x− y|d+2s
dy, where cd,s =

4sΓ(d/2 + s)

πd/2|Γ(−s)| ,

u ∈ Hs(Rd), and the integral is understood as principal value if 1/2 ≤ s < 1 [46, Theorem
2]. The inverse fractional Laplacian (−∆)−s is defined in (2). The following lemma can be
found in [45, Chapter V, Section 1.2].

Lemma 21 (Hardy–Littlewood–Sobolev inequality). Let 0 < s < 1 and 1 < p <∞. Then
there exists a constant C > 0 such that for all u ∈ Lp(Rd),

‖(−∆)−su‖q ≤ C‖u‖p, where
1

p
=

1

q
+

2s

d
.
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Applying Hölder’s and then Hardy–Littlewood–Sobolev’s inequality gives the following
result.

Lemma 22. Let 0 < s < 1 and 1 ≤ p < q <∞. Then there exists C > 0 such that for all
u ∈ Lq(Rd), v ∈ Lr(Rd),

‖u(−∆)−sv‖p ≤ C‖u‖q‖v‖r,
1

q
+

1

r
=

1

p
+

2s

d
,(67)

‖u∇(−∆)−sv‖p ≤ C‖u‖q‖v‖r,
1

q
+

1

r
=

1

p
+

2s− 1

d
, s >

1

2
.(68)

Lemma 23 (Fractional Gagliardo–Nirenberg inequality I). Let d ≥ 2 and 1 < p < ∞.
Then there exists C > 0 such that for all u ∈ W 1,p(Rd) or u ∈ W 2,p(Rd), respectively,

‖(−∆)su‖p ≤ C‖u‖1−2s
p ‖∇u‖2sp if 0 < s ≤ 1/2,

‖(−∆)su‖p ≤ C‖u‖1−s
p ‖D2u‖sp if 1/2 < s ≤ 1.

Proof. It follows from the properties of the Riesz and Bessel potentials [45, Theorem 3,
page 96] that the operator (−∆)s : W 1,p(Rd) → Lp(Rd) is bounded for 0 < s ≤ 1/2,
while the operator (−∆)s : W 2,p(Rd) → Lp(Rd) is bounded for 1/2 < s ≤ 1. Thus, if
0 < s ≤ 1/2,

‖(−∆)su‖p ≤ C(‖u‖p + ‖∇u‖p) for u ∈ W 1,p(Rd).

Replacing u by uλ(x) = λd/p−2su(λx) with λ > 0 yields

‖(−∆)su‖p = ‖(−∆)suλ‖p ≤ C(‖uλ‖p + ‖∇uλ‖p) = Cλ−2s(‖u‖p + λ‖∇u‖p).
We minimize the right-hand side with respect to λ giving the value λ0 = 2s(1− 2s)−1‖u‖p
‖∇u‖−1

p and therefore,

‖(−∆)su‖p ≤ C‖u‖1−2s‖∇u‖2sp .
The case 1/2 < s ≤ 1 is proved in a similar way. �

Lemma 24 (Fractional Gagliardo–Nirenberg inequality II). Let d ≥ 2, 0 < s ≤ 1/2,
p ∈ (1,∞), and q ∈ [p,∞). If p < d/(2s), we assume additionally that q ≤ dp/(d − 2sp).
Then there exists C > 0 such that for all u ∈ W 1,p(Rd),

‖(−∆)−s∇u‖q ≤ C‖u‖1−θ
p ‖∇u‖θp,

where θ = 1 + d/p− d/q − 2s ∈ [0, 1].

Proof. The statement is true for s = 1/2 since the operator (−∆)−1/2∇ : Lq(Rd) → Lq(Rd)
is bounded for any q ∈ (1,∞) [45, Theorem 3, page 96]. Then the inequality follows from
the standard Gagliardo–Nirenberg inequality.
Thus, let 0 < s < 1/2. We claim that it is sufficient to prove that (−∆)−s∇ : W 1,p(Rd) →

Lq(Rd) is bounded. Indeed, assume that

(69) ‖(−∆)−s∇u‖q ≤ C(‖u‖p + ‖∇u‖p) for u ∈ W 1,p(Rd).

Replacing, as in the proof of Lemma 23, u by uλ(x) = λd/q−1+2su(λx) with λ > 0 yields

‖(−∆)−s∇u‖q ≤ Cλ−θ(‖u‖p + λ‖∇u‖p),
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where θ is defined in the statement of the theorem. Minimizing the right-hand side with
respect to λ gives the value λ0 = θ(1− θ)−1‖u‖p‖∇u‖−1

p and therefore,

‖(−∆)−s∇u‖q ≤ C‖u‖1−θ
p ‖∇u‖θp.

It remains to show (69). To this end, we distinguish two cases. First, let p < d/(2s).
By assumption, p ≤ q ≤ r(1) := dp/(d − 2sp). We apply the Hardy–Littlewood–Sobolev
inequality (Lemma 21) to find that

‖(−∆)−s∇u‖r(1) ≤ C‖∇u‖p ≤ C(‖u‖p + ‖∇u‖p).

Furthermore, by using (in this order) the boundedness of (−∆)−1/2∇ : Lp(Rd) → Lp(Rd),
Lemma 2 in [45, page 133], equation (40) in [45, page 135], and Theorem 3 in [45, page
135f],

‖(−∆)−s∇u‖p = ‖∇(−∆)−1/2(−∆)1/2−su‖p ≤ C‖(−∆)1/2−su‖p(70)

≤ C‖(I −∆)1/2−su‖p ≤ C‖(I −∆)1/2u‖p ≤ C(‖u‖p + ‖∇u‖p).

These inequalities hold for any p ∈ (1,∞). Now, it is sufficient to interpolate with 1/q =
µ/p+ (1− µ)/r(1):

‖(−∆)−s∇u‖q ≤ ‖(−∆)−s∇u‖µp‖(−∆)−s∇u‖1−µ
r(1) ≤ C(‖u‖p + ‖∇u‖p).

Second, let p ≥ d/(2s). We choose λ ∈ (0, d/(2sp)) ⊂ (0, 1) and apply the Hardy–
Littlewoord–Sobolev inequality:

‖(−∆)−s∇u‖r(λ) = ‖(−∆)−λs(−∆)−(1−λ)s∇u‖r(λ) ≤ C‖(−∆)−(1−λ)s∇u‖p,

where r(λ) = dp/(d− 2sλp). Since (1− λ)s < 1/2, we deduce from (70) that

‖(−∆)−s∇u‖r(λ) ≤ C(‖u‖p + ‖∇u‖p).

Since r(λ) → ∞ as λ→ d/(2sp), the result follows. �

Appendix C. Parabolic regularity

Lemma 25 (Parabolic regularity). Let 1 < p <∞, T > 0 and let u be the (weak) solution
to the heat equation

∂tu−∆u = v, u(0) = u0 in R
d,

where v ∈ Lp(0, T ;Lp(Rd)) and u0 ∈ W 2,p(Rd). Then there exists C > 0, depending on T
and p, such that

(71) ‖∂tu‖Lp(0,T ;Lp(Rd)) + ‖D2u‖Lp(0,T ;Lp(Rd)) ≤ C
(
‖v‖Lp(0,T ;Lp(Rd)) + ‖D2u0‖Lp(Rd)

)
.

Furthermore, if v = divw for some w ∈ Lp(0, T ;Lp(Rd;Rd)) then

(72) ‖∇u‖Lp(0,T ;Lp(Rd)) ≤ C
(
‖w‖Lp(0,T ;Lp(Rd)) + T 1/p‖∇u0‖Lp(Rd)

)
.
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Proof. We use a known result on the parabolic regularity for the equation

(73) ∂tû−∆û = v, û(0) = 0 in R
d.

It holds that [28]

(74) ‖∂tû‖Lp(0,T ;Lp(Rd)) + ‖D2û‖Lp(0,T ;Lp(Rd)) ≤ C‖v‖Lp(0,T ;Lp(Rd)).

We apply this result to û = u − et∆u0, where et∆u0 is the solution to the homogeneous
heat equation in R

d with initial datum u0. Then û solves (73) and satisfies estimate (74).
Inserting the definition of û and observing that ‖D2(et∆u0)‖p ≤ C‖D2u0‖p, we obtain (71).
If v = divw for some w ∈ Lp(0, T ;Lp(Rd;Rd)), the uniqueness of solutions to the heat

equation yields u = et∆u0 + divU , where U solves

∂tU −∆U = w, U(0) = 0 in R
d.

Then we deduce from the regularity result of [28] with û = U and v = w that

‖D2U‖Lp(0,T ;Lp(Rd)) ≤ C‖w‖Lp(0,T ;Lp(Rd)).

Since ∇u = et∆∇u0 +∇ divU , inequality (72) follows. �
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