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conductor model for the diode consists of a set of time-dependent Schrödinger equations
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cursive algorithm due to Arnold, Ehrhardt, and Sofronov is used to implement the trans-
parent boundary conditions, enabling simulations which involve a very large number of
time steps. Special care has been taken to provide a discretization of the boundary data
which is completely compatible with the underlying finite-difference scheme. The tran-
sient regime between two stationary states and the self-oscillatory behavior of an oscillator
circuit, containing a resonant tunneling diode, is simulated for the first time.
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1. Introduction

The resonant tunneling diode has a wide variety of applications as a high-frequency and
low-consumption oscillator or switch. The resonant tunneling structure is usually treated as
an open quantum system with two large reservoirs and an active region containing a double-
barrier heterostructure. Accurate time-dependent simulations are of great importance
to develop efficient and reliable quantum devices and to reduce their development time
and cost. There exist several approaches in the literature to model a resonant tunneling
diode. The simplest approach is to replace the diode by an equivalent circuit containing
nonlinear current-voltage characteristics [28]. Another approximation is to employ the
Wannier envelope function development [29]. Other physics-based approaches rely on the
Wigner equation [12, 27], the nonequilibrium Green’s function theory [15, 26], quantum
hydrodynamic models [19, 21, 24], and the Schrödinger equation [11, 13, 31, 32].

In this paper, we adopt the latter approach and simulate the time-dependent behavior
of a resonant tunneling diode using the Schrödinger-Poisson system in one space dimension.
In this setting, the electrons are assumed to be in a mixed state with Fermi-Dirac statistics
and the electrostatic interaction is taken into account at the Hartree level. Each state
is determined as the solution of the transient Schrödinger equation with nonhomogeneous
transparent boundary conditions. The Schrödinger equations are discretized by the Crank-
Nicolson finite-difference scheme and coupled self-consistently to the Poisson equation. The
main originality of this paper is the adaption (and slight improvement) of existing numerical
techniques from, e.g., [1, 6, 31], to a long-time simulation of a high-frequency oscillator
circuit containing a resonant tunneling diode. Our changes in the techniques are necessary
to achieve simulations without spurious oscillations in the numerical transient solution. In
the following, we detail the techniques used as well as the novel features.

First, we consider the one-dimensional stationary problem, since it builds the basis for
the transient simulations. The stationary transparent boundary conditions are discretized
in such a way that their discrete version is compatible with the underlying finite difference
discretization, as proposed in [4]. Thereby, any (numerical) spurious oscillation is elim-
inated, which would otherwise propagate in the transient simulations. In the literature
[10, 31], a modified version of the potential energy is used to overcome problems of nu-
merical convergence. Physically interpreted, this model introduces artificial surface charge
densities at the junction interfaces of the tunneling diode. We are able to solve the original
problem. This represents an improvement compared to the simulations in [31], where the
modified model is also employed for the time-dependent case.

Second, the time-dependent Schrödinger-Poisson system with transparent boundary
conditions is approximated. Since these boundary conditions are of memory type [4, 8],
their numerical implementation requires to store (and to use) the boundary data for all
the past history. For this reason, simulations involving longer time scales are extremely
costly. This explains why simulations in the literature [10, 13, 31] have been restricted to
some picoseconds only. We solve this problem by using a fast evaluation of the discrete
convolution kernel of sum-of-exponentials, which has been presented in [6] and employed
in [5] on circular domains. To our knowledge, this rather new numerical technique has not
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been applied to realistic device simulations so far.
A challenge in the transient simulations results from the large number of wave func-

tions which need to be propagated, accounting for the energy distribution of the incoming
electrons. Each state is provided with transparent boundary conditions, which raises the
computational cost sharply. To cope with a large number of Schrödinger equations to
be solved, we developed a parallel version of our solver utilizing multiple cores on shared
memory processors. This enables us to present, for the first time, simulations to the
Schrödinger-Poisson system for large times up to 100 ps (ps = picosecond) with reasonable
computational effort (compared to 5 ps in [31], 6 ps in [13], and 8 ps in [10]).

Another novelty in this paper concerns the discretization of nonhomogeneous discrete
transparent boundary conditions. They are necessary to describe continuously varying
applied potentials (as in an oscillator circuit). It is well known that, using a suitable
gauge change, one can get rid of the transient potential [2]. Corresponding nonhomoge-
neous transparent boundary conditions can be found in [10]. In numerical simulations,
however, we observed that these boundary conditions may lead to unphysical distortions
in the conduction current density. The reason is that the considered discretization of the
gauge change is not compatible with the underlying finite-difference scheme. Therefore,
we suggest a new discretization which is derived from the Crank-Nicolson time integra-
tion scheme. Our approach completely removes these numerical artifacts, and we show
that the total current density is now perfectly conserved. We stress the fact that our dis-
cretization is completely consistent with the underlying Crank-Nicolson scheme inheriting
its conservation and stability properties.

Third, the numerical results allow us to identify plasma oscillations in a certain time
regime of the resonant tunneling diode and to estimate the life time of the resonant state.
We present, for the first time, simulations of a high-frequency oscillator circuit containing
a reconant tunnelding diode, based on a full Schrödinger-Poisson solver with transparent
boundary conditions. Simplified tunneling diode oscillators have been considered in [28,
29, 30]. Our approach enables us to observe the complex spatio-temporal behavior of
macroscopic quantities inside the resonant tunneling diode in an unprecedented way.

The paper is organized as follows. In Section 2, we detail the algorithm of the station-
ary problem. The transient algorithm is described in Section 3. In Section 4 we consider
numerical experiments for constant applied voltage and time-dependent applied voltage.
Furthermore, the numerical convergence related to the approximation of the discrete con-
volution kernel by sum-of-exponentials is investigated. Finally, we present high-frequency
oscillator circuit simulations in Section 5.

2. Stationary simulations

The steady state is the basis for the transient simulations. Therefore, we discuss first
the stationary regime.
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2.1. Schrödinger-Poisson model

We assume that the one-dimensional device in (0, L) is connected to the semi-infinite
leads (−∞, 0] and [L,∞). The leads are assumed to be in thermal equilibrium and at
constant potential. At the contacts, electrons are injected with some given profile. We
suppose that the charge transport is ballistic and that the electron wave functions evolve
independently from each other. The one-dimensional device consists of three regions: two
highly doped regions, [0, a1] and [a6, L], with the doping concentration n1

D and a lowly
doped region, [a1, a6], with the doping density n2

D (see Figure 1). The middle interval
contains a double barrier, described by the barrier potential

Vbarr(x) =

{
V0 for x ∈ [a2, a3] ∪ [a4, a5],

0 else.

The doping profile nD is defined by

nD(x) =

{
n1
D for x ∈ [0, a1] ∪ [a6, L],

n2
D else.

The parameters are taken from [10, 31]:

a1 = 50nm, a2 = 60nm, a3 = 65nm,
a4 = 70nm, a5 = 75nm, a6 = 85nm,
L = 135 nm, n1

D = 1024m−3, n2
D = 5 · 1021m−3,

and the barrier height is V0 = 0.3 eV.

n1
D n2

D n1
D

a1 a2 a3 a4 a5 a6 L

0

V0

position

V
b
a
rr

Figure 1: Barrier potential and doping profile of a double-barrier heterostructure.

The Coulomb interaction is taken into account at the Hartree level, i.e. by an infinite
number of Schrödinger equations

− ~
2

2m

d2φk

dx2
(x) + V (x)φk(x) = E(k)φk(x), x ∈ R, (1)
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self-consistently coupled to the Poisson equation,

−d
2Vself
dx2

=
e2

ε
(n[Vself ]− nD), x ∈ (0, L),

Vself(0) = 0, Vself(L) = −eU,
(2)

where V = Vbarr + Vself is the potential energy. The physical parameters are the reduced
Planck constant ~, the effective electron mass m, the elementary charge e, and the permit-
tivity ε = εrε0, being the product of the relative permittivity εr and the electric constant
ε0. Furthermore, U ≥ 0 denotes the applied voltage, and the electron density is defined by

n[Vself ](x) =

∫

R

g(k)|φk(x)|2dk. (3)

The injection profile g(k) is given according to Fermi-Dirac statistics by

g(k) =
mkBT0
2π2~2

ln

(
1 + exp

(
EF − ~

2k2/(2m)

kBT0

))
, (4)

where kB is the Boltzmann constant, T0 the temperature of the semiconductor and EF the
Fermi energy (relative to the conduction band edge). In all subsequent simulations, we
use, as in [31], εr = 11.44, T0 = 300K, EF = 6.7097 · 10−21 J, and the effective mass of
Gallium arsenide, m = 0.067me, with me being the electron mass at rest.

In order to define the total electron energy E(k) depending on the wave number k ∈ R,
we need to distinguish the cases k > 0 and k < 0. For k > 0, the electrons enter from the
left, and we have E(k) = ~

2k2/(2m). The wave function in the leads is given by

φk(x) = eikx + r(k)e−ikx, x < 0,

φk(x) = t(k) exp
(
i
√

2m(E(k)− V (L))/~2x
)
, x > L.

Eliminating the transmission and reflection coefficients t(k) and r(k), respectively, the
boundary conditions

φ′

k(0) + ikφk(0) = 2ik, φ′

k(L) = i
√

2m(E(k)− V (L))/~2φk(L) (5)

follow. For k < 0, the electrons enter from the right. The total energy is given by
E(k) = ~

2k2/(2m)− eU , and the wave function in the leads reads as

φk(x) = t(k) exp
(
−i
√

2mE(k)/~2x
)
, x < 0,

φk(x) = eikx + r(k)e−ikx, x > L.

This yields the boundary conditions

φ′

k(0) = −i
√

2mE(k)/~2φk(0), φ′

k(L) + ikφk(L) = 2ikeikL. (6)

Summarizing, the stationary problem consists in the Schrödinger equation (1) with
the transparent boundary conditions (5)-(6) coupled to the Poisson equation (2) via the
electron density (3). We remark that the existence and uniqueness of solutions to a
Schrödinger-Poisson boundary-value problem similar to (1)-(6) has been shown in [9].
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2.2. Discrete transparent boundary conditions

We recall the finite-difference discretization of the stationary Schrödinger equation with
transparent boundary conditions [4]. Using standard second-order finite differences on the
equidistant grid xj = j△x, j ∈ {0, . . . , J}, with xJ = L and △x > 0, we find for the grid
points located in the computational domain,

φj+1 − 2φj + φj−1 +
2m(△x)2

~2
(E(k)− Vj)φj = 0. (7)

It is well known that a standard centered finite-difference discretization of the bound-
ary conditions (5) and (6) may lead to spurious oscillations in the numerical solution [4].
In principle, the numerical errors can be made as small as desired by choosing △x suffi-
ciently small. However, since the stationary solutions will serve as intitial states in our
transient simulations, we need to avoid any spurious oscillation, which would otherwise be
propagated with every time step.

For this, we apply (stationary) discrete transparent boundary conditions compatible
with the finite-difference discretization (7) as proposed in [4]. For the sake of complete-
ness, we review the derivation. Note that the final discretization is equivalent to the
discretization (7) extended to the whole space, i.e. for j ∈ Z.

In the semi-infinite leads j ≤ 0 and j ≥ J , the potential energy is assumed to be
constant,

Vj =

{
V0 = 0 for j ≤ 0,

VJ = −eU for j ≥ J.

Then (7) reduces to a difference equation with constant coefficients which admits two
solutions of the form φj = (α±

0,J)
j , where

α±

0,J = 1− m(E(k)− V0,J)(△x)2
~2

± i
√

2m(E(k)− V0,J)(△x)2
~2

− m2(E(k)− V0,J)2(△x)4
~4

.

Here, E(k) − V0,J corresponds to the kinetic energy Ekin
0,J (k) in the left or right lead. In

case Ekin
0,J (k) > 0, the solution is a discrete plane wave and (△x)2 < 2~2/(m(E(k)− V0,J))

is needed to ensure |α0,J | = 1, which in practise is not a restriction. In case Ekin
0,J (k) = 0,

the solution is constant. Depending on the applied voltage, Ekin
0,J (k) might also become

negative. In that case, the solution is decaying or growing exponentially fast and we select
the decaying solution as it is the only physically reasonable solution.

In practice, we start with the calculation of the total energy E(k) = Ekin
0,J (k)+V0,J . For

electrons coming from the left contact we have E(k) = Ekin
0 (k). As the incoming electron

is represented by a discrete plane wave, Ekin
0 (k) is positive but, depending on the applied

voltage, Ekin
J (k) might be positive, zero or negative. For electrons coming from the right

contact, we have E(k) = Ekin
J (k) − eU . Again, the incoming wave function is a discrete

plane wave, i.e., Ekin
J (k) > 0 but nothing is said about Ekin

0 (k). At this point it should be
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noted that the kinetic energy of the incoming electron needs to be computed according to
the discrete dispersion relation

Ekin(k) =
~
2

m(△x)2 (1− cos(k△x)),

which follows after solving the centered finite-difference discretization of the free Schrödin-
ger equation

− ~
2

2m

d2

dx2
eikx = Ekin(k)eikx.

In the limit △x→ 0, we recover the continuous dispersion relation Ekin(k) = ~
2k2/(2m).

Let us consider a wave function entering the device from the left contact (k > 0). For
j ≤ 0, the solution to (7) is a superposition of an incoming and a reflected discrete plane
wave, φj = βj +Bβ−j, where β = α0. We eliminate B from φ−1 = β−1 +Bβ, φ0 = 1 +B
to find the discrete transparent boundary condition at x0:

−β−1φ−1 + φ0 = 1− β−2.

For j ≥ L, the solution to (7) is given by φj = Cγj with γ = αJ . This means that
φJ+1 = CγJ+1 = γφJ , and the boundary condition at xJ becomes

φJ − γ−1φJ+1 = 0.

Summarizing, we obtain the linear system Aφ = b with the tridiagonal matrix A consist-
ing of the main diagonal (−β−1,−2+ 2m(△x)2(E(k)−V0)/~2, . . . ,−2+ 2m(△x)2(E(k)−
VJ)/~

2,−γ−1) and the first off diagonals (1, . . . , 1). The vector of the unknowns is given
by φ = (φ−1, . . . , φJ+1)

⊤ and b represents the right-hand side b = (1− β−2, 0, . . . , 0)⊤.
The case of a wave function entering from the right contact (k < 0) works analogously.

2.3. Solution of the Schrödinger-Poisson system

We explain our strategy to solve the coupled Schrödinger-Poisson system. To this end,
we introduce the equidistant energy grid

K = {−kM ,−kM +△k, . . . ,−△k,+△k, . . . , kM −△k, kM}, K := |K|. (8)

The electron density (3) is approximated by

ndisc[Vself ](x) = △k
∑

k∈K

g(k)|φk(x)|2,

where the Fermi-Dirac statistics g(k) is defined in (4) and the functions φk are the scat-
tering states, i.e., the solutions to the discretized stationary Schrödinger equation (7) with
discrete transparent boundary conditions as described in Section 2.2. This approximation
is reasonable if △k is sufficiently small and kM is sufficiently large. In the numerical simu-
lations below, we choose K = 3000 and, as in [10, Section 5], kM =

√
2m(EF + 7kBT0)/~,

recalling that EF = 6.7097 · 10−21 J and T0 = 300K.
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The discrete Schrödinger-Poisson system is iteratively solved as follows. We set V =
Vbarr+ V

(p)
self,U , where V

(p)
self,U is the p-th iteration of Vself for the applied voltage U . Given V ,

we compute a set of quasi eigenstates {φ(p)
k }k∈K. This defines the discrete electron density

ndisc[V
(p)
self,U ] = △k

∑

k∈K

g(k)|φ(p)
k (x)|2.

The Poisson equation is solved by employing a Gummel-type method [20]:

− d2

dx2
V

(p+1)
self,U =

e2

ε

(
n[V

(p)
self,U ] exp

(
V

(p)
self,U − V

(p+1)
self,U

V ref
self

)
− nD

)
,

V
(p+1)
self,U (0) = 0, V

(p+1)
self,U (L) = −eU.

The idea of the Gummel method is to decouple the Schrödinger and Poisson equations
but to formulate the Poisson equation in a nonlinear way, using the relation between
the electron density and electric potential in thermal equilibrium. The parameter V ref

self

can be tuned to reduce the number of iterations; we found empirically that the choice
V ref
self = 0.04 eV minimizes the iteration number. If the relative error in the ℓ2-norm is

smaller than a fixed tolerance,

∥∥∥∥∥
V

(p+1)
self,U − V

(p)
self,U

V
(p+1)
self,U

∥∥∥∥∥
2

≤ δ, (9)

we accept Vself := V
(p+1)
self,U and {φ(p+1)

k }k∈K as the approximate self-consistent solution. Oth-
erwise, we proceed with the iteration p + 1 → p + 2 and compute a new set of scattering
states. The procedure is repeated until (9) is fulfilled. We have choosen the tolerance
δ = 10−6.

For zero applied voltage we use V
(0)
self,0mV = 0mV to start the iteration. Only 7 iterations

are needed until criterion (9) is fulfilled. As a result we obtain V
(7)
self,0mV, which is depicted

in Figure 2(a) (solid line).
Numerical problems arise when non-equilibrium solutions are computed. As an example

we consider the case of a small applied voltage U = 1mV. To start the iteration process we
use the previously computed solution, i.e., we set V

(0)
self,1mV := V

(7)
self,0mV. The next iterations

are illustrated in Figure 2(a) (dashed lines). Obviously they do not converge and are
physically not realistic. This phenomenon is a well-known in the literature [17, 18] and
is believed to be related to the absence of inelastic processes in the Schrödinger-Poisson
equations.

In the literature [10, 31], a modified version of the Schrödinger-Poisson equations is
employed to overcome this problem. The modification concerns the description of the
potential energy in the Poisson equation. For this, we write the Poisson equation (2) as
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Figure 2: (a) Solid line: self-consistent solution Vself for U = 0mV, found after 7 iterations.
Dashed lines: divergent approximations for U = 1mV. Dotted line: barrier potential. (b)
Solid line: self-consistent solution V1 for U = 250mV according to approximation (10).
Dotted line: sum of the barrier potential and a ramp-like potential.

follows:

− d2V0
dx2

= 0 in (0, L), V0(0) = 0, V0(L) = −eU,

− d2V1
dx2

=
e2

ε
(n− nD) in (0, L), V1(0) = 0, V1(L) = 0,

i.e., the self-consistent potential is Vself = V0+V1. The first boundary-value problem can be
solved explicitly: V0(x) = −eUx/L, x ∈ [0, L]. In [10, 31], the linearly decreasing potential
V0 has been replaced by the ramp-like potential

Ṽ0(x) = −B0

(
x− a1
a6 − a1

1[a1,a6) + 1[a6,∞)

)
, x ∈ [0, L], (10)

where 1I is the characteristic function on the interval I ⊂ R (see Figure 1 for the definition

of a1 and a6). The function Ṽ0 + Vbarr is illustrated in Figure 2(b) (dotted line). The

potential energy is then given by V = Ṽ0 + V1 + Vbarr. Using this modified physical model,
the above Gummel iteration scheme for the Poisson equation for V1 converges without any
problems, see Figure 2(b) (solid line), even for large applied voltages. However, we will
see below that the results from the modified model differ considerably from the results
obtained by the original Schrödinger-Poisson model. Furthermore, the potential energy is
no longer differentiable at a1 and a6. This may be interpreted as a model of surface charge
densities at the interfaces which, however, are not intended in the model.

In fact, we are able to solve numerically the original Schrödinger-Poisson problem. To
this end, the applied voltage needs to be increased in small steps. We found that the
starting potential in each step needs to be initialized carefully. More precisely, given the
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self-consistent solution Vself,U for the applied voltage U , we wish to compute a self-consistent
solution with the applied voltage U +△U . In each step we choose

V
(0)
self,U+△U(x) := Vself,U(x)−△U

2x− L
L

1[L/2,L] (11)

to start the iteration. For U = 0mV and △U = 25mV, the Gummel scheme converges
to a physically reasonable solution after 7 iterations (i.e., (9) is fulfilled). Some iterations
are shown in Figure 3. We observed that a voltage step △U < 30mV leads to convergent
solutions also for large applied voltages.

Vbarr

V
(7)
self, 0mV

V
(0)
self, 25mV

V
(1)
self, 25mV

V
(7)
self, 25mV

V
(0)
self, 50mV

V
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self, 50mV

V
(9)
self, 50mV
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Figure 3: Some iterations computed according to (11).

In order to compare the original Schrödinger-Poisson model with the model using ap-
proximation (10), we computed the current-voltage characteristics shown in Figure 4. Here,
the (conduction) current density

Jcond =
e~

m

∫

R

g(k)Im

(
φ∗

k

dφk

dx

)
dk (12)

is approximated by a simple quadrature formula using symmetric finite differences to com-
pute dφk/dx. Figure 4 shows that the results differ considerably, i.e., the choice (10) leads
to different results than those computed from the original model. Therefore, we employ
the original potential energy in the transient simulations in the next subsection.
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Figure 4: Current-voltage characteristics. The solid line corresponds to our solution of
the original stationary Schrödinger-Poisson system. The dashed line is obtained with the
modified model using approximation (10).

3. Transient simulations

In this section, we detail the numerical discretization of the transient Schrödinger equa-
tions

i~
∂ψk

∂t
= − ~

2

2m

∂2ψk

∂x2
+ V (·, t)ψk, ψk(·, 0) = φk, x ∈ [0, L], t > 0, k ∈ K, (13)

with discrete transparent boundary conditions, where K is defined in (8). To simplify the
presentation, we skip in this section the index k.

3.1. Nonhomogeneous discrete transparent boundary conditions

The transient Schrödinger equation (13) is discretized by the commonly used Crank-
Nicolson scheme:

ψ
(n+1)
j−1 +

(
iR− 2 + wV

(n+1/2)
j

)
ψ

(n+1)
j + ψ

(n+1)
j+1

= −ψ(n)
j−1 +

(
iR + 2− wV (n+1/2)

j

)
ψ

(n)
j − ψ

(n)
j+1,

(14)

where ψ
(n)
j approximates ψ(xj , tn) with xj = j△x and tn = n△t (j ∈ Z, n ∈ N0), V

(n+1/2)
j

approximates V (j△x, (n+1/2)△t), and R = 4m(△x)2/(~△t), w = −2m(△x)2/~2. Under
the assumptions that the initial wave function is compactly supported in (0, L) and that
the applied voltage vanishes, V (x, t) = 0 for x ≤ 0 and x ≥ L, t ≥ 0, it is well known (see,
e.g., [4, 8]) that transparent boundary conditions for the Schrödinger equation (13) read
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as

∂ψ

∂x
(0, t) =

√
2m

π~
e−iπ/4 d

dt

∫ t

0

ψ(0, τ)√
t− τ dτ, (15a)

∂ψ

∂x
(L, t) = −

√
2m

π~
e−iπ/4 d

dt

∫ t

0

ψ(L, τ)√
t− τ dτ. (15b)

The (homogeneous) discrete transparent boundary conditions, based on the above Crank-
Nicolson scheme, are given as follows (see [3] for the derivation):

ψ
(n+1)
1 − s(0)ψ(n+1)

0 =

n∑

ℓ=1

s(n+1−ℓ)ψ
(ℓ)
0 − ψ

(n)
1 , n ≥ 0, (16a)

ψ
(n+1)
J−1 − s(0)ψ

(n+1)
J =

n∑

ℓ=1

s(n+1−ℓ)ψ
(ℓ)
J − ψ

(n)
J−1, n ≥ 0, (16b)

with the convolution coefficients

s(n) =

(
1− iR

2

)
δn,0 +

(
1 + i

R

2

)
δn,1 + αe−inϕPn(µ)− Pn−2(µ)

2n− 1
(17)

and the abbreviations

ϕ = arctan
4

R
, µ =

R√
R2 + 16

, α =
i

2
4
√
R2(R2 + 16)eiϕ/2.

Here, Pn denotes the nth-degree Legendre polynomial (P−1 = P−2 = 0), and δn,j is the
Kronecker symbol. In practice, the coefficients defined in (17) are computed with an effi-
cient three-term recursion, relying on the three-term recursion of the Legendre polynomials
[16]. The Crank-Nicolson scheme along with these discrete boundary conditions yields an
unconditionally stable discretization which is perfectly reflection-free [3, 4].

Next, let the initial wave function be a solution to the stationary Schrödinger equation
with energy E and let the exterior potential at the right contact be given by a time-
dependent function, V (x, t) = −eU(t) for x ≥ L, t ≥ 0. This leads to nonhomogeneous
transparent boundary conditions [1]. We describe our strategy to discretize these boundary
conditions. Our approach is motivated by that presented in [10, Appendix B], but we
suggest, similarly as in [4], a discretization of the gauge change which is compatible with
the underlying finite-difference scheme. Additionally, our approach requires only a single
set of convolution coefficients instead of two.

First, we derive a nonhomogeneous discrete transparent boundary condition at xj =
L. To this end, we consider the difference between the unknown wave function ψ and
the time evolution of the scattering state, φ(x) exp(iEt/~), in the right lead [L,∞). We
employ a gauge change to get rid of the time-dependent potential VL(t) = −eU(t). As a
consequence, the function ψ(x, t) exp(i

∫ t

0
VL(s)ds/~) solves the free transient Schrödinger

equation in [L,∞). Using a similar gauge change, a straightforward computation shows
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that φ(x) exp(−i(E − VL(0))t/~) solves the free Schrödinger equation in [L,∞) as well.
Hence,

ϕ(x, t) := ψ(x, t) exp

(
i

~

∫ t

0

VL(s)ds

)
− φ(x) exp

(
− i
~
(E − VL(0))t

)
(18)

for x ∈ [L,∞) solves the free transient Schrödinger equation. Furthermore, ϕ(x, 0) = 0
for all x ∈ [L,∞). Therefore, we could apply (15b) to derive a nonhomogeneous trans-
parent boundary condition at the right contact. Instead we replace ϕ(x, t) by some ap-

proximation ϕ
(n)
j and subsequently apply (16b) to derive a discrete boundary condition

compatible with the Crank-Nicolson scheme. The question is how to approximate the
quantities exp(i

∫ t

0
VL(s)ds/~) and exp(−i(E − VL(0))t/~). Indeed, the ad-hoc discretiza-

tion for t = n△t,

exp

(
i

~

∫ t

0

VL(s)ds

)
≈ exp

(
i

~

n−1∑

ℓ=0

V
(ℓ+1/2)
L △t

)
,

exp

(
− i
~
(E − VL(0))t

)
= exp

(
− i
~
(E − V (0)

L )n△t
)
,

(19)

where V
(ℓ)
L = VL(ℓ△t), is not derived from the underlying finite-difference discretization,

causing unphysical numerical reflections at the boundary. In principle, these reflections
can be made arbitrarily small for △t → 0. However, for practical time step sizes, the
calculation of the current density would be still distorted. Our (new) idea is to apply
a Crank-Nicolson discretization to a differential equation satisfied by exp(i

∫ t

0
VL(s)ds/~).

Indeed, this expression solves

dε

dt
(t) =

i

~
VL(t)ε(t), ε(0) = 1.

The Crank-Nicolson discretization of this ordinary differential equation reads as

ε(n+1) = ε(n) +△t i
2~
V

(n+1/2)
L (ε(n+1) + ε(n)), ε(0) = 1.

This recursion relation can be solved explicitly yielding

ε(n) = exp

(
2i

n−1∑

ℓ=0

arctan

(△t
2~
V

(ℓ+1/2)
L

))
, n ∈ N0.

A Taylor series expansion

2i arctan

(△t
2~
V

(ℓ+1/2)
L

)
=
i

~
V

(ℓ+1/2)
L △t+O((△t)3)

reveals that in the limit △t → 0, the ad-hoc discretization in (19) coincides with the
discrete gauge change which is derived from the Crank-Nicolson time-integration method.
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Analogously, exp(−i(E − VL(0))t/~) needs to be replaced by

γ
(n)
J := exp

(
2i

n−1∑

ℓ=0

arctan

(
−△t
2~
E

))
exp

(
2i

n−1∑

ℓ=0

arctan

(△t
2~
V

(0)
L

))

= exp

[
2in

(
arctan

(△t
2~
V

(0)
L

)
− arctan

(△t
2~
E

))]
, n ∈ N0.

Thus, the discrete analogon of ϕ in definition (18) is given by

ϕ
(n)
j = ψ

(n)
j ε(n) − φjγ

(n)
J , j ∈ {0, . . . , J}, n ∈ N0.

Replacing ψ
(n)
j by ϕ

(n)
j in (16b), we obtain the desired nonhomogeneous discrete transparent

boundary condition at xJ = L:

ψ
(n+1)
J−1 ǫ(n+1) − s(0)ψ(n+1)

J ǫ(n+1) = −ǫ(n)ψ(n)
J−1 +

n∑

ℓ=1

s(n+1−ℓ)
(
ψ

(ℓ)
J ǫ(ℓ) − φJγ

(ℓ)
J

)

− s(0)φJγ
(n+1)
J + φJ−1

(
γ
(n+1)
J + γ

(n)
J

)
.

(20)

At the left contact x0 = 0, a nonhomogeneous boundary condition can be derived in a
similar way. Since the potential energy in the left lead is assumed to vanish, the term ε(n)

is not needed, and the boundary condition is given by

ψ
(n+1)
1 − s(0)ψ(n+1)

0 = −ψ(n)
1 +

n∑

ℓ=1

s(n+1−ℓ)
(
ψ

(ℓ)
0 − φ0γ

(ℓ)
0

)

− s(0)φ0γ
(n+1)
0 + φ1

(
γ
(n+1)
0 + γ

(n)
0

)
,

(21)

where

γ
(n)
0 := exp

(
−2in arctan

(△t
2~
E

))
, n ∈ N0.

We summarize: The Crank-Nicolson scheme (14) with the nonhomogeneous discrete
transparent boundary conditions (20) and (21) reads as

Bψ(n+1) = Cψ(n) + d(n), (22)

where ψ(n) = (ψ
(n)
0 , . . . , ψ

(n)
J )⊤, d = (d

(n)
0 , 0, . . . , 0, d

(n)
J )⊤. Furthermore, B is a tridiagonal

matrix with main diagonal (−s(0), iR− 2+wV
(n+1/2)
1 , . . . , iR− 2+wV

(n+1/2)
J−1 ,−s(0)ε(n+1)),

upper diagonal (1, . . . , 1), and lower diagonal (1, . . . , 1, ε(n+1)); C is a tridiagonal matrix

with main diagonal (0, iR + 2 − wV
(n+1/2)
1 , . . . , iR + 2 − wV

(n+1/2)
J−1 , 0), upper diagonal

(−1, . . . ,−1) and lower diagonal (−1, . . . ,−1,−ε(n)); furthermore,

d
(n)
0 =

n∑

ℓ=1

s(n+1−ℓ)
(
ψ

(ℓ)
0 − φ0γ

(ℓ)
0

)
− s(0)φ0γ

(n+1)
0 + φ1

(
γ
(n+1)
0 + γ

(n)
0

)
, (23)

d
(n)
J =

n∑

ℓ=1

s(n+1−ℓ)
(
ψ

(ℓ)
J ǫ(ℓ) − φJγ

(ℓ)
J

)
− s(0)φJγ

(n+1)
J + φJ−1

(
γ
(n+1)
J + γ

(n)
J

)
. (24)
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3.2. Fast evaluation of the discrete convolution terms

In the subsequent simulations, scheme (22) has to be solved in each time step and for
every wave function ψ = ψk, k ∈ K. We recall that the kernel coefficients s(n) need to
be calculated only once as they do not depend on the wave number k. Let N denote the
number of time steps. For each k ∈ K, we require order O(N) storage units and O(N2) work
units to compute the discrete convolutions in (23) and (24). For this reason, simulations
with several ten thousands of time steps are not feasible. To overcome this problem, one
may truncate the convolutions at some index, since the decay rate of the convolution
coefficients is of order O(n−3/2) [16, Section 3.3]. The drawback of this approach is that
still more than thousand convolution terms are necessary to avoid unphysical reflections
at the boundaries.

The problem has been overcome in [6] by approximating the original convolution coef-
ficients s(n) and calculating the approximated convolutions by recursion. More precisely,
approximate s(n) by

s̃(n) :=

{
s(n), n < ν,∑Λ

ℓ=1 blq
−n
l , n ≥ ν,

such that

C(n)(u) :=
n−ν∑

ℓ=1

s̃(n−ℓ)u(ℓ) ≈
n−ν∑

ℓ=1

s(n−ℓ)u(ℓ) (25)

can be evaluated by a recurrence formula which reduces the numerical effort drastically.
As in [6], we set ν = 2 to exclude s(0) and s(1) from the approximation. In fact, s(0) does
not appear in the original convolutions, whereas s(1) is excluded to increase the accuracy.

Let Λ ∈ N. The set {b0, q0 . . . , bΛ, qΛ} is computed as follows. First, define the formal
power series

h(x) := s(ν) + s(ν+1)x+ s(ν+2)x2 + · · ·+ s(ν+2Λ−1)xν+2Λ−1 + · · · , |x| ≤ 1.

The first (at least 2Λ) coefficients are required to calculate the [Λ−1|Λ]-Padé approximation

of h, h̃(x) := PΛ−1(x)/QΛ(x), where PΛ−1 and QΛ are polynomials of degree Λ − 1 and

Λ, respectively. If this approximation exists, we can compute its Taylor series h̃(x) =
s̃(ν) + s̃(ν+1)x+ · · · , and by definition of the Padé approximation, it holds that

s̃(n) = s(n) for all n ∈ {ν, ν + 1, . . . , ν + 2Λ− 1}.

It can be shown that, if QΛ has Λ simple roots qℓ with |qℓ| > 1 for all ℓ ∈ {1, . . . ,Λ}, the
approximated coefficients are given by

s̃(n) =

Λ∑

ℓ=1

bℓq
−n
l , bℓ := −

PΛ−1(qℓ)

QΛ(qℓ)
qν−1
ℓ 6= 0, n ≥ ν, ℓ ∈ {1, . . . ,Λ}. (26)

Summarizing, one first computes the exact coefficients s(0), . . . , s(ν+2Λ−1) followed by
the [Λ − 1|Λ]-Padé approximation. Then one determines the roots of QΛ, yielding the
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numbers q1, . . . , qΛ. Finally, one evaluates (26) to find the coefficients b0, . . . , bΛ. We stress
the fact that these calculations have to be performed with high precision (2Λ− 1 mantissa
length) since otherwise the Padé approximation may fail (see [6]). We employ the Python
library mpmath for arbitrary-precision floating-point arithmetics [23]. As an alternative,
one may use the Maple script from [6, Appendix].

A particular feature of this approximation is that it can be calculated by recursion.
More precisely, for n ≥ ν + 1, the function C(n)(u) in (25) can be written as

C(n)(u) =
Λ∑

ℓ=1

C
(n)
ℓ (u),

with
C

(n)
ℓ (u) = q−1

ℓ C
(n−1)
ℓ (u) + bℓq

−2
ℓ u(n−2), n ≥ ν + 1, C

(ν)
ℓ (u) = 0.

Hence, the discrete convolutions in (23) and (24) are approximated for n ≥ ν = 2 by

n∑

ℓ=1

s(n+1−ℓ)u(ℓ) ≈ C(n+1) (u) + s(1)u(n), (27)

whereas the exact expressions are used for n = 0 and n = 1. As a result, the storage for
the implementation of the discrete transparent boundary conditions reduces from O(N) to
O(Λ). Even more importantly, the work is of order O(ΛN) instead of O(N2).

Obviously, the quality of the approximation depends on Λ. By construction, we have
s(n) = s̃(n) for all n ∈ {0, . . . , 2Λ + ν − 1} but s̃(n) approximates s(n) very well even if n is
much larger [6]. We illustrate in Section 4.3 that the convergence of the complete transient
algorithm with respect to Λ is exponential.

3.3. The complete transient algorithm

In the previous sections, we have explained the approximation of the transient Schrö-
dinger equation with discrete transparent boundary conditions for given potential energy
V = Vbarr+Vself . Here, we make explicit the coupling procedure with the Poisson equation
for the selfconsistent potential

−∂
2Vself
∂x2

=
e2

ε
(n[Vself ]− nD), x ∈ (0, L), Vself(0, t) = 0, Vself(L, t) = −eU(t),

with the electron density

n[Vself ](x, t) =

∫

R

g(k)|ψk(x, t)|2 dk.

According to the Crank-Nicolson scheme, a natural approach would be to employ a two-
step predictor-corrector scheme. More precisely, let {ψ(n)

k }k∈K → {ψ
(∗)
k }k∈K be propagated

for one time step using V
(n)
self to obtain V

(∗)
self . Then one uses V

(n+1/2)
self := 1

2
(V

(n)
self + V

(∗)
self ) to

propagate {ψ(n)
k }k∈K → {ψ

(n+1)
k }k∈K again. This procedure doubles the numerical effort and
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is computationally too costly. As an alternative, the scheme V
(n+1/2)
self := 2V

(n)
self − V

(n−1/2)
self

can be employed (as in [31]). We found in our simulations that the most simple approach,

V
(n+1/2)
self := V

(n)
self , gives essentially the same results as the above schemes. The reason is

that the electron density evolves very slowly compared to the small time step size which is
needed to resolve the fast oscillations of the wave functions. Hence, the variations of Vself
are small. Similarly, the right boundary condition of the Poisson equation can be replaced
by Vself(L) = −eU(n△t) if the applied voltage varies slowly. This is used in the circuit
simulations of Section 5.

The complete transient algorithm is presented in Figure 5.

input: V
(n=0)
self ← Vself ({φk}k∈K) , {ψ(n=0)

k }k∈K ← {φk}k∈K

V (n) ← Vbarr + V
(n)
self

{ψ(n+1)
k }k∈K ← {ψ(n)

k }k∈K

n[Vself ]←△k
∑

k∈K g(k)|ψ(n+1)
k |2

− d2

dx2V
(n+1)
self = e2

ǫ
(n[Vself ]− nD) , V

(n+1)
self (0) = 0 , V

(n+1)
self (L) = −eU (n+1)

n · dt < tfinal

V
(n)
self ← V

(n+1)
self

stop

yes

no

Figure 5: Flow chart of the transient scheme.

3.4. Discretization parameters

We choose K = 3000 for the number of wave functions as in the stationary simulations
and △t = 1 fs (fs = femtosecond) for the time step size. With the maximal kinetic energy
of injected electrons ~ωM = ~

2k2M/(2m), where kM is the maximal wave number, the period
is computed according to τM = 2π/ωM . Thus, the fastest wave oscillation is resolved by
τM/△t ≈ 18.5 time steps. The space grid size is chosen to be △x = 0.1 nm. Consequently,
the smallest wave length λM = 2π/kM ≈ 10 nm is resolved by approximately 100 spatial
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grid points. Furthermore, we take Λ = 70 for the approximation parameter of the discrete
convolution terms. This choice results from a numerical convergence study presented in
Section 4.3.

It is important to note that the wave functions which are propagated using the fast
evaluation of the approximated discrete convolution terms (27) practically coincide with the
wave functions which are propagated using the exact convolutions (23)–(24) (see Section
4.3). Employing the exact convolutions, however, is equivalent to solving the Crank-
Nicolson finite difference equations of the whole space problem. Considering that the
electron density evolves smoothly in space and time, it is clear that the error of the complete
transient algorithm (see Section 3.3) is determined by the Crank-Nicolson finite difference
scheme. A global error estimate, together with a meshing strategy depending on a possibly
scaled Planck constant ~ is given in [7]. The calculations in this article are performed in
SI units without any scaling.

3.5. Details of the implementation

The final solver is implemented in the C++ programming language using the matrix
library Eigen [22] for concise and efficient computations. As we are interested in simulations
with a very large number of time steps N (e.g., N = 100 000), some sort of parallelization
is indispensable. We employ the library pthreads to realize multiple threads on multi-
core processors with shared memory. The most time consuming part in the transient
algorithm (see Section 3.3) is the propagation of the wave functions and the calculation
of the electron density. Since the wave functions evolve independently of each other, this
task can be easily parallelized. At every time step, we create a certain number of threads
(usually, this number equals the number of cores available). To each thread, we assign a
subset of wave functions which are propagated as described above. Before the threads are
joined again, each thread computes its part of the electron density. All these parts provide
the total eletron density which is used to solve the Poisson equation in serial mode. The
simulations presented below have been carried out on an Intel Core 2 Quad CPU Q9950
with 4× 2.8GHz.

4. Numerical experiments

We present three numerical examples. The first example shows the importance to
provide a complete compatible discretization of the open Schrödinger-Poisson system. The
second numerical test shows the time-dependent behavior of a resonant tunneling diode,
which allows us to identify three physical regions. In the third experiment, we investigate
the convergence of our solver with respect to the parameter Λ which appears in the context
of the fast evaluation of the discrete convolution terms.

4.1. First experiment: Constant applied voltage

We compute the stationary solution to the Schrödinger-Poisson system with an applied
voltage of U = 250mV. At this voltage, the current density achieves its first local maximum.
We apply the transient algorithm of Section 3 until t = 25 fs, keeping the applied voltage
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constant. Accordingly, the stationary solution should be preserved and the current density
Jcond, defined in (12), is expected to be spatially constant.

The ad-hoc discretization (19) is employed using the time step sizes △t = 1 fs, 0.5 fs,
0.25 fs. We observe in Figure 6 that the current density is not constant. The reason is
that the discretization (19) is not compatible with the underlying finite-difference scheme.
The distortions are reduced for very small time step sizes but this leads to computationally
expensive algorithms. In contrast, with the discrete gauge change of Section 3.1, the current
density is perfectly constant even for the rather large time step △t = 1 fs; see Figure 6.

dt = 1 fs
dt = 0.5 fs
dt = 0.25 fs
dt = 1 fs
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Figure 6: Conduction current density in a resonant tunneling diode at t = 25 fs for a
constant applied voltage of U = 250mV. Discretizations using the ad-hoc discretization
(19) of the analytical boundary conditions yield strongly distorted numerical solutions
(broken lines). In contrast, the conduction current density computed with our solver is
perfectly constant (solid line).

We mention that the transient solution is also distorted if the scattering states as initial
wave functions are computed from an ad-hoc discretization of the continuous boundary con-
ditions (5) and (6). For stationary computations, spurious reflections due to an inconsistent
discretization play a minor role but they become a major issue for transient simulations.

4.2. Second experiment: Time-dependent applied voltage

For the second numerical experiment, we consider a time-dependent applied voltage.
The conduction current density is no longer constant but the total current density is
expected to be conserved. We recall that the total current density Jtot = Jcond + ∂D/∂t
is the sum of the conduction current density Jcond and the displacement current density
∂D/∂t. Here D denotes the electric displacement field which is related to the electric
field E by D = ǫ0ǫrE. Indeed, replacing the electric field by the negative gradient of the
potential we obtain

∂D

∂t
= −ǫ0ǫr

e

∂

∂t
∇Vself .
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The temporal and spatial derivatives are approximated using centered finite differences.
Ampère’s circuital law ∇×H = Jtot for the magnetic field strength H yields

div Jtot = div(∇×H) = 0,

and hence, in one space dimension, Jtot is constant in space.
The following simulation demonstrates that the total current density is a conserved

quantity in the discrete system as well. First, we compute the equilibrium state using an
applied voltage of U = 0V. This solution is then propagated using a raised cosine function
for the applied voltage

U(t) =
U0

2

(
1− cos

2πt

T

)
, 0 ≤ t ≤ 1 ps,

where U0 = 0.25V and T = 2ps. At later times, t ≥ 1 ps, U(t) = U0 is kept constant.
Conduction, displacement, and total current density at different times are depicted in the
left column of Figure 7. As can be seen, the total current density is perfectly conserved
at all considered times. The change of the charge density ∂ρ/∂t is illustrated in the right
column of Figure 7. In our model, ρ is given by ρ = e (nD − n).

The time-dependence of the total current density in response to the applied voltage is
shown in Fig. 8. We can identify three different regions in the temporal behaviour, each
of which is governed by a different physical mechanism.

Region I: Capacitive behavior. When the applied voltage increases during the first picosec-
ond, the resonant tunneling diode behaves mainly like a parallel plate capacitor. This can
be clearly seen in the top left panel of Figure 7. In the region of the double barrier, the
displacement current gives the dominant contribution to the total current, whereas the
conduction current is small. The top right panel of Figure 7 shows a build-up of negative
charge before the left barrier and of positive charge after the right barrier. The formation
of opposite charges on the two sides of the double barrier results in the formation of an
electric field between the two regions of opposite charge density. This field is necessary to
accomodate the externally applied voltage. Figure 8 shows that the current closely follows
the time derivative of the applied voltage:

Jcond ≈ C
dU

dt
=
πCU0

T
sin

(
2πt

T

)
.

This expression allows us to estimate the apparent capacitance C. The maximum current
density occurring at t = T/4 = 0.5 ps takes approximately the value 1.2 · 109Am−2. We
compute C = TJ/πU0 = 3.06 · 10−3 Fm−2. Equating this value to the parallel plate
capacitance, C = ε0εr/d, we find the average separation of the opposite charge densities
to be d = 33.1 nm.

Region II: Plasma oscillations. During the second picosecond, a strongly damped oscilla-
tion occurs in the current density. From Figure 8, we estimate five oscillations to occur
during one picosecond, which relates to a period of about 200 fs. It is believed that these
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Figure 7: Left column: Total current density Jtot = Jcond + ∂D/∂t, conduction current
density J := Jcond, and displacement current density ∂D/∂t versus position at different
times. Right column: Temporal variation ∂ρ/∂t of the charge density versus position.
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Figure 8: Applied voltage and total current density versus time in different scalings.

are plasma oscillations which were excited by the rapidly changing applied voltage U . As
soon as the transient phase of U(t) is over and U(t) is kept constant at U0 for t ≥ 1 ps, the
excitation vanishes and the oscillations fade out quickly. As a rough estimate we calculate
the plasma frequency ωp for a classical electron system of uniform density:

ω2
p =

ne2

mε0
.

Note that in the resonant tunneling diode the density is neither uniform nor is it governed
by the classical equations of motion. Nevertheless, we may use this expression to estimate
the order of magnitude of the time constant associated with this effect. Since plasma
oscillations usually occur in the high-density regions of a device, we set n = n1

D = 1024m−3

and obtain τp = 2π/ωp = 111.4 fs. This value is of the same order as the 200 ps estimated
above, which is a strong indication that the physical effect observed here is a plasma
oscillation.

Region III: Charging of the quantum well. For t > 2 ps, an exponential increase in the
current can be clearly observed in Figure 8. Below 2 ps we see a superposition of both the
exponential current increase and the plasma oscillations. The origin of this effect can be
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Figure 9: Number of electrons in the quantum well versus time. In Region III (t ≥ 2 ps)
this number clearly follows an exponential law. Ua2,a5 denotes the temporal variation of
the voltage between x = a2 and x = a5.

understood from the right panels of Figure 7. Negative charge builds up in the quantum
well. This charge results from electrons tunneling through the left barrier into the quantum
well. In this context, we note that the temporal variation of the voltage between the left
and right end points a2 and a5 of the double-barrier structure, respectively, follows closely
the variation of the applied voltage U and hence, it is practically constant for t > 1 ps
(see Figure 9). The rate |∂ρ/∂t| decreases with time as can be seen by the snapshots at
t = 1.5 ps and t = 3ps. We calculate the number of electrons residing in the quantum well:

N(t) :=

∫ a5

a2

n(x, t) dx.

Since the charging process is expected to show an exponential time dependence, we assume
the following exponential law for N(t) and extract the free parameters τ and N∞:

N(t) = N∞ + (N(t1)−N∞) e−(t−t1)/τ .

In Figure 9, the difference |N(t)−N∞| is plotted, which decays to zero with an extracted
time constant of τ = 1.25 ps.

This time scale is related to the life time of a quasi-bound state. At U = 0.25V, the
current-voltage characteristic has its first maximum, which means that the first resonant
state in the quantum well is carrying the current. The life time of this resonant state can
be extracted from the width of the resonance peak in the transmission coefficient. Figure
10 depicts the transmission coefficient of the double-barrier structure at U = 0V and
U = 0.25V. The transmission coefficient is defined as the ratio between the transmitted
and the incident probability current density jtrans and jinc. In terms of the amplitude and
the wavenumber of the transmitted and the incident wave, it reads:

|jtrans|
|jinc|

=
|Atrans|2ktrans
|Ainc|2kinc

.
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Figure 10: Transmission coefficient of the double-barrier structure at U = 0.25V in differ-
ent scalings.

Extracting △E, the half width at half maximum of the first transmission peak, the life
time of the resonant state can be estimated as follows [25]:

τ =
~

2△E.

At U = 0.25V we find 2△E = 5.31 · 10−4 eV and thus τ = 1.24 ps. This value is very close
to the time constant of τ = 1.25 ps extracted from the exponential charge increase in the
quantum well, which is the cause for the observed exponential current increase.

4.3. Third experiment: Convergence in Λ

Finally, we study the convergence of the complete transient algorithm detailed in Sec-
tion 3.3 with respect to the parameter Λ which appears in the context of the fast evaluation
of the discrete convolution terms. For this purpose, we repeat the last experiment with
different values of Λ. We compare the results with those obtained from the algorithm which
uses the discrete transparent boundary conditions with the exact convolutions (23)–(24).
Since the computation of the reference solution is extremely expensive, we restrict the
experiment to the final time t = 1.5 ps. The conduction current densities at t = 1.5 ps for
two different values of Λ and for the reference solution are depicted in Figure 11 (left). The
relative error in the ℓ2-norm for increasing values of Λ is shown in Figure 11 (right). We
observe that the relative error decreases exponentially fast. Thus, using a relatively small
value of Λ practically yields the same results (at dramatically reduced numerical costs) as
if the discrete transparent boundary conditions with the exact convolutions were used.

5. Circuit simulations

In this section, we simulate a high-frequency oscillator consisting of a voltage source
Ue, a resistor with resistance R, an inductor with inductance L, a capacitor with capacity
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C, and a resonant tunneling diode RTD; see Figure 12. Each element of the circuit yields
one current-voltage relationship,

UR = RIR, UL = LİL, IC = CU̇C , IRTD = f(URTD). (28)

The last expression is to be understood as follows. Given the applied voltage URTD at
the tunneling diode, the current IRTD(t) = AJtot(t) is computed from the solution of the
time-dependent Schrödinger-Poisson system. Here, A = 10−11m2 is the cross sectional
area of the diode and Jtot is the total current density. In the simulations we use R = 5Ω,
L = 50 pH, and C = 10 fF.

L

R

RTD CUe

Figure 12: High-frequency oscillator containing the resonant tunneling diode RTD.

According to the Kirchhoff circuit laws, we have

Ue = UR + URTD + UL, URTD = UC , IL = IR, IL = IRTD + IC . (29)
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Combining (28) and (29), we find that

CU̇RTD = CU̇C = IC = IL − IRTD,

LİL = UL = Ue − UR − URTD = Ue −RIR − URTD = Ue −RIL − URTD.

Consequently, we obtain a system of two coupled ordinary differential equations,

d

dt

(
URTD

IL

)
=

(
0 1

C

− 1
L
−R

L

)(
URTD

IL

)
+

(
− 1

C
IRTD

1
L
Ue(t)

)
. (30)

The time-step size △t is very small compared to the time scale of the variation of the
potential energy and the variation of the current flowing through the diode. Hence, using
the same time step for the time integration of (30), we can resort to an explicit time-
stepping method. We choose the simplest one, the explicit Euler method. Alternatively,
one may employ an implicit method, but we observed that both methods yield essentially
the same results.

First circuit simulation. In the first simulation, the RTD solver is initialized with the steady
state corresponding to URTD(t) = 0 for all t ≤ 0. The external voltage Ue is assumed to
be zero for t ≤ 0, and the initial conditions for (30) are URTD(0) = 0 and IL(0) = 0.
For t ∈ [10, 20] ps, the external voltage is increased smoothly to 0.275V and then kept
constant (see Figure 13). This value is between the voltages where the stationary current
density reaches its local maximum and minimum (see Figure 4). The time evolution of the
voltage and the current at the RTD are depicted in Figure 13. It is clearly visible that
the system starts to oscillate. Furthermore, the potential energy, electron density, current
densities, and the temporal variation of the total charge ∂ρ/∂t are shown in Figure 14 for
four different times from the interval [t1 = 77.7, t2 = 87.2] ps, which covers exactly one
oscillation. Around 2 ps after the beginning of the period, the electron density within the
quantum well in [65, 70] nm becomes minimal (first row). After some time, we observe a
build-up of negative charge in the quantum well with ∂ρ/∂t < 0 (second row). At about
t = 84.6 ps the electron density reaches its maximum value (third row). Subsequently, the
electrons leave the quantum well again and ∂ρ/∂t > 0 in [65, 70] nm (fourth row). The
frequency of the oscillations is approximately 105GHz which corresponds qualitatively
to frequencies observed in standard double-barrier tunneling diodes [14]. The temporal
evolution of the physical quantities in the circuit is animated in the video available at
http://www.asc.tuwien.ac.at/~mennemann/projects.html.

Second circuit simulation. In this experiment, the external voltage Ue is kept fixed for all
times. At times t ≤ 0, the circuit contains the voltage source, resistor, and RTD only. We
initialize the transient Schrödinger-Poisson solver with the steady state corresponding to
URTD(t) = 0.275V for all t ≤ 0. To compensate for the voltage drop at the resistor, the
external voltage is set to

Ue(t) = RIRTD(t) + URTD(t), t ≤ 0.
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Figure 13: First circuit simulation: Voltage URTD and current IRTD through the resonant
tunneling diode versus time.

At time t = 0, the capacitor and inductor are added to the circuit. In order to avoid
discontinuities in the voltages, we charge the capacitor with the same voltage wich is
applied at the RTD before the switching takes place, UC(t) = URTD(t) for t ≤ 0. For
similar reasons, we set the current flowing through the inductor to the current flowing
through the RTD, IL(t) = IRTD(t) for t ≤ 0. This configuration corresponds to the
equilibrium state. Therefore, one would expect that the system remains in its initial state
for all time. However, the equilibrium is unstable and a small perturbation will drive the
system out of equilibrium. In fact, numerical inaccuracies suffice to start the oscillator.
However, we accelerate the transient phase by perturbing IL(t) by the value 5 · 10−6A for
t ≤ 0. The numerical result is presented in Figure 15. The simulation took less than 4
hours computing time on an Intel Core 2 Quad Core Q9950 with 4× 2.8 GHz.
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Figure 14: First circuit simulation: Electron density, potential energy, current densities,
and variation of the electron density versus position in the RTD at four different times.
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diode versus time.
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