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Abstract—The spherical harmonics expansion method provides
a deterministic solution method for the Boltzmann Transport
Equation for semiconductors. While first-order expansions have
been used in early works, higher-order expansions are required
for modern scaled-down devices. The drawback of higher-order
expansion is that the number of unknowns in the resulting system
of equations increases quadratically with the expansion order,
leading to high memory consumptions and long simulation times.
In this work we show that a considerable number of unknowns
can be saved by increasing the expansion order only locally in
the simulation domain. Moreover, we propose a scheme that
adaptively increases the order starting from a uniform first-
order expansion. For the considered n+nn+-diode, savings in
the number of unknowns of up to a factor of five are obtained
without sacrificing any accuracy of the numerical solution.

I. INTRODUCTION

The solution of the Boltzmann transport equation (BTE)
via the spherical harmonics expansion (SHE) method is in
several aspects superior to the traditional and well-established
stochastic Monte Carlo method [1]. As a deterministic method,
it provides the favorable numerical properties of moment-
based methods such as the the drift-diffusion model for the
solution of the full BTE. First-order expansions have been
shown to yield good results in early publications [2]–[4], but
with the continued miniaturization of semiconductor devices
higher expansion orders are required. It has been demonstrated
by Jungemann et al. [5] and recently by Jin et al. [6] that
expansion orders in the range of five to seven are necessary
in order to obtain accurate values for macroscopic quantities
such as carrier velocities in the deca-nanometer regime.

Unfortunately, memory requirements of uniform spherical
harmonics expansions up to order L on a simulation domain
with N grid points are proportional to N(L + 1)2, even if
carried out efficiently [7]. Since the total number of grid
points N is already higher than for macroscopic models due
to the additional energy coordinate, the quadratic dependency
on the expansion order leads to huge memory requirements
as already reported for fifth-order expansions in two spatial
dimensions [8]. For example, considering a spatially two-
dimensional simulation using 100 grid points per coordinate
direction as well as 100 points along the energy coordinate,
an expansion order nine leads to about 1003 × 102 = 108

unknowns, whereas 4×106 unknowns are obtained for a first-
order expansion.

For the purpose of predictive device simulation, quantities of

interest like current density, carrier densities or carrier veloci-
ties are obtained by an integration of the distribution function
over energy. Due to the asymptotically exponential decay of
the distribution function with energy, only contributions close
to the band-edge have a large weight on these quantities. In
addition, device regions that are negligible for transport do
not require high-order expansions either. To reduce the total
number of unknowns, we propose variable-order expansions
in Sec. II, which allow for high-order SHE only in those
device regions where it is actually required. The distribution
of expansion orders over the simulation domain is covered
by an automatic strategy and presented in Sec. III. It releases
the simulator user from the tedious and possibly inefficient
process of manually distributing expansion orders. Results for
a spatially two-dimensional n+nn+ diode are presented in
Sec. IV. An outlook is given and in Sec. V and finally a
conclusion is drawn.

II. VARIABLE-ORDER EXPANSIONS

In all publications dealing with the SHE method, the
distribution function f(x,p, t) has so far been expanded in
spherical harmonics up to a certain order L as

f(x,p, t) ≈
L∑

l=0

l∑
m=−l

fl,m(x, H, t)Yl,m(θ, ϕ) ,

where x denotes the spatial variable, p the momentum, t
time, H the total energy and θ, ϕ the angular compo-
nents of the momentum (e.g. [1]–[8]). By projection of the
BTE onto Yl,m(θ, ϕ), equations for the unknown coefficients
fl,m(x, H, t) are obtained, which are then discretized in the
(x, H)-space.

In equilibrium, the Maxwell distribution of carriers is ex-
actly represented by a zeroth order expansion and thus all
fl,m = 0 for l > 0. This is in contrast to moment methods,
where higher moments of a Maxwell distribution do not vanish
[9]. For small and smooth perturbations from equilibrium,
the expansion coefficients are analytically known to decay
rapidly [10]. At locations in the simulation domain where the
carrier distribution function is far from the equilibrium state,
expansion coefficients decay slowly and consequently larger
expansion orders L are required to obtain a good approxima-
tion. Therefore, we set the expansion order individually for



Fig. 1. Carrier velocities for different uniform and adaptive SHE orders. The
seventh-order SHE results are not depicted for reasons of clarity.

each grid point (xi, Hi) in the simulation domain:

f(xi,pi, t) ≈
Li∑
l=0

l∑
m=−l

fl,m(xi, Hi, t)Yl,m(θ, ϕ) ,

We employ the discretization using the H-transform as pro-
posed by Hong et al. [8] by associating even order unknowns
with mesh vertices and odd order unknowns with edges. If
two vertices v1 := (x1, H1) and v2 := (x2, H2) with
different expansion orders L1 and L2 (where without loss
of generality L1 > L2) couple, the expansion order in v2

is formally considered to be increased to L1, but with the
constraint that all expansion terms with an order above L2

are zero. These terms at v2 are then ignored in the system
matrix assembly process. The expansion order of the edge
is set to the maximum of the two adjacent vertices. In an
additional expansion order smoothing step we ensure that the
expansion orders of two neighboring vertices do not vary by
more than two, which reflects a continuous approximation of
the distribution function.

III. AN ADAPTIVE SCHEME FOR SHE ORDERS

The inhomogeneous expansion orders can either be stati-
cally distributed over the simulation domain, or be distributed
by an automatic adaption strategy. A static distribution allows
us to incorporate additional knowledge of the user into the
simulation process and full control, but can be tedious and is
not preferable for every-day TCAD applications. To increase
the attractiveness of the SHE method for the latter, we propose
a fully-automatic adaption strategy. It is based on an analytical
result (for details refer to [10]), which states that for a function
g defined on the unit sphere, the rate of decay of spherical har-
monics expansion coefficients is determined by the smoothness
of g. More precisely, for g =

∑
l

∑l
m=−l gl,mYl,m =:

∑
lQl

there holds

|Ql| ≤ Cl1/2−k , (1)

Fig. 2. Error of carrier velocities for different uniform and adaptive SHE
orders.

where C is a constant and k denotes the number of continuous
derivatives of g. Our indicator estimates k and increases the
expansion order in regions where the decay is slow.

More precisely, on each grid point we used the estimator

η(xi, Hi) = η1(xi, Hi) + η2(xi, Hi) ,

where the two summands are given by

η1(xi, Hi) =

∑
edges

∑
m |gLi+1,m|

Nedges(xi, Hi) log(Li + 1)f0,0(xi, Hi)
,

η2(xi, Hi) = α log(f0,0(xi, Hi)) ,

with the number of edges Nedges connected to the respective
grid point and Li denoting the maximum (even) expansion
order at point (xi, Li). The function η1 is a slightly modified
form of the inversion of Eq. 1 for k and estimates the decay
of the spherical harmonics expansion at each grid point in
the simulation domain. The function η2 is an empirical term
that adds extra weight closer to the band-edge, where higher
contributions of the distribution function to macroscopic quan-
tities are obtained. The parameter α was after some numerical
experiments set to 0.25. If the resulting error indicator η is
above a certain threshold, the expansion order at the edge and
the vertices is increased for the next simulation run.

IV. RESULTS

The outlined adaption scheme has been implemented in our
spatially two-dimensional simulator ViennaSHE. For demon-
stration purposes, we consider a spatially two-dimensional
simulation of a quasi one-dimensional n+nn+-diode at 0.5
V bias with an intrinsic region of 48 nm. Our simulation used
120 grid points in x-direction, two in y-direction and 120
points along the energy axis ranging up to 1.5 eV. The reason
for the two-dimensional simulation is to show the memory
savings using the full set of spherical harmonics, while in
a one-dimensional simulation the smaller set of Legendre
polynomials is used.



Fig. 3. Number of unknowns for different uniform and adaptive SHE orders.
Savings of up to one order of magnitude are obtained.

Average carrier velocities along the device are compared
for different uniform expansion orders as well as for adaptive
expansion orders after one (maximum SHE order 3), two
(maximum SHE order 5) and three (maximum SHE order
7) adaption steps. Fig. 1 shows the convergence of the SHE
method with higher order, as well as the good agreement of the
uniform and the adaptive expansions. The relative deviations
of the uniform and the adaptive results are shown in Fig. 2.
The error is almost uniformly below one percent, only near
the end of the intrinsic region the error is slightly increased.
Comparing with Fig. 1, one sees that the error is above one
percent at the end of the intrinsic region. This is at least partly
due to the rather large gradient of the velocity, where already
small variations in the spatial direction lead to rather large
differences in the velocity.

The number of unknowns using uniform SHE and adaptive
SHE are depicted in Fig. 3. A considerable reduction in the
number of unknowns is obtained, ranging from a factor of
three for third-order expansions to a factor of nine for seventh-
order expansions. It should be noted that an adaptive seventh-
order expansion still uses less unknowns than a uniform third-
order expansion. The savings also show a strong dependence
on the considered total energy range, which depends on the
applied bias. Therefore, the savings can be even higher for
larger devices with a bias of several Volts, because a higher
range of kinetic energies is considered.

Details of the adaption step are depicted in Fig. 4. The
indicator is shifted such that the highest value equals zero. As
refinement threshold, a fixed value of −5 was used. It can be
seen that the expansion order is only locally increased near
the band edge at the beginning of the intrinsic region. The
region of increased expansion orders essentially captures the
trajectories of carriers in free flight (H = const.) towards the
right contact. It is remarkable that the expansion order is kept
at lowest order towards the end of the intrinsic region near the
band-edge.

It should also be noted that increased numerical stability has
been observed for very coarse grids by keeping a first-order

SHE directly at the band-edge. Since the density of states is
close to zero at these points anyway, there are no spurious
effects on the accuracy of the solution.

V. OUTLOOK

It has to be emphasized that an efficient error indicator
depends on the target quantity. The weighting η2(xi, Hi)
used in the estimator is certainly attractive when aiming at
macroscopic quantities obtained as moments of the distribution
function, where the main contributions are relatively close to
the band-edge. However, the η2 term may be undesired if the
high-energy tails of the distribution function are to be resolved,
as it is the case for example of interest for the study of impact
ionization and hot carrier degradation effects. Therefore, the
proposed estimator is possibly the first out of a whole family
of different adaption strategies with each strategy tailored to
a different target quantity.

One drawback of the proposed indicator is that once a region
is not considered for refinement, it will not be refined at a
later step either (Fig. 4). This can be improved by lowering
the threshold value at later adaption steps.

Instead of not only comparing the terms of highest ex-
pansion order with the zeroth-order term, the proposed error
indicator can be modified to taking all available expansion
orders at each vertex into account. Fluctuations of the error
indicator due to sign changes of individual terms are then
reduced.

The error indicator proposed in this work can also be
coupled with a residual-based indicator. We expect that this
is in particular an advantage at low expansion orders, where
the asymptotic behavior of the analytical result in (1) does not
constitute a good criterion.

VI. CONCLUSIONS

The proposed adaptive variable-order scheme allows us to
solve the BTE at the accuracy of uniform high-order SHE
at considerably lower computational costs, both in terms of
memory and execution time. These savings of up to a factor
of nine obtained for the considered n+nn+ diode certainly
increase the attractiveness of the SHE method for TCAD tools.

In addition, the proposed scheme provides further insight
into the transport contributions of individual expansion orders
at various energies. In the case of average carrier velocities,
high expansion orders are required near the band edge and
along and below the trajectories of carriers in free flight, while
lower expansion orders are sufficient at higher energies.
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(a) Indicator at the first adaptation and expansion order after the first adaption step.

(b) Indicator at the second adaptation and expansion order after the second adaption step.

(c) Indicator at the third adaptation and expansion order after the third adaption step.

Fig. 4. Expansion indicator and expansion orders in the n+nn+ diode for three adaption steps. The scheme starts with a uniform first order expansion.
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