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1 - Introduction

Quantum fluids have been studied experimentally for many years and have
by now become very attractive due to novel experimental discoveries in Bose-
Einstein condensation, the use of liquid helium for superconducting materials,
and potential applications in quantum computing. Recently, disordered super-
fluids and, in particular, the interplay between superfluidity and the onset of
dissipative processes have been investigated [28]. Typically, the dynamics of
the condensate is modeled by a nonlinear Schrödinger equation involving dis-
sipative terms [5]. Whereas diffusion has been extensively studied in classical
physical systems, much less is known in quantum systems, and the theoretical
understanding of quantum diffusion is difficult and not complete. The reason is
that diffusion is an incoherent process, whereas quantum dynamics are typically
very coherent.

In this paper, we review some approaches to include diffusive phenomena
in quantum fluid models. The target reader is supposed to be mathematically
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oriented since we present the mathematical modeling and analysis of the model
equations only. For a more physical exposition, we refer to the book [91]. Semi-
conductor devices are modeled and analyzed in [125]. Furthermore, numerical
schemes and simulations can be found, e.g., in [33, 68, 98, 100, 106, 107, 132, 134]
and references therein.

A simple fluiddynamical model is obtained from the single-state Schrödinger
equation via the Madelung transform [123]. In fact, by separating the imaginary
and real part of the Schrödinger equation, we arrive at the pressureless Euler
equations involving a third-order quantum correction with the so-called Bohm
potential. However, these Madelung equations describe ballistic transport only.
An alternative approach to derive quantum fluid models is to apply a moment
method to the Wigner equation. It has the advantage that dissipation can
be included in a rather natural way via collision operators on the right-hand
side of the Wigner equation. Examples, used in semiconductor modeling, are
the Caldeira-Leggett scattering operator, the Fokker-Planck operator, or BGK-
type operators (named after Bhatnagar, Gross, and Krook [16]); see Section 2.4
for a detailed description.

Depending on the properties of the collision operator, various model equa-
tions can be derived. In this survey, we present three model classes (see Figure
1).
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Figure 1: Model hierarchy. The Wigner models are explained in Section 2.4.

The first class, the quantum drift-diffusion equations, are derived from the
Wigner equation, in the diffusive scaling, with a BGK-type collision operator
which conserves mass [53]. The quantum drift-diffusion model consists of a non-
linear parabolic fourth-order equation for the particle density and the Poisson
equation for the electric potential. The main difficulty of the analysis of this
model is due to the fourth-order operator in the particle equation, which is
highly nonlinear and prevents the use of maximum principles.

This technique has been also applied to spinorial systems by Barletti and
Méhats in [12] obtaining quantum drift-diffusion systems for the spin-up and
spin-down electron densities (also see [13, 64] for related macroscopic spin mod-
els).

The second model class are the (viscous) quantum hydrodynamic equations.
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They consist of balance equations for the particle, current, and energy densi-
ties, self-consistently coupled to the Poisson equation. The equations are derived
from the Wigner-Fokker-Planck equation using a moment method [78]. Com-
pared to the Madelung equations, they contain a pressure function and spatially
diffusive terms (Laplacians) in the macroscopic variables. Although the Lapla-
cian operator makes the mass equation parabolic, the momentum equation still
contains the nonlinear third-order Bohm-potential term whose mathematical
treatment is challenging.

When a Chapman-Enskog expansion is applied to the Wigner-BGK model,
diffusive corrections to the quantum equilibrium can be derived [24]. This leads
to the third model class, the quantum Navier-Stokes equations. A characteristic
feature is that the viscosity depends on the particle density. Surprisingly, there
exists a connection between the quantum Navier-Stokes and viscous quantum
hydrodynamic models. By introducing a new velocity variable, containing the
so-called “osmotic velocity”, both models are formally equivalent (see Section
5.2).

This review is organized as follows. In Section 2, three quantum view
points—the density-matrix, Schrödinger, and Wigner formalism—and their re-
lations are sketched. Furthermore, the quantum equilibrium is defined and ex-
amples for Wigner-Boltzmann equations are given. Section 3 is concerned with
the derivation and analysis of local and nonlocal quantum drift-diffusion models.
Quantum hydrodynamic equations, derived from the (mixed-state) Schrödinger,
Wigner, or Wigner-Fokker-Planck equations, are introduced in Section 4. More-
over, some analytical results for the inviscid and viscous quantum equations are
reviewed. Finally, the derivation and analysis of quantum Navier-Stokes equa-
tions is presented in Section 5.

We remark that the derivations of the models are purely formal, and a
“proof” of a theorem on the model derivation is not a proof in the strict math-
ematical sense but rather signifies formal computations. The sections on the
analysis of the equations contain theorems which are rigorous in the mathemat-
ical sense, but only the key ideas of their proofs are given.

2 - Quantum kinetic models

In this section, we present various formulations of the evolution of quantum
systems: the density-matrix, the (mixed-state) Schrödinger, and the Wigner
formalism. The Wigner equation is the starting point for deriving quantum
fluid models in the subsequent sections.

2.1 - Density-matrix formalism

The quantum mechanical state of a system can be described by the Schrö-
dinger equation

iε∂tψ = Hψ in R
3, t > 0, ψ(·, 0) = ψI ,
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where ε > 0 is the scaled Planck constant and H is the quantum mechani-
cal Hamiltonian, for instance, H = −(ε2/2)∆ − V (x, t) with V (x, t) being a
potential. When we have an ensemble of many particles, like electrons, the
Schrödinger equation needs to be solved in a very high-dimensional state space.
Moreover, there exist systems which cannot be described by a single-state wave
function since they are statistical mixtures. This leads to the concept of density
matrices. We assume in the following that the quantum state is represented by
a density-matrix operator ρ̂, whose evolution is governed by the Liouville-von
Neumann equation

(1) iε∂tρ̂ = [H, ρ̂], t > 0, ρ̂(0) = ρ̂I ,

where [H, ρ̂] = Hρ̂− ρ̂H is the commutator. In this section, we perform formal
computations only, and we refer to the literature for the mathematical setting
in functional spaces [1, 6].

The density-matrix operator ρ̂ is a positive, self-adjoint, and trace-class oper-
ator on L2(R3). A bounded linear operator ρ̂ is called trace class if it is compact
and its trace Tr(ρ̂) =

∑
j((ρ̂

∗ρ̂)1/2uj , uj) is finite, where (·, ·) is a scalar product

and (uj) is any complete orthonormal set of L2(R3). The self-adjointness and
compactness of ρ̂ provide the existence of a complete orthonormal set (ψj) of
eigenvectors with eigenvalues (λj). The positivity implies that the eigenvalues
λj are nonnegative and hence, Tr(ρ̂) =

∑
j λj <∞. We assume that the initial

operator ρ̂I is positive, self-adjoint, and trace class too, such that there exist
orthonormal eigenvectors (ψ0

j ).
We claim that the wave functions ψj(x, t) are solutions to the Schrödinger

equation
iε∂tψj = Hψj in R

3, t > 0, ψj(·, 0) = ψ0
j .

More precisely, ψj describes a pure state of the quantum system, and the eigen-
value λj is the corresponding occupation probability. The sequence (ψj , λj) of
eigenvectors-eigenvalues is called a mixed state. For a system of many parti-
cles, the mixed state describes a statistical mixture of states ψj with occupation
probabilities λj ≥ 0 (j ∈ N). These numbers depend on the initial state of
the system. Before we detail the connection between the Liouville-von Neu-
mann equation and the Schrödinger equation, we need some properties of the
density-matrix operator. We follow Section 10.1 in [91].

Each density-matrix operator has the unique integral representation

(2) (ρ̂ψ)(x, t) =

∫

R3

ρ(x, y, t)ψ(y, t)dy, t ≥ 0,

for all ψ ∈ L2(R3), where ρ is the density matrix (function). The self-adjointness
of ρ̂ implies the symmetry ρ(x, y, t) = ρ(y, x, t). The “diagonal” of the density
matrix is interpreted as the particle density

n(x, t) = ρ(x, x, t), x ∈ R
3, t > 0.

Furthermore, the particle current density is defined by

J(x, t) = εIm∇xρ(x, x, t), x ∈ R
3, t > 0,
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where Im(z) denotes the imaginary part of z ∈ C. The density matrix solves
the Liouville-von Neumann equation in the “matrix” formulation

(3) iε∂tρ(x, y, t) = (Hx −Hy)ρ(x, y, t), t > 0, ρ(x, y, 0) = ρI(x, y),

where x, y ∈ R
3, Hx denotes the Hamiltonian acting only on the variable x

and Hy only acts on y. This follows from the self-adjointness of Hy. Indeed, by
integrating by parts, we find for any function ψ(y, t):
∫

R3

iε∂tρ(x, y, t)ψ(y, t)dy = iε(∂tρ̂)ψ(x, t) = (Hρ̂ψ − ρ̂Hψ)(x, t)

=

∫

R3

(
Hxρ(x, y, t)ψ(y, t) − ρ(x, y, t)Hyψ(y, t)

)
dy

=

∫

R3

(
Hxρ(x, y, t)ψ(y, t) −Hyρ(x, y, t)ψ(y, t)

)
dy

=

∫

R3

(Hx −Hy)ρ(x, y, t)ψ(y, t)dy.

The initial datum ρI is computed from the representation

(ρ̂Iψ)(x) =

∫

R3

ρI(x, y)ψ(y)dy, x ∈ R
3.

L e m m a 2.1. The density matrix can be expanded in terms of the eigen-
functions ψj,

ρ(x, y, t) =

∞∑

j=1

λjψj(x, t)ψj(y, t).

Here, z denotes the complex conjugate of z ∈ C.
P r o o f. We employ the representation (2) for the eigenfunction ψ = ψj ,

multiply this equation by ψℓ(x, t) and integrate over R
3. Then, in view of the

orthonormality of (ψj),

(4) δjℓλj =

∫

R3

∫

R3

ρ(x, y, t)ψj(y, t)ψℓ(x, t)dx dy,

where δjℓ is the Kronecker delta. The set (ψj(x, t)ψℓ(y, t)) is complete and
orthonormal in L2(R3 ×R

3). Therefore, the density matrix can be expanded in
this basis:

ρ(x, y, t) =

∞∑

m,n=1

cmn(t)ψm(x, t)ψn(y, t).

Inserting this expansion into (4) and employing again the orthonormality of (ψj),
it follows that the coefficients cℓj(t) equal δjℓλj such that the lemma follows. �

The density-matrix operators ρ̂I and ρ̂ can be expanded in the form

(5) ρ̂I =

∞∑

j=1

λj |ψ0
j 〉〈ψ0

j |, ρ̂ =

∞∑

j=1

λj |ψj〉〈ψj |,
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where |ψj〉 denotes the function ψj and 〈ψj | the projection on ψj (bra-ket no-
tation).

The following theorem roughly states that the Liouville-von Neumann equa-
tion is equivalent to the mixed-state Schrödinger equations (see Theorem 10.2
in [91]).

T h e o r e m 2.1 (Mixed-state Schrödinger equations). Let ρ̂ be a density-
matrix operator, satisfying the Liouville-von Neumann equation (1), with a com-
plete orthonormal set of eigenfunctions (ψj) and eigenvalues (λj). The eigen-
functions of the initial-data operator ρ̂I are denoted by (ψ0

j ). Then ψj is the
solution of the Schrödinger equation

(6) iε∂tψj = Hψj , t > 0, ψj(·, 0) = ψ0
j in R

3, j ∈ N.

The particle density n(x, t) can be written as

(7) n(x, t) =

∞∑

j=1

λj |ψj(x, t)|2, x ∈ R
3, t > 0.

Conversely, let (ψj , λj) be a solution of the Schrödinger equation (6) with num-
bers λj ≥ 0 satisfying

∑
j λj < ∞. Then the density matrix operator, defined

by (5), solves the Liouville-von Neumann equation (1).

P r o o f. The proof is taken from Section 10.1 in [91]. Let ρ̂ be a solution
of the Liouville-von Neumann equation (1), represented as in (5). The solution
of the Liouville-von Neumann equation can be written formally as

ρ̂(t) = e−iHt/ερ̂Ie
iHt/ε, t ≥ 0,

since

∂tρ̂ = − i

ε
He−iHt/ερ̂Ie

iHt/ε +
i

ε
e−iHt/ερ̂IHe

iHt/ε = − i

ε

(
Hρ̂− ρ̂H).

Here, we have used the fact that the Hamiltonian H and the operator eiHt/ε

commute. Then, inserting the expansion (5) for ρ̂I in the above formula gives

ρ̂(t) =
∞∑

j=1

λj |e−iHt/εψ0
j 〉〈eiHt/εψ0

j |.

Comparing this expression with the expansion (5) for ρ̂ shows that ψj(·, t) =
e−iHt/ε ψ0

j . Finally, differentiation with respect to time yields ε∂tψj = −iHψj

which is equivalent to the Schrödinger equation (6).
Conversely, let ψj be the solution of the Schrödinger equation (6) and let ρ̂

be given by (5). Then

∂tρ̂ =

∞∑

j=1

λj

(
|∂tψj〉〈ψj | + |ψj〉〈∂tψj |

)

=
∞∑

j=1

λj

(
− i

ε
|Hψj〉〈ψj | +

i

ε
|ψj〉〈Hψj |

)
= − i

ε
(Hρ̂− ρ̂H).
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Thus, ρ̂ is a solution of the Liouville-von Neumann equation (1). �

If the initial quantum state can be written as ρI(x, y) = ψI(x)ψI(y), the den-
sity matrix is given by ρ(x, y, t) = ψ(x, t)ψ(y, t), where ψ solves the Schrödinger
equation (6). The particle density equals n(x, t) = 2ρ(x, x, t) = 2|ψ(x, t)|2 and
the particle current density

J = −εIm(ψ∇xψ).

We refer to such a situation as a single state as the single wave function ψ
completely describes the quantum state.

For the self-consistent modeling of charged-carrier systems (for instance,
electrons), the Poisson equation for the electric potential is added to the Schrö-
dinger equations (6). Let V be the sum of an external potential Vex, modeling,
for instance, semiconductor heterostructures, and the self-consistent potential
Vsc, which is given by

(8) λ2
D∆Vsc = n− C(x), x ∈ R

3,

where λD is the scaled Debye length and C(x) models fixed charged background
ions (doping concentration). The electron density n is computed according to
(7). The system of equations, consisting of the Schrödinger equations (6), the
Poisson equation (8) with (7), is referred to as the mixed-state Schrödinger-
Poisson system.

2.2 - Wigner equations

In the previous subsection, we have explained how the quantum mechanical
motion of an electron ensemble can be described in the mixed-state Schrödinger
or density-matrix formalism. There is an alternative description based on the
quantum-kinetic Wigner formulation, which we present and discuss in this sec-
tion. There are two main reasons for using this framework in applications
(mostly for transient problems). First, the Wigner picture allows, in contrast
to Schrödinger models, for a modeling of scattering phenomena in the form of
a quantum Boltzmann equation. Second, when considering bounded domains
modeling electronic devices, the quantum-kinetic framework makes it easier to
formulate boundary conditions at the device contacts, which may be inspired
from classical kinetic considerations [67].

We derive the Wigner equation (or quantum Liouville equation) from the
Liouville-von Neumann equation (3). To this end, we recall the Fourier trans-
form

(F(f))(p) =

∫

R3

f(y)e−iy·p/εdy,

and its inverse,

(F−1(g))(y) =
1

(2πε)3

∫

R3

g(p)eiy·p/εdp,
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for functions f , g : R
3 → C.

For the kinetic formulation of the Liouville-von Neumann equation, we need
the so-called Wigner function introduced by Wigner in 1932 [143]:

(9) w(x, p, t) = W [ρ](x, p, t) =

∫

R3

ρ
(
x+

y

2
, x− y

2
, t
)
e−iy·p/εdy.

Setting

(10) u(x, y, t) = ρ
(
x+

y

2
, x− y

2
, t
)
,

the Wigner function can be written as the Fourier transform of u, w = F(u).
Furthermore, u = F−1(w). We notice that the operator W [ρ] is called the
Wigner-Weyl transform. Its inverse W−1, also called Weyl quantization, is
defined as an operator on L2(R3):

(W−1[f ]φ)(x) =

∫

R3

∫

R3

f
(x+ y

2

)
φ(y)eip·(x−y)/ε dp dy

(2πε)3

for functions φ ∈ L2(R3). The Wigner transform and the Weyl quantization
are isometries between the space of operators ρ̂ such that ρ̂ρ̂∗ is trace class
(ρ̂∗ denotes the adjoint of ρ̂) and the space L2(R6). Indeed, from Plancherel’s
formula follows that

(11) Tr(ρ̂1ρ̂
∗
2) =

∫

R3

∫

R3

W [ρ1](x, p, t)W [ρ2](x, p, t)
dp dx

(2πε)3
,

where ρ1 and ρ2 are the corresponding density matrix functions.
The evolution equation for the Wigner function is obtained by transforming

the Liouville-von Neumann equation to the (x, y) variables and applying the
Fourier transformation. The result is expressed in the following proposition
(Proposition 11.1 in [91]).

P r o p o s i t i o n 2.1 (Wigner equation). Let ρ be a solution of the Liou-
ville-von Neumann equation (3). Then the Wigner function (9) is formally a
solution of the Wigner equation

(12) ∂tw + p · ∇xw + θ[V ]w = 0, t > 0, w(x, p, 0) = wI(x, p)

for x, p ∈ R
3, where the initial datum is given by

wI(x, p) =

∫

R3

ρI

(
x+

y

2
, x− y

2

)
e−iy·p/εdy,

and θ[V ] is a pseudo-differential operator, defined by

(13) (θ[V ]w)(x, p, t) =
1

(2πε)3

∫

R3×R3

(δV )(x, y, t)w(x, p′, t)eiy·(p−p′)/εdp′ dy,

where

δV (x, y, t) =
i

ε

(
V
(
x+

y

2
, t
)
− V

(
x− y

2
, t
))
.
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P r o o f. The proof is taken from Section 11.1 of [91]. First, we derive
the evolution equation for u, defined in (10), and then take the inverse Fourier
transform. We compute, for r = x+ y/2 and s = x− y/2,

divy(∇xu)(x, y, t) = divy(∇rρ+ ∇sρ)
(
x+

y

2
, x− y

2
, t
)

=
1

2
(∆rρ− ∆sρ)

(
x+

y

2
, x− y

2
, t
)
.

Then the transformed Liouville-von Neumann equation for u becomes,

∂tu(x, y, t) = ∂tρ(r, s, t) = − i

ε

(
− ε2

2
(∆r − ∆s) − V (r, t) + V (s, t)

)
ρ(r, s, t)

= iεdivy(∇xu)(x, y, t) + δV (x, y, t)u(x, y, t)

or
∂tu− iε divy(∇xu) − (δV )u = 0, x, y ∈ R

3, t > 0.

The Fourier transform gives

(14) ∂tF(u) − iεF(divy ∇xu) −F((δV )u) = 0.

The second term on the left-hand side can be written, by integrating by parts,
as

F(divy ∇xu)(x, p, t) =

∫

R3

divy(∇xu)(x, y, t)e
−iy·p/εdy

=
i

ε

∫

R3

p · ∇xu(x, y, t)e
−iy·p/εdy

=
i

ε
p · ∇xF(u)(x, p, t) =

i

ε
p · ∇xw(x, v, t).

The third-term on the left-hand side of (14) becomes, by (13),

F((δV )u)(x, p, t) =

∫

R3

(δV )(x, y, t)u(x, y, t)e−iy·p/εdy

= (2πε)−3

∫

R3

(δV )(x, y, t)w(x, p′, t)eiy·(p
′−p)/εdp′ dy

= (2πε)−3

∫

R3

(δV )(x,−y, t)w(x, p′, t)eiy·(p−p′)/εdp′ dy

= −(θ[V ]w)(x, p, t).

Therefore, (14) equals the Wigner equation (12). �

The local term p · ∇xw is the quantum analogue of the classical transport
term of the Liouville equation (see Chapter 3 of [91]). The nonlocal term θ[V ]w
models the influence of the electric potential. The nonlocality has the effect
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that the electron ensemble “feels” an upcoming potential barrier. The pseudo-
differential operator can be written as, by slight abuse of notation and for w =
F(u),

(θ[V ]w)(x, p, t) =

∫

R3

(δV )(x, y, t)u(x,−y, t)eiy·p/εdy

= F
(
(δV )(x,−y, t)u(x, y, t)

)
.

Therefore, it acts in the Fourier space essentially as a multiplication operator.
The multiplicator δV is called the symbol of the operator θ[V ]. The symbol δV
is a discrete directional derivative, since in the formal limit ε→ 0, we find that

δV (x, εy, t) → i∇xV (x, t) · y.

We refer to [139] for a mathematical theory of pseudo-differential operators. In
particular, the Wigner equation (12) is a linear pseudo-differential equation. For
mathematical results on the Wigner equation, we refer to the review of Arnold
[6].

2.3 - Quantum equilibrium

The thermal equilibrium of a gas can be defined in classical kinetic theory
as the maximizer f∗ of the fluid entropy (or, more precisely, free energy)

Scl(f) = −
∫

R3

(
f(log f − 1) + h(x, p)f

)
dp,

where p is the momentum and h(x, p) = |p|2/2−V (x) the classical Hamiltonian.
A simple calculation yields

f∗(x, p) = exp
(
V (x) − 1

2 |p|
2
)
, x, p ∈ R

3.

In quantum mechanics, the above local definition of entropy (as a function of
the position) does not exist. In fact, the quantum entropy refers to the entire
system whose statistical uncertainty is described by the density-matrix operator
ρ̂. The quantum entropy as a measure of the uncertainty is expressed in terms
of the eigenvalues µj of ρ̂:

Squ(ρ̂) = −Tr(ρ̂(log ρ̂− 1)) = −
∑

j

µj(log µj − 1).

The expression ρ̂(log ρ̂ − 1) is defined by functional calculus applied to the
function f(x) = x(log x − 1). Instead of the entropy Squ, we consider the free
energy

S(ρ̂) = −Tr
(
ρ̂(log ρ̂− 1) +H(ρ̂)

)
,

where H = −(ε2/2)∆ − V (x) is the quantum Hamiltonian. Applying the
Plancherel-type formula (11) and the identity h = W [H], we can write for
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w = W [ρ̂], with a slight abuse of notation,

S(w) = −
∫

R3

∫

R3

(
w(Log(w) − 1) + h(x, p)w

) dp dx
(2πε)3

.

Here, the quantum logarithm and quantum exponential have been introduced by
Degond and Ringhofer [55]:

Log(w) = W [logW−1[w]], Exp(w) = W [expW−1[w]],

where log and exp are the operator logarithm and exponential, respectively,
defined by their corresponding spectral decomposition.

In order to compute the (formal) maximizer of S, we compute first its deriva-
tive. For this, we notice that for any differentiable function g, the Gâteaux
derivative of Tr(g(ρ̂)) (if it exists) is given by

( d
dρ̂

Tr(g(ρ̂))
)
σ̂ = Tr(g′(ρ̂)σ̂),

where ρ̂ and σ̂ are density-matrix operators. For a proof, we refer to [55, Lemma
3.3]. Hence, with g(ρ̂) = ρ̂(log ρ̂− 1), we find that

(dS
dρ̂

(ρ̂)
)
σ̂ = −Tr

(
(log(ρ̂) −H)σ̂

)
= −

∫

R3

∫

R3

(W [log ρ̂] +W [H])W [σ̂]
dp dx

(2πε)3
.

Thus, if w = W [ρ̂] and u = W [σ̂],

(15)
(dS
dρ̂

(ρ̂)
)
σ̂ = −

∫

R3

∫

R3

(
Log(w) + h(x, p)

)
u
dp dx

(2πε)3
.

A necessary condition for extremality of S is that its Gâteaux derivative van-
ishes, which implies that Log(weq) + h(x, p) = 0 or

(16) weq = Exp(−h(x, p)).

If there exists an operator ρ̂eq such that W [ρ̂eq] = weq, we find that the quantum
equilibrium is given by

ρ̂eq = exp(−H).

Inspired by the classical case, we may define equilibrium states which satisfy
prescribed moments [55]. Given the weight function κ(p), we call

m(x, t) = 〈κ(p)w〉 :=

∫

R3

w(x, p, t)κ(p)
dp

(2πε)3

the moment of w. Physically relevant moments are the particle density n, par-
ticle current density −nu, and energy density ne, defined by, respectively,



n
nu
ne


 =

∫

R3

w(x, p, t)




1
p

1
2 |p|2


 dp

(2πε)3
.

12



Given a Wigner function w, we define the quantum equilibrium as follows. We
write the moments of w as

mj(x, t) = 〈w(x, p, t)κj(p)〉 =

∫

R3

w(x, p, t)κj(p)
dp

(2πε)3
,

where κ0, . . . , κN are some weight functions. The constrained maximization
problem reads as

(17) max
{
S(w) : 〈w(x, p, t)κj(p)〉 = mj(x, t) for all (x, t), j = 0, . . . , N

}
.

L e m m a 2.2. The formal solution of the constrained maximization problem
(17), if it exists, is given by

M [w](x, p, t) = Exp
(
ξ(x, t) · κ(p) + V (x, t) − |p|2

2

)
,

where ξ(x, t) ∈ R
N+1 are some Lagrange multipliers.

P r o o f. The proof is taken from Section 21.1 in [91]. We define for
ξ = (ξ0, . . . , ξN ) and m = (m0, . . . ,mN ) the Lagrange functional

F (w, ξ) = H(w) +

∫

R3

ξ(x) ·
(
m− 〈w(x, p, t)κ(p)〉

)
dx.

A necessary condition for extremality of F is that its Gâteaux derivative with
respect to ρ̂ = W−1[w] vanishes. In view of (15), this condition becomes

∫

R3

∫

R3

(
Log(w∗) +

|p|2
2

− V − ξ∗(x) · κ(p)
)
u(x, p)dp dx = 0

for some functions w∗(x, p) and ξ∗(x) and for all functions u(x, p), which implies
that

Log(w∗) +
|p|2
2

− V (x, t) − ξ∗(x) · κ(p) = 0

and finally,

w∗ = Exp
(
ξ∗ · κ+ V − |p|2

2

)
,

finishing the proof. �

We call M [w] the quantum Maxwellian of w. If we assume that κ0(p) = 1
and κ2(p) = 1

2 |p|2, setting λ0 = ξ0 + V , λ2 = ξ2 − 1, and λj = ξj otherwise, we
can write the quantum Maxwellian more compactly as

(18) M [w] = Exp(λ · κ(p)).

We give some examples of quantum Maxwellians which are used in the follow-
ing sections. If only the electron density is prescribed, we obtain the quantum
Maxwellian

M [w](x, p, t) = Exp
(
A(x, t) − |p|2

2

)
,

13



where the Lagrange multiplier A is uniquely determined by the zeroth moment
of w. This Maxwellian will be employed for the derivation of the quantum drift-
diffusion model in Section 3. In the case of prescribed particle density, velocity,
and energy density, we obtain the quantum Maxwellian

(19) M [w] = Exp
(
A(x, t) − |p− v(x, t)|2

2T (x, t)

)
,

where A, v, and T are determined by the moments of w. This Maxwellian is
taken as the thermal equilibrium state in the quantum hydrodynamic equations
(see Sections 4 and 5). Finally, prescribing zeroth- and second-order moments,
one obtains the quantum Maxwellian M [w] = Exp(A − |p|2/(2T )), used in
the derivation of the quantum energy-transport equations. Since this model is
not well understood, we do not explain its derivation and refer to [52, 53, 91]
for details. A simplified quantum energy-transport model was derived recently
from the quantum hydrodynamic equations and analyzed in [102]. A quantum-
corrected energy-transport model (using the quantum drift-diffusion approach)
was numerically investigated in [40, 41].

The quantum Maxwellian is a nonlocal function on the phase space. It can be
made more explicit when expanding it in terms of the scaled Planck constant
ε, which appears in the definition of the Wigner transform. We state only a
result for the quantum Maxwellian with prescribed particle density (see [98] for
a proof).

L e m m a 2.3 (Expansion of the quantum Maxwellian). The following ex-
pansions holds

Exp
(
A− |p|2

2

)
= exp

(
A− |p|2

2

)[
1 +

ε2

8

(
∆A+

1

3
|∇A|2 − 1

3
p⊤∇2Ap

)]

+O(ε4),

where ∇2A denotes the Hessian of A.

This expansion corresponds to the equilibrium function found by Wigner
[143]. We remark that in the classical limit ε → 0, the above quantum equilib-
rium reduces to feq = exp(A− |p|2/2). In the unconstrained case, we find that
feq = exp(V − |p|2/2), which is consistent with classical kinetic theory.

2.4 - Wigner-Boltzmann equations

In Section 2.2, we have considered ballistic and hence reversible quantum
transport. When the characteristic length of the quantum system is larger than
the mean free path of the particles, scattering effects have to be taken into
account. Scattering may occur between the particles and between the particles
and a background. For instance, in semiconductors, one may encounter electron-
electron collisions, scattering of the electrons with the quantized vibrations of
the semiconductor crystal (phonons) or with the doping atoms (ionized impurity
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collisions). Inspired from classical kinetic theory, scattering may be modeled by
an appropriate collision operator Q(w), which is added to the Wigner equation,
leading to the Wigner-Boltzmann equation

(20) ∂tw + p · ∇xw + θ[V ]w = Q(w), x, p ∈ R
3, t > 0.

Although there does not exist a complete theory of quantum scattering, many
approaches have been studied in the (physical) literature, see [17, 127] for ref-
erences. In contrast to classical kinetic models, quantum collision operators
are typically nonlocal in time. The Levinson equation at time t, for instance,
includes an integral over the time interval [0, t] [11, 113]. For simplicity, we
present in the following local collision operators which are employed in numeri-
cal simulations of the Wigner equation.

2.4.1 - Wigner-BGK model

A simple phenomenological model for the particle-background or, in semicon-
ductors, electron-phonon interactions is given by the relaxation-time BGK-type
operator

(21) Q(w) =
1

τ
(weq − w),

where weq is some equilibrium state and τ > 0 is the relaxation time which may
depend on the energy. It is reasonable to assume that the collision operator
satifies some collisional invariants. For instance, we expect that collisions pre-
serve the total mass of the system, 〈Q(w)〉 = 0. More generally, let Q satisfy,
for some weight functions κ = (κ0, . . . , κN ),

〈κj(p)Q(w)〉 =

∫

R3

κj(p)Q(w)
dp

(2πε)3
= 0.

By definition of Q(w), this implies that weq and w have the same moments. In
Section 2.3, we have introduced a quantum equilibrium state M [w], which has
the same moments as a given Wigner function w. Thus, we may set

weq = M [w] = Exp(λ · κ).

Clearly, the BGK-type operator vanishes if and only if the Wigner function
equals the quantum Maxwellian M [w].

2.4.2 - Wigner-Fokker-Planck model

Considering an electron ensemble which interacts dissipatively with an ide-
alized heat bath, consisting of an ensemble of harmonic oscillators, Caldeira and
Leggett [30] and Diósi [57] derived the following collision operator

Q(w) = Dpp∆pw + 2γ divp(pw),
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where Dpp > 0 is some diffusion coefficient and γ > 0 is a friction parameter.
The Wigner equation with the Caldeira-Leggett operator is also known under
the name of quantum Brownian motion or quantum Langevin equation and it
received large interest in the context of interaction between light and matter
(see, e.g., [48]).

The Caldeira-Leggett scattering term does not satisfy the so-called Lind-
blad condition (see below) which is a generic condition for quantum systems
to preserve complete positivity of the density matrix along the evolution (i.e.
ρ̂(0) ≥ 0 implies ρ̂(t) ≥ 0 for all t > 0). Such a property has to be satisfied
for a true quantum evolution. Thus the Wigner-Caldeira-Leggett equation is
quantum mechanically not correct. The reason for this shortcoming comes from
the inconsistency that the equation contains the temperature T , through its
coefficients, but the 1/T → 0 limit was performed in [30] along the derivation
of the model.

In [32], the approach of Caldeira and Leggett has been improved by deriving
the following Fokker-Planck operator with finite temperature:

(22) Q(w) = Dpp∆pw + 2γ divp(pw) +Dqq∆xw + 2Dpq divx(∇pw),

where the nonnegative coefficients Dpp, Dpq, and Dqq constitute the phase-
space diffusion matrix of the system, which is assumed to satisfy the Lindblad
condition

DppDqq −D2
pq ≥ γ2

4
.

The coefficients Dqq and Dpq model quantum diffusion. The Wigner equation
with this collision operator is called the Wigner-Fokker-Planck equation and it
has been analyzed by Arnold, López, and co-workers in [7, 8, 31].

More generally, the interactions of the electron ensemble with the environ-
ment (called an open quantum system) can be described by the Lindblad equa-
tion or the master equation in Lindblad form

iε∂tρ̂ = iJ(ρ̂) := [H, ρ̂] + i
∑

k

(
Lkρ̂L

∗
k − 1

2
(L∗

kLkρ̂+ ρ̂L∗
kLk)

)
,

where H is some (quantum) Hamiltonian, Lk are (possibly countable many) so-
called Lindblad operators, and L∗

k is the adjoint operator of Lk [6]. A solution
ρ̂ is formally positivity preserving and the operator J is dissipative on the space
of self-adjoint trace-class operators. Hence, the time evolution of ρ̂ is no longer
reversible.

If all Lindblad operators vanish, we recover the Liouville-von Neumann equa-
tion (1). Setting Lk = αk · x + βk · ∇x, the quantum Fokker-Planck term (22)
can be written as a Lindblad equation [6].

3 - Quantum drift-diffusion models

In this section, we derive formally the nonlocal quantum drift-diffusion mo-
del. Expanding the quantum Maxwellian in terms of powers of ε2, local model
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equations are obtained. In the O(ε4) approximation (and neglecting pressure
and electric force terms), we find the so-called Derrida-Lebowitz-Speer-Spohn
equation [56], which is a parabolic equation with fourth-order derivatives. Fur-
thermore, in the O(ε6) approximation, a sixth-order quantum diffusion equation
is derived. These equations possess very interesting mathematical properties
which we detail below.

3.1 - Derivation

The quantum drift-diffusion model is derived from the Wigner-Boltzmann
equation (20) in the diffusion scaling with the BGK-type scattering operator
(21). We follow here the derivation of Degond et al. in [53] (also see the reviews
[54, 91]).

3.1.1 - Nonlocal quantum drift-diffusion model

Assuming that collisions conserve mass, the quantum Maxwellian in (21)
reads as

weq = M [w] = Exp
(
A− |p|2

2

)
,

where the Lagrange multiplier A is determined through

∫

R3

M [w]dp =

∫

R3

wdp.

We consider a diffusion scaling in the Wigner-Boltzmann equation (20), i. e.,
we replace the time t and Q(w) by t/α and Q(w)/α, respectively. Then (20)
becomes

(23) α2∂twα + α(p · ∇xwα + θ[Vα]wα) = M [wα] − wα, x, p ∈ R
3, t > 0,

with initial datum w(·, ·, 0) = wI in R
3 × R

3. The potential operator θ[Vα] is
defined in (13). The electric potential Vα is a solution of the Poisson equation
(see (8))

(24) λ2
D∆Vα = 〈wα〉 − C(x) =

∫

R3

wdp

(2πε)3
− C(x).

We wish to perform the formal limit α → 0. This limit is carried out in three
steps, following [91, Section 12.2].

Step 1: limit in the Wigner-Boltzmann equation. The limit α → 0 in (23)
leads to M [w] = w, where w = limα→0 wα. The function M [w] is the lowest-
order approximation of wα. In order to obtain more information for wα, we
make a Chapman-Enskog expansion.

Step 2: Chapman-Enskog expansion. We insert the expansion wα = M [wα]+
αgα (which in fact defines the function gα) into the collision operator. Then the
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Wigner-Boltzmann equation (20) becomes

α∂twα + p · ∇xwα + θ[V ]wα = α−1(M [wα] − wα) = −gα.

In the limit α→ 0, this yields

(25) g = −
(
p · ∇xM [w] + θ[V ]M [w]

)
.

Step 3: limit in the moment equation. The moment equations are generally
obtained by multiplying the Wigner-Boltzmann equation by the weight func-
tions and by integrating over the momentum space. In the present situation,
the weight function is simply κ(p) = 1, and the moment equation reads as

∂t〈wα〉 + α−1 divx〈pM [wα]〉 + divx〈pgα〉 + α−1〈θ[V ]wα〉 = α−2〈Q(wα)〉.

It can be verified that the function p 7→ pM [wα] is odd and hence, its integral
over R

3 vanishes. Furthermore, a computation shows that 〈θ[V ]f〉 = 0 for all
functions f(p). Finally, by mass conservation, 〈Q(wα)〉 = 0. Then the moment
equation becomes

∂t〈wα〉 + divx〈pgα〉 = 0,

and the limit α→ 0 gives, inserting (25),

∂t〈w〉 − divx〈p(p · ∇xw + θ[V ]w)〉 = 0.

Since 〈pθ[V ]w〉 = −n∇xV , where n = 〈w〉, we infer that

∂tn− divx

(
divx〈p⊗ pw〉 − n∇xV

)
= 0.

We have proved the following result.

T h e o r e m 3.1 (Nonlocal quantum drift-diffusion model). Let (wα, Vα)
be a solution of the Wigner-Boltzmann-Poisson system (23)-(24) with initial
datum wα(·, ·, 0) = wI . Then, formally, wα → w and Vα → V as α → 0,
where w(x, p, t) = Exp(A(x, t)−|p|2/2) and (A, V ) is a solution of the quantum
drift-diffusion equations

∂tn− div Jn = 0, Jn = divP − n∇V, λ2
D∆V = n− C(x), t > 0,(26)

n(·, 0) = nI in R
3,

the particle density and quantum stress tensor are, respectively,

n =

∫

R3

Exp
(
A− |p|2

2

) dp

(2πε)3
,(27)

P =

∫

R3

p⊗ pExp
(
A− |p|2

2

) dp

(2πε)3
,(28)

where the matrix p⊗ p consists of the elements (p⊗ p)jℓ = pjpℓ, and the initial
datum is given by nI = 〈wI〉.
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The quantum stress tensor is a nonlocal operator involving the Lagrange
multiplier A which relates to the particle density n through (27). It is shown
in [53] that ∇P = n∇A and hence, the quantum drift-diffusion model can be
written equivalently as

(29) ∂tn− div Jn = 0, Jn = n∇(A− V ).

A local model is obtained by expanding the quantum Maxwellian up to terms
of order O(ε2n) for n ∈ N. This is detailed in the following subsection.

3.1.2 - Local quantum drift-diffusion model

We derive local versions of the quantum drift-diffusion model from the pre-
vious subsection, in particular the O(ε4) and O(ε6) approximations.

T h e o r e m 3.2 (Local quantum drift-diffusion model). Let (n, Jn, V ) be a
solution of the nonlocal quantum drift-diffusion equations (26). Then, formally,
Jn = J+O(ε4) and (n, J, V ) solves the (local) quantum drift-diffusion equations

∂tn− div J = 0, J = ∇n− n∇V − ε2

6
n∇
(∆

√
n√
n

)
,(30)

λ2
D∆V = n− C(x), n(·, 0) = nI in R

3, t > 0.(31)

For the proof of this theorem, we need the following elementary integral
identities:

∫

R3

e−|p|2/2dp = (2π)3/2,

∫

R3

pjpℓe
−|p|2/2dp = (2π)3/2δjℓ,(32)

∫

R3

pjpℓpmpne
−|p|2/2dp = (2π)3/2(δjℓδmn + δjmδℓn + δjnδℓm),

where δjℓ denotes the Kronecker delta. In the following, we only sketch the proof
and refer to the proof of Theorem 12.11 in [91] for details of the computations.

P r o o f. (of Theorem 3.2.) We need to expand the electron density and
the stress tensor in powers of ε2. By Lemma 2.3, the O(ε4)-expansion of the
quantum Maxwellian is given by

Exp
(
A− |p|2

2

)
= exp

(
A− |p|2

2

)[
1 +

ε2

8

(
∆A+

1

3
|∇A|2 − 1

3
p⊤∇2Ap

)]

+O(ε4).

Thus, using (32), the electron density n = 〈Exp(A − |p|2/2)〉 can be expanded
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as follows:

n = eA
(
1 +

ε2

8

(
∆A+

1

3
|∇A|2

))
〈e−|p|2/2〉

− ε2

24
eA

3∑

j,ℓ=1

∂2A

∂xj∂xℓ
〈pjpℓe

−|p|2/2〉 +O(ε4)

= (2πε2)−3/2eA
(
1 +

ε2

12

(
∆A+

1

2
|∇A|2

))
+O(ε4).(33)

Next, we develop the quantum stress tensor P in powers of ε2. By its
definition (28) and by (32),

Pjℓ = eA
(
1 +

ε2

8

(
∆A+

1

3
|∇A|2

))
〈pjpℓe

−|p|2/2〉

− ε2

24

3∑

m,n=1

∂2A

∂xm∂xn
〈pjpℓpmpne

−|p|2/2〉 +O(ε4)

= (2πε2)−3/2eA
(
1 +

ε2

12

(
∆A+

1

2
|∇A|2

))
δjℓ

− ε2

12

eA

(2πε2)3/2

∂2A

∂xj∂xℓ
+O(ε4).

The O(ε4)-expansion (33) leads to

Pjℓ = nδjℓ −
ε2

12
n

∂2A

∂xj∂xℓ
+O(ε4).

Differentiating the O(ε2)-expansion of n with respect to x, we arrive at ∇n =
n∇A+O(ε2). Hence, after some computations,

(divP )j =

3∑

ℓ=1

∂Pjℓ

∂xℓ
=

∂n

∂xj
− ε2

12

3∑

ℓ=1

n
∂

∂xj

(
1

2

( ∂A
∂xℓ

)2

+
∂2A

∂x2
ℓ

)
+O(ε4).

In vector form, this reads as

divP = ∇n− ε2

12
n∇
(
∆A+

1

2
|∇A|2

)
+O(ε4).

It remains to express A in terms of n. We already noticed that ∇A =
∇n/n+O(ε2) from which we conclude that

∆A+
1

2
|∇A|2 =

∆n

n
− |∇n|2

n2
+

1

2

∣∣∣
∇n
n

∣∣∣
2

+O(ε2)

=
∆n

n
− |∇n|2

2n2
+O(ε2) = 2

∆
√
n√
n

+O(ε2).(34)
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Therefore,

Jn = divP − n∇V = ∇n− n∇V − ε2

6
n∇
(∆

√
n√
n

)
+O(ε4),

and the conclusion follows. �

Expanding the quantum Maxwellian up to order O(ε2n), quantum diffusion
equations of order 2n can be derived. Above we have treated the case n = 2. In
[25], the case n = 3 was carried out. The crucial step is to determine an O(ε6)
approximation of Exp(a) with a(x, p; t) = A(x, t)−|p|2/2. To this end, we follow
the strategy proposed in [53]. The idea is to define F (z) = Exp(za) and to
expand F (z) formally as a series in ε, i.e. F (z) =

∑∞
k=0 ε

kFk(z). The functions
Fk(z) can be computed by pseudo-differential calculus. For odd indices k, we
have Fk(z) = 0, and for even indices, we have to solve the differential equation

(35)
dFk

dz
(z) = a ◦0 Fk(z) + a ◦2 Fk−2(z) + · · · + a ◦k F0(z), z > 0,

with initial condition Fk(0) = δk0. The multiplication ◦n is defined as a sum
of partial derivatives of order n (see the appendix of [25]). The sixth-order
quantum diffusion equation is obtained by solving (35) for k = 4. It turns out
that F0(1) = ea and that (35) can be written as

dFk

dz
(z) = aFk(z) + ezaPk(z, p,A), Fk(0) = 0,

where Pk(z, p,A) is a multivariate polynomial in z and p and contains spatial
derivatives of A up to order k. This linear differential equation can be easily
solved, and Fk(1) (k = 0, 2, 4) gives the O(εk+2) approximation of the quantum
Maxwellian Exp(a).

It remains to represent the density n as a function of A. Inserting the
expressions for Fk(1), we obtain

n =

∫

R3

Exp(a)
dp

(2πε)3
=

∫

R3

(
F0(1) + ε2F2(1) + ε4F4(1)

) dp

(2πε)3
+O(ε6).

After integration, the density can be written as the sum G0(A) + ε2G2(A) +
ε4G4(A) + O(ε6). To derive an ε-approximation of A in terms of n, we insert
the ansatz A = A0 + ε2A2 + ε4A4 + O(ε6) in the above expression for n and
equate equal powers of ε. The resulting system of equations can be solved for
Ak leading to

A0 = log((2π)3/2n), A2 = −1

6

∆
√
n√
n
,

A4 =
1

360

(1

2
|∇2 log n|2 +

1

n
∇2 : (n∇2 log n)

)
.
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Here, ∇2 denotes the Hessian matrix and the double points in A : B signify
summation over both indices of the matrices A and B. The sixth-order model
is obtained by inserting the approximations Ak into the formulation (29),

∂tn− div(n∇(A− V )) = 0,

which gives the following result [25, Appendix].

T h e o r e m 3.3 (Sixth-order local quantum drift-diffusion model). In the
O(ε6) approximation, the nonlocal quantum drift-diffusion equation (26) can be
written as follows:

∂tn = div

(
∇n− ε2

6
n∇
(∆

√
n√
n

)

+
ε4

360
n∇
(1

2
|∇2 log n|2 +

1

n
∇2 : (n∇2 log n)

))
,

where |∇2 log n| is the matrix norm of the Hessian of log n.

3.2 - Analysis of the fourth-order equation

In this subsection, we present some analytical results on the quantum drift-
diffusion model (30)-(31) and related equations.

3.2.1 - Existence of global solutions

The main difficulty of the mathematical analysis of the initial-value problem
(30)-(31) is due to the fourth-order differential term div(n∇(n−1/2∆n1/2)). In-
deed, there is generally no maximum principle available for fourth-order equa-
tion, which would allow one to conclude positivity preservation and a priori
estimates. Consequently, one has to rely on suitable regularization techniques
and energy-type a priori estimates. The latter, however, is difficult to obtain be-
cause of the highly nonlinear structure of the equation. We remark that similar
difficulties appear in the study of the thin-film equation

∂tu+ div(uα∇∆u) = 0, u(·, t) = u0 ≥ 0,

for which preservation of positivity strongly depends on the exponent α > 0;
see [15] for details.

The first existence result for the simplified equation (obtained from (30) by
neglecting the second-order diffusion and electric force and by setting ε2/6 = 1)

(36) ∂tn+ div

(
n∇
(∆

√
n√
n

))
= 0, n(·, t) = n0 ≥ 0 in T

d, t > 0,

where T
d is the d-dimensional torus, is due to Bleher et al. [18]. This equation

is called the Derrida-Lebowitz-Speer-Spohn or DLSS equation in [97] since it
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has been first derived in [56] by these authors. The result of [18] provides the
existence and uniqueness of local-in-time classical solutions of (36) for strictly
positive initial data from W 1,p(Td) with p > d. The proof is based on semigroup
theory applied to the formulation

2∂t(
√
n) + ∆2

√
n− (∆

√
n)2√
n

= 0,

which is equivalent to (36) as long as n remains bounded away from zero. Lack-
ing suitable a priori estimates, existence was proven only locally in time. In one
spatial dimension, global existence of solutions can be related to strict positivity:
if a classical solution breaks down at t = t∗, then the limit profile limt→t∗

−

n(x, t)

is an element of H1 but vanishes at some point x ∈ T.
This observation has motivated the study of nonnegative weak solutions

instead of positive classical solutions. The first global existence result was proven
in [105] and later generalized in [80]. The DLSS equation (36) was considered
on the interval (0, 1) ⊂ R with physically motivated boundary conditions

(37) n(0, t) = n1, n(1, t) = n2, nx(0, t) = m1, nx(1, t) = m2, t > 0.

Global existence was proven in the class of functions with finite (generalized)
entropy

E0(n) =

∫ 1

0

(n− log n)dx.

The following result corresponds to Theorem 1.2 in [80].

T h e o r e m 3.4 (Existence for the one-dimensional DLSS equation). Let
n1, n2 > 0 and m1, m2 ∈ R. Let n0 ≥ 0 be an integrable function satisfy-
ing E0(n0) < ∞. Then there exists a weak solution n of (36)-(37) satisfying
n(x, t) ≥ 0 in (0, 1) × (0,∞) and

n ∈W
1,10/9
loc (0,∞;H−2(0, 1)) ∩ L5/2

loc (0,∞;W 1,1(0, 1)),

log n ∈ L2
loc(0,∞;H2(0, 1)).

To explain the key ideas of the proof, we simplify by assuming n1 = n2 = 1,
m1 = m2 = 0; see [80] for the general case. A formal computation shows that

(38)
dE0

dt
+

∫ 1

0

(
(log n)2xx +

8

3

n4
x

n4

)
dx = 0.

This estimate as well as the equivalent formulation of (36),

∂tn+
1

2
(n(log n)xx)xx = 0,

motivates to employ y = log n as a new variable. Theorem 3.4 is proved by the
following strategy. First, the equation ∂t(e

y) + 1
2 (eyyxx)xx = 0 is discretized
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in time by the backward Euler scheme with approximation parameter τ > 0,
which provides a sequence of elliptic equations. The Leray-Schauder fixed-point
theorem yields the existence of a weak solution yτ ∈ H2(0, 1). The compactness
of the fixed-point operator follows from the uniform H2 bounds obtained from
a discrete variant of the entropy dissipation identity (38). This variant also
provides estimates for yτ independent of τ , and compactness (Aubin’s lemma)
allows one to extract a subsequence of nτ = exp(yτ ) strongly converging to a
weak solution to (36)-(37).

This technique was used by Chen et al. [45] to prove the global-in-time exis-
tence of weak solutions supposing Dirichlet boundary conditions on the particle
density, quantum Fermi potential (see (47) below), and electric potential.

The restriction to one space dimension in Theorem 3.4 is essential since E0

is seemingly not a Lyapunov functional in higher dimensions.
For the multidimensional equation (36) on a domain Ω ⊂ R

d, global existence
of weak solutions was obtained only recently by two different methods [76, 97].
Whereas the framework of the first approach is that of mass transportation
theory, the second approach extends the fixed-point argument used in the proof
of Theorem 3.4. Both proofs, however, rely at a crucial point on a compactness
argument, i.e., a consequence of the estimate

(39)
dE1

dt
+ c

∫

Ω

n|∇2 log n|2dx ≤ 0,

where |∇2 log n| is the euclidean norm of the Hessian of log n,

(40) E1(n) =

∫

Ω

n(log n− 1)dx

is the physical entropy and c > 0 is some constant. This inequality is shown
for Ω = T

d or Ω = R
d since this avoids boundary integrals. It follows that E1

is a Lyapunov functional but, lacking a lower bound on n, the above inequality
does not yield an H2 estimate for log n. However, it is possible to show that

(41)

∫

Ω

n|∇2 log n|2dx ≥ κ

∫

Ω

|∇2
√
n|2dx,

where κ = 4(4d − 1)/(d(d + 2)) if Ω = T
d [97]. The proof is based on the

method of systematic integration by parts developed in [96] to one-dimensional
functions and extended in [25] for radially symmetric functions. Inequality (41)
leads to an H2 bound for

√
n. This motivates to rewrite the nonlinearity in (36)

in terms of
√
n giving

∂tn+ ∇2 :
(√
n∇2

√
n−∇

√
n⊗∇

√
n
)

= 0

or, more explicitly, with the notation ∂i = ∂/∂xi etc.,

(42) ∂tn+

d∑

i,j=1

∂2
ij

(√
n∂2

ij

√
n− ∂i

√
n∂j

√
n
)

= 0.
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The key idea in the paper [76] of Gianazza et al. is the observation that (36)
constitutes the gradient flow of the so-called Fisher information

F (n) =

∫

Ω

|∇
√
n|2dx

with respect to the Wasserstein metric. Then, the above estimates are used
to prove that the subdifferential of the Fisher information is closed. Em-
ploying deep results from mass transportation theory [2], this eventually pro-
vides the existence of a global solution of (36) with the natural regularity√
n ∈ L2

loc(0,∞;H2(Ω)), where Ω may be the whole space R
d or a bounded

domain equipped with variational boundary conditions.
The ideas in [97] are more elementary and straight-forward. As in the one-

dimensional case, (36) is written in logarithmic form, discretized in time by the
backward Euler scheme, and additionally regularized by a bi-Laplacian,

∂τ
t nε +

1

2
∇2 :

(
nε∇2 log nε

)
+ ε(∆2 log nε + nε) = 0 in Ω = T

d.

Here, ∂h
t is the discrete time derivative with time step τ > 0. The regularization

is needed to ensure the existence of solutions of the linearized elliptic problem for
yε = log nε in the space H2(Td) via the Lax-Milgram lemma. A variant of (39)
together with (41) provides an a priori estimate for

√
nε in H2(Td) uniform in

ε and τ . Moreover, thanks to the elliptic regularization, we obtain an estimate
for log nε in H2(Td) (not uniform in ε) and hence, by Sobolev embedding, in
L∞(Td) for d ≤ 3. This shows that nε is strictly positive in T

d, which justifies
all formal calculations. The uniform bounds allow one to apply compactness
(Aubin’s lemma) and to pass to the limits ε → 0 and τ → 0, yielding the
existence of a global solution of (42) on the torus T

d. The precise result is as
follows (see Theorem 1.1 in [97]).

T h e o r e m 3.5 (Existence for the multidimensional DLSS equation). Let
d ≤ 3 and let n0 be a nonnegative measurable function on T

d with finite entropy
E1(n0) < ∞ (see (40)). Then there exists a weak solution n of (42) satisfying
n(·, t) ≥ 0 on T

d for t ≥ 0,

n ∈W
1,11/10
loc (0,∞;H−2(Td)),

√
n ∈ L2

loc(0,∞;H2(Td)),

and the initial data is satisfied in the sense of L1
loc(0,∞;H−2(Td)).

The theorem is valid in the physically relevant dimensions d ≤ 3. This
restriction is related to the lack of certain Sobolev embeddings in higher dimen-
sions d ≥ 4. Most prominently, the fixed-point argument exploits the continuous
embedding H2(Td) →֒ L∞(Td) to conclude absolute boundedness of yε = log nε

and hence strict positivity of nε = exp(yε). We have chosen periodic boundary
conditions in order to avoid boundary integrals.
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Based on the above ideas, Chen [42] proved the existence of global solutions
of the quantum drift-diffusion system

∂tn− div Jn = 0, Jn = ∇n− n∇V − ε2

6
n∇
(∆

√
n√
n

)
,(43)

λ2
D∆V = n− C(x), n(·, 0) = n0 in T

d, t > 0.(44)

We recall that n is the electron density, Jn the electron current density, V
the electric potential, C(x) the given doping profile (see (8)), and the given
parameters are the scaled Planck constant ε and the Debye length λD.

T h e o r e m 3.6 (Existence for the quantum drift-diffusion model). Let
d ≤ 3, C ∈ L∞(Ω), and let n0 be a nonnegative measurable function such that

E1(n0) <∞ and

∫

Td

n0dx =

∫

Td

C(x)dx

(see (40) for the definition of E1). Then there exists a weak solution (n, V ) of
(42) and (44) satisfying n ≥ 0 and

n ∈W
1,8/7
loc (0,∞;H−2(Td)),

√
n ∈ L2

loc(0,∞;H2(Td)),

V ∈ L2
loc(0,∞;H2(Td)),

∫

Td

V dx = 0,

∫

Td

ndx =

∫

Td

C(x)dx.

The proof uses the following identity:

(45)
dE1

dt
+

∫

Td

( ε2
12
n|∇2 log n|2 + 4|∇

√
n|2
)
dx = −λ−2

D

∫

Td

n(n− C(x))dx.

Since the right-hand side is bounded and (41) holds, we obtain uniform H2

bounds for
√
n and uniform L2 estimates for n. Then, the Poisson equation

implies uniform H2 bounds for V . These key estimates and the Gagliardo-
Nirenberg inequality lead to further uniform estimates needed to achieve com-
pactness results.

The paper [106] shows the stability and, in one space dimension, the con-
vergence of a positivity-preserving semi-discrete scheme for the quantum drift-
diffusion model.

3.2.2 - Long-time behavior of solutions

Several papers have been concerned with the analysis of the long-time be-
havior of solutions n of the DLSS equation (36) with unit mass. As an example,
let us consider (36) on the torus. The essential tool to derive a priori estimates
needed for the long-time decay are the so-called relative entropies, as introduced
in [9],

Eα(n1|n2) =

∫

Td

φα

(n1

n2

)
n2dx,

26



where n1 and n2 are nonnegative functions on T
d with unit mean value, and φα

is given by

φα(s) =
1

α(α− 1)

(
sα − αs+ α− 1

)
, s ≥ 0,

where α 6= 0, 1. The natural continuation for α = 1 is φ1(s) = s(log s− 1) + 1;
the functional E1 corresponds to the physical entropy (40). The functional Eα

is nonnegative and vanishes if and only if n1 = n2. To obtain a priori estimates
(and decay rates), we consider entropies of solutions n1 = n relative to the
spatial homogeneous steady state n2 = 1:

Eα(n) =
1

α(α− 1)

(∫

Td

nαdx− 1

)
, α ≥ 1.

Then a formal computation shows that

dEα

dt
= − 1

α− 1

d∑

i,j=1

∫

Td

n∂2
ij(log n)∂2

ij(n
α−1)dx,

where ∂2
ij = ∂2/∂xi∂xj . By an inequality similar to (41) (see Lemma 2.2 in

[97]), we find that the right-hand side can be estimated, up to a factor, by the
integral over (∆nα/2)2, which gives

dEα

dt
+ κα

∫

Td

(∆nα/2)2dx ≤ 0,

for some constant κα > 0. To conclude decay to equilibrium, we need to relate
the entropy production

∫
Td(∆nα/2)2dx to the entropy Eα. This is done by

applying the generalized convex Sobolev inequality [97, Lemma 2.5]

(46)
p

p− 1

(∫

Td

f2dx−
(∫

Td

f2/pdx

)p)
≤ 1

8π4

∫

Td

(∆f)2dx,

valid for all nonnegative functions f ∈ H2(Td) and 1 < p ≤ 2, to f = nα/2 and
p = α. Then, taking into account that n has unit mass, we find that

dEα

dt
+ 8π4α2καEα ≤ 0,

and Gronwall’s lemma implies that t 7→ Eα(n(·, t)) decays exponentially with
rate 8π4α2κα. By the Csiszár-Kullback inequality [49, 112], the solution decays
exponentially in the L1 norm with half rate:

‖n(·, t) − 1‖L1(Td) ≤ (2E1(n0))
1/2e−4π2κ1t, t ≥ 0.

Notice that, as remarked in [58] for the one-dimensional equation, this global
decay rate for E1 coincides with the decay rate of the linearized equation and
thus, it is optimal.
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Decay rates were also shown for the functionals

Fα(n) =

∫

Td

|∇nα/2|2dx, F0(n) =

∫

Td

|∇ log n|2dx, α > 0.

The first decay result is due to [29], where exponential decay of F0 was shown
under a smallness condition of F0. Exponential convergence of the Fisher in-
formation F1 along weak solutions was obtained in [58]. It was observed in [96]
that actually all functionals Fα with 2

53 (25 − 6
√

10) < α < 2
53 (25 + 6

√
10) are

nonincreasing along smooth solutions. This observation was rigorously proven
for weak solutions in [109].

The long-time decay of solutions of the one-dimensional DLSS equation with
homogeneous Neumann boundary data and constant Dirichlet data was shown in
[105] without rate and in [108] with exponential rate. For nonconstant boundary
conditions, the steady state n∞ is no longer spatially homogeneous. It was
proved in [80] that this steady state is exponentially attracting in terms of the
relative entropy under the additional assumption that logn∞ is concave. In
several space dimensions, a very general result on the long-time behavior of the
DLSS equation was proved in [76].

The asymptotic behavior of solutions of the quantum drift-diffusion model
can be analyzed similarly as for the DLSS equation by combining the results
for the DLSS equation and the drift-diffusion model. For instance, for the one-
dimensional system with constant doping profile, Chen et al. [46] showed, by
using the methods of [58], that the electron density converges exponentially fast
to the constant steady state. The multidimensional case was considered in [47].

3.2.3 - The stationary equations

The stationary quantum drift-diffusion model corresponding to (43)-(44) has
been studied by Ben Abadallah and Unterreiter [14]. They considered the sys-
tem of equations on a bounded domain and imposed physically relevant mixed
Dirichlet-Neumann boundary conditions. The equations are written in terms of
the generalized Fermi potential

(47) F = V + log n− ε2

6

∆
√
n√
n
,

which can be interpreted as an elliptic second-order equation for
√
n, coupled

to the divergence equation

0 = div Jn = div(n∇F ).

The advantage of this formulation is that the maximum principle can be applied
to the last equation, yielding L∞ bounds for F . Then, using fixed-point argu-
ments and a minimization procedure of the free energy functional, the existence
of bounded weak solutions was proved in [14]. The authors also tackled the
case of vanishing particle density at the Dirichlet boundary. Interestingly, the
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density is positive in the whole domain although it may vanish at the boundary.
Chen and Guan [39] used the techniques of [14] to simplify the step proceeding
from the minimizer property to the Euler-Lagrange property of weak solution.

The question of the uniqueness of solutions was left open in [14] and has
been answered in [136]. More precisely, it has been shown that the solution is
unique for sufficiently small applied biasing voltages. This is in analogy to the
results for the classical drift-diffusion equations for which it is known that there
may exist multiple steady states.

The stationary quantum drift-diffusion model was employed to simulate
strong inversion layers near the gate of MOS (metal-oxide-semiconductor) tran-
sistors [3] (also see the discussion in [10]). Scientists developed Gummel-type
iteration schemes [27, 50, 51, 136], finite-element approximations [134, 135],
finite-volume discretizations [33, 131], and high-resolution slope-limiter schemes
[132]. A hybrid quantum drift-diffusion Schrödinger-Poisson model was numer-
ically solved in [63]. The model has been also used to calculate current-voltage
characteristics of resonant tunneling diodes, which have the characteristic fea-
ture that the current density may decrease with increasing applied voltage in a
certain region (the so-called region of negative resistance). This feature allows
for the construction of ultrafast oscillators. It seems, however, that the quantum
drift-diffusion model is less suited for that application since negative resistance
effects occur numerically at very low lattice temperature and for modified ef-
fective masses only. Finally, we notice that an optimal control problem was
analyzed in [142] to optimize the shape of the quantum barriers in the diode.

3.2.4 - Asymptotic limits

In the quantum drift-diffusion model (43)-(44),

∂tn− div Jn = 0, Jn = ∇n− n∇V − ε2

6
n∇
(∆

√
n√
n

)
,(48)

λ2
D∆V = n− C(x), n(·, 0) = n0 in Ω, t > 0,(49)

there are two scaled parameters, the Planck constant ε and the Debye length
λD. In certain physical regimes, these parameters may be very small compared
to one, and one may ask if the limits ε → 0 or λD → 0 can be performed
rigorously, leading to simpler models. In fact, when we perform formally the
semiclassical limit ε→ 0, we obtain the semiclassical drift-diffusion model

(50) ∂tn− div Jn = 0, Jn = ∇n− n∇V, in Ω, t > 0,

with the Poisson equation and initial condition (49). The limit λD → 0 in (44)
would lead to the equation n−C(x) = 0 which is less interesting. The so-called
quasineutral limit λD → 0 makes more sense in the bipolar model, in which a
quantum drift-diffusion equation for the hole density p is added,

(51) ∂tp− div Jp = 0, Jp = ∇p+ p∇V − ε2

6
p∇
(∆

√
p

√
p

)
,
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and the Poisson equation is replaced by

(52) λ2
D∆V = n− p− C(x).

If C(x) = 0, the limit λD → 0 gives formally n = p and hence, by adding the
equations for n and p, the drift terms vanish:

∂tn+ div

(
ε2

6
n∇
(∆

√
n√
n

)
−∇n

)
= 0.

We first review some results on the semiclassical limit. The entropy estimate
(45) provides an H1 bound for

√
n which is independent of the scaled Planck

constant ε. This observation was used by Chen [42] to prove the semiclassical
limit ε→ 0 for the solutions (nε, Vε) of (43)-(44). In fact, this bound is essential
to apply the Aubin lemma showing that (nε) converges strongly to n in some
Lebesgue space and that (Vε) converges strongly to V in some space. More-
over, using the Gagliardo-Nirenberg inequality, Chen showed that the uniform
gradient bound on

√
nε implies that ε7/4nε∇2 log nε is uniformly bounded in

L8/7(0, T ;L2(Td)), for any T > 0. Since 7/4 < 2, we infer that

ε2nε∇2 log nε → 0 strongly in L8/7(0, T ;L2(Td)).

The limit function (n, V ) satisfies the drift-diffusion model (50) in Ω = T
d.

The semiclassical limit has been studied in the literature for several variants
of the model, considering the bipolar model, replacing the pressure term ∇n by
an isentropic pressure ∇(nβ) with β > 1, or imposing homogeneous Neumann
boundary conditions. The proofs, however, are based on the above described
ideas, and we refer to [37, 38, 43, 86, 87, 88] for details.

The quasineutral limit λD → 0 in (48), (51), and (52) was performed rigor-
ously in [110] for the one-dimensional equations in the interval x ∈ (0, 1) with
the boundary data

n = p = 1, nx = px = 0, V = VD for x ∈ {0, 1}, t > 0.

The idea of the proof is to employ the entropy E0(n) =
∫ 1

0
(n− log n)dx, which

provides λD-uniform bounds for logn and log p in L2(0, T ;H2(0, 1)) for any

T > 0 (compare to (38)). The physical entropy E1(n, p) =
∫ 1

0
(n(log n − 1) +

p(log p− 1))dx gives the additional bounds

‖n− p‖L2(Ω×(0,T )) ≤ cλD, ‖Vx‖L2(Ω×(0,T )) ≤ cλ−1
D ,

where c > 0 is some constant independent of λD. This shows that n−p converges
to zero, as expected. However, the estimates are not sufficient to pass to the
limit λD → 0 since we cannot control the drift term (n−p)Vx, which is uniformly
bounded in L2(Ω × (0, T )) but does not converge to zero. The key idea is to
derive the estimates

‖
√
n−√

p‖L2(Ω×(0,T )) ≤ cλD, ‖(
√
n+

√
p)Vx‖L2(Ω×(0,T )) ≤ cλ−8/9.
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The first bound is a consequence of the estimate using the entropy E0. The
proof of the second bound is more delicate. It follows from an estimate of the

electric energy λ2
D

∫ 1

0
(V −W )2xdx, where W satisfies the boundary data of V

up to first order, i.e., W = V and Wx = Vx for x ∈ {0, 1}. The exponent 8/9 is
related to the exponents of the Gagliardo-Nirenberg inequality.

The quasineutral limit in the multidimensional model was studied by Chen
and Chen [44]. They impose a fast-time scaling and analyze the initial-time layer
problem. The limit equations are the bipolar drift equations without diffusion.

3.3 - Analysis of the sixth-order equation

The analysis of the sixth-order equation from Theorem 3.3 in the d-dimen-
sional torus,

∂tn = div

(
n∇
(1

2
|∇2 log n|2 +

1

n
∇2 : (n∇2 log n)

))
, x ∈ T

d, t > 0,(53)

n(·, 0) = n0 ≥ 0, x ∈ T
d,(54)

is very involved due to the highly nonlinear structure of the sixth-order operator.
(Notice that we have neglected the second- and fourth-order diffusions from the
model in Theorem 3.3 and that we have set ε2/360 = 1. These simplifications
are not essential but simplify the presentation.) Moreover, it is not clear how
to prove the nonnegativity of the particle density, which is expected physically.

These difficulties can be overcome by extending the tools employed in the
analysis of the fourth-order DLSS equation. The first tool is to employ expo-
nential and power variables n = u4 = ey and to write equation (53) first in
terms of y:

(55) ∂t(e
y) = ∇3 : (ey∇3y) + 2∇2 : (ey(∇2y)2),

where ∇3y is the tensor of all third-order derivatives of y and A : B means sum-
mation over all indices of the tensorsA andB. The advantage of this formulation
is that it provides a symmetric structure in the sixth-order differential operator
for the variable y, which is useful to apply the Lax-Milgram lemma to the lin-
earization in the fixed-point argument. Moreover, when y ∈ H3(Td) →֒ L∞(Td)
(d < 6) is a weak solution to (55), the particle density n = ey becomes strictly
positive. This overcomes the lack of the maximum principle.

The second tool is based on entropy estimates from the physical entropy
E1(n) =

∫
Td n(log n− 1)dx (see (40)):

dE1

dt
+

∫

Td

n
(
|∇3 log n|2 − 2(∇2 log n)2 : ∇2 log n

)
dx = 0.

Extending the method of systematic integration by parts [96], we are able to
prove that the entropy production is bounded from below by positive expressions
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involving derivatives of n:

−dE1

dt
=

∫

Td

n
(
|∇3 log n|2 − 2(∇2 log n)2 : ∇2 log n

)
dx

≥ c

∫

Td

(
|∇3

√
n|2 + |∇2 4

√
n∇ 4

√
n|2 + |∇ 6

√
n|6
)
dx,(56)

for some constant c > 0 which only depends on the dimension d. The proof of
the above inequality is rather technical; see [25] for details. Similar as for the
DLSS equation, this motivates us to write the nonlinearity in terms of u = 4

√
n,

giving

∂tn = 8∇3 :
(√
n∇3

√
n+ 4 4

√
n∇ 4

√
n⊗∇ 4

√
n⊗∇ 4

√
n
)
− 6∆∇2 : (

√
n∇2

√
n)

+ 8∇2 :
(
(∇2

√
n)2 − 8∇2

√
n(∇ 4

√
n⊗∇ 4

√
n)

+ 16|∇ 4
√
n|2∇ 4

√
n⊗∇ 4

√
n
)
.(57)

With these tools, the steps of the existence proof are as follows. First, we
semi-discretize (55) in time by the backward Euler scheme, regularized by a
tri-Laplacian,

∂τ
t nε = ∇3 : (nε∇3yε) + 32∇2 :

(√
nε(∇2√nε)

2

− 2 4
√
nε∇2 4

√
nε(∇ 4

√
nε ⊗∇ 4

√
nε) + |∇ 4

√
nε|2∇ 4

√
nε ⊗∇ 4

√
nε

)

+ ε(∆3yε − yε) in T
d,

where nε = exp(yε), ε > 0, and ∂τ
t is the discrete time derivative with time

step τ > 0. The regularization is needed to guarantee coercivity of the right-
hand side with respect to yε. The existence of solutions yε is obtained from the
Leray-Schauder fixed-point theorem. Compactness of the fixed-point operator
is a consequence of a variant of the entropy estimate (56) with additional ε-
dependent bounds for yε in H3(Td). Since the entropy estimates for

√
nε and

4
√
nε are independent of ε and τ , we can pass to the limit ε→ 0 and then τ → 0,

yielding the existence of a global solution of (53) on the torus.
There is a technical difficulty in the limit ε → 0 (and similarly, τ → 0).

Since (nε) is bounded in H3(Td) and W 1,6(Td), we infer by compactness that,
as ε→ 0, up to subsequences,

√
nε →

√
n strongly in H2(Td), 6

√
nε ⇀

6
√
n weakly in W 1,6(Td).

The difficulty now is to pass to the limit in, for instance, the sequence 4
√
nε∇ 4

√
nε

⊗∇ 4
√
nε ⊗∇ 4

√
nε and to identify its (weak) limit. This is done by applying the

following result, which is a consequence of Theorem 5.4.4 in [2], proved in [101,
Appendix]: Let (uε) be a sequence of positive functions such that

uα
ε → uα strongly in W 1,p(Td), (uβ

ε ) is bounded in W 1,q(Td).

Then, if 0 < β < γ < α <∞, 1 < p, q, r <∞, and αp = βq = γr,

uγ
ε → uγ strongly in W 1,r(Td).
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The assumptions are satisfied for uε = 4
√
nε, α = 2, β = 2/3, γ = 1, and p = 2,

q = 6, r = 4, and we conclude that

∇ 4
√
nε → ∇ 4

√
n strongly in L4(Td).

This implies that

4
√
nε∇ 4

√
nε ⊗∇ 4

√
nε ⊗∇ 4

√
nε → 4

√
n∇ 4

√
n⊗∇ 4

√
n⊗∇ 4

√
n

strongly in L1(Td). The existence result reads as follows (see Theorem 2 in
[26]).

T h e o r e m 3.7 (Existence for the sixth-order equation). Let d ≤ 3 and let
n0 be a nonnegative measurable function with finite entropy E1(n0) <∞. Then
there exists a weak solution n ≥ 0 of (54) and (57) satisfying

n ∈W
1,6/5
loc (0,∞;H−3(Td)),

√
n ∈ L2

loc(0,∞;H3(Td)),

4
√
n ∈ L4

loc(0,∞;W 1,4(Td)), 6
√
n ∈ L6

loc(0,∞;W 1,6(Td)).

Equations (54) and (57) are satisfied in the sense of L
6/5
loc (0,∞;H−3(Td)).

We notice that in [26] also the exponential decay of weak solutions was
shown. Indeed, by an extension of the convex Sobolev inequality (46), we can
relate the entropy production

∫
Td |∇3

√
n|2dx by the entropy E1(n), and we infer

from (56) an inequality of the type dE1/dt + κE1 ≤ 0 for some κ > 0. Then,
Gronwall’s lemma implies that E1(n(·, t)) ≤ E1(n0) exp(−κt) for t > 0.

3.4 - Analysis of the nonlocal equation

While the existence theory for the fourth-order and sixth-order quantum
diffusion equations is rather well developed, there are up to now no complete
existence results for the nonlocal quantum drift-diffusion equation (26). In this
subsection, we review a partial result due to Gallego and Méhats [68] who proved
that the time-discretized model with no-flux boundary conditions possesses a
solution.

According to (29), the nonlocal quantum model can be written as

∂tn = div(n∇(A− V )), λ2
D∆V = n,

n =

∫

Ω

Exp
(
A− |p|2

2

) dp

(2πε)3
in Ω, t > 0,

where Ω ⊂ R
d is a bounded domain with smooth boundary. The equations are

complemented by initial and no-flux boundary conditions

(58) ∇(A− V ) · ν = 0, V = 0 on ∂Ω, t > 0, n(·, 0) = n0 in Ω,

where ν denotes the exterior normal unit vector to the boundary ∂Ω.
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The relation between the electron density n and the chemical potential A
can be formulated in a weak sense as [68, (2.4)]

∫

Ω

nφdx = Tr(exp(−H)φ),

where ”Tr“ is the trace of an operator andH = −(ε2/2)∆+A is the Hamiltonian
with domain D(H) = {ψ ∈ H2(Ω) : ∇ψ · ν = 0 on ∂Ω}. Hence, if A belongs
to, say, L2(Ω), there exists an orthogonal basis of eigenfunctions (ψp) = (ψp[A])
with eigenvalues λp = λp[A], and the nonlocal relation between n = n[A] and
A takes the more explicit form

n[A] =
∞∑

p=1

e−λp[A]|ψp[A]|2.

It is proved in [68, Lemma 2.3] that the mapping H1(Ω) → R, A 7→
∫
Ω
n[A]dx

is Fréchet differentiable and strictly convex.
The existence result holds for the semi-discrete model

1

τ
(nk+1 − nk) = div(nk∇(Ak+1 − V k+1)), λ2

D∆V k+1 = nk+1,(59)

nk+1 =

∞∑

p=1

exp(−λp[A
k+1])|ψp[A

k+1]|2 in Ω(60)

subject to the boundary conditions in (58), where nk is a given function. The
main result is as follows (Theorem 3.1 in [68]).

T h e o r e m 3.8 (Existence for the semi-dicrete nonlocal equation). Let
n0 be continuous and positive on Ω. Then there exists a unique solution (nk, Ak,
V k) ∈ C0(Ω) × H2(Ω) × H2(Ω) of (58)-(60). Moreover, the total charge is
conserved, ∫

Ω

nkdx =

∫

Ω

n0dx for all k ∈ N,

and the free energy

Sk =

∫

Ω

(
− nk(Ak + 1) +

λ2
D

2
|∇V |2

)
dx

is nonincreasing in k.

The proof is inspired by the variational arguments of Nier [128, 129]. First,
for given positive and continuous nk, the variational arguments lead to a solution
(Ak+1, V k+1) to the elliptic system (59) with no-flux boundary conditions. By
the above result on the mapping A 7→ n[A], we can define nk+1 = n[Ak+1],
and (60) is satisfied. The choice of the Neumann boundary conditions for the
eigenfunctions ψp ensures that ψk+1

1 does not vanish on Ω. Consequently, nk+1

is strictly positive (and continuous). Thus, the sequence (nk, Ak, V k) can be
constructed by induction.
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The limit of vanishing time steps τ → 0 is an open problem. One of the
difficulties is to find a positive lower bound for the particle density. Furthermore,
for a practical use of the model, boundary conditions which allow for a current
flow through the boundary would be desirable, but it is not clear how to handle
more physical boundary conditions in the existence analysis.

4 - Viscous quantum hydrodynamic models

In this section, we derive quantum hydrodynamic equations from the Schrö-
dinger or Wigner equation. Viscous quantum hydrodynamic models are ob-
tained from the Wigner-Fokker-Planck equation by the moment method. We
sketch the derivations and summarize some analytical results for these equa-
tions.

4.1 - Derivation

We consider first the derivation starting from the Schrödinger equation via
the so-called Madelung transform and then, we present the derivation from the
Wigner equation.

4.1.1 - Quantum hydrodynamics and the Schrödinger equation

Quantum hydrodynamic models are well known since the early years of quan-
tum mechanics. In fact, Madelung [123] showed already in 1927 that there exists
a hydrodynamic formulation of the Schrödinger equation. More precisely, let ψ
be a solution of the initial-value problem

iε∂tψ = −ε
2

2
∆ψ − V (x, t)ψ, t > 0, ψ(·, 0) =

√
n0 exp(iS0/ε) in R

3,

where the potential V (x, t) is assumed to be given. Then n = |ψ|2 and Jn =
−εIm(ψ∇ψ) solves the zero-temperature quantum hydrodynamic or Madelung
equations

∂tn− div Jn = 0, ∂tJn − div
(Jn ⊗ Jn

n

)
+ n∇V +

ε2

2
n∇
(∆

√
n√
n

)
= 0,(61)

n(·, 0) = n0, Jn(·, 0) = J0 in R
3,(62)

where the initial data is given by n0 = |ψ0|2 and J0 = −n0∇S0, as long as
n > 0 in R

3. Here, ”Im z“ denotes the imaginary part of a complex number z
and z is its complex conjugate. This result can be shown by decomposing the
wave function ψ as ψ =

√
n exp(iS/ε), which is possible as long as |ψ| > 0, by

inserting this decomposition into the Schrödinger equation and taking the real
and imaginary parts.
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The above system is the quantum analogue of the classical pressureless Euler
equations of fluid dynamics. The expression ∆

√
n/

√
n in the momentum equa-

tion in (61) can be interpreted as a quantum self-potential or Bohm potential.
The quantum hydrodynamic equations are employed in Bohmian mechanics
[144] and in the modeling of superfluids and Bose-Einstein condensates [28].

There is clearly a problem with the above decomposition if vacuum occurs,
i.e. if |ψ| = 0 locally. In this situation, the phase S is not well defined which
manifests in the fact that the Bohm potential may become singular at vacuum
points. A study of these vacuum points in the quantum hydrodynamic equations
was performed in El et al. [62]. The problem can be circumvented by using the
polar decomposition of an arbitrary wave function ψ into its amplitude

√
n = |ψ|

and its unitary factor φ such that ψ =
√
nφ in the spirit of Brenier [19]. This

idea has been exploited by Antonelli and Marcati [4] to analyze the quantum
hydrodynamic equations (see Section 4.2.3).

The above model is derived for a single particle and therefore, it does not
contain pressure or temperature terms. In order to include such terms, we
consider an electron ensemble representing a mixed quantum state (see Theorem
2.1). In the following, we proceed as in [91, Chapter 14]. We recall that a mixed
state is a sequence of occupation probabilities λk ≥ 0 (k ∈ N) for the k-th state
ψk which is described by the single-state Schrödinger equation

(63) iε∂tψk = −ε
2

2
∆ψk − V (x, t)ψk, t > 0, ψk(·, 0) = ψ0

k in R
3.

The single-state particle and current densities of the k-th state are defined as
above by

nk = |ψk|2, Jk = −εIm(ψk∇ψk), k ∈ N.

Then the following result holds (see [75] or Theorem 14.2 in [91]).

T h e o r e m 4.1 (Quantum hydrodynamic equations). Let ψk be a single-
state solution of the Schrödinger equation (63) with occupation number λk of
the k-th quantum state. Then (n, J), defined by

n =
∞∑

k=1

λk|ψk|2, J =
∞∑

k=1

λkJk,

is a solution of the quantum hydrodynamic equations

∂tn− div J = 0,

∂tJ − div
(J ⊗ J

n
+ nθ

)
+ n∇V +

ε2

2
n∇
(∆

√
n√
n

)
= 0,

where x ∈ R
3 and t > 0, with initial conditions

n(·, 0) =

∞∑

k=1

λk|ψ0
k|2, J(·, 0) = −ε

∞∑

k=1

λk Im(ψ
0

k∇ψ0
k) in R

3.
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The temperature tensor θ is defined by θ = θcu + θos, where the “current tem-
perature” and “osmotic temperature” are given by, respectively,

θcu =

∞∑

k=1

λk
nk

n
(ucu,k − ucu) ⊗ (ucu,k − ucu),

θos =

∞∑

k=1

λk
nk

n
(uos,k − uos) ⊗ (uos,k − uos),

and the variables

ucu,k = −Jk

nk
, ucu = −J

n
, uos,k =

ε

2
∇ log nk, uos =

ε

2
∇ log n

are called the “current velocities” and “osmotic velocities”, respectively.

The notion “osmotic” comes from the fact that the quantum term can be
written as the divergence of the quantum stress tensor [75] P = (ε2/4)n∇2 log n
since

ε2

2
n∇
(∆

√
n√
n

)
=
ε2

4
div(n∇2 log n).

Often, the above system is self-consistently coupled to the Poisson equation

(64) λ2
D∆V = n− C(x) in R

3.

P r o o f. We follow the proof given in [91, Section 14.2]. The pair (nk, Jk)
solves the Madelung equations (61) with initial conditions

nk(·, 0) = |ψ0
k|2, Jk(·, 0) = −ε Im(ψ

0

k∇ψ0
k).

Multiplication of (61) by λk and summation over k yields

∂tn− div J = 0,

∂tJ −
∞∑

k=1

λk div
(Jk ⊗ Jk

nk

)
+ n∇V +

ε2

2

∞∑

k=1

λknk∇
(∆

√
nk√
nk

)
= 0.(65)

We rewrite the second and fourth term of the second equation. With the defi-
nitions of the “current temperature” and “current velocity”, we obtain

∞∑

k=1

λk div
(Jk ⊗ Jk

nk

)
=

∞∑

k=1

λk div(nkucu,k ⊗ ucu,k)

=

∞∑

k=1

λk div
(
nk(ucu,k − ucu) ⊗ (ucu,k − ucu) + 2nkucu,k ⊗ ucu

)

− div(nucu ⊗ ucu)

= div(nθcu) + 2

∞∑

k=1

div
(
λkJk ⊗ J

n

)
− div

(J ⊗ J

n

)

= div(nθcu) + div
(J ⊗ J

n

)
.
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Furthermore, employing the definitions of the “osmotic temperature” and “os-
motic velocity”, we compute

ε2

2

∞∑

k=1

λknk∇
(∆

√
nk√
nk

)
=
ε2

4

∞∑

k=1

λk div
(
∇2nk − ∇nk ⊗∇nk

nk

)

=
ε2

4

∞∑

k=1

λk div
(
∇2nk +

nk

n

∇n⊗∇n
n

− 2
∇n⊗∇nk

n

− nk

(∇nk

nk
− ∇n

n

)
⊗
(∇nk

nk
− ∇n

n

))

=
ε2

4
div
(
∇2n− ∇n⊗∇n

n

)
− div(nθos)

=
ε2

2
n∇
(∆

√
n√
n

)
− div(nθos).

Inserting these expressions into (65) finishes the proof. �

The temperature tensor θ cannot be expressed in terms of the total parti-
cle and current densities without further assumptions. This is called a closure
problem. Motivated by closure conditions in classical kinetic theory, one may as-
sume that the temperature tensor is diagonal with equal entries on the diagonal,
θ = T I, where I is the identity matrix. Then we obtain div(nθ) = ∇(nT ) which
corresponds to the pressure term in classical gas dynamics. We notice that this
so-called isothermal model was first proposed by Grubin and Kreskovsky in the
context of semiconductor modeling [77]. Furthermore, motivated by isentropic
fluid dynamics where the temperature depends on the particle density, one may
employ the closure θ = T (n) I with T (n) = nβ−1 (β > 1) leading to the pres-
sure force div(nθ) = ∇(nβ). Another assumption to close the above quantum
hydrodynamic system was proposed by Grasser et al. using small temperature
and small scaled Planck constant asymptotics [74].

4.1.2 - Quantum hydrodynamics and the Wigner equation

The quantum hydrodynamic models of the previous section do not include
collisional phenomena. In order to allow for such effects and to derive diffusive
quantum fluid models, an alternative approach to derive macroscopic equations
is to apply the moment model to a collisional Wigner equation:

∂tw + p · ∇xw + θ[V ]w = Q(w), (x, p) ∈ R
6, t > 0,

with the initial conditions w(x, p, 0) = w0(x, p). We refer to Section 2.4 for a
discussion of Wigner-Boltzmann models. The following presentation is based
on [55] and [98] (also see Section 14.3 of [91]).

We assume that the collision operator Q(w) is the sum of two operators, Q0

and Q1. We suppose that collisions modeled by Q0 conserve mass, momentum,
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and energy,

(66) 〈Q0(w)〉 :=

∫

R3

Q0(w)κ(p)
dp

(2πε)3
= 0, κ(p) = {1, p, 1

2 |p|
2},

while the operator Q1 conserves mass only, 〈Q1(w)〉 = 0. Furthermore, we
suppose that Q0(w) = 0 implies that w equals the quantum Maxwellian which
has the same mass, momentum, and energy as w, i.e. w = M [w] and M [w] is
given by (19), M [w] = Exp(A− |p− v|2/2T ) for some Lagrange multipliers A,
v, and T coming from the constrained entropy maximization (see Section 2.3).
Let α > 0 be the ratio of the mean free paths corresponding to Q0 and Q1,
respectively. We assume that collisions described by Q0 occur more frequently
than those modeled by Q1 such that α≪ 1.

A slightly different strategy was employed by Romano in [137]. He supposes
that the zeroth-order part of the collision operator is the same as the classical one
and that the first-order contribution is in relaxation form which is of orderO(ε2).
The quantum equilibrium is obtained by unconstrained entropy maximization.

We employ a hydrodynamic scaling in the Wigner-Boltzmann equation, i.e.
we replace x by x/α and t by t/α. Then the Wigner-Boltzmann equation
becomes

(67) α∂tw + α
(
p · ∇xw + θ[V ]w

)
= Q0(w) + αQ1(w).

The derivation of the quantum hydrodynamic equations is performed in two
steps. Let wα be a solution to (67) with initial datum wα(·, ·, 0) = w0.

Step 1: limit in the Wigner-Boltzmann equation. The limit α → 0 in (67)
leads to Q0(w) = 0, where w = limα→0 wα. The conditions on Q0 imply that
w = M [w] = Exp(A− |p− v|2/2T ).

Step 2: limit in the moment equations. Multiplying (67) by the weight
functions κ(p), integrating over p ∈ R

3, and employing (66) yields the moment
equations

∂t〈κ(p)wα〉 + divx〈pκ(p)wα〉 + 〈κ(p)θ[V ]wα〉 = 〈κ(p)Q1(wα)〉.

The formal limit α→ 0 gives

∂t〈κ(p)M [w]〉 + divx〈pκ(p)M [w]〉 + 〈κ(p)θ[V ]M [w]〉 = 〈κ(p)Q1(M [w])〉.

The moments of the potential operator can be computed explicitly (see (13.6)
and Lemma 13.2 in [91]):

(68) 〈θ[V ]f〉 = 0, 〈pθ[V ]f〉 = −〈f〉∇xV, 〈 1
2 |p|

2θ[V ]f〉 = −〈pf〉 · ∇xV

for all functions f(p). Defining the particle density n, current density Jn, and
energy density ne, respectively, by

n = 〈M [w]〉, Jn = −〈pM [w]〉, ne = 〈 1
2 |p|

2M [w]〉,
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the moment equations can be written as

∂tn− div Jn = 0,

∂tJn − div〈p⊗ pM [w]〉 + n∇V = −〈pQ1(M [w])〉,
∂t(ne) + div〈 1

2 |p|
2pM [w]〉 + Jn · ∇V = 〈 1

2 |p|
2Q1(M [w])〉.

The second-order and third-order moments can be reformulated by introducing
the quantum stress tensor P and the quantum heat flux q by

(69) P = 〈(p− u) ⊗ (p− u)M [w]〉, q = 〈 1
2 (p− u)|p− u|2M [w]〉,

where u = −Jn/n is the mean velocity. Then we obtain

(70) 〈p⊗ pM [w]〉 = P +
Jn ⊗ Jn

n
, 〈 1

2p|p|
2M [w]〉 = −(P + ne I)

Jn

n
+ q,

where I is the identity matrix in R
3×3. The result is summarized in the following

theorem (see Theorem 14.3 in [91]).

T h e o r e m 4.2 (Nonlocal quantum hydrodynamic model). Let the collision
operator satisfy the above assumptions. Let wα be a solution of the Wigner-
Boltzmann equation (67). Then, formally, as α → 0, wα → w where w =
Exp(A−|p−v|2/2T ), and (A, v, T ) is a solution of the quantum hydrodynamic
equations

∂tn− div Jn = 0,(71)

∂tJn − div
(Jn ⊗ Jn

n
+ P

)
+ n∇V = −〈pQ1(w)〉,(72)

∂t(ne) − div
(
(P + ne I)Jn − q

)
+ Jn · ∇V = 〈 1

2 |p|
2Q1(w)〉(73)

in R
3, t > 0, where the quantum stress tensor P and quantum heat flux q are

defined in (69). The initial data are given by

n(·, 0) = 〈w0〉, Jn(·, 0) = −〈pw0〉, (ne)(·, 0) = 〈 1
2 |p|

2w0〉,

and the Lagrange multipliers (A, v, T ) are determined by



n
nu
ne


 =

∫

R3

Exp
(
A− |p− v|2

2T

)



1
p

1
2 |p|2


 dp

(2πε)3
,

where Jn = −nu is the current density.

Similar as in Section 3.1.1, we obtain local versions of the quantum hydro-
dynamic system by expanding the quantum Maxwellian in terms up to order
O(ε4). If only one moment is prescribed, an expansion is presented in Lemma
2.3. In the present situation, the expansion is computationally much more la-
borious, and we refer to Lemmas 3.2 and 3.3 in [98] for details. Inserting the
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expansion into the definition of the moments and assuming that the vorticity
∇u−∇u⊤ and the temperature variations are of order O(ε2), i.e.

(74) ∇u−∇u⊤ = O(ε2) and ∇ log T = O(ε2),

we arrive at

n = 2(2πε2)−3/2eA +
ε2

12T
(2πε2)−3/2eA(2∆A+ |∇A|2) +O(ε4),

ne =
3

2
nT +

1

2
n|u|2 − ε2

24
n∆log n+O(ε4).

The quantum stress tensor and quantum heat flux can be expanded as follows
(see [98, Lemma 3.5] and Section 2.2 in [103]):

P = nT I − ε2

12
n∇2 log n+O(ε4),

q = − ε2

24
n(∆u+ 2∇div u) +O(ε4).

This leads to the following local version of the quantum hydrodynamic equations
(see Theorem 14.4 in [91]).

T h e o r e m 4.3 (Local quantum hydrodynamic model). Let the assumptions
of Theorem 4.2 and let (74) hold. Then the moments (n, Jn, ne) of the limit
quantum Maxwellian solve the quantum hydrodynamic equations up to order
O(ε4),

∂tn− div Jn = 0,(75)

∂tJn − div
(Jn ⊗ Jn

n

)
−∇(nT ) + n∇V +

ε2

6
n∇
(∆

√
n√
n

)
= Wp,(76)

∂t(ne) − div
(
(P + ne I)u

)
− ε2

24
div
(
n(∆u+ 2∇div u)

)
+ Jn · ∇V = We,

(77)

where x ∈ R
3, t > 0, Wp = −〈pQ1(w)〉, We = 〈 1

2 |p|2Q1(w)〉, and the energy
density ne and the quantum stress tensor P are given by

(78) P = nT I − ε2

12
n∇2 log n, ne =

3

2
nT +

1

2
n|u|2 − ε2

24
n∆log n.

The initial conditions for n, Jn, and ne are as in Theorem 4.2.

The quantum stress tensor is the sum of the classical pressure and a quantum
stress tensor. The energy is the sum of the thermal, kinetic, and quantum
energy. In the classical limit ε → 0, we recover the classical Euler equations.
Notice that the coefficient in front of the Bohm potential term in the momentum
equation (76) equals ε2/6 instead of ε2/2 as in the momentum equation derived
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in Theorem 4.1 from the mixed-state Schrödinger equations. The factor 1/3 is
independent of the space dimension.

For constant temperature, we obtain the isothermal quantum hydrodynamic
model which equals the model of Theorem 4.1 when the temperature tensor is
a scalar and the factor ε2/2 is changed to ε2/6. Nonconstant temperatures in
quantum hydrodynamics were first considered by Ferry and Zhou [66], who de-
rived the model from the Bloch equation for the density matrix. A derivation
from the Wigner equation was proposed by Gardner [72]. He obtained the same
equations as in Theorem 4.3 except the dispersive velocity term coming from
div q. The origin of this difference lies in the different choice of the quantum
equilibrium. In order to explain this difference, let weq be the quantum equi-
librium derived from the unconstrained entropy maximization process, given by
(16),

weq(x, p) = Exp
(
V (x) − |p|2

2

)
= eV (x)−|p|2/2

(
1 + ε2g1(x, p)

)
+O(ε4),

where g1 is an appropriate function which we do not specify here. Gardner
mimicks the momentum-shift of the equilibrium in the classical situation and
employs in his derivation the “shifted” quantum Maxwellian

w̃eq(x, p) = exp
(
(V (x) − |p− v(x)|2

2T (x)

)(
1 + ε2g1(x, p− v(x))

)
+O(ε4).

On the other hand, the derivation of the quantum system in Theorem 4.3 em-
ploys the constrained thermal equilibrium (19),

M [w] = Exp
(
A(x) − |p− v(x)|2

2T (x)

)

= exp
(
A(x) − |p− v(x)|2

2T (x)

)(
1 + ε2g2(x, p− v(x))

)
+O(ε4).

If only one moment is prescribed, both approaches coincide in the following
sense. We write Gardner’s momentum-shifted quantum Maxwellian more ex-
plicitly as [98, Section 3.5]

w̃eq(x, p) = eV/T−|p|2/2T

(
1 +

ε2

8T

(
∆V +

1

3T
|∇V |2 − 1

3T
p⊤(∇2V )p

))
+O(ε4).

The quantum Maxwellian M [w] obtained from entropy maximization with given
particle density becomes

M [w] = eA/T−|p|2/2T

(
1 +

ε2

8T

(
∆A+

1

3T
|∇A|2 − 1

3T
p⊤(∇2A)p

))
+O(ε4),

where A is a Lagrange multiplier, and we see that both approximations coincide
up to exchanging A and V .
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4.1.3 - Viscous quantum hydrodynamics

In the local quantum hydrodynamic model (76)-(77), the averaged collision
terms Wp and We are unspecified. In this section, we make explicit these terms
by choosing the Caldeira-Leggett or Fokker-Planck operators discussed in Sec-
tion (2.4.2).

The Caldeira-Leggett operator

Q1(w) =
1

τ

(
∆pw + divp(pw)

)
, τ > 0,

conserves mass, 〈Q1(w)〉 = 0, and satisfies the assumption imposed in the pre-
vious subsection. Integrating by parts, we find that

−〈pQ1(M [w])〉 =
1

τ

∫

R3

(∇pM [w] + pM [w])
dp

(2πε)3
= −Jn

τ
,

〈 1
2 |p|

2Q1(M [w])〉 = −1

τ

∫

R3

p · (∇pM [w] + pM [w])
dp

(2πε)3

=
1

τ

∫

R3

(3M [w] − |p|2M [w])
dp

(2πε)3
= −2

τ

(
ne− 3

2
n
)
.

These expressions are referred to as relaxation-time terms, and τ > 0 is called
the relaxation time.

Another choice is the Fokker-Planck operator (22),

Q1(w) = Dpp∆pw + 2γ divp(pw) +Dqq∆xw + 2Dpq divx(∇pw),

with positive diffusion coefficients Dpp, Dpq, Dqq and the friction parameter
γ > 0. This operator does not conserve mass:

〈Q1(w)〉 = Dqq∆xn,

and the mass equation becomes

∂tn− div Jn = Dqq∆n.

However, introducing the effective current density Jeff = Jn + Dqq∇n, this
equation can be written in conservative form:

∂tn− div Jeff = 0.

The other moments become, for w = M [w],

−〈pQ1(w)〉 = 2(2πε)−3

∫

R3

(γpw +Dpq∇xw)dp−Dqq(2πε)
−3∆x

∫

R3

pwdp

= −2γJn + 2Dpq∇xn+Dqq∆xJn,

〈 1
2 |p|

2Q1(w)〉 = −(2πε)−3

∫

R3

(
Dppp · ∇pw + 2γ|p|2w + 2Dpqp · ∇xw

)
dp

+Dqq(2πε)
−3∆x

∫

R3

1
2 |p|

2wdp

= −2
(
2γne− 3

2
Dppn

)
+ 2Dpq divx Jn +Dqq∆x(ne).
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The spatial second-order expressions ∆xn, ∆xJn, and ∆x(ne) can be interpreted
as viscous terms. We choose Dqq = ν, Dpp = 1/(2τ), Dpq = 0, and 2γ = 1/(2τ).
Then the Lindblad condition (see Section 2.4.2)DppDqq−D2

pq ≥ γ2/4 is satisfied
if ν ≥ 1/(32τ). We obtain the viscous quantum hydrodynamic equations, which
have been first proposed in [78]:

∂tn− div Jn = ν∆n,(79)

∂tJn − div
(Jn ⊗ Jn

n

)
−∇(nT ) + n∇V +

ε2

6
n∇
(∆

√
n√
n

)

= −Jn

τ
+ ν∆Jn,(80)

∂t(ne) − div
(
(P + neI)u

)
− ε2

24
div
(
n(∆u+ 2∇div u)

)
+ Jn · ∇V

= −1

τ

(
ne− 3

2
n
)

+ ν∆(ne).(81)

The following result shows that the energy is dissipated (compare to Proposition
14.5 in [91]).

P r o p o s i t i o n 4.1 (Energy dissipation). Let (n, Jn, ne, V ) be a solution
to the viscous system (79)-(81) and the Poisson equation (64). Define the energy

E(t) =

∫

R3

(
ne+

λ2
D

2
|∇V |2

)
dx,

where ne is defined in (78). Then we can write the energy as the sum of thermal,
kinetic, electric, and quantum energy,

(82) E(t) =

∫

R3

(3

2
nT +

1

2
n|u|2 +

λ2
D

2
|∇V |2 +

ε2

6
|∇

√
n|2
)
dx,

and the energy dissipation relation reads as

dE

dt
= −1

τ

∫

R3

(3

2
n(T − 1) +

1

2
n|u|2 +

ε2

6
|∇

√
n|2
)
dx.

P r o o f. We differentiate the energy formally with respect to time and
employ the energy equation (81) and the Poisson equation (64):

dE

dt
=

∫

R3

(
∂t(ne) + λ2

D∇V · ∇∂tV
)
dx

=

∫

R3

(
− Jn · ∇V − 1

τ

(
ne− 3

2
n
)
− λ2

DV ∂t∆V
)

=

∫

R3

(
(div Jn)V − 1

τ

(
ne− 3

2
n
)
− λ2

DV ∂tn
)
dx

= −1

τ

∫

R3

(
ne− 3

2
n
)
dx.

Finally, formula (82) is obtained by integrating by parts. �
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4.2 - Analysis

The mathematical analysis of the quantum hydrodynamic equations is very
challenging due to the interplay between dispersion (coming from the third-order
quantum term) and dissipation (originating from the relaxation-time or viscous
terms). Therefore, there are only a few results in the literature. First, we re-
view analytical results on the relaxation-time model with constant or isentropic
temperature:

∂tn− div Jn = 0,(83)

∂tJn − div
(Jn ⊗ Jn

n

)
−∇(Tn) + n∇V +

ε2

6
n∇
(∆

√
n√
n

)
= −Jn

τ
,(84)

λ2
D∆V = n− C(x) in Ω ⊂ R

d, t > 0,(85)

with the initial conditions

n(·, 0) = n0, Jn(·, 0) = J0 in Ω, t > 0,

and appropriate boundary conditions. Here, T is either a positive constant
(isothermal model) or related to the particle density via T (n) = nβ−1 with
β > 1 (isentropic model).

4.2.1 - Thermal equilibrium

First results in the literature have been concerned with the thermal equi-
librium state, i.e. Jn = 0. Then the isothermal model (83)-(85) with T = 1
reduces to

(86) −∇n+ n∇V +
ε2

6
n∇
(∆

√
n√
n

)
= 0, λ2

D∆V = n− C(x).

If n > 0, we can divide the first equation by n. Integrating over Ω, we arrive at

(87) F = log n− V − ε2

6

∆
√
n√
n
, λ2

D∆V = n− C(x).

The integration constant F can be interpreted as a quantum Fermi potential
and it is determined by the boundary conditions. Thus, by integrating the
third-order equation, we arrive to a second-order elliptic system in the variables
(n, V ). The first analytical result is due to Pacard and Unterreiter [133]. They
prove the existence of weak solutions to

∇
(

log n− V − ε2

6

∆
√
n√
n

)
= 0, λ2

D∆V = n− C(x)

with the mixed boundary conditions

V = VD on ΓD, ∇V · ν = 0 on ΓN ,

∫

Ω

ndx = N,
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where ΓD is the union of contacts, the remaining set ΓN = ∂Ω\ΓD represents
the insulating boundary segments, and N > 0 is the given particle number. The
proof consists in minimizing the total energy

E(n) =

∫

Ω

(ε2
6
|∇

√
n|2 + n(log n− 1) +

λ2
D

2
|∇V |2

)
dx

in the set {n ∈ L1(Ω) : n ≥ 0,
∫
Ω
ndx = N ,

√
n ∈ H1(Ω)}. The result has been

generalized to the bipolar situation in [140].
The authors of [73] have imposed Dirichlet boundary conditions and proved

the existence and, for sufficiently large ε > 0, the uniqueness of weak solutions
of (87) with n = nD and V = VD on ∂Ω for some functions nD and VD. This
result was generalized to mixed Dirichlet-Neumann boundary conditions in [59].

Another approach is to differentiate the third-order equation which yields a
fourth-order problem. This idea has been first employed by Brezzi et al. [23] in
the one-dimensional setting Ω = (0, 1). Indeed, dividing the first equation in
(86) by n, taking the derivative, observing that

(88) n
( (

√
n)xx√
n

)

x
=

1

2

(
n(log n)xx

)
x
,

and finally using the Poisson equation in (86), we infer that

(89) − ε2

12

(
(log n)2xx +

1

2
(log n)2x

)

xx
+ (log n)xx − 1

λ2
D

(n− C(x)) = 0.

Brezzi et al. prescribe Dirichlet and homogeneous Neumann boundary condi-
tions at x ∈ {0, 1}:

(90) n = nD, nx = 0 for x ∈ {0, 1}.

The electric potential V can be computed from the first equation in (86) after
having solved (89)-(90). Using a fixed-point argument, the following result was
shown in [23, Theorem 2.1].

T h e o r e m 4.4 (Existence for the thermal equilibrium problem). Let nD

be defined for x ∈ {0, 1} and let C ∈ L∞(0, 1). Then there exists a weak solution
n ∈ H2(0, 1) of (89)-(90) satisfying n > 0 in (0, 1). Moreover, for sufficiently
small ε > 0, the solution is unique.

Further results in the literature were concerned with the semiclassical limit
ε → 0 [23, 73, 140] and the quasi-neutral limit λD → 0 [140, 141]. For the
existence of solutions for the whole-space problem, we refer to [147].

4.2.2 - Stationary equations

The above ideas of the treatment of the third-order quantum term can be
applied to the stationary equations: either integrating the momentum equation
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to obtain a second-order equation or differentiating this equation to arrive to a
fourth-order equation (also see [90]). In the one-dimensional setting, the ideas
of the paper of Brezzi et al. [23] have been extended in [81]. Indeed, in the
one-dimensional case, the current density Jn is constant, by the mass equation
(83), and the momentum equation (84) can be formulated as

J2
n

nx

n2
− Tnx + nVx +

ε2

12

(
n(log n)xx

)
x

= −Jn

τ
,

where we have used (88) and introduced the temperature constant T > 0. Then,
dividing this equation by n, differentiating, and setting y = log n, we arrive at

(91)
ε2

12

(
yxx +

1

2
y2

x

)

xx
+ J2

n(e−2yyx)x −Tyxx +
1

λ2
D

(ey −C(x)) = −Jn

τ
(e−y)x,

for x ∈ (0, 1) with the boundary conditions (compare to (90))

(92) y(0) = y0, y(1) = y1, yx(0) = yx(1) = 0.

The main problem is the treatment of the convective part J2
n(e−2yyx)x. In

fact, for ε = 0, the quantum model reduces to the Euler (or hydrodynamic)
equations which may change type: if the velocity is sufficiently small, the hy-
drodynamic system is elliptic (subsonic flow), whereas it is generally hyperbolic
(supersonic flow), and the equations may exhibit discontinuous solutions. The
quantum term acts like a dispersive regularization of the hydrodynamic equa-
tions; however, it appears to be difficult to exploit this fact. The approach to
solve (91)-(92) is to consider small velocities (or current densities). Due to the
analogy to the Euler equations, it is not surprising that under this assumption,
equation (91) can be solved using elliptic methods. Multiplying (91) by y and
integrating by parts, we infer that (if y0 = y1 = 0 to simplify)

∫ 1

0

( ε2
12
y2

xx + Ty2
x

)
dx = − 1

λ2
D

∫ 1

0

(ey − C(x))ydx+ J2
n

∫ 1

0

e−2yy2
xdx.

The first integral on the right-hand side is bounded from above, while the second
integral needs to be estimated by the left-hand side:

ε2

12

∫ 1

0

y2
xxdx+

∫ 1

0

(T − J2
ne

−2y)y2
xdx ≤ c.

Hence, if the mean velocity Jn/n = Jne
−y is smaller than the sound speed√

T (i.e., the flow is “subsonic”), we find that T − J2
ne

−2y ≤ 0, yielding an H2

estimate for y. This is the key idea for the following theorem which is shown
by the Leray-Schauder fixed-point theorem [81, Theorem 2.5].

T h e o r e m 4.5 (Existence for the one-dimensional model). Let y0, y1 ∈ R,
C ∈ L2(0, 1), and let

0 < Jn ≤ e−K
√
T + ε2/6,

where K > 0 depends on the given data. Then there exists a weak solution
y ∈ H2(0, 1) of (91)-(92) satisfying ‖y‖L∞(Ω) ≤ K. Moreover, if ε > 0 and
Jn > 0 are sufficiently small, the solution is unique.
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This result was generalized in [93] for general pressure functions p(n) instead
of the isothermal pressure p(n) = Tn. Assuming that the electric potential and
field are prescribed at the left boundary point (instead of the homogeneous
Neumann conditions for n), the non-existence of weak solutions to the quantum
hydrodynamic model can be shown if the current density is sufficiently large
and the pressure p(n) = Tn is replaced by p(n) = nα with α > 2 [69].

The second idea is to integrate the quantum hydrodynamic equations and
to obtain a system of elliptic second-order equations. For this, we consider
a potential flow, i.e., we assume that the current density can be written as
Jn = n∇F , where F is the quantum Fermi potential. This condition means that
the velocity −Jn/n = −∇F is irrotational. Since div(Jn ⊗ Jn/n) = 1

2n∇|∇F |2,
we can write the stationary variant of (84) as

n∇
(1

2
|∇F |2 + T log n− V − ε2

6

∆
√
n√
n

)
= −n

τ
∇F in Ω,

where Ω ⊂ R
d is a bounded domain. If n > 0 in Ω, we can divide by n and

integrate:
1

2
|∇F |2 + T log n− V − ε2

6

∆
√
n√
n

+
F

τ
= 0.

The integration constant can be assumed to be zero by choosing a reference
point for the electric potential. Now, the stationary quantum hydrodynamic
system can be written in the potential-flow formulation as

ε2

6
∆
√
n =

√
n
(1

2
|∇F |2 + T log n− V +

F

τ

)
,(93)

div(n∇F ) = 0, λ2
D∆V = n− C(x) in Ω.(94)

The boundary conditions are

(95) n = nD, F = FD, V = VD on ∂Ω.

The difficulties to solve this elliptic system are the squared gradient of F in
(93) and the degenerated diffusion coefficient n ≥ 0 in the first equation in
(94). By using Stampacchia’s truncation method, elliptic regularity, and fixed-
point arguments, the existence of a weak solution was shown in [89] under
the condition that FD is sufficiently small in some Hölder space. Since FD is
related to the applied potential, this assumption means that the applied voltage
has to be chosen sufficiently small. Since we expect that small applied voltages
imply small current densities and small velocities, this is a kind of “subsonic”
assumption. The following result was proven in [89, Theorem 2.1].

T h e o r e m 4.6 (Existence for the potential-flow model). Let Ω ⊂ R
d

(d ≥ 1) be a bounded domain with ∂Ω ∈ C1,1, C ∈ L∞(Ω), and let nD, FD, VD

be smooth functions satisfying inf∂Ω nD > 0. Then there exists δ > 0 such that
if

‖FD‖C1,γ(Ω) ≤ δ,
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there exists a solution (n, F, V ) satisfying infΩ n > 0 and

√
n ∈W 2,p(Ω), F ∈ C1,γ(Ω), V ∈ L∞(Ω) ∩H2(Ω),

where p > d/2 and γ = 2 − d/p > 0. The solution is unique if ε is sufficiently
large.

The positivity of n is needed for the first equation in (94) to be uniformly
elliptic. It is shown in [89] that the positivity of n is related to the regularity of
F : the density n is strictly positive if and only if F ∈W 1,∞(Ω).

Asymptotic limits such as the semiclassical limit ε→ 0 and the quasineutral
limit λD → 0 were studied too; we refer to [70, 81, 124] for details.

4.2.3 - Transient equations

First results for the time-dependent quantum hydrodynamic equations (83)-
(85) were concerned with the local-in-time existence of solutions or the global-
in-time existence for solutions with initial data close to thermal equilibrium.

One of the first results is contained in the paper [99]. Assuming a potential
flow, the quantum hydrodynamic system can be written as (see Section 4.2.2)

∂tn− div(n∇F ) = 0, λ2
D∆V = n− C(x),

∂tF − 1

2
|∇F |2 − log n+ V +

ε2

6

∆
√
n√
n

= −F
τ
.

Setting ψ =
√
n exp(iF/ε), the first and last equations are formally equivalent

to a nonlinear Schrödinger equation,

iδ∂tψ = −δ
2

2
∆ψ − V ψ + log(|ψ|2)ψ +

1

τ
Fψ,

where δ2 = ε2/3. The phase (or velocity potential) F satisfies an equation of
the type ∆F = f(ψ,∇ψ,∆ψ) for some nonlinear function f . Using semigroup
theory and the Banach fixed-point theorem, the existence of mild solutions to
the system, consisting of the above nonlinear Schrödinger equation, the elliptic
equation for F , and the Poisson equation, is proved. The solutions are local in
time with a bound for the time which comes from the contractivity argument
of the fixed-point operator.

Later, the global-in-time existence of solutions of the one-dimensional model
was proven [94]. More precisely, let (n∞, J∞, V∞) be a solution of the stationary
problem with boundary conditions n = nD, nx = 0, and V = VD on ∂Ω. Then,
if the differences between the stationary solution and the initial data

√
n∞−√

n0

and J∞ − J0 are sufficiently small in some Sobolev norm, there exists a global
solution (n, Jn, V ) of (83)-(85) and the solution decays exponentially fast to the
steady-state solution,

‖
√
n−√

n∞‖H6(Ω) + ‖Jn − J∞‖H5(Ω) + ‖V − V∞‖H4(Ω) ≤ ce−λt, t > 0,
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where c, λ > 0 are some constants. The proof is based on a formulation of
the momentum equation as a nonlinear fourth-order wave equation. In fact,
differentiating the mass equation nt − (Jn)x = 0 with respect to t and the mo-
mentum equation (84) with respect to x, we can eliminate (Jn)xt, and dividing
the resulting equation by 2

√
n, we arrive at

(
√
n)tt +

1

τ
(
√
n)t +

1

2
√
n

(
√
n)2t −

1

2
√
n

(J2
n

n
+ n

)

xx
+

1

2
√
n

(nVx)x

+
ε2

12

(
(
√
n)xxxx − (

√
n)2xx√
n

)
= 0.

This idea was extended to the whole line R in [83] and to the whole space R
3 in

[117, 118]. The long-time behavior is typically obtained as a by-product, also
see [84].

The first general global existence result (in the whole-space R
3 setting) was

proved by Antonelli and Marcati [4]. They use the fact that, without relax-
ation processes, the quantum hydrodynamic equations are formally equivalent
to a Schrödinger equation. Let (n, Jn, V ) be a solution of (83)-(85) with the
pressure p(n) = Tn replaced by p(n) = β−1

β+1n
β with β > 1. Then the evolution

problem can be decomposed into two parts, the relaxation-free quantum hydro-
dynamic problem and a relaxation problem without quantum hydrodynamics.
More precisely, let the initial data be given by n0 = |ψ0|2, J0 = −εIm(ψ0∇ψ0),
where ψ0 is a given wave function. At the first step k = 0, we solve the Cauchy
problem for the Schrödinger-Poisson system

iδ∂tψ = −δ
2

2
∆ψ + |ψ|β−1ψ − V ψ, λ2

D∆V = |ψ|2, ψ(·, 0) = ψ0 in R
3

on the time interval (tk−1, tk], where tk = k△t. The solution defines the particle
and current densities n := |ψ|2 and Jn := −εIm(ψ∇ψ). Then we solve the
differential equation

∂tJn = −Jn

τ
, t > tk, Jn(tk) given.

The function Jn is employed to update ψ, defined on (tk−1, tk], and to close the
loop. This procedure requires to decompose the wave function into its amplitude
and phase which may be undefined if the amplitude vanishes. Antonelli and
Marcati utilize the polar decomposition method developed by Brenier [19]. They
prove that for given ψ ∈ H1(R3), there exists φ ∈ L∞(R3) such that ψ =

√
nφ,

where
√
n = |ψ|2 ∈ H1(R3). Moreover Λ := −εIm(φ∇φ) is an element of

L2(R3). The weak solution of the quantum hydrodynamic system is defined via
(n,Λ) instead of (n, Jn). For smooth solutions, we have the relation Jn =

√
nΛ.

The main result reads as follows (Theorem 4 in [4]).

T h e o r e m 4.7 (Existence for the transient model). Let T > 0, C(x) =
0, ψ0 ∈ H1(R3), and n0 = |ψ0|2, J0 = −εIm(ψ0∇ψ0). Then there exists a
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weak solution (n,Λ, V ) of the quantum hydrodynamic equations (83)-(85) in
R

3 × (0, T ) such that
√
n ∈ L2

loc(0, T ;H1
loc(R

3)), Λ ∈ L2
loc(0, T ;L2

loc(R
3)),

and the energy is finite for almost every t > 0,
∫

R3

(ε2
6
|∇

√
n|2 +

1

2
|Λ|2 +

2

β + 1
n(β+1)/2 +

λ2
D

2
|∇V |2

)
dx <∞.

The current density is defined by Jn =
√
nΛ.

The quantum hydrodynamic model is related to the drift-diffusion equations
studied in Section 3. Indeed, when we replace t by t/τ and Jn by τJn in (83)-
(84), where τ is the momentum relaxation time, we have

τ∂tn− τ div Jn = 0,

τ2∂tJn − τ2 div
(Jn ⊗ Jn

n

)
− T∇n+ n∇V +

ε2

6
n∇
(∆

√
n√
n

)
= −Jn.

In the formal limit τ → 0, the limiting model becomes

∂tn− div Jn = 0, Jn = −ε
2

6
n∇
(∆

√
n√
n

)
+ T∇n− n∇V,

which equals the quantum drift-diffusion model. This limit was made rigorous
(with initial data close to the equilibrium) in [95].

In the semiclassical limit ε→ 0, the quantum hydrodynamic model reduces
to the hydrodynamic (or Euler) equations, see [130] for a result for the one-
dimensional initial-boundary value problem. The combined semiclassical and
zero-relaxation limit was studied in one space dimension [120] and in three
dimensions [119]. The limits can also be performed independently, see [146].
Finally, we mention the result for the quasineutral limit λD → 0 achieved in
[116].

The numerical approximation of the quantum hydrodynamic equations is
challenging due to the strong nonlinearity and dispersive effects in the quan-
tum term. Up to our knowledge, all available numerical schemes in the lit-
erature treat the one-dimensional equations only. Gardner [72] employed the
second-upwind finite-difference scheme originally designed for hyperbolic con-
servation laws. It was shown in [100] that this scheme introduces a numerical
viscosity whose order is even larger than the order of the grid size. Kendrick
[111] introduced artificial viscosity in his scheme to avoid numerical instabili-
ties due to large Bohm forces. Xin and Tang [145] observed a deviation of the
asymptotic transient solution from the stationary one, using a central finite-
difference scheme. Another strategy was employed by Lin et al. [122]. They con-
structed a third-order modified Osher-Chakravarthy (MOC) upwind-centered
finite-volume scheme for the conservation law to evaluate the convective terms
and a second-order central finite-volume scheme to map the quantum potential
field. Furthermore, a mixed/discontinuous Galerkin finite-element scheme was
developed by Michowski et al. [126] for applications in quantum chemistry.
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4.2.4 - Viscous equations

The first existence result for the viscous quantum hydrodynamic model

∂tn− div Jn = ν∆n,(96)

∂tJn − div
(Jn ⊗ Jn

n

)
−∇p(n) + n∇V +

ε2

6
n∇
(∆

√
n√
n

)

= −Jn

τ
+ ν∆Jn,(97)

λ2
D∆V = n− C(x),(98)

where p(n) = Tnβ (β ≥ 1, T > 0) is the pressure function, was proved in [78]. In
this work, the one-dimensional stationary equations with β = 1 were considered
in the interval (0, 1) with boundary conditions for n, nx at x ∈ {0, 1} and V
and Jn at x = 0. Notice that the current density is prescribed at one boundary
point but not the applied voltage V (1)− V (0). Given J(0), the applied voltage
can be computed from the solution to the above boundary-value problem. The
idea of the existence analysis is to differentiate the momentum equation such
that we obtain a nonlinear fourth-order equation. This strategy requires, as in
the stationary quantum hydrodynamic model (see Section 4.2.2), a “subsonic”-
type condition on the mean velocity. Due to the regularizing viscous terms, this
condition appears to be weaker than in the inviscid case ν = 0: if

0 < J(0) ≤ e−K

√
T +

ε2

6
+
ν

τ
,

then there exists a weak solution (n, Jn, V ) to (96)-(98) satisfying n ≥ e−K > 0
in (0, 1). Furthermore, if J(0) and ν2 + ε2 are sufficiently small, there exists a
unique solution. Later, the smallness condition on J(0) could be removed, and
existence of stationary solutions for all J(0) was shown in [100] (with different
boundary conditions than above).

Later, the transient model was examined by Chen and Dreher [34]. They
prove the local-in-time existence of solutions in the multidimensional torus and
the global-in-time existence of solutions in the one-dimensional torus T, with
β = 1. The latter result holds if the initial energy

E =

∫

T

(ε2
6
|∇

√
n|2 +

|Jn|2
2n

+ Tn(log n− 1) +
λ2

D

2
|∇V |2

)
dx

is sufficiently small. The proof is based on a regularization of the momentum
equation, by adding the bi-Laplacian ∆2Jn, and energy estimates. Indeed, it
holds formally that

(99)
dE

dt
+
νε2

3

∫

T

n|∇2 log n|2dx ≤ 0,

and the inequality (41) provides H2 estimates for
√
n. Related results, but with

different boundary conditions, were shown in [61]. By showing that the principal
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part of the viscous quantum system constitutes a parameter-elliptic operator in
the sense of Douglis-Nirenberg-Volevich, provided that the boundary conditions
satisfy the Shapiro-Lopatinskii criterion, the local-in-time well-posedness was
achieved in [35]. This paper, as well as the review [36], gives some insight into
the properties of the operator associated to the viscous quantum hydrodynamic
system.

Two years later, Gamba et al. [71] were able to eliminate the smallness con-
dition on the initial energy. They proved the global existence of weak solutions
on the one-dimensional torus T, which satisfy the momentum equation (97) in
a “renormalized solution” sense, i.e., the test functions are n3/2φ instead of φ.
This allows one to avoid possible vacuum regions n = 0. The proof exploits the
fact that the mass equation

∂tn+ div(nu) = ν∆n,

where nu = −Jn, is parabolic in n. Thus, if the mean velocity satisfies u ∈
L2

loc(0,∞;H1(T)), by the maximum principle, the particle density is strictly
positive if it is strictly positive initially. The problem is that there is no gradient
estimate for the velocity guaranteeing the L2

loc(0,∞;H1(T)) regularity. In [71],
therefore, a Faedo-Galerkin method is employed yielding smooth velocities and
positive particle densities. Since this method uses the embedding H1(T) →֒
L∞(T), it is restricted to the case of one space dimension only.

The global-in-time existence of the multidimensional problem on the torus
T

d was recently proved in [92]. As in the one-dimensional case, the H2 estimate
for

√
n (see (99)) is essential for the analysis. The existence proof employs the

Faedo-Galerkin method, following [71], together with a second regularization,
i.e. adding the term δ(∆u−u) to the momentum equation, where u = −Jn/n is
the mean velocity. This yields gradient estimates for u. By applying the results
of Feireisl [65], we conclude the positivity of the particle density. In order to
pass to the limit of vanishing approximation parameters, we prove compactness
of the sequence of approximate solutions by the energy estimate. The very
technical limit can be made rigorous only if we use n2φ as test functions. The
result reads as follows (see Theorem 1.1 in [92]).

T h e o r e m 4.8 (Existence for the viscous quantum hydrodynamic model).
Let d ≤ 3, V ∈ L∞(0,∞;L∞(Td)), p(n) = nβ with β > 3 if d = 3 and β ≥ 1 if
d ≤ 2, and let the initial energy be finite. Then there exists a weak solution to
(96)-(97) satisfying n ≥ 0 in T

d and

√
n ∈ L∞

loc(0,∞;H1(Td)) ∩ L2
loc(0,∞;H2(Td)),

nu ∈ L2
loc(0,∞;W 1,3/2(Td)), n|∇u| ∈ L2

loc(0,∞;L2(Td)).

The restriction β > 3 is needed to improve the uniform L3 bound for n
(obtained from the H1 bound for

√
n) to an Lβ bound. This property helps us

in the limit of vanishing approximation parameter δ → 0 to achieve a suitable
weak convergence result (see [92] for details).
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In the literature, some asymptotic limits were studied. In [78], the semiclassi-
cal limit ε→ 0 and the inviscid limit ν → 0 were proved in the one-dimensional
stationary problem. The quasineutral limit λD → 0 in the multidimensional
transient model was performed in [114] using modulated energy estimates. The
long-time behavior of solutions was analyzed in [34, 35, 79]. A related result can
be found in [121]; in this work, however, the third-order quantum term is re-
placed by its linear main part ∇∆n. Numerical results for the one-dimensional
equations were presented in [100] for the stationary equations and in [107] for
the transient equations.

5 - Quantum Navier-Stokes models

This section is devoted to the derivation of Navier-Stokes equations for quan-
tum fluids, starting from a Wigner-BGK equation. Compared to the previ-
ous section, the Chapman-Enskog expansion yields diffusive corrections to the
macroscopic equations.

5.1 - Derivation

The hydrodynamic equations can be derived from the kinetic Boltzmann
equation by a moment method, similar as in the quantum kinetic context of
Section 4.1. It is well known that the next order expansion, the so-called
Chapman-Enskog expansion, of the Boltzmann distribution function leads to
the Navier-Stokes equations. This idea was extended by Brull and Méhats
[24] to the quantum case with the aim to derive a quantum analogue of the
Navier-Stokes equations with constant temperature. Quantum Navier-Stokes
equations including the energy equation were derived in [103]. In the physi-
cal literature, quantum Navier-Stokes systems are typically motivated from the
classical Navier-Stokes model by using a chemical potential obtained from the
Thomas-Fermi-Dirac-Weizsäcker density functional theory (see, e.g., [138]).

We consider, following [103, 104], the Wigner-BGK equation in the hydro-
dynamic scaling

(100) α∂tw + α(p · ∇xw + θ[V ]w) = M [w] − w, (x, p) ∈ R
3 × R

3, t > 0,

where w(x, p, t) is the Wigner function in the phase-space variables (x, p) and
time t > 0, and α > 0 is the scaled mean free path (see Section 2.2). The
right-hand side of (100) describes a relaxation process towards the quantum
Maxwellian M [w] defined in Section 2.3. When scattering conserves mass, mo-
mentum, and energy, the quantum equilibrium is given by (see (19))

M [w] = Exp

(
A(x, t) − |p− v(x, t)|2

2T (x, t)

)
,

where A, v, and T are some Lagrange multipliers. The moment equations are
derived as in Section 4.1.2: we multiply (100) by 1, p, and |p|2/2, respectively,
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which leads to

∂t〈w〉 + divx〈pw〉 + 〈θ[V ]w〉 = 0,

∂t〈pw〉 + divx〈p⊗ pw〉 + 〈pθ[V ]w〉 = 0,

∂t〈 1
2 |p|

2w〉 + divx〈 1
2p|p|

2w〉 + 〈 1
2 |p|

2θ[V ]w〉 = 0,

where n = 〈w〉 is the particle density, Jn = −〈pw〉 the current density, and ne =
〈 1
2 |p|2w〉 is the energy density. The integrals involving the potential operator

can be computed using (68). It remains to compute the higher-order moments
〈p⊗ pw〉 and 〈 1

2p|p|2w〉.
The idea in Section 4.1.2 is to replace these moments by 〈p ⊗ pM [w]〉 and

〈 1
2p|p|2M [w]〉, which can be justified (formally) by a zero mean-free-path limit
α → 0, and by expanding the integrals in powers of ε2. Here, we follow a
different strategy. We introduce the Chapman-Enskog expansion

w = M [w] + αg

(this equation defines the function g), and we do not pass to the limit α → 0
but let α > 0 fixed. Furthermore, introducing as in Section 4.1.2 the quantum
stress tensor P and the quantum heat flux q by

P = 〈(p− u) ⊗ (p− u)M [w]〉, q = 〈 1
2 (p− u)|p− u|2M [w]〉,

where u = −Jn/n is the mean velocity, and employing the identities (68) and
(70), the above moment equations can be written as

∂tn+ divx(nu) = 0,

∂t(nu) + divx(P + nu⊗ u) − n∇xV = −α divx〈p⊗ pg〉,
∂t(ne) + divx

(
(P + neI)u

)
+ divx q − nu · ∇xV = −α divx〈 1

2p|p|
2g〉,

where I is the unit matrix in R
3×3. In order to calculate the moments of g,

we take advantage of the simple structure of the collision operator, allowing us
to specify g explicitly. Indeed, inserting the Wigner equation and Chapman–
Enskog expansion, we find that

g = −(M [w] − w)/α = −wt − p · ∇xw − θ[V ]w

= −(M [w] + αg)t − p · ∇x(M [w] + αg) − θ[V ](M [w] + αg)

= −M [w]t − p · ∇xM [w] − θ[V ]M [w] +O(α),

where O(α) contains terms of order α.
More explicit expressions are obtained by expanding the moments of M [w]

in powers of the squared scaled Planck constant ε2. The quantum stress tensor
and heat flux are expanded according to (78), assuming that the temperature
variations and vorticity are of order O(ε4). Moreover, a tedious computation,
detailed in [103], shows that

−α divx〈p⊗ pg〉 = α divx S, −α divx〈 1
2p|p|

2g〉 = α divx(Su) +
5

2
nT∇xT,
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where S = 2nTD(u)− 2
3nT divx u I +O(ε2 +α) can be interpreted as a viscous

stress tensor. Here, D(u) = (∇xu+∇xu
⊤)/2. The term 5

2nT∇xT is the Fourier
heat term, and it adds to the quantum heat flux. This shows the following result
[103].

T h e o r e m 5.1 (Quantum Navier-Stokes model). Assume that (∇u −
∇u⊤)/2 = O(ε2) and ∇ log T = O(ε2). Then, up to terms of order O(α2 +
αε2 + ε4), the moment equations of the Wigner equation read as

∂tn+ div(nu) = 0,(101)

∂t(nu) + div(nu⊗ u) + ∇(nT ) − ε2

12
div(n∇2 log n) − n∇V = α divS,(102)

(ne)t + div
(
(ne+ nT )u

)
− ε2

12
div
(
n(∇2 log n)u

)
+ div q

− nu · ∇V = α div(Su),

where the quantum heat flux and viscous stress tensor are given by, respectively,

q =
ε2

24
n(∆u+ 2∇div u) +

5

2
nT∇T, S = 2nTD(u) − 2

3
nT div u I.

The energy density ne is given by (78).

When the collisions conserve mass and momentum only, the quantum equi-
librium becomes M [w] = Exp(A − |p − v|2/2). In this situation, a Chapman-
Enskog expansion has been carried out by Brull and Méhats [24]. They obtain
equations (101)-(102) with T = 1 and S = 2nD(u).

5.2 - Analysis

System (101)-(102) with constant temperature T = 1 possesses a surprising
property which has been exploited in [92] to prove the existence of global weak
solutions. More precisely, we consider the system

∂tn+ div(nu) = 0, x ∈ T
d, t > 0,(103)

∂t(nu) + div(nu⊗ u) + ∇p(n) − ε2

6
n∇

(
∆
√
n√
n

)
− n∇V(104)

= 2α div(nD(u)),

n(·, 0) = n0, (nu)(·, 0) = n0u0 in T
d,(105)

where T
d is the d-dimensional torus (d ≤ 3). The function p(n) = nβ with

β > 1 is the pressure. Compared to (102), the quantum term is reformulated
using the multidimensional analogue of (88),

div(n∇2 log n) = 2n∇
(∆

√
n√
n

)
.
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In the treatment of (103)-(105), we need to overcome several mathematical
difficulties. Besides the lack of maximum principle due to the third-order dif-
ferential term, another problem is the density-dependent viscosity µ(n) = αn
which degenerates at vacuum. In fact, most results for the Navier-Stokes equa-
tions in the literature are valid for constant viscosities µ(n) = α only, since this
enables one to derive H1 estimates for the velocity. Recently, some works were
concerned with density-dependent viscosities, see, e.g., [21, 115] and references
therein.

A third problem is the lack of suitable a priori estimates. Indeed, let us
define the energy of (103)-(104) by the sum of the kinetic, internal, and quantum
energy (compare to (82), which also includes the electric energy)

(106) Eε2(n, u) =

∫

Td

(n
2
|u|2 +H(n) +

ε2

6
|∇

√
n|2
)
dx,

where H(n) = nβ/(β − 1) if β > 1 and H(n) = n(log n− 1) if β = 1. A formal
computation shows that, without electric field ∇V = 0,

dEε2

dt
(n, u) + α

∫

Td

n|D(u)|2dx = 0.

This provides an H1 estimate for
√
n, but this seems to be insufficient to ob-

tain compactness for (an approximate sequence of) ∇√
n needed to define the

quantum term in a weak or distributional sense.
Our main idea to solve these problems is to transform the quantum Navier-

Stokes system by means of the so-called “osmotic velocity”

(107) w = u+ α∇ log n,

The term α∇ log n has been called in [82] the “kinematical quasivelocity”. It
also appears in the derivation of the quantum hydrodynamic model from the
mixed-state Schrödinger system; see Theorem 4.1. A computation shows [92]
that the system (103)-(105) can be equivalently written as the viscous quantum
hydrodynamic equations

∂tn+ div(nw) = α∆n,(108)

∂t(nw) + div(nw ⊗ w) + ∇p(n) − ε0
6
n∇

(
∆
√
n√
n

)
− n∇V = α∆(nw),(109)

n(·, 0) = n0, (nw)(·, 0) = n0w0 in T
d,(110)

where w0 = u0 + α∇ log n0 and ε0 = ε2 − 12α2. This formulation has two ad-
vantages. The first advantage is that it allows for an additional energy estimate
if ε2 > 12α2. Indeed, if ∇V = 0, we compute

(111)
dEε0

dt
(n,w) + α

∫

Td

(
n|∇w|2 +H ′(n)|∇n|2 +

ε0
12
n|∇2 log n|2

)
dx = 0.

Inequality (41) provides an L2
loc(0,∞;H2(Td)) bound for

√
n. This estimate is

the key argument of the global existence analysis. The second advantage is that
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we can apply the maximum principle to the parabolic equation (108) to deduce
strict positivity of the density n if n0 is strictly positive and the velocity w is
smooth.

Interestingly, the “osmotic velocity” (107) has been used in related models.
First, Bresch and Desjardins employed it to derive new entropy estimates for
viscous Korteweg-type and shallow-water equations [22]. Brenner [20] suggested
the modified Navier-Stokes model

∂tn+ div(nw) = 0, ∂t(nu) + div(nu⊗ w) + ∇p(n) = div S.

The variables u and w are interpreted as the volume and mass velocities, respec-
tively, and they are related by the constitutive equation u−w = α∇ log n with a
phenomenological constant α > 0. The variable nw = nu+ α∇n was employed
in [100] to prove the existence of solutions of the one-dimensional stationary
viscous quantum Euler problem with physical boundary conditions (see Section
4.2.4).

According to the above equivalence, the existence of solutions of the quantum
Navier-Stokes equations (103)-(104) is a consequence of the existence analysis
for the viscous quantum hydrodynamic system presented in Section 4.2.4. The
result reads as follows (see Corollary 1.2 in [92]).

T h e o r e m 5.2 (Existence for the quantum Navier-Stokes model). Let
d ≤ 3, p(n) = nβ with β > 3 if d = 3 and β ≥ 1 if d ≤ 2, ∇V ∈ L∞(0,∞;
L∞(Td)), and (n0, u0) is such that n0 ≥ 0 and Eε2(n0, u0 +α∇ log n0) is finite.
Then there exists a weak solution (n, u) of (103)-(105) with the regularity

√
n ∈ L∞

loc(0,∞;H1(Td)) ∩ L2
loc(0,∞;H2(Td)), n ≥ 0 in T

d,

nu ∈ L2
loc(0,∞;W 1,3/2(Td)), n|∇u| ∈ L2

loc(0,∞;L2(Td)).

The weak formulation of the momentum equation (104) is defined similarly
as for the viscous model using test functions n2φ instead of φ. Theorem 5.2 is
proved in [92] for the case ε2 > 12α2 or, equivalently, ε0 > 0. This condition
is necessary to obtain H2 bounds for

√
n via the viscous quantum Euler model

from the new energy estimate (111). In the case ε2 ≤ 12α2, we loose the H2

control on
√
n.

The limiting case ε2 = 12α2 has been treated recently by Dong [60]. Indeed,
using (an approximation of) the test function ∆

√
n/

√
n in (108) leads to

(112)
d

dt

∫

Td

|∇
√
n|2dx+

α

4

∫

T3

n|∇2 log n|2dx ≤ 1

4α

∫

T3

n|∇w|2dx.

In view of the energy inequality (111), the right-hand side is uniformly bounded.
By (41), this shows the desired H2 bound for

√
n. Jiang and Jiang [85] have

combined the inequalities (111) and (112) to treat the remaining case ε2 < 12α2.
Let ε0 = ε2 − 12α2 < 0 and define

F (n,w) =

∫

Td

(n
2
|w|2 +H(n) − ε0

6
|∇

√
n|2
)
dx ≥ 0.
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Then we use (111) and (112) to conclude

dF

dt
=
dEε0

dt
− ε0

3

d

dt

∫

Td

|∇
√
n|2dx

≤ −α
∫

Td

( 1

12α2
(12α2 + ε0)n|∇w|2 +H ′(n)|∇n|2

)
dx ≤ 0.

Since 12α2 + ε0 = ε2 > 0, we obtain an L2 estimate for
√
n|∇w|. Going back to

(112), we see that the right-hand side is bounded, which provides an L2 bound
for

√
n|∇2 log n| and hence, by (41), the desired H2 bound for

√
n.

Finally, we remark that numerical results for the isothermal quantum Navier-
Stokes model (103)-(104) or the full quantum Navier-Stokes model (101)-(102)
have been presented in [103].
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and quantum energy transport models Commun. Math. Sci. 5 (2007),
pp. 887–908.
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[69] I. Gamba and A. Jüngel, Positive solutions to singular second and third
order differential equations for quantum fluids, Arch. Ration. Mech. Anal.
156 (2001), pp. 183–203.
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[76] U. Gianazza, G. Savaré, and G. Toscani, The Wasserstein gradient
flow of the Fisher information and the quantum drift-diffusion equation,
Arch. Ration. Mech. Anal. 194 (2009), pp. 133–220.

64



[77] H. Grubin and J. Kreskovsky, Quantum moment balance equations
and resonant tunneling structures, Solid-State Electr. 32 (1989), pp. 1071–
1075.
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[94] A. Jüngel and H.-L. Li, Quantum Euler-Poisson systems: global exis-
tence and exponential decay, Quart. Appl. Math. 62 (2004), pp. 569–600.
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