
EXPONENTIAL TIME DECAY OF SOLUTIONS
TO REACTION-CROSS-DIFFUSION SYSTEMS

OF MAXWELL–STEFAN TYPE

ESTHER S. DAUS, ANSGAR JÜNGEL, AND BAO QUOC TANG

Abstract. The large-time asymptotics of weak solutions to Maxwell–Stefan diffusion
systems for chemically reacting fluids with different molar masses and reversible reactions
are investigated. The diffusion matrix of the system is generally neither symmetric nor
positive definite, but the equations admit a formal gradient-flow structure which provides
entropy (free energy) estimates. The main result is the exponential decay to the unique
equilibrium with a rate that is constructive up to a finite-dimensional inequality. The
key elements of the proof are the existence of a unique detailed-balanced equilibrium and
the derivation of an inequality relating the entropy and the entropy production. The
main difficulty comes from the fact that the reactions are represented by molar fractions
while the conservation laws hold for the concentrations. The idea is to enlarge the space
of n partial concentrations by adding the total concentration, viewed as an independent
variable, thus working with n ` 1 variables. Further results concern the existence of
global bounded weak solutions to the parabolic system and an extension of the results to
complex-balanced systems.
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1. Introduction

The analysis of the large-time behavior of dynamical networks is important to understand
their stability properties. Of particular interest are reversible chemical reactions interacting
with diffusion. While there is a vast literature on the large-time asymptotics of reaction-
diffusion systems, much less results are available for reaction systems with cross-diffusion
terms. Such systems arise naturally in multicomponent fluid modeling and population
dynamics [32]. In this paper, we prove the exponential decay of solutions to reaction-cross-
diffusion systems of Maxwell–Stefan form by combining recent techniques for cross-diffusion
systems [31] and reaction-diffusion equations [20]. The main feature of our result is that
the decay rate is constructive up to a finite-dimensional inequality and that the result holds
for detailed-balanced or complex-balanced systems.

1.1. Model equations. We consider a fluid consisting of n constituents Ai with mass
densities ρipz, tq and molar masses Mi, which are diffusing according to the diffusive fluxes
jipz, tq and reacting in the following reversible reactions,

αa1A1 ` ¨ ¨ ¨ ` α
a
nAn è βa1A1 ` ¨ ¨ ¨ ` β

a
nAn for a “ 1, . . . , N,

where αai and βai are the stoichiometric coefficients. The evolution of the fluid is assumed
to be governed by partial mass balances with Maxwell–Stefan relations for the diffusive
fluxes,

(1) Btρi ` div ji “ ripxq, ∇xi “ ´
n
ÿ

j“1

ρjji ´ ρijj
c2MiMjDij

, i “ 1, . . . , n,

where xi “ ci{c are the molar fractions, ci “ ρi{Mi the partial concentrations, Mi the
molar masses, c “

řn
i“1 ci the total concentration, and Dij “ Dji ą 0 are the diffusivities.

The physical quantities are summarized in Table 1. The reactions are described by the
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mass production terms ri depending on x “ px1, . . . , xnq using mass-action kinetics,

(2) ripxq “Mi

N
ÿ

a“1

pβai ´ α
a
i qpk

a
fx

αa

´ kabx
βa

q with xα
a

:“
n
ź

i“1

x
αa
i
i ,

where kaf ą 0 and kab ą 0 are the forward and backward reaction rate constants, respec-
tively, and αa “ pαa1, . . . , α

a
nq and βa “ pβa1 , . . . , β

a
nq with αai , β

a
i P t0u Y r1,8q are the

vectors of the stoichiometric coefficients.

ρi : partial mass density of the ith species

ρ “
řn
i“1 ρi : total mass density

ji : partial particle flux of the ith species

Mi : molar mass of the ith species

ci “ ρi{Mi : partial concentration of the ith species

c “
řn
i“1 ci : total concentration

xi “ ci{c : molar fraction

Table 1. Overview of the physical quantities.

Equations (1) are solved in the bounded domain Ω Ă Rd (d ě 1) subject to the no-flux
boundary and initial conditions

(3) ji ¨ ν “ 0 on BΩ, ρip¨, 0q “ ρ0
i in Ω, i “ 1, . . . , n.

To simplify, we assume that Ω has unit measure, i.e. |Ω| “ 1.
System (1)-(2) models a multicomponent fluid in an isothermal regime with vanishing

barycentric velocity. Equations (1) for ∇xi can be derived from the Boltzmann equations
for mixtures in the diffusive limit and with well-prepared initial conditions [6, 29, 30] or
from the reduced force balances with the partial momentum productions being proportional
to the partial velocity differences [4, Section 14].

We assume that the total mass is conserved and that the mixture is at rest, i.e.,
řn
i“1 ρi “

1 and
řn
i“1 ji “ 0. This implies that

(4)
n
ÿ

i“1

ripxq “ 0 for all x “ px1, . . . , xnq P Rn
`,

where R` “ p0,8q. Furthermore, we assume that the system of reactions satisfies a
detailed-balanced condition, meaning that there exists a positive homogeneous equilibrium
x8 P Rn

` such that

(5) kafx
αa

8 “ kabx
βa

8 for all a “ 1, . . . , N.

Roughly speaking, a system is under detailed balance if any forward reaction is balanced
by the corresponding backward reaction at equilibrium. Condition (5) does not give a
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unique but instead a manifold of detailed-balanced equilibria,

(6) E “
 

x8 P Rn
` : kafx

αa

8 “ kabx
βa

8 for all a “ 1, . . . , N
(

.

To uniquely identify the detailed-balanced equilibrium, we need to take into account the
conservation laws (meaning that certain linear combinations of the concentrations are
constant in time). This is discussed in detail below. We are also able to consider complex-
balanced systems; see Section 5.

The aim of this paper is to prove that under these conditions, there exists a unique
positive detailed-balanced (or complex-balanced) equilibrium x8 “ px18, . . . , xn8q P Rn

`

such that
n
ÿ

i“1

}xiptq ´ xi8}LppΩq ď Cpx0,x8qe
´λt{p2pq, t ą 0, p ě 1,

where x0 “ xp0q and the constant λ ą 0 is constructive up to a finite-dimensional inequal-
ity. Before we make this result precise, we review the state of the art and explain the main
difficulties and key ideas.

1.2. State of the art. The research of the large-time asymptotics of general reaction-
diffusion systems with diagonal diffusion, modeling chemical reactions, has experienced a
dramatic scientific progress in recent years. One reason for this progress is due to new
developments of so-called entropy methods. Classical methods include linearized stability
techniques, spectral theory, invariant region arguments, and Lyapunov stability; see, e.g.,
[10, 21]. The entropy method is a genuinely nonlinear approach without using any kind of
linearization, it is rather robust against model variations, and it is able to provide explicitly
computable decay rates. The first related works date back to the 1980s [24, 25]. The ob-
tained results are restricted to two space dimensions and do not provide explicit estimates,
since the proofs are based on contradiction arguments. First applications of the entropy
method that provide explicit rates and constants were concerned with particular cases,
like two-component systems [12], four-component systems [14], or multicomponent linear
systems [15]. Later, nonlinear reaction networks with an arbitrary number of chemical sub-
stances were considered [19, 35]. Exponential convergence of close-to-equilibrium solutions
to quadratic reaction-diffusion systems with detailed balance was shown in [7]. Reaction-
diffusion systems without detailed balance [18] and with complex balance [13, 36, 42] were
also thoroughly investigated. The convergence to equilibrium was proven for rather general
solution concepts, like very weak solutions [38] and renormalized solutions [20].

The large-time behavior of solutions to cross-diffusion systems is less studied in the liter-
ature. The convergence to equilibrium was shown for the Shigesada–Kawasaki–Teramoto
population model with Lotka–Volterra terms in [40, 44] without any rate and in [8] without
reaction terms. The exponential decay of solutions to volume-filling population systems,
again without reaction terms, was proved in [45].

A number of articles is concerned with the large-time asymptotics in Maxwell–Stefan
systems. For global existence results on these systems, we refer to [26, 33, 34]. In [33],
the exponential decay to the homogeneous state state is shown with vanishing reaction
rates and same molar masses. The result was generalized to different molar masses in
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[9], but still without reaction terms. The convergence to equilibrium was proved in [22,
Theorem 9.7.4] and [26, Theorem 4.3] under the condition that the initial datum is close
to the equilibrium state. The work [26] also addresses the exponential convergence to a
homogeneous equilibrium assuming (i) global existence of strong solutions and (ii) uniform-
in-time strict positivity of the solutions (see Prop. 4.4 therein). A similar result, but for two-
phase systems, was proved in [5]. The novelty in our paper is that we provide also a global
existence proof (which avoids assumption (i)) and that we replace the strong assumption
(ii) by a natural condition on the reactions, namely that there exist no equilibria on BRn

`.
We note that there exists a large class of chemical reaction networks, called concordant
networks, which possess no boundary equilibria [41, Theorem 2.8(ii)].

1.3. Key ideas. The analysis of the Maxwell–Stefan equations (1) is rather delicate. The
first difficulty is that the fluxes are not given as linear combinations of the gradients of
the mass fractions, which makes it necessary to invert the flux-gradient relations in (1).
However, summing the equations for ∇xi in (1) for i “ 1, . . . , n, we see that the Maxwell–
Stefan equations are linear dependent, and we need to invert them on a subspace [3]. The
idea is to work with the n ´ 1 variables ρ1 “ pρ1, . . . , ρn´1q

J by setting ρn “ 1 ´
řn´1
i“1 ρi,

i.e., the mass density of the last component (often the solvent) is computed from the other
mass densities. Then there exists a diffusion matrix Apρ1q P Rpn´1qˆpn´1q such that system
(1) can be written as

(7) Btρ
1
´ divpApρ1q∇x1q “ r1pxq,

where x1 “ px1, . . . , xn´1q
J and r1 “ pr1, . . . , rn´1q

J. The matrix Apρ1q is generally neither
symmetric nor positive definite. However, equations (7) exhibit a formal gradient-flow
structure [33]. This means the following: We introduce the so-called (relative) entropy
density

(8) hpρ1q “ c
n
ÿ

i“1

xi ln
xi
xi8

, where ρn “ 1´
n´1
ÿ

i“1

ρi,

and the entropy variable w “ pw1, . . . , wn´1q
J with wi “ Bh{Bρi. Here, x8 P E is an

arbitrary detailed-balanced equilibrium. We associate to the entropy density the relative
entropy (or free energy)

(9) Erx|x8s “

ż

Ω

hpρ1qdz “
n
ÿ

i“1

ż

Ω

cxi ln
xi
xi8

dz.

Denoting by h2pρ1q the Hessian of h with respect to ρ1, equation (7) is equivalent to

(10) Btρ
1
´ divpBpwq∇wq “ r1pxq,

where Bpwq “ Apρ1qh2pρ1q´1 is symmetric and positive definite [9, Lemma 10 (iv)] and
ρ1 and x are functions of w. The elliptic operator can be formulated as K gradhpρ1q,
where Kξ “ divpB∇ξq is the Onsager operator and grad is the functional derivative. This
formulation motivates the notion “gradient-flow structure”.
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The second difficulty comes from the fact that the cross-diffusion coupling prevents the
use of standard tools like maximum principles and regularity theory. In particular, it is
not clear how to prove lower and upper bounds for the mass densities or molar fractions.
Surprisingly, this problem can be also solved by the transformation to entropy variables.
Indeed, the mapping p0, 1qn´1 Ñ Rn´1, ρ1 ÞÑ w, can be inverted, and the image ρ1pwq
lies in p0, 1qn´1 and satisfies 1 ´

řn´1
i“1 ρi ă 1. If all molar masses are equal, M “ Mi, the

inverse function can be written explicitly as ρipwq “ exppMwiqp1 `
řn´1
j“1 exppMwjqq

´1;
for the general case see Lemma 4 below. This yields the positivity and L8 bounds for ρi
without the use of a maximum principle. To make this argument rigorous, we first need
to solve (10) for w and then to conclude that ρ1 “ ρ1pwq solves (1).

Summarizing, the entropy helps us to “symmetrize” system (1) and to derive L8 bounds.
There is a further benefit: The entropy is a Lyapunov functional along solutions to the
detailed-balanced system (1). Indeed, a formal computation shows the following relation
(a weaker discrete version is made rigorous in the proof of Theorem 3),

(11)
d

dt
Erx|x8s `Drxs “ 0, t ą 0,

where the entropy production

(12) Drxs “
n´1
ÿ

i,j“1

ż

Ω

Bijpwq∇wi ¨∇wjdz `
N
ÿ

a“1

ż

Ω

pkafx
αa

´ kabx
βa

q ln
kafx

αa

kabx
βa dz

is nonnegative (due to Lemmas 5 and 6). Here, Bij are the coefficients of the matrix B.
Exponential decay follows if the entropy entropy-production inequality

(13) Drxs ě λErx|x8s

holds for all suitable functions x and for some λ ą 0. Note that this functional inequality
does not hold for all detailed-balanced equilibria, but only for those who satisfy certain
conservation laws. The existence and uniqueness of such equilibria is proved in Theorem
10. Inserting inequality (13) into (11) yields

d

dt
Erx|x8s ` λErx|x8s ď 0, t ą 0,

and Gronwall’s inequality allows us to conclude that

Erxptq|x8s ď Erxp0q|x8se
´λt, t ą 0.

By a variant of the Csiszár–Kullback–Pinsker inequality (Lemma 17), this gives exponential
decay in the L1 norm with rate λ{2 and, by interpolation, in the Lp norm with rate λ{p2pq
for all 1 ď p ă 8. An important feature of this result is that the constant λ is constructive
up to a finite-dimensional inequality.

The cornerstone of the convergence to equilibrium is to prove inequality (13). In com-
parison to previous results for reaction-diffusion systems, e.g. [19, 35], the difference here is
that the reactions are defined in terms of molar fractions, while the conservation laws are
written in terms of concentrations. This difference causes the main difficulty in proving
(13), except in very special cases, e.g., when all molar masses are equal (in this case, the
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molar fraction and concentration are proportional) or in case of equal homogeneities (see
Section 3.4). Naturally, one could express the molar fractions by the concentrations, i.e.
xi “ ci{p

řn
i“1 ciq, but this extremely complicates the formulation of the entropy produc-

tion Drxs, which in turn makes the analysis of (13) inaccessible. The key idea here is to
introduce the total concentration c “

řn
i“1 ci as an independent variable and to rewrite

Drxs in terms of xi “ ci{c. This, in combination with an estimate for Erx|x8s in terms
of ci and c, allows us to adapt the ideas from previous works on reaction-diffusion systems
to finally obtain the desired inequality (13).

1.4. Main results. Our main result is the exponential convergence to equilibrium. For
this, we need to show some intermediate results. The existence of solutions to (1), (3) was
shown in [9] without reaction terms. Therefore, we prove the global existence of bounded
weak solutions to (1), (3) with reaction terms (2). The proof follows that one in [9] but
the estimates related to the reaction terms are different. A key step is the proof of the
monotonicity of w ÞÑ

řn´1
i“1 ripxq; see Lemma 6.

Second, we derive the conservation laws satisfied by the solutions to (1) (Lemma 8) and
prove the existence of a positive detailed-balanced equilibrium x8 satisfying (5) and the
conservation laws (Theorem 10). The existence of unique equilibrium states for chemical
reaction networks is well studied in the literature (see, e.g., [16]), but not in the present
framework. One difficulty is the additional constraint

řn
i“1 xi “ 1, which significantly

complicates the analysis. The key idea for the existence of a unique detailed-balanced
equilibrium is to analyze systems in the partial concentrations c1, . . . , cn and the total
concentration c, considered as an independent variable. The increase of the dimension of
the system from n to n`1 allows us to apply geometric arguments and a result of Feinberg
[16] to achieve the claim.

Third, we prove the entropy entropy-production inequality (13) (Prop. 18 and 25). The
proof follows basically from [20, Lemma 2.7] when the stoichiometric coefficients satisfy
řn
i“1 α

a
i “

řn
i“1 β

a
i for all a “ 1, . . . , N , since this property allows us to replace the mo-

lar fractions xi by the concentrations ci. If the property is not fulfilled, we work again
in the augmented space of concentrations pc1, . . . , cn, cq. One step of the proof (Lemma
21) requires the proof of an inequality whose constant is constructive only up to a finite-
dimensional inequality. We believe that for concrete systems, this constant can be com-
puted in a constructive way. We present such an example in Section 4.

Before stating the main theorem, we need some notation. Let

W “ pβa ´αaqa“1,...,N P RnˆN ,

be the Wegscheider matrix (or stoichiometric coefficients matrix) and set m “ dim kerpWJq

ą 0. We choose a matrix Q P Rmˆn whose rows form a basis of kerpWJq. Let M 0 P Rm
`

be the initial mass vector, which depends on c0 (see Lemma 8) and let ζ P R1ˆm be a
row vector satisyfing ζQ “ pM1, . . . ,Mnq and ζM 0 “ 1. We show in Lemma 9 that such
a vector ζ always exists. Its appearance comes from the constraint

řn
i“1 xi “ 1; such a

vector is not needed in reaction-diffusion systems like in [20]. Given M 0 P Rm
` such that

ζM 0 “ 1, we prove in Section 3.2 that there exists a unique positive detailed-balanced
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equilibrium x8 P E satisfying

(14) Qc8 “M 0,
n
ÿ

i“1

xi8 “ 1,

where the components of c8 are given by ci8 “ xi8{
řn
i“1Mixi8. The first expression in

(14) are the conservation laws, while the second one is the normalization condition.
Note that besides the unique positive detailed-balanced equilibrium (for a fixed initial

mass vector), there could exist possibly infinitely many boundary equilibria, i.e. x˚ P BE
such that x˚ solves (14). We need to exclude such equilibria. For a discussion of boundary
equilibria and the Global Attractor Conjecture, we refer to Remark 14.

(A1) Data: Ω Ă Rd with d ě 1 is a bounded domain with Lipschitz boundary, T ą 0,
and Dij “ Dji ą 0 for i, j “ 1, . . . , n, i ‰ j.

(A2) Detailed-balance condition: E ‰ H, where E is defined in (6).
(A3) Initial condition: ρ0 P L1pΩ;Rnq with ρ0

i ě 0,
řn
i“1 ρ

0
i “ 1, and the initial entropy

is finite,
ş

Ω
hpρ01qdz ă 8, where h is defined in (8) with some x8 P E .

The main result is as follows.

Theorem 1 (Convergence to equilibrium). Let Assumptions (A1)-(A3) hold. Let M 0 P

Rm
` be a positive initial mass vector satisfying ζM 0 “ 1. Then
(i) There exists a global bounded weak solution ρ “ pρ1, . . . , ρnq

J to (1)-(2) in the sense
of Theorem 3 below.

(ii) There exists a unique x8 P E satisfying (14), where the set of equilibria E is defined
in (6).

(iii) Assume in addition that the system (1)-(2) has no boundary equilibria. Then there
exist constants C ą 0 and λ ą 0, which are constructive up to a finite-dimensional in-
equality, such that, if ρ0 satisfies additionally Q

ş

Ω
c0dz “ M 0, the following exponential

convergence to equilibrium holds:

n
ÿ

i“1

}xiptq ´ xi8}LppΩq ď Ce´λt{p2pq
`

Erx0
|x8s

˘1{p2pq
, t ą 0,

where 1 ď p ă 8, xi “ ρi{pcMiq with c “
řn
i“1 ρi{Mi, Erx|x8s is the relative entropy

defined in (9), ρ is the solution constructed in (i), and x8 is constructed in (ii).

Remark 2 (Complex balance). We show in Theorem 10 that system (1) with the reaction
terms (2) possesses a unique positive detailed-balance equilibrium. This means that we
have assumed the reversibility of the reaction system. This assumption is rather strong, and
it is well known in chemical reaction network theory that it can be significantly generalized
to complex-balanced systems. Here, the balance is not assumed to hold for any elementary
reaction step but only for the total in-flow and total out-flow of each chemical complex.
We are able to extend our results to this situation as well, considering the reaction terms
(54); see Theorem 32 in Section 5.
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Clearly, any detailed-balanced equilibrium is also a complex-balanced equilibrium, and
Theorem 1 is included in Theorem 32. However, to make the proofs as accessible as possible,
we prefer to present the detailed-balanced case in full detail and sketch the extension to
complex-balanced systems. �

The paper is organized as follows. Part (i) of Theorem 1 is proved in Section 2. In Section
3, the conservation laws are derived, the existence of a detailed-balanced equilibrium and
the entropy entropy-production inequality (13) are proved, and the convergence result is
shown. Section 4 is concerned with a specific example for which the constant in the entropy
entropy-production inequality can be computed explicitly. The results are extended to
complex-balanced systems in Section 5. Finally, we prove the technical Lemma 20 in the
appendix.

1.5. Notation. We use the following notation:

‚ Bold letters indicate vectors in Rn (e.g. c “ pc1, . . . , cnq
J).

‚ Normal letters denote the sum of all the components of the corresponding letter in
bold font (e.g. c “

řn
i“1 ci).

‚ Primed bold letters signify that the last component is removed from the original
vector (e.g. c1 “ pc1, . . . , cn´1q

J).
‚ Overlined letters usually denote integration over Ω (e.g. c “

ş

Ω
cdz or ci “

ş

Ω
cidz).

‚ If f : RÑ R is a function and c P Rn a vector, the expression fpcq denotes the vector
pfpc1q, . . . , fpcnqq

J.
‚ Let x, α P p0,8qn. The expression xα equals the product

śn
i“1 x

αi
i .

‚ Matrices are generally denoted by double-barred capital letters (e.g. A P Rmˆn).

The inner product in Rn is denoted by x¨, ¨y, |Ω| is the measure of Ω, and we set R` “
p0,8q. In the estimates, C ą 0 denotes a generic constant with values changing from line
to line.

2. Global existence of weak solutions

We prove part (i) of Theorem 1. Throughout this section, we fix an arbitrary detailed-
balanced equilibrium x8 P E . Due to (A2), such a vector x8 always exists. The existence
result is stated more precisely in the following theorem.

Theorem 3 (Global existence). Let Assumptions (A1)-(A3) hold. Then there exists a
bounded weak solution ρ “ pρ1, . . . , ρnq

J to (1)-(3) satisfying ρi ě 0,
řn
i“1 ρi “ 1 in

Ωˆ p0, T q and

ρi P L
2
p0, T ;H1

pΩqq, Btρi P L
2
p0, T ;H1

pΩq1q, i “ 1, . . . , n,

i.e., for all q1, . . . , qn´1 P L
2p0, T ;H1pΩqq,

(15)
n´1
ÿ

i“1

ż T

0

xBtρi, qiydt`
n´1
ÿ

i,j“1

ż T

0

ż

Ω

Aijpρ
1
q∇xi ¨∇qjdzdt “

n´1
ÿ

i“1

ż T

0

ż

Ω

ripxqqidzdt,

where x “ px1, . . . , xnq
J, xi “ ρi{pcMiq for i “ 1, . . . , n ´ 1, xn “ 1 ´

řn´1
i“1 xi, c “

řn
i“1 ρi{Mi, and A “ pAijq is the diffusion matrix in (7).
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The proof is similar to that one given in [9]. Since in that paper, no reaction terms have
been considered, we need to show how these terms can be controlled. First, we collect
some results.

2.1. Preliminary results. A straightforward computation (see [9, Lemma 5]) shows that
the entropy variables are given by

(16) wi “
Bh

Bρi
“

1

Mi

ln
xi
xi8

´
1

Mn

ln
xn
xn8

, i “ 1, . . . , n´ 1,

recalling h defined in (8). Given ρ1 “ pρ1, . . . , ρn´1q
J, this formula and the relation xi “

ρi{pcMiq allow us to compute w “ pw1, . . . , wn´1q
J. The following lemma states that the

mapping ρ1 ÞÑ w can be inverted.

Lemma 4. Let w “ pw1, . . . , wn´1q
J P Rn´1 be given. Then there exists a unique vector

ρ1 “ pρ1, . . . , ρn´1q
J P p0, 1qn´1 satisfying

řn´1
i“1 ρi ă 1 such that (16) holds with ρn “

1 ´
řn´1
i“1 ρi ą 0, xi “ ρi{pcMiq and c “

řn
i“1 ρi{Mi. Moreover, the function ρ1 : Rn´1 Ñ

p0, 1qn´1, pw1, . . . , wn´1q
J ÞÑ ρ1pwq “ pρ1, . . . , ρn´1q

J is bounded.

Proof. First, we show that there exists a unique vector px1, . . . , xn´1q
J P p0, 1qn´1 satisfying

(16) with xn “ 1´
řn´1
i“1 xi ą 0 (see [9, Lemma 6]). Let zi :“ xi8{x

Mi{Mn
n8 . The function

fpsq “
n´1
ÿ

i“1

zip1´ sq
Mi{Mn exppMiwiq

is strictly decreasing in r0, 1s and 0 “ fp1q ă fpsq ă fp0q “
řn´1
i“1 exppMiwiqzi. Thus,

there exists a unique fixed point s0 P p0, 1q such that fps0q “ s0. Defining xi “ zip1 ´
s0q

Mi{Mn exppMiwiq for i “ 1, . . . , n ´ 1, we infer that xi ą 0,
řn´1
i“1 xi “ fps0q “ s0 ă 1,

and (16) holds with xn :“ 1´ s0.
Next, let px1, . . . , xn´1q

J P p0, 1qn´1 and xn :“ 1 ´
řn´1
i“1 xi ą 0 be given and define

ρi “ cMixi, where c “ 1{p
řn
i“1Mixiq. Then pρ1, . . . , ρn´1q

J P p0, 1qn´1 is the unique vector

satisfying ρn “ 1´
řn´1
i“1 ρi ą 0, xi “ ρi{pcMiq for i “ 1, . . . , n´ 1, and c “

řn
i“1 ρi{Mi [9,

Lemma 7]. Finally, the result follows by combining the previous steps. �

Lemma 5. Let w P H1pΩ;Rn´1q. Then there exists a constant CB ą 0, which only depends
on Dij and Mi, such that

ż

Ω

∇w : Bpwq∇wdz ě CB

n
ÿ

i“1

ż

Ω

|∇x1{2
i |

2dz,

where “:” means summation over both matrix indices.

We recall that Bpwq “ Apρ1qh2pρ1q´1 and h2 is the Hessian of the entropy h defined in
(8). Lemma 5 is proved in [9, Lemma 12]. It is shown in [9, Lemma 9] that B is symmetric
and positive definite.



REACTION-CROSS-DIFFUSION SYSTEMS OF MAXWELL–STEFAN TYPE 11

2.2. Solution to an approximate problem. Let T ą 0, M P N, τ “ T {M , k P
t1, . . . ,Mu, ε ą 0, and l P N with l ą d{2. Then the embedding H lpΩq ãÑ L8pΩq is
compact. Given wk´1 P L8pΩ;Rn´1q, we wish to find wk P H lpΩ;Rn´1q such that

1

τ

ż

Ω

`

ρ1pwk
q ´ ρ1pwk´1

q
˘

¨ qdz `

ż

Ω

∇q : Bpwk
q∇wkdz

` ε

ż

Ω

ˆ

ÿ

|α|“l

Dαwk : Dαq `wk
¨ q

˙

dz “

ż

Ω

r1pxkq ¨ qdz,(17)

for all q P H lpΩ;Rn´1q, where r1 “ pr1, . . . , rn´1q
J, xki “ ρipw

kq{pcMiq, and ρ1pwkq

is defined in Lemma 4. Moreover, α “ pα1, . . . , αdq P Nd
0 is a multi-index of order

|α| “ α1 ` ¨ ¨ ¨ ` αd “ l and Dα “ B|α|{pBzα1
1 ¨ ¨ ¨ Bzαd

d q is a partial derivative of order
l. The regularization with the lth-order derivative terms is needed since the matrix B
is not uniformly positive definite. As ρ1 is a bounded function of w, we can apply the
boundedness-by-entropy method of [31] or [9, Section 3.1] to deduce the existence of a
weak solution wk P H lpΩ;Rn´1q to (17).

2.3. Uniform estimates. The crucial step is to derive some a priori estimates. The idea
is to employ the test function q “ wk in (17) and to proceed as in the proof of Lemma 14
of [9]. The reaction terms have no influence as the following lemma shows.

Lemma 6. It holds that

r1pxkq ¨wk
“

n´1
ÿ

i“1

ripx
k
qwki ď 0.

Proof. Let x “ xk and w “ wk to simplify. We deduce from (16) and total mass conser-
vation (4) that

řn´1
i“1 ripxq “ ´rnpxq and

r1pxq ¨w “
n´1
ÿ

i“1

ripxq

ˆ

1

Mi

ln
xi
xi8

´
1

Mn

ln
xn
xn8

˙

“

n´1
ÿ

i“1

ripxq

Mi

ln
xi
xi8

´
1

Mn

ln
xn
xn8

n´1
ÿ

i“1

ripxq “
n
ÿ

i“1

ripxq

Mi

ln
xi
xi8

.(18)

In view of definition (2) of ri and x8 P E , the last expression becomes

r1pxq ¨w “
n
ÿ

i“1

N
ÿ

a“1

pβai ´ α
a
i qpk

a
fx

αa

´ kabx
βa

q ln
xi
xi8

“

n
ÿ

i“1

N
ÿ

a“1

pkafx
αa

´ kabx
βa

q ln
x
βa
i
i x

αa
i
i8

x
αa
i
i x

βa
i
i8

“

N
ÿ

a“1

pkafx
αa

´ kabx
βa

q ln
xβ

a
xα

a

8

xαaxβ
a

8
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“

N
ÿ

a“1

pkafx
αa

´ kabx
βa

q ln
kabx

βa

kafx
αa ď 0,

because of the monotonicity of the logarithm. �

Taking into account Lemma 6, the estimations of Section 3.2 in [9] lead to the discrete
entropy inequality

ż

Ω

hppρ1qkqdz ` Cτ
k
ÿ

j“1

n
ÿ

i“1

}∇pxji q1{2}2L2pΩq ` τ
k
ÿ

j“1

n
ÿ

i“1

ż

Ω

p´ripx
j
q ¨wj

qdz

` ετ
k
ÿ

j“1

n´1
ÿ

i“1

ż

Ω

ˆ

ÿ

|α|“l

pDαwji q
2
` pwji q

2

˙

dz ď

ż

Ω

hppρ1q0ηqdz,(19)

where pρ1q0η is the vector of strictly positive approximations of the initial vector pρ0q1 “

pρ0
1, . . . , ρ

0
n´1q

J and C ą 0 is a generic constant independent of τ and ε. This shows that

τ
k
ÿ

j“1

}xji }
2
H1pΩq ` ετ

n
ÿ

j“1

}wji }
2
HlpΩq ď C, i “ 1, . . . , n,

where C ą 0 is independent of ε and τ . From these estimates and the boundedness of the
reaction terms, we infer a uniform bound for the discrete time derivative,

τ
M
ÿ

k“1

n´1
ÿ

i“1

›

›τ´1
pρki ´ ρ

k´1
i q

›

›

2

HlpΩq1
ď C.

These estimates are sufficient to perform the limit ε Ñ 0 and τ Ñ 0 in (17) as in Section
3.3 of [9] showing that the limit satisfies (15) and therefore is a global weak solution to
(1)–(2).

Remark 7 (Discrete entropy inequality). Before summing from j “ 1, . . . , k, we can
formulate the discrete entropy inequality (19) as

Erxk|x8s ` τDrx
k
s ` Cετ

n´1
ÿ

i“1

}wki }
2
HlpΩq ď Erxk´1

|x8s.

This estimate is the discrete analogue of (11) and it will be needed in the proof of part
(iii) of Theorem 1; see Section 3.6. �

3. Convergence to equilibrium under detailed balance

In this section, we prove parts (ii) and (iii) of Theorem 1. First, we discuss the conser-
vation laws and the existence of an equilibrium state.
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3.1. Conservation laws. We set Ri “ ri{Mi, Ji “ ji{Mi and R “ pR1, . . . , Rnq
J, J “

pJ1, . . . ,Jnq
J, c “ pc1, . . . , cnq

J, where we recall that ci “ ρi{Mi. Dividing the ith-equation
of (1) by Mi, we can reformulate them in vector form as

(20) Btc` div J “ R.

Let W “ pβai ´ αai q P RnˆN be the Wegscheider matrix and let m “ dim kerpWJq. Note
that m ě 1 since it follows from the conservation of total mass,

řn
i“1 ripxq “ 0, that

MJW “ 0, i.e., the vector M “ pM1, . . . ,Mnq
J belongs to kerpWJq. Let the row vectors

q1, . . . , qm P R1ˆn be a basis of the left null space of W, i.e. qiW “ 0 for i “ 1, . . . ,m. In
particular, qJi P kerpWJq. Finally, let Q “ pQijq P Rmˆn be the matrix with rows qj.

We claim that system (20) (with no-flux boundary conditions) possesses precisely m
linear independent conservation laws.

Lemma 8 (Conservation laws). Let ρ be a weak solution to (1)-(2) in the sense of Theorem
3. Then the following conservation laws hold:

Qcptq “M 0, t ą 0,

where M 0 “ Qc0 is called the initial mass vector and c0
i “ ρ0

i {Mi, i “ 1, . . . , n.

Note that, by changing the sign of the rows of Q if necessary, we can always choose Q
such that M 0 is positive componentwise.

Proof. We observe that the definitions of Q and ripxq “MiRipxq in (2) imply that QR “ 0.
Choosing qj “ pQj1, . . . , Qjnq as a test function in the weak formulation of (20) and
observing that ∇qj “ 0, we find that

ż t

0

ż

Ω

BtpQcqjdzds “
n
ÿ

i“1

ż t

0

ż

Ω

BtciQjidzds “
n
ÿ

i“1

ż t

0

ż

Ω

RiQjidzds “

ż t

0

ż

Ω

pQRqjdzds “ 0.

This shows that
ż

Ω

Qcptqdz “
ż

Ω

Qc0dz, t ą 0,

or Qcptq “ Qc0 “: M 0, where c0
i “ ρ0

i {Mi is the initial concentration. �

Lemma 9. There exists a row vector ζ P R1ˆm such that ζQ “MJ and ζM 0 “ 1.

Proof. Since M lies in the kernel of WJ and the rows of Q form a basis of this space, we
have M P kerpWJq “ ranpQJq. We infer that there exists a row vector ζ P R1ˆm such
that QJζJ “M or ζQ “MJ. Moreover, by recalling |Ω| “ 1 and

řn
i“1 ρ

0
i “ 1 in Ω,

1 “

ż

Ω

n
ÿ

i“1

ρ0
i dz “

n
ÿ

i“1

ρi
0
“

n
ÿ

i“1

Mici
0
“MJc0

“ ζQc0
“ ζM 0,

using the definition of M 0 in Lemma 8. �
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3.2. Detailed-balanced condition. The relative entropy (9) is formally a Lyapunov
functional along the trajectories of (1)-(2) for x8 P E . Note that E generally is a manifold
of detailed-balanced equilibria. To identify uniquely the detailed-balanced equilibrium,
we need to take into account the conservation laws. This subsection is concerned with
the existence of a unique positive detailed-balanced equilibrium satisfying the conservation
laws.

For chemical reaction networks in the context of ordinary differential equations (ODE),
the existence of a unique equilibrium state was proved by Horn and Jackson [28]; also see
[16]. The difficulty in this work lies in the fact that the reactions are modeled by molar
fractions x, while the conservation laws are presented by concentrations c. Our idea is
to enlarge the space Rn

` of concentrations pc1, . . . , cnq by adding the total concentration
c “

řn
i“1 ci P R`, which is considered to be an independent variable, and then to employ

the ideas by Feinberg [16] to the augmented space Rn`1
` . To this end, let

(21) ω “ pω1, . . . , ωn`1q “ pc1, . . . , cn, cq,

and define the vectors in Rn`1

(22)

µa “

ˆ

αa1, . . . , α
a
n,

ˆ n
ÿ

i“1

pβai ´ α
a
i q

˙`˙

,

νa “

ˆ

βa1 , . . . , β
a
n,

ˆ n
ÿ

i“1

pαai ´ β
a
i q

˙`˙

,

where y` “ maxt0, yu. Finally, we write 1n “ p1, . . . , 1q
J P Rn and 1n`1 “ p1, . . . , 1q

J P

Rn`1. The main result of this subsection is the following.

Theorem 10 (Existence of a unique detailed-balanced equilibrium). Assume that (A2)
holds and let M 0 P Rm

` be an initial mass vector and ζ P R1ˆm be a row vector such
that ζM 0 “ 1. Then there exists a unique positive detailed-balanced equilibrium x8 P E
satisfying the conservation laws and the normalization condition (14).

To prove Theorem 10 we first show the existence of an ”equilibrium“ in the augmented
space.

Proposition 11. Suppose the assumptions of Theorem 10 hold. Then there exists a unique
ω P Rn`1

` satisfying

(23) kafω
µa

“ kabω
νa

, a “ 1, . . . , N, pQω “ xM 0,

where pQ and xM 0 are defined by

pQ “
ˆ

Q 0
1Jn ´1

˙

P Rpm`1qˆpn`1q, xM 0
“

ˆ

M 0

0

˙

P Rn`1.

Before proving this result, we first show that Theorem 10 follows from Proposition 11.

Proof of Theorem 10. Let ω “ pc18, . . . , cn8, c8q be the equilibrium in the augmented
space constructed in Proposition 11. Define xi8 “ ci8{c8. We will prove that x8 is an
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element of E and satisfies (14). Indeed, for any a “ 1, . . . , N , let γa :“
řn
i“pα

a
i ´ βai q and

assume first that γa ě 0. Then

kaf

n
ź

i“1

c
αa
i
i8 “ kafω

µa

“ kabω
νa

“ kab

n
ź

i“1

c
βa
i
i8c

γa

8

is equivalent to

kafx
αa

8 “ kaf

n
ź

i“1

c
αa
i
i8c

´
řn

i“1 α
a
i

8 “ kab

n
ź

i“1

c
βa
i
i8c

´
řn

i“1 β
a
i

8 “ kabx
βa

8 .

The case γa ď 0 can be treated in an analogous way. Thus, x8 P E . It follows immediately

from pQω “ xM 0 that Qc8 “ M 0 and
řn
i“1 ci8 “ c8. The latter identity implies that

řn
i“1 xi8 “ 1 due to xi8 “ ci8{c8. Therefore x8 satisfies (14). �

The aim now is to prove Proposition 11. For this, we introduce the following definitions:

X1 “

"

ω P Rn`1
` : kafω

µa

“ kabω
νa

for a “ 1, . . . , N

*

,

X2 “

"

ω P Rn`1
` : pQω “ xM 0

*

.

We argue that X1 and X2 are not empty. Indeed, due to (A2), there exists x8 P E .
Fix any ωn`1,8 P p0,8q and define ωi8 “ xi8ωn`1,8 for all i “ 1, . . . , n. We obtain
immediately ω8 “ pω18, . . . , ωn`1,8q P X1. Concerning X2, we see that there exists
ω1 “ pω1, . . . , ωnq P Rn

` such that Qω1 “ M 0 since rankpQq “ m ă n. By defining
ωn`1 “

řn
i“1 ωi, we infer that ω “ pω1, ωn`1q P X2.

Lemma 12. Let M 0 P Rm
` and ζ P R1ˆm with ζM 0 “ 1, let ω8 P X1 and p P X2. Then

the following statements are equivalent:

‚ There exists a unique vector ω P X1 XX2.
‚ There exists a unique vector ϕ˚ P spantqJ1 , . . . , q

J
mu (qi is the ith row of Q) and a

unique number zm`1 P R such that

(24) ω18e
ϕ˚
´ e´zm`1p1 P kerQ, xeϕ

˚

ω18,1ny “ ωn`1,8.

Here, we denote p1 “ pp1, . . . , pnq and ω18e
ϕ˚ equals the vector with components ωi8e

ϕ˚i ,
i “ 1, . . . , n. Observe that spantqJ1 , . . . , q

J
mu “ ranpQJq.

Proof. We first claim that

X1 “

"

ω P Rn`1
` : Dzm`1 P R, ϕ˚ P ranpQJq such that ω “ ezm`1

ˆ

ω18e
ϕ˚

ωn`1,8

˙*

.

Indeed, ω P X1 holds if and only if ων
a´µa

8 “ kaf{k
a
b “ ων

a´µa
. Taking the logarithm

componentwise, this becomes

xlogω8,ν
a
´ µay “ xlogω,νa ´ µay, a “ 1, . . . , N.
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This means that ϕ :“ logpω{ω8q “ logω ´ logω8 P kertνa ´ µaua“1,...,N . By definition
of µa and νa, we know that

kertνa ´ µaua“1,...,N “ span
 

pqJ1 , 0q
J, . . . , pqJm, 0q

J,1n`1

(

.

Thus, there exist numbers z1, . . . , zm`1 P R such that

ϕ “
m
ÿ

i“1

zi

ˆ

qJi
0

˙

` zm`11n`1 “

ˆ

ϕ˚ ` zm`11n
zm`1

˙

,

where ϕ˚ “
řm
i“1 ziq

J
i P ranpQJq. It follows from the definition of ϕ that

ω

ω8
“ eϕ “ exp

ˆ

ϕ˚ ` zm`11n
zm`1

˙

“ ezm`1

ˆ

eϕ
˚

1

˙

.

We conclude that ω P X1 if and only if

ω “ ω8e
zm`1

ˆ

eϕ
˚

1

˙

“ ezm`1

ˆ

ω18e
ϕ˚

ωn`1,8

˙

,

and this proves the claim.
Next, fixing p P X2, it holds that ω P X2 if and only if

0 “ pQpω ´ pq “
ˆ

Q 0
1Jn ´1

˙ˆ

ω1 ´ p1

ωn`1 ´ pn`1

˙

“

ˆ

Qpω1 ´ p1q
x1n,ω

1 ´ p1y ´ pωn`1 ´ pn`1q

˙

.

Consequently, in view of the preceding claim, we have ω P X1 XX2 if and only if

0 “ pQpω ´ pq “
ˆ

Qpezm`1ω18e
ϕ˚ ´ p1q

x1n, e
zm`1ω18e

ϕ˚ ´ p1y ´ pezm`1ωn`1,8 ´ pn`1q

˙

.

The first n rows mean that ω18e
ϕ˚ ´ e´zm`1p1 P kerQ. Since p P X2 and consequently

pn`1 “
řn
i“1 pi “ x1n,p

1y, the last row simplifies to

0 “ ezm`1
`

xeϕ
˚

ω18,1ny ´ ωn`1,8

˘

.

This shows (24) and ends the proof. �

We need one more lemma.

Lemma 13. [16, Proposition B.1] Let U be a linear subspace of Rn and a “ pa1, . . . , anq, b “
pb1, . . . , bnq P Rn

`. There exists a unique element µ “ pµ1, . . . , µnq P U
K such that

aeµ ´ b P U,

where aeµ “ pa1e
µ1 , . . . , ane

µnq.
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Proof of Proposition 11. Step 1: Existence. First, fixing ω8 P X1 and p P X2, we claim
that there exist zm`1 P R and ϕ˚ P ranpQJq such that (24) holds. We apply Lemma 13
with U “ kerQ, a “ ω18, and b “ e´zm`1p1, yielding the existence of a unique vector
ϕ˚pzm`1q P U

K “ ranpQJq such that

(25) ω18e
ϕ˚pzm`1q ´ e´zm`1p1 P kerQ.

It remains to show the second equation in (24), i.e. to show that there exists a number

z˚m`1 P R such that xeϕ
˚pz˚m`1qω18,1ny “ ωn`1,8. Then we set ϕ˚ :“ ϕ˚pz˚m`1q, and (25)

yields the first equation in (24).
We know that M P spantqJ1 , . . . , q

J
mu. Then (25) implies that

@

ω18e
ϕ˚pzm`1q ´ e´zm`1p1,M

D

“ 0 or
@

ω18e
ϕ˚pzm`1q,M

D

“ e´zm`1xp1,My ą 0.

We deduce that

lim
zm`1Ñ`8

xω18e
ϕ˚pzm`1q,My “ 0, lim

zm`1Ñ´8
xω18e

ϕ˚pzm`1q,My “ 8.

Moreover, since

1

Mmax

xω18e
ϕ˚pzm`1q,My ď xω18e

ϕ˚pzm`1q,1ny ď
1

Mmin

xω18e
ϕ˚pzm`1q,My,

it holds that

lim
zm`1Ñ`8

xω18e
ϕ˚pzm`1q,1ny “ 0, lim

zm`1Ñ´8
xω18e

ϕ˚pzm`1q,1ny “ 8.

By continuity, there exists z˚m`1 P R such that xeϕ
˚pz˚m`1qω18,1ny “ ωn`1,8.

Step 2: Uniqueness. Assume that there exist p pϕ, pzq and p qϕ, qzq with pϕ, qϕ P ranpQJq and
pz, qz P R such that

ω18e
pϕ
´ e´pzp1, ω18e

qϕ
´ e´qzp1 P kerQ,(26)

xω18e
pϕ,1ny “ ωn`1,8 “ xω

1
8e

qϕ,1ny.(27)

From (26) it follows that

epzω18e
pϕ
´ eqzω18e

qϕ
P kerQ.

We infer from pϕ´ qϕ P ranpQJq “ spantqJ1 , . . . , q
J
mu that

0 “
@

epzω18e
pϕ
´ eqzω18e

qϕ, pϕ´ qϕ
D

“ eqz
@

ω18pe
pϕ
´ e qϕ

q, p pϕ´ qϕq
D

` pepz ´ eqzq
@

ω18e
pϕ, pϕ´ qϕ

D

“: I1 ` I2.

Hence, we have I2 “ ´I1 and because of

I1 “ eqz
n
ÿ

i“1

ωi8
`

epϕi ´ eqϕi
˘

ppϕi ´ qϕiq ě 0,

it holds that I2 “ ´I1 ď 0.
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Now, if pz “ qz, Lemma 13 shows that pϕ “ qϕ, and the proof is finished. Thus, let us
assume, without loss of generality, that pz ą qz. Then the definition and nonpositivity of I2

imply that

(28) xω18e
pϕ, pϕ´ qϕy ď 0.

Consider the function f : Rn Ñ R, fpϕq “
řn
i“1 ωi8e

ϕi . Then Dfpϕq “ ω18e
ϕ and

D2fpϕq “ diagpωi8e
ϕiqi“1,...,n and so, f is strictly convex. Hence, by (27),

xω18e
pϕ, pϕ´ qϕy “ xDfp pϕq, pϕ´ qϕy ě fp pϕq ´ fp qϕq

“ xω18e
pϕ,1ny ´ xω

1
8e

qϕ,1ny “ 0.

We deduce from this identity and (28) that xω18e
pϕ, pϕ ´ qϕy “ 0 and consequently, I2 “ 0

and I1 “ ´I2 “ 0. By the monotonicity of the exponential function, we infer that pϕ “ qϕ.
Then, taking the difference of the two vectors in (26), we have pe´pz´ e´qzqp1 P kerQ. Since
pz ‰ qz, this shows that p1 P kerQ and therefore Qp1 “ 0 contradicting the fact that p P X2

and in particular Qp1 “M 0 ‰ 0. Thus, pz and qz must coincide, and uniqueness holds. �

Remark 14 (Boundary equilibria and Global Attractor Conjecture). Besides the unique
positive detailed-balanced equilibrium obtained in Theorem 10, there might exist (possibly
infinitely many) boundary equilibria x˚ P BE . The convergence of solutions to reaction
systems towards the positive equilibrium under the presence of boundary equilibria is a
subtle problem, even in the ODE setting. The main reason is that if a trajectory converges
to a boundary equilibrium, the entropy production Drxs vanishes while the relative entropy
Erx|x8s remains positive, which means that the entropy-production inequality (13) is not
true in general. However, it is conjectured, still in the ODE setting, that the positive
detailed-balanced equilibrium is the only attracting point despite the presence of boundary
equilibria. This is called the Global Attractor Conjecture, and it is considered as one of the
most important problems in chemical reaction network theory; see, e.g., [1, 23] for partial
answers. Recently, a full proof of this conjecture in the ODE setting has been proposed in
[11], but the result is still under verification. See also [13, 20] for reaction-diffusion systems
possessing boundary equilibria. �

3.3. Preliminary estimates for the entropy and entropy production. We derive
some estimates for the relative entropy (9) and the entropy production (12) from below
and above. In the following, let ρ1, . . . , ρn : Ω Ñ r0,8q be integrable functions such that
řn
i“1 ρi “ 1 in Ω and set ci “ ρi{Mi and xi “ ci{c for i “ 1, . . . , n. We assume that

the functions have the same regularity as the weak solutions from Theorem 3. For later
reference, we note the following inequalities, which give bounds on the total concentration
only depending on the molar masses:

(29)
1

Mmax

ď c “
n
ÿ

i“1

ρi
Mi

ď
1

Mmin

in Ω,

where Mmax “ maxi“1,...,nMi and Mmin “ mini“1,...,nMi. Moreover, given the unique
equilibrium x8 according to Theorem 10, we observe that

řn
i“1 ρi8{Mi “

řn
i“1 ci8 “
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c8
řn
i“1 xi8 “ c8, and consequently,

(30)
1

Mmax

ď c8 ď
1

Mmin

.

Lemma 15. There exists a constant C ą 0, only depending on Mmin, Mmax, and x8, such
that

Erx|x8s ď C
n
ÿ

i“1

ˆ
ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz `
`

ci
1{2
´ c

1{2
i8

˘2

˙

.

Proof. We use
řn
i“1 xi “

řn
i“1 xi8 “ 1 to reformulate the relative entropy

Erx|x8s “
n
ÿ

i“1

ż

Ω

c

ˆ

xi ln
xi
xi8

´ xi ` xi8

˙

dz

“

n
ÿ

i“1

ż

Ω

cxi8

ˆ

xi
xi8

ln
xi
xi8

´
xi
xi8

` 1

˙

dz.

The function Φpyq “ py ln y ´ y ` 1q{py1{2 ´ 1q2 is continuous and nondecreasing on R`.
Therefore, using (29),

Erx|x8s “
n
ÿ

i“1

ż

Ω

cxi8Φ

ˆ

xi
xi8

˙ˆˆ

xi
xi8

˙1{2

´ 1

˙2

dz

ď
1

Mmin

n
ÿ

i“1

Φ

ˆ

1

xi8

˙

1

xi8

ż

Ω

pxi ´ xi8q
2dz ď C

n
ÿ

i“1

ż

Ω

pxi ´ xi8q
2dz(31)

for some constant C ą 0 only depending on Mmin and x8.
It remains to formulate the square on the right-hand side in terms of the partial concen-

trations. To this end, we set fipcq “ ci{c for c “ pc1, . . . , cnq and c “
řn
j“1 cj. By definition

of the molar fractions xi and xi8, we have xi “ fipcq and xi8 “ fipc8q. The estimates
ˇ

ˇ

ˇ

ˇ

Bfi
Bcj
pcq

ˇ

ˇ

ˇ

ˇ

ď
1

c
ďMmax,

ˇ

ˇ

ˇ

ˇ

Bfi
Bcj
pc8q

ˇ

ˇ

ˇ

ˇ

ď
1

c8
ďMmax

imply that, for some ξ on the line between c and c8,
ż

Ω

pxi ´ xi8q
2dz “

ż

Ω

pfipcq ´ fipc8qq
2dz “

n
ÿ

j“1

ż

Ω

ˆ

Bfi
Bcj
pξq

˙2

pcj ´ cj8q
2dz

ďM2
max

n
ÿ

j“1

ż

Ω

`

c
1{2
j ` c

1{2
j8

˘2`
c

1{2
j ´ c

1{2
j8

˘2
dz

ďM2
max

ˆ

2

M
1{2
min

˙2 n
ÿ

i“1

ż

Ω

`

c
1{2
i ´ c

1{2
i8

˘2
dz

ď C
n
ÿ

i“1

ż

Ω

`

c
1{2
i ´ c

1{2
i8

˘2
dz,
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and C ą 0 depends only on Mmin, Mmax, and x8. Combining this estimate with (31) leads
to (here, we use that |Ω| “ 1)

Erx|x8s ď C
n
ÿ

i“1

ż

Ω

`

c
1{2
i ´ c

1{2
i8

˘2
dz

ď 2C
n
ÿ

i“1

ˆ
ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz `
´

c
1{2
i ´ c

1{2
i8

¯2
˙

(32)

ď 2C
n
ÿ

i“1

ˆ
ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz ` 2
´

c
1{2
i ´ ci

1{2
¯2

` 2
`

ci
1{2
´ c

1{2
i8

˘2

˙

.

We wish to estimate the second term. The Cauchy–Schwarz inequality gives c
1{2
i ď ci

1{2

and hence
´

c
1{2
i ´ ci

1{2
¯2

“

´

c
1{2
i

¯2

` ci ´ 2c
1{2
i ci

1{2

ď

´

c
1{2
i

¯2

` ci ´ 2c
1{2
i c

1{2
i “

ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz.

Putting this into (32), it follows that

Erx|x8s ď 2C
n
ÿ

i“1

ˆ

3

ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz ` 2
`

ci
1{2
´ c

1{2
i8

˘2

˙

,

and we conclude the proof. �

Lemma 16. There exists a constant C ą 0, only depending on Mmin and Mmax, such that

Drxs ě C

«

n
ÿ

i“1

ż

Ω

|∇c1{2
i |

2dz `

ż

Ω

|∇c1{2
|
2dz `

N
ÿ

a“1

ż

Ω

`

kafx
αa

´ kabx
βa˘

ln
kafx

αa

kabx
βa dz

ff

.

Proof. Lemma 5 shows that the first term in Drxs can be estimated from below:
ż

Ω

∇w : Bpwq∇wdz ě CB

n
ÿ

i“1

ż

Ω

|∇x1{2
i |

2dz.

We claim that we can relate
řn
i“1 |∇x

1{2
i |

2 and |∇c1{2|2. For this, we proceed as in [9, page
494]. We infer from the definition xi “ ci{c that c

řn
i“1Mixi “

řn
i“1Mici “

řn
i“1 ρi “ 1.

Therefore, inserting c “ 1{
řn
i“1Mixi and using the Cauchy–Schwarz inequality,

|∇c1{2
|
2
“

1

4c
|∇c|2 “ 1

4c

ˇ

ˇ

ˇ

ˇ

´
řn
i“1Mi∇xi

p
řn
i“1Mixiq2

ˇ

ˇ

ˇ

ˇ

2

“ c3

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Mix
1{2
i ∇x1{2

i

ˇ

ˇ

ˇ

ˇ

2

ď nc3
n
ÿ

i“1

M2
i xi|∇x

1{2
i |

2
ď
nM2

max

M3
min

n
ÿ

i“1

|∇x1{2
i |

2,(33)
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where we used c ď 1{Mmin (see (29)). Similarly, employing (33),

n
ÿ

i“1

|∇c1{2
i |

2
“

n
ÿ

i“1

|∇pcxiq1{2|2 ď 2
n
ÿ

i“1

xi|∇c1{2
|
2
` 2

n
ÿ

i“1

c|∇x1{2
i |

2

“ 2|∇c1{2
|
2
` 2c

n
ÿ

i“1

|∇x1{2
i |

2
ď C

n
ÿ

i“1

|∇x1{2
i |

2,(34)

where C ą 0 depends only on Mmin and Mmax. Adding (33) and (34) and integrating over
Ω then shows that, for another constant C ą 0,

n
ÿ

i“1

ż

Ω

|∇x1{2
i |

2
ě C

ˆ n
ÿ

i“1

ż

Ω

|∇c1{2
i |

2dz `

ż

Ω

|∇c1{2
|
2dz

˙

.

The lemma then follows from definition (12) of Drxs. �

Lemma 17. There exists a constant CCKP ą 0, only depending on Mmax, such that

Erx|x8s ě CCKP

n
ÿ

i“1

}xi ´ xi8}
2
L1pΩq.

Proof. The estimate is a consequence of the Csiszár–Kullback–Pinsker inequality. Since we
are interested in the constant, we provide the (short) proof. We recall that 1{Mmax ď c ď
1{Mmin. Arguing as in (31) and using Φpyq ě 1 for y P R`, we obtain

Erx|x8s “
n
ÿ

i“1

ż

Ω

cxi8

ˆ

xi
xi8

ln
xi
xi8

´
xi
xi8

` 1

˙

dz

“

n
ÿ

i“1

ż

Ω

cxi8Φ

ˆ

xi
xi8

˙ˆˆ

xi
xi8

˙1{2

´ 1

˙2

dz

ě
1

Mmax

n
ÿ

i“1

ż

Ω

px
1{2
i ´ x

1{2
i8 q

2dz.

Then, by the Cauchy–Schwarz inequality and the bounds xi ď 1, xi8 ď 1,

Erx|x8s ě
1

Mmax

n
ÿ

i“1

ˆ
ż

Ω

|x
1{2
i ´ x

1{2
i8 |dz

˙2

“
1

Mmax

n
ÿ

i“1

ˆ
ż

Ω

|xi ´ xi8|

x
1{2
i ` x

1{2
i8

dz

˙2

ě
1

4Mmax

n
ÿ

i“1

ˆ
ż

Ω

|xi ´ xi8|dz

˙2

.

This finishes the proof. �
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3.4. The case of equal homogeneities. The aim of this and the following subsection is
the proof of the functional inequality Drxs ě λErx|x8s for some λ ą 0. For this, we will
distinguish two cases, the case which we call equal homogeneities,

(35)
n
ÿ

i“1

αai “
n
ÿ

i“1

βai for all a “ 1, . . . , N,

and the case of unequal homogeneities : There exists a P t1, . . . , Nu such that

(36)
n
ÿ

i“1

αai ‰
n
ÿ

i“1

βai .

This subsection is concerned with the first case.

Proposition 18 (Entropy entropy-production inequality; case of equal homogeneities).
Fix M 0 P Rm

` such that ζM 0 “ 1. Let x8 be the equilibrium constructed in Theorem 10.
Assume that (35) holds and system (1)–(2) has no boundary equilibria. Then there exists
a constant λ ą 0, which is constructive up to a finite-dimensional inequality, such that

Drxs ě λErx|x8s

for all functions x : Ω Ñ Rn
` having the same regularity as the corresponding solutions in

Theorem 3, and satisfying Qc “M 0.

Proof. We use Lemma 15 and the Poincaré inequality to obtain

Erx|x8s ď C
n
ÿ

i“1

ˆ
ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz `
`

ci
1{2
´ c

1{2
i8

˘2

˙

ď C
n
ÿ

i“1

"
ż

Ω

|∇c1{2
i |

2dz `

ˆˆ

ci
ci8

˙1{2

´ 1

˙2*

.

Next, we take into account estimate [20, formula (11)] and [20, Lemma 2.7]:

Erx|x8s ď C
n
ÿ

i“1

ż

Ω

|∇c1{2
i |

2dz `
C

H1

N
ÿ

a“1

"ˆ

c

c

c8

˙αa

´

ˆ

c

c

c8

˙βa*2

ď C
n
ÿ

i“1

ż

Ω

|∇c1{2
i |

2dz ` C
N
ÿ

a“1

`

kafc
αa

´ kabc
βa˘

ln
kafc

αa

kabc
βa ,(37)

where H1 ą 0 is the constant in the finite-dimensional inequality (11) of [20]. Observe that
we can apply the results [20] since Qc “M 0 is satisfied; see Lemma 8.

We claim that the last term is smaller or equal Drxs. Indeed, inserting the expression
xi “ ci{c in the last term of the entropy production (12) and employing assumption (35),
it follows that

N
ÿ

a“1

ż

Ω

pkafx
αa

´ kabx
βa

q ln
kafx

αa

kabx
βa dz “

N
ÿ

a“1

ż

Ω

1

cα
a
1`¨¨¨α

a
n
pkafc

αa

´ kabc
βa

q ln
kafc

αa

kabc
βa dz
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ě C
N
ÿ

a“1

ż

Ω

pkafc
αa

´ kabc
βa

q ln
kafc

αa

kabc
βa dz,(38)

where we used in the last step Mmin ď 1{c ďMmax. By Lemma 16, this shows that

Drxs ě C
n
ÿ

i“1

ż

Ω

|∇c1{2
i |

2dz ` C
N
ÿ

a“1

ż

Ω

pkafc
αa

´ kabc
βa

q ln
kafc

αa

kabc
βa dz,

and combining this estimate with (37) concludes the proof. �

3.5. The case of unequal homogeneities. In this subsection, we consider the case (36)
of unequal homogeneities. Since we cannot replace x easily by c as in (38), the estimates
are much more involved than in the case of equal homogeneities. Similar as in Section 3.2,
our idea is to introduce c as a new variable and to lift the problem from the n variables
c1, . . . , cn to the n ` 1 variables c1, . . . , cn, c. Then Drxs is represented by n ` 1 variables
c1, . . . , cn, c under the conservation laws Qc “M 0 and the additional constraint c “

řn
i“1 ci

and thus c “
řn
i“1 ci. We employ the notation (21) and (22).

First, let γa :“
řn
i“1pα

a
i ´ βai q and assume that γa ě 0. With the definitions xi “ ci{c,

ωi “ ci for i “ 1, . . . , n, and ωn`1 “ c, we compute

N
ÿ

a“1

ż

Ω

pkafx
αa

´ kabx
βa

q ln
kafx

αa

kabx
βa dz

“

N
ÿ

a“1

ż

Ω

"

kaf

n
ź

i“1

ˆ

ci
c

˙αa
i

´ kab

n
ź

i“1

ˆ

ci
c

˙βa
i
*

ln
kaf

śn
i“1pci{cq

αa
i

kab
śn

i“1pci{cq
βa
i
dz

“

N
ÿ

a“1

ż

Ω

1

c
řn

i“1 α
a
i

ˆ

kaf

n
ź

i“1

c
αa
i
i ´ kab c

γa
n
ź

i“1

cβii

˙

ln
kaf

śn
i“1 c

αa
i
i

kab c
γa
śn

i“1 c
βi
i

dz

“

N
ÿ

a“1

ż

Ω

1

c
řn

i“1 α
a
i

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz

ě C

ż

Ω

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz,

where C ą 0 depends on Mmax. In the case γa ă 0, we argue in the same way, leading to

N
ÿ

a“1

ż

Ω

pkafx
αa

´ kabx
βa

q ln
kafx

αa

kabx
βa dz “

N
ÿ

a“1

ż

Ω

1

c
řn

i“1 β
a
i

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz

ě C

ż

Ω

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz.

Consequently, taking into account Lemma 16, we find that

(39) Drxs ě rDrωs :“ C
n`1
ÿ

i“1

ż

Ω

|∇ω1{2
i |

2dz ` C
N
ÿ

a“1

ż

Ω

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz.
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We need to determine the conservation laws for ω. We write 1 “ p1, . . . , 1qJ P Rn`1.

Lemma 19. Assume that Qc “ M 0. Then ω “ pc1, . . . , cn, cq satisfies the conservation
laws

pQω “ xM 0,

where pQ and xM 0 are defined by

(40) pQ “
ˆ

Q 0
1J ´1

˙

P Rpm`1qˆpn`1q, xM 0
“

ˆ

M 0

0

˙

P Rn`1.

Proof. The result follows from a direct computation:

pQω “
ˆ

Q 0
1 ´1

˙

¨

˚

˚

˝

ω1
...
ωn
ωn`1

˛

‹

‹

‚

“

ˆ

Qc
řn
i“1 ci ´ c

˙

“

ˆ

M 0

0

˙

,

since it holds that c “
řn
i“1 ci. �

Lemma 20. There exists a constant C ą 0, depending on Ω, n, N , kaf , kab (a “ 1, . . . , N),
and Mi (i “ 1, . . . , n), such that

rDrωs ě C
N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

,

for all measurable functions ω : Ω Ñ Rn`1
` such that rDrωs is finite, with rDrωs defined in

(39).

A similar but slightly simpler result for reaction-diffusion systems is proved in [20,
Lemma 2.7]. The proof of this lemma is lengthy and therefore shifted to Appendix A. We

remark that the validity of this lemma applies to all measurable functions with rDrωs ă `8.

Lemma 21. Assume that (1)–(2) possesses no boundary equilibria. Fix M 0 P Rm
` such

that ζM 0 “ 1. Then there exists a nonconstructive constant C ą 0 such that for all

ω P Rn`1
` satisfying pQω “ xM 0, it holds that

(41)
N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

ě C
n`1
ÿ

i“1

`

ωi
1{2
´ ω

1{2
i8

˘2
,

where ω8 is constructed in Proposition 11.

Remark 22. We mark that this lemma is proved for any vector ω P Rn`1
` satisfying the

conservation laws. It does not use any analytical properties of solutions to (1)-(2). The
notation ω is a bit abusive, since we later apply this lemma to the average ω, where ω is
constructed from solutions to (1)-(2).
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Remark 23. While all the constants before and after this lemma are constructive, this
is not the case for the constant in Lemma 21, since the lemma is proved by using a con-
tradiction argument. Still, inequality (41) is finite-dimensional. Therefore, in the general
case, the rate of convergence to equilibrium to system (1)-(2) is constructive up to the
finite-dimensional inequality (41). We present in Section 4 an example for which (41)
can be proved with a constructive (even explicit) constant, which consequently leads to a
constructive rate of convergence to equilibrium for (1)-(2). �

Proof of Lemma 21. We first show that ω is bounded. Indeed, we infer from pQω “ xM 0

that Qω1 “ M 0. Thus, 1 “ ζM 0 “ ζQω “
řn
i“1Miωi. Hence, ωi ď 1{Mmin and

consequently ωn`1 “
řn
i“1 ωi ď n{Mmin.

We will now prove that

λ :“ inf
ωPRn`1

` :pQω“xM0

řN
a“1

`

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa
˘2

řn`1
i“1

`

ωi
1{2 ´ ω

1{2
i8

˘2 ą 0.

It is obvious that λ ě 0. Since the denominator is bounded from above, λ “ 0 can occur
only if the nominator approaches zero. In view of Proposition 11 and the fact that the
system is assumed to have no boundary equilibria, the nominator can converge to zero only
when ω Ñ ω8. Therefore, λ “ 0 is only possible if δ “ 0, where δ is the linearized version
of λ defined in Lemma 24 below. Setting ηi “ ωi´ωi8, Lemma 24 shows that δ “ 0 if and
only if

0 “ lim inf
pQω“xM0,ωÑω8

řN
a“1 k

a
fω

µa

8

 
řn`1
i“1 pµ

a
i ´ ν

a
i qηiω

´1
i8

(2

řn`1
i“1 η

2
i ω
´1
i8

.

Since the nominator and denominator have the same homogeneity, the limit inferior remains
unchanged if η “ pη1, . . . , ηn`1q has unit length, }η}Rn`1 “ 1 (using the Euclidean norm).

We infer from pQω “ xM 0 “ pQω8 that pQη “ 0. Hence, we have δ “ 0 if and only if there

exists a vector η P Rn`1 satisfying }η}Rn`1 “ 1, pQη “ 0, and

n`1
ÿ

i“1

pµai ´ ν
a
i q

ηi
ωi8

“ 0 for all a “ 1, . . . , N.

The last identity implies that the vector η{ω8 :“ pη1{ω18, . . . , ηn`1{ωn`1,8q
J belongs to

the kernel of PJ, where

P “
`

νa ´ µa
˘

a“1,...,N
P Rpn`1qˆN .

Since the rows of Q form a basis of the Wegscheider matrix W “ pβa ´ αaqa“1,...,N , and
taking into account definition (22) of µa and νa, we see that the columns of the matrix

Q˚ :“

ˆ

QJ 1n
0 1

˙

form a basis of kerpPJq. We deduce that there exists ρ P Rn`1 such that η{ω8 “ Q˚ρ or,

equivalently, η “ DQ˚ρ, where D “ diagpω18, . . . , ωn`1,8q. Hence, because of pQη “ 0, we
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obtain pQDQ˚ρ “ 0. The idea is now to prove that ρ “ 0, which implies that η “ DQ˚ρ “
0, contradicting }η}Rn`1 “ 1.

We claim that the matrix pQDQ˚ is invertible. Indeed, setting A8 “ diagpω18, . . . , ωn8q,
we compute

pQDQ˚ “
ˆ

Q 0
1J ´1

˙ˆ

A8 0
0 ωn`1,8

˙ˆ

QJ 1
0 1

˙

“

ˆ

QA8QJ QA81
1JA8QJ 1JA81´ ωn`1,8

˙

.

Since 1JA81 “
řn
i“1 ωi8 “ ωn`1,8 (see Proposition 11), it follows that

pQDQ˚ “
ˆ

QA8QJ QA81
1JA8QJ 0

˙

.

We claim that the matrix QA8QJ is regular. Since Q has full rank, so is QJ, and we infer
for all ξ P Rm that

@

ξ,QA8QJξ
D

“
@

ξ,QA1{2
8 A1{2

8 QJξ
D

“
@

A1{2
8 QJξ,A1{2

8 QJξ
D

ě 0

with equality if and only if ξ “ 0. Hence, QA8QJ is regular. Together with the rule on
the determinant of block matrices, this shows that

detppQDQ˚q “ detpQA8QJq det
“

0´ p1JA8QJqpQA8QJq´1
pQA81q

‰

.

As we already know that detpQA8QJq ‰ 0, it remains to verify that the second factor
does not vanish. As the expression in the brackets r¨ ¨ ¨ s is a number, we need to show that

(42) p1JA8QJqpQA8QJq´1
pQA81q ‰ 0.

The diagonal matrix A8 P Rnˆn has strictly positive diagonal elements. Therefore, (42) is
equivalent to

p1JA1{2
8 qpA1{2

8 QJq
`

pQA1{2
8 qpA1{2

8 QJq
˘´1
pQA1{2

8 qp1
JA1{2

8 q
J
‰ 0.

We abbreviate the left-hand side by introducing z “ 1JA1{2
8 P R1ˆn and X “ A1{2

8 QJ P
Rnˆm. Then (42) becomes

zXpXJXq´1XJzJ ‰ 0.

Since X is not a square matrix, we cannot invert it, but we may consider its Moore-Penrose
generalized inverse X:; see [37] or [39, Section 11.5] for a definition and properties. We
compute

zXpXJXq´1XJzJ “ zXpXJXq:XJzJ [39, page 218]

“ zXX:pXJq:XJzJ [37, Lemma 1.5]

“ zXX:pX:qJXJzJ [39, Prop. 11.5]

“ zpXX:qpXX:qJzJ [37, Lemma 1.5]

“ }pXX:qJzJ}2Rn .

Consequently, (42) holds if and only if pXX:qJzJ ‰ 0 or zJ R kerppXX:qJq. Now, it holds
that

ker
`

pXX:qJ
˘

“ ker
`

pX:qJXJ
˘

“ ker
`

pXJq:XJ
˘

“ kerpXJq,
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where the last step follows from [39, page 219]. We infer that zJ R kerppXX:qJq if and only

if A1{2
8 1 “ zJ R kerpXJq “ kerpQA1{2

8 q, which is equivalent to

0 ‰ pQA1{2
8 qpA1{2

8 1q “ QA81 “ Qω18,
and this property holds true since Qω18 “ M 0 ‰ 0. This proves that (42) holds. As
mentioned before, this implies that ρ “ 0 and consequently η “ 0, which contradicts the
fact that η has unit length. We conclude that δ ą 0 (defined in Lemma 24) and λ ą 0,
finishing the proof. �

We now provide the technical computations needed in Lemma 21.

Lemma 24. Let ω8 be a positive detailed-balanced equilibrium constructed in Proposition
11. It holds that

δ :“ lim inf
pQω“xM0,ωÑω8

řN
a“1

 

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa
(2

řn`1
i“1

`

ωi
1{2 ´ ω

1{2
i8

˘2

“
1

2
lim inf

pQω“xM0,ωÑω8

řN
a“1 k

a
fω

µa

8

 
řn`1
i“1 pµ

a
i ´ ν

a
i qpωi ´ ωi8qω

´1
i8

(2

řn`1
i“1 pωi ´ ωi8q

2ω´1
i8

.

Proof. We denote by

D1pωq “
N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

,

D2pωq “
n`1
ÿ

i“1

`

ωi
1{2
´ ω

1{2
i8

˘2

the nominator and denominator of the definition of δ, respectively. We linearize both
expressions around ω8,

(43)

Dipωq “ Dipω8q `∇Dipω8q ¨ pω ´ ω8q

`
1

2
pω ´ ω8q

J∇2Dipω8qpω ´ ω8q ` op|ω ´ ω8|
2
q.

Since ω8 is a detailed-balanced equilibrium, it holds that pkaf q
1{2?ω8

µa

“ pkab q
1{2?ω8

νa

for all a “ 1, . . . , N , implying that D1pω8q “ 0 and ∇D1pω8q “ 0. Let Bi “ B{Bωi. Then

BjBiD1pωq

“

N
ÿ

a“1

"

BjBi

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯

` Bi

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯

Bj

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯

*

.

The first term vanishes for ω “ ω8, and for the second term we compute

Bi

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯
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“ pkaf q
1{2
Bi

n`1
ź

k“1

ωk
µak{2 ´ pkab q

1{2
Bi

n`1
ź

k“1

ωk
νak {2

“ pkaf q
1{2µ

a
i

2

1

ωi

n`1
ź

k“1

ωk
µak{2 ´ pkab q

1{2ν
a
i

2

1

ωi

n`1
ź

k“1

ωk
νak {2

“
1

2ωi

´

pkaf q
1{2µai

?
ω
µa

´ pkab q
1{2νai

?
ω
νa¯

.

Evaluating this expression at ω “ ω8 and using pkaf q
1{2?ω8

µa

“ pkab q
1{2?ω8

νa

, it follows
that

Bi

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯ˇ

ˇ

ˇ

ω“ω8
“

1

2

µai ´ ν
a
i

ωi8
pkaf q

1{2?ω8
µa

.

Consequently,

BjBiD1pω8q “
1

4

N
ÿ

a“1

kafω
µa

8

µai ´ ν
a
i

ωi8

µaj ´ ν
a
j

ωj8
,

and the quadratic term in the Taylor expansion becomes at the point ω8

1

2
pω ´ ω8q

J∇2Dipω8qpω ´ ω8q “
1

8

N
ÿ

a“1

kafω
µa

8

ˆ n`1
ÿ

i“1

µai ´ ν
a
i

ωi8

`

ωi ´ ωi8
˘

˙2

.

Similarly, D2pω8q “ 0, ∇D2pω8q “ 0, and

1

2
pω ´ ω8q

J∇2D2pω8qpω ´ ω8q “
1

4

n`1
ÿ

i“1

pωi ´ ωi8q
2

ωi8
.

We insert these expressions into (43) and compute D1pωq{D2pωq. The limit ω Ñ ω8 such

that pQω “ xM 0 then gives the conclusion. �

We are ready to prove the main result of this subsection.

Proposition 25 (Entropy entropy-production inequality; unequal homogeneities).
Fix M 0 P Rm

` such that ζM 0 “ 1. Let x8 be the equilibrium constructed in Theorem 10.
Assume that (36) holds and system (1)–(2) has no boundary equilibria. Then there exists
a constant λ ą 0, which is constructive up to a finite-dimensional inequality (in the sense
of Remark 23), such that

Drxs ě λErx|x8s

for all functions x : Ω Ñ Rn
` having the same regularity as the corresponding solutions in

Theorem 3 and satisfying Qc “M 0.

Proof. Lemma 15 shows that

(44) Erx|x8s ď C
n
ÿ

i“1

ˆ
ż

Ω

´

c
1{2
i ´ c

1{2
i

¯2

dz `
`

ci
1{2
´ c

1{2
i8

˘2

˙

.
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The first sum is controlled by Drxs using Lemma 16 and the Poincaré inequality (with
constant CP ą 0):

Drxs ě
n
ÿ

i“1

ż

Ω

|∇c1{2
i |

2dz ě Cp

n
ÿ

i“1

ż

Ω

`

c
1{2
i ´ c

1{2
i

˘2
dz.

The second sum on the right-hand side is estimated by combining estimate (39), Lemma
20, and Lemma 21:

Drxs ě C
n`1
ÿ

i“1

`

ωi
1{2
´ ω

1{2
i8

˘2
ě C

n
ÿ

i“1

`

ci
1{2
´ c

1{2
i8

˘2
.

Adding the previous two inequalities and using (44) then concludes the proof. �

3.6. Proof of Theorem 1. The starting point is the discrete entropy inequality (see
Remark 7):

Erxk|x8s ` τDrx
k
s ` Cετ

n´1
ÿ

i“1

}wki }
2
HlpΩq ď Erxk´1

|x8s.

Using the entropy-production inequality from Propositions 18 or 25, this becomes

Erxk|x8s ď p1` λτq
´1Erxk´1

|x8s

and, by induction,

Erxk|x8s ď p1` λτq
´kErx0

|x8s “ p1` λτq
´T {τErx0

|x8s.

Performing the limit τ Ñ 0 or, equivalently, k Ñ 8, we find that

ErxpT q|x8s ď lim inf
kÑ8

Erxk|x8s ď e´λTErx0
|x8s.

Clearly, this inequality also holds for t P p0, T q instead of T . Then, by the Csiszár–
Kullback–Pinsker inequality in Lemma 17, with constant CCKP ą 0,

n
ÿ

i“1

}xiptq ´ xi8}
2
L1pΩq ď

e´λt

CCKP

ż

Ω

hpρ1p0qqdz.

As xi is bounded in L8p0,8;L8pΩqq, we derive the convergence in Lp for 1 ď p ă 8 from
an interpolation argument

n
ÿ

i“1

}xiptq ´ xi8}LppΩq ď

n
ÿ

i“1

}xiptq ´ xi8}
1´1{p
L8pΩq}xiptq ´ xi8}

1{p

L1pΩq

ď Ce´λt{p2pq, t ą 0,

which concludes the proof.
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4. Example: a specific reaction

As mentioned in Remark 23, the rate of convergence to equilibrium is generally not
constructive since the finite-dimensional inequality (41) is proved by a nonconstructive
contradiction argument. The derivation of a constructive constant for this inequality seems
to be a challenging problem, which goes beyond the scope of this paper. In this section,
we show that, potentially in any specific system, the finite-dimensional inequality (41) can
be proved in a constructive way and thus gives the exponential decay with constructive
constant. More specifically, we consider the single reversible reaction

A1 ` A2 è A3.

We assume for simplicity that the forward and backward reaction constants equal one.
Furthermore, |Ω| “ 1. The corresponding system reads as

Btρ1 ` div j1 “ r1pxq “ ´M1px1x2 ´ x3q,

Btρ2 ` div j2 “ r2pxq “ ´M2px1x2 ´ x3q,(45)

Btρ3 ` div j3 “ r3pxq “ `M3px1x2 ´ x3q,

We conclude from total mass conservation r1 ` r2 ` r3 “ 0, that M1 `M2 “ M3. There
are two (formal) conservation laws. The first one follows from

d

dt

ż

Ω

`

c1ptq ` c3ptq
˘

dz “
d

dt

ż

Ω

ˆ

ρ1ptq

M1

`
ρ3ptq

M3

˙

dz “ 0,

leading to

c1ptq ` c3ptq “M13 :“ c0
1 ` c

0
3,

where c0
i “ ρ0

i {Mi “
ş

Ω
ρ0
i dz{Mi. The second conservation law reads as

c2ptq ` c3ptq “M23 :“ c0
2 ` c

0
3.

The matrix Q in this case is

Q “
ˆ

1 0 1
0 1 1

˙

,

and we can choose ζ “ pM1,M2q since the conservation of total mass, M1 `M2 “ M3,
gives ζQ “ pM1,M2,M3q “ MJ. The initial mass vector M 0 “ pM13,M23q

J satisfies
ζM 0 “M1M13`M2M23 “ 1. It is not difficult to check that the system is detailed balanced
and possesses no boundary equilibria, and thus, for any fixed masses M13 ą 0, M23 ą 0,
there exists a unique positive detailed-balanced equilibrium x8 “ px18, x28, x38q

J P p0, 1q3

satisfying

(46)
x18x28 “ x38, x18 ` x28 ` x38 “ 1,

c18 ` c38 “M13, c28 ` c38 “M23,

where ci8 “ c8xi8 and c8 “ pM1x18 `M2x28 `M3x38q
´1. We claim that we can prove

Lemma 21 with a constructive constant. More precisely, we show the following result.
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Lemma 26. There exists a constructive constant C0 ą 0, only depending on ci8 and the
upper bounds of ci (i “ 1, 2, 3), such that

(47)
`?

c1

?
c2 ´

?
c3

?
c
˘2
ě C0

3
ÿ

i“1

`?
ci ´

?
ci8

˘2

for all nonnegative numbers ci and c satisfying

c1 ` c3 “M13 “ c18 ` c38,

c2 ` c3 “M23 “ c28 ` c38,(48)

c1 ` c2 ` c3 “ c.

Proof. We introduce new variables µ1, µ2, µ3, η P r´1,8q by

ci “ ci8p1` µiq
2 for i “ 1, 2, 3, c “ c8p1` ηq

2,

recalling that c8 “ c18 ` c28 ` c38. The uniform bounds for ci show that there exists a
constant µmax ą 0 such that |µi| ď µmax for i “ 1, 2, 3. Then the left-hand side of (47) can
be formulated as

`?
c1

?
c2 ´

?
c3

?
c
˘2
“

´

c
1{2
18c

1{2
28p1` µ1qp1` µ2q ´ c

1{2
38c

1{2
8 p1` µ3qp1` ηq

˘2

“ c1,8c28

`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
,

where we have used c18c28 “ x18x28c
2
8 “ x38c

2
8 “ c38c8, which follows from xi8 “

ci8{c8 and the first equation in (46). Furthermore, the right-hand side of (47) is estimated
from above by

3
ÿ

i“1

`?
ci ´

?
ci8

˘2
“

3
ÿ

i“1

ci8µ
2
i ď max

i“1,2,3
ci8

3
ÿ

i“1

µ2
i .

Therefore, it remains to prove the inequality

(49)
`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
ě C˚

3
ÿ

i“1

µ2
i

for some constructive constant C˚ ą 0.
In terms of the new variables µi, the conservation laws in (48) can be written as

(50)
c18pµ

2
1 ` 2µ1q ` c38pµ

2
3 ` 2µ3q “ 0,

c28pµ
2
2 ` 2µ2q ` c38pµ

2
3 ` 2µ3q “ 0.

Together with the last equation in (48), we obtain

(51) c18pµ
2
1 ` 2µ1q “ c28pµ

2
2 ` 2µ2q “ c8pη

2
` 2ηq.

Since µi ě ´1 and η ě ´1, we deduce from (50) and (51) that µ1, µ2, and η always have
the same sign and µ3 has the opposite sign. We consider therefore two cases:

Case 1: µ1, µ2, η ě 0 and µ3 ď 0. Since η2`2η ě 0 and c8 “ c18` c28` c38, it follows
from (51) that

c18pµ
2
1 ` 2µ1q “ c8pη

2
` 2ηq ě c18pη

2
` 2ηq
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and hence µ1 ě η (as z ÞÑ z2`2z is increasing on r´1,8q). Similarly, we find that µ2 ě η.
Therefore,

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq “ pµ1 ´ ηq ` µ2 ` µ1µ2 ` p´µ3q ` p´µ3qη ě 0.

Taking the square of this equation, it follows that
`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
ě
`

pµ1 ´ ηq ` µ2 ` p´µ3q
˘2

ě pµ1 ´ ηq
2
` µ2

2 ` p´µ3q
2
ě µ2

2 ` µ
2
3.

Exchanging the roles of µ1 and µ2, we find that
`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
ě µ2

1 ` µ
2
3.

Adding these inequalities, we have proved (49) with C˚ “ 1
2
.

Case 2: µ1, µ2, η ď 0 and µ3 ě 0. Because of η2 ` 2η ď 0, we have

c18pµ
2
1 ` 2µ1q “ c8pη

2
` 2ηq ď c18pη

2
` 2ηq,

which yields µ1 ď η. Similarly, µ2 ď η. A similar argument as in case 1 leads to

p1` µ3qp1` ηq ´ p1` µ1qp1` µ2q “ µ3p1` ηq ` pη ´ µ1q ` p´µ2qp1` µ1q ě 0.

Hence, taking the square,
`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
ě
`

µ3p1` ηq ` pη ´ µ1q ` p´µ2qp1` µ1q
˘2

ě µ2
3p1` ηq

2.(52)

We deduce from (51) that

c8p1` ηq
2
“ c8 ` c8pη

2
` 2ηq “ c8 ` c18pµ

2
1 ` 2µ1q

“ c28 ` c38 ` c18p1` µ1q
2.

Consequently, p1` ηq2 ě pc28 ` c38q{c8 and (52) becomes

(53)
`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
ě
c28 ` c38

c8
µ2

3.

We infer from c38pµ
2
3 ` 2µ3q “ c18pµ

2
1 ` 2µ1q (see (51)) that

µ3 “
c18pµ1 ` 2q

c38pµ3 ` 2q
p´µ1q ě

c18

c38pµmax ` 2q
p´µ1q ě 0,

where µmax “ maxi“1,2,3 µi. Taking the square gives

µ2
3 ě

c2
18

c2
38pµmax ` 2q2

µ2
1,

and similarly,

µ2
3 ě

c2
28

c2
38pµmax ` 2q2

µ2
2.

We employ these bounds in (53) to obtain
`

p1` µ1qp1` µ2q ´ p1` µ3qp1` ηq
˘2
ě C˚pµ2

1 ` µ
2
2 ` µ

2
3q,
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where

C˚ “
1

3
min

"

c28 ` c38

c8
,

c2
18

c2
38pµmax ` 2q2

,
c2

28

c2
38pµmax ` 2q2

µ2
2

*

.

This proves (49) and completes the proof. �

5. Convergence to equilibrium for complex-balanced systems

One of the main assumptions of this paper is the detailed-balanced condition (5). This
condition was used extensively in the thermodynamic community and it leads to a natural
entropy functional that is the core tool for the global existence analysis and the large-time
asymptotics. However, the detailed-balance condition requires that the reaction system is
reversible which is quite restrictive. In chemical reaction network theory, it is well known
that there exists a much larger class of reaction systems, namely so-called complex-balanced
systems which also exhibits an entropy structure; see, e.g., [13, 18, 20] for reaction-diffusion
systems. In this section, we show that the global existence and large-time behavior results
can be extended to systems satisfying the complex-balanced condition. We only highlight
the differences of the proofs and present full proofs only when necessary.

Consider n constitutents Ai reacting in the following N reactions,

y1,aA1 ` ¨ ¨ ¨ ` yn,aAn
ka
ÝÑ y11,aA1 ` ¨ ¨ ¨ ` y

1
n,aAn for a “ 1, . . . , N,

where ka ą 0 is the reaction rate constant and yi,a, y
1
i,a P t0uYr1,8q are the stoichiometric

coefficients. We set ya “ py1,a, . . . , yn,aq and y1a “ py11,a, . . . , y
1
n,aq. We denote by C “

tya,y
1
aua“1,...,N the set of all complexes. We use as in [13] the convention that the primed

complexes y1a P C denote the product of the ath reaction, and the unprimed complexes ya P
C denote the reactant. Note that it may happen that ya “ y

1
b for some a, b P t1, . . . , Nu.

This means that a complex can be a reactant for one reaction and a product for another
reaction.

The Maxwell–Stefan diffusion system consists of equations (1), (3), and

(54) ripxq “Mi

N
ÿ

a“1

kapy1i,a ´ yi,aqx
ya with xya “

n
ź

i“1

x
yi,a
i .

We assume again the conservation of total mass, expressed as
n
ÿ

i“1

ripxq “ 0.

Definition 1 (Complex-balance condition). A homogeneous equilibrium state x8 is called
a complex-balanced equilibrium if for any y P C, it holds that

(55)
ÿ

aPt1,...,Nu:ya“y

kaxya8 “
ÿ

bPt1,...,Nu:y1b“y

kbxyb8 .

Roughly speaking, x8 is a complex-balanced equilibrium if for any complex y P C the
total input into each complex balances the total flow out of the complex. The condition
is weaker than detailed balance since it does not require each step in the forward reaction
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to be balanced by a reverse reaction. We say that system (1), (3), and (54) is a complex-
balanced system if it admits a positive complex-balanced equilibrium. Already Boltzmann
studied complex-balanced systems in the context of kinetic theory, under the name of
semi-detailed balance [2]. For chemical reaction systems, this condition was systematically
studied in [17, 27].

The existence of global weak solutions to (1), (3), and (54) follows as in Section 2. We
just have to verify that Lemma 6 also holds in the case of the reaction terms (54).

Lemma 27. Let x8 be a positive complex-balanced equilibrium and let the entropy variable
w P Rn´1 be defined by wi “ Bh{Bρi, i “ 1, . . . , n ´ 1, where h is given by (8). Then for
all x P Rn, considered as a function of w,

n´1
ÿ

i“1

ripxqwi ď 0.

Proof. By (18) and definition (54) of ri, we compute

n´1
ÿ

i“1

ripxqwi “
n
ÿ

i“1

ripxq

Mi

ln
xi
xi8

“

n
ÿ

i“1

N
ÿ

a“1

kapy1i,a ´ yi,aqx
ya ln

xi
xi8

“

N
ÿ

a“1

kaxya ln
xy

1
a´y

x
y1a´y
8

“ ´

N
ÿ

a“1

kaxya8

"

xya

xya8
ln

ˆ

xya

xya8

N

xy
1
a

x
y1a
8

˙

´
xya

xya8
`
xy

1
a

x
y1a
8

*

´

N
ÿ

a“1

kaxya8

ˆ

xya

xya8
´
xy

1
a

x
y1a
8

˙

.

The expression in the curly brackets t¨ ¨ ¨ u equals Ψpxya{xya8 ,x
y1a{x

y1a
8 q, where Ψpx, yq “

x lnpx{yq ´ x ` y is a nonnegative function. Hence, the first expression on the right-hand
side is nonpositive. We claim that the second expression vanishes. Then

řn´1
i“1 ripxqwi ď 0.

Indeed, by the complex-balanced condition (55),

N
ÿ

a“1

kaxya8

ˆ

xya

xya8
´
xy

1
a

x
y1a
8

˙

“
ÿ

xPC

ˆ

ÿ

a:ya“y

kaxya ´
ÿ

b:y1b“y

kbxyb8
xy

1
b

x
y1b
8

˙

“
ÿ

yPC

ˆ

xy
ÿ

a:ya“y

ka ´
xy

xy8

ÿ

b:y1b“y

kbxyb8

˙

“
ÿ

yPC

xy

xy8

ˆ

ÿ

a:ya“y

kaxya8 ´
ÿ

b:y1b“y

kbxyb8

˙

“ 0.

This shows the claim and ends the proof. �
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Next, we show the existence of a unique complex-balanced equilibrium. For this, we
denote as before by W “ py1a ´ yaqa“1,...,N P RnˆN the Wegscheider matrix, set m “

dimpkerWq ą 0, and denote by Q P Rmˆn the matrix whose rows form a basis of kerpWJq.
As in Section 3.1, the conservation laws are given by

Qcptq “M 0 :“ Qc0, t ą 0,

and there exists ζ P R1ˆm such that ζQ “MJ and ζM 0 “ 1.

Proposition 28 (Existence of a complex-balanced equilibrium). Let M 0 P Rm
` be an

initial mass vector satisfying ζM 0 “ 1. Then there exists a unique positive complex-
balanced equilibrium x8 P Rn

` satisfying (55) and

(56) Qx8 “M 0
n
ÿ

i“1

Mixi8,
n
ÿ

i“1

xi8 “ 1.

The proof follows from the case of detailed balance with the help of the following lemma.

Lemma 29. Let x8 be a positive complex-balanced equilibrium. Then the following two
statements are equivalent:

(i) The vector x˚ P Rn
` is a complex-balanced equilibrium.

(ii) It holds for all a “ 1, . . . , N :

xya˚

x
y1a
˚

“
xya8

x
y1a
8

.

Proof. Let (ii) hold. We compute
ÿ

a:ya“y

kaxya˚ “
ÿ

a:ya“y

kaxya8
xya˚
xya8

“
xy˚
xy8

ÿ

a:ya“y

kaxya8

“
xy˚
xy8

ÿ

b:y1b“y

kbxyb8 “
ÿ

b:y1b“y

kbxyb8
x
y1b
˚

x
y1b
8

.

Taking into account (ii), it follows that
ÿ

a:ya“y

kaxya˚ “
ÿ

b:y1b“y

kbxyb8
xyb˚
xyb8

“
ÿ

b:y1b“y

kbxyb˚ ,

i.e., x˚ is a complex-balanced equilibrium.
To show that (i) implies (ii), let x˚ be a complex-balanced equilibrium. Then ripx˚q “ 0

for all i “ 1, . . . , n, and the proof of Lemma 27 shows that

0 “
n
ÿ

i“1

ripx˚q

Mi

ln
xi˚
xi8

“ ´

N
ÿ

a“1

kaxya8 Ψ

ˆ

xya˚
xya8

,
x
y1a
˚

x
y1a
8

˙

,

where we recall that Ψpx, yq “ x lnpx{yq ´ x` y ě 0 and Ψpx, yq “ 0 if and only if x “ y.

The last property implies that xya˚ {x
ya
8 “ x

y1a
˚ {x

y1a
8 , which is (ii). �

We prove a result similar to that one stated in Lemma 19.
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Lemma 30. The vector ω “ pc1, . . . , cn, cq P Rn`1
` satisfies

(57)

c

ω

ω8

µa

“

c

ω

ω8

νa

for all a “ 1, . . . , N, pQω “ xM 0,

if and only if ω “ ω8 “ pc18, . . . , cn8, c8q and x8 “ pc18{c8, . . . , cn8{c8q is a complex-

balanced equilibrium. Here, c8 “
řn
i“1 ci8 and pQ and xM 0 are defined in (40).

Proof. Set xi “ ci{c for i “ 1, . . . , n. Then the first equation in (57) implies that, using
definition (22) of µa and νa,

n
ź

i“1

ci
yi,a

c
yi,a
i8

“

n
ź

i“1

ci
y1i,a

c
y1i,a
i8

cγ
a

cγ
a

8

, where γa “
n
ÿ

i“1

pyi,a ´ y
1
i,aq.

This is equivalent to
xya

xya8
“
xy

1
a

x
y1a
8

.

We conclude from Lemma 29 that x is a complex-balanced equilibrium. Furthermore, we
have

n
ÿ

i“1

Mixi “
1

c

n
ÿ

i“1

Mici “
1

c
.

Thus, we deduce from the conservation law pQω “ xM 0 that

Qx “
1

c
M 0

“M 0
n
ÿ

i“1

Mixi.

At this point, we can apply Proposition 28 to infer the existence of a unique vector x “ x8
which implies that ω “ ω8. �

Finally, we show an inequality which is related to that one in Lemma 21.

Lemma 31. There exists a nonconstructive constant C ą 0 such that
N
ÿ

a“1

ˆ

c

ω

ω8

µa

´

c

ω

ω8

νa
˙2

ě C
n`1
ÿ

i“1

`

ωi
1{2
´ ω

1{2
i8

˘2

for all ω P Rn`1
` satisfying pQω “ xM 0.

Proof. We proceed similarly as in the proofs of Lemmas 24 and 21. We need to show that

λ :“ inf
ωPRn`1

` :pQω“xM0

řN
a“1

`
a

ω{ω8
µa

´
a

ω{ω8
νa
˘2

řn`1
i“1

`

ωi
1{2 ´ ω

1{2
i8

˘2 ą 0.

In view of Lemma 30 and the absence of boundary equilibria, it holds λ ą 0 if and only if
δ ą 0, where

δ “ lim inf
pQω“xM0,ωÑω8

řN
a“1

`
a

ω{ω8
µa

´
a

ω{ω8
νa
˘2

řn`1
i“1

`

ωi
1{2 ´ ω

1{2
i8

˘2
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“ lim inf
pQω“xM0,ωÑω8

2
řN
a“1

`
řn`1
i“1 pyi,a ´ y

1
i,aqpωi ´ ωi8qω

´1
i8

˘2

řn`1
i“1 pωi ´ ωi8q

2ω´1
i8

.

This follows from a Taylor expansion as in the proof of Lemma 24. Now, we can follow
exactly the arguments in the proof of Lemma 21 to infer that δ ą 0 and consequently
λ ą 0, finishing the proof. �

The results in this subsection are sufficient to apply the proof of Theorem 1, thus leading
to the following main theorem.

Theorem 32 (Convergence to equilibrium for complex-balanced systems). Let Assump-
tions (A1) and (A3) hold and let system (1), (54) be complex balanced. Fix an initial mass
vector M 0 P Rm

` satisfying ζM 0 “ 1. Then
(i) There exists a global bounded weak solution ρ “ pρ1, . . . , ρnq

J to (1), (3) with reaction
terms (54) in the sense of Theorem 3.

(ii) There exists a unique positive complex-balanced equilibrium x8 P Rn
` satisfying (55)

and (56).
(iii) Assume in addition that system (1), (54) has no boundary equilibria. Then there

exist constants C ą 0 and λ ą 0, which are constructive up to a finite-dimensional in-
equality, such that if ρ0 satisfies additionally Q

ş

Ω
c0dz “ M 0, the following exponential

convergence to equilibrium holds
n
ÿ

i“1

}xiptq ´ xi8}LppΩq ď Ce´λt{p2pqErx0
|x8s

1{p2pq, t ą 0,

where 1 ď p ă 8, xi “ ρi{pcMiq with c “
řn
i“1 ρi{Mi, and Erx|x8s is the relative entropy

defined in (9), ρ is the solution constructed in (i), and x8 is constructed in (ii).

Appendix A. Proof of Lemma 20

The proof of Lemma 20 is partially inspired by the proof of Lemma 2.7 in [20]. We divide
the proof into two steps, which are presented in Lemmas 33 and 34. For convenience, we

set Wi :“ ω
1{2
i for i “ 1, . . . , n` 1 and use the notation

W “ pW1, . . . ,Wn`1q, W “ pW1, . . . ,W n`1q.

Moreover, we define

δipxq “ Wipxq ´Wi “ Wipxq ´

ż

Ω

Widz, x P Ω, i “ 1, . . . , n` 1.

Lemma 33. There exists a constant C ą 0 depending on Ω, n, N , kaf , and kab (a “
1, . . . , N) such that

(58) rDrωs ě C
N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

where rD is defined in (39).



38 E. S. DAUS, A. JÜNGEL, AND B. Q. TANG

Proof. We use the elementary inequality px´ yq lnpx{yq ě 4p
?
x´

?
yq2 to obtain

ż

Ω

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz ě 4

ż

Ω

`

pkaf q
1{2W µa

´ pkab q
1{2W νa˘2

dz.

This gives

rDrωs ě
n`1
ÿ

i“1

}∇Wi}
2
L2pΩq ` 4

n`1
ÿ

i“1

›

›pkaf q
1{2W µa

´ pkab q
1{2W νa›

›

2

L2pΩ
.

The Poincaré inequality

}∇Wi}
2
L2pΩq ě CP }δi}

2
L2pΩq

then shows that

(59) rDrωs ě CP

n`1
ÿ

i“1

}δi}
2
L2pΩq ` 4

n`1
ÿ

i“1

›

›pkaf q
1{2W µa

´ pkab q
1{2W νa›

›

2

L2pΩq
.

Let L ą 0. We split Ω into the two domains

ΩL “
 

x P Ω : |δipxq| ď L for i “ 1, . . . , n` 1
(

, Ωc
L “ ΩzΩL.

By Taylor expansion, we may write W
µai
i “ pWi ` δiq

µai “ Wi
µai ` R˚i pWi, δiqδi, where R˚i

depends continuously on Wi and δi. Therefore,
›

›pkaf q
1{2W µa

´ pkab q
1{2W νa›

›

2

L2pΩq

ě

ż

ΩL

ˇ

ˇ

ˇ

ˇ

pkaf q
1{2

n`1
ź

i“1

pWi ` δiq
µai ´ pkab q

1{2
n`1
ź

i“1

pWi ` δiq
νai

ˇ

ˇ

ˇ

ˇ

2

dz

“

ż

ΩL

ˇ

ˇ

ˇ

ˇ

pkaf q
1{2

n`1
ź

i“1

`

Wi
µai `R˚i δi

˘

´ pkab q
1{2

n`1
ź

i“1

`

Wi
νai `R˚i δi

˘

ˇ

ˇ

ˇ

ˇ

2

dz

“

ż

ΩL

ˇ

ˇ

ˇ

ˇ

pkaf q
1{2W

µa

´ pkab q
1{2W

νa

`Q˚
n`1
ÿ

i“1

δi

ˇ

ˇ

ˇ

ˇ

2

dz,

where Q˚ depends continously on R˚1 , . . . , R
˚
n`1 and δ1, . . . , δn`1. With the inequalities

px` yq2 ě 1
2
px2 ´ y2q and p

řn`1
i“1 xiq

2 ď pn` 1q
řn`1
i“1 x

2
i , we estimate

›

›pkaf q
1{2W µa

´ pkab q
1{2W νa›

›

2

L2pΩq

ě
1

2
|ΩL|

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

´

ż

ΩL

pQ˚q2pn` 1q
n`1
ÿ

i“1

|δi|
2dz

ě
1

2
|ΩL|

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

´ CpLqpn` 1q
n`1
ÿ

i“1

}δi}
2
L2pΩq,
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where we used the bounds |δi| ď L in ΩL and Wi ď C in Ω to estimate Q˚. Summing over
a “ 1, . . . , N , this gives

N
ÿ

a“1

›

›pkaf q
1{2W µa

´ pkab q
1{2W νa›

›

2

L2pΩq
ě

1

2
|ΩL|

N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

´ CpLqNpn` 1q
n`1
ÿ

i“1

}δi}
2
L2pΩq.(60)

In Ωc
L, we wish to estimate }δi}L2pΩq from below. For this, we observe that

N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

ď C.

Then, since
řn`1
i“1 |δi| ě L on Ωc

L,

n`1
ÿ

i“1

}δi}
2
L2pΩq ě

n`1
ÿ

i“1

ż

Ωc
L

|δi|
2dz ě

1

n` 1

ż

Ωc
L

ˆ n`1
ÿ

i“1

|δi|

˙2

dz

ě
L2|Ωc

L|

n` 1
ě

L2|Ωc
L|

pn` 1qC

N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

.(61)

Inserting (60) and (61) into (59), it follows for any θ P p0, 1q that

rDrωs ě CP

n`1
ÿ

i“1

}δi}
2
L2pΩq ` 4θ

n`1
ÿ

i“1

›

›pkaf q
1{2W µa

´ pkab q
1{2W νa›

›

2

L2pΩq

ě
CP
2

n`1
ÿ

i“1

}δi}
2
L2pΩq `

CP
2

L2|Ωc
L|

pn` 1qC

N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

` 2θ|ΩL|

N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

´ 4θCpLqpn` 1q
n`1
ÿ

i“1

}δi}
2
L2pΩq

ě C
N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

,

where we have chosen θ ą 0 sufficiently small in the last step. This finishes the proof. �

Lemma 34. There exists a constant C ą 0 depending on Ω, n, N , kaf , and kab (a “
1, . . . , N) such that

(62)

n`1
ÿ

i“1

|∇ω1{2
i |

2dz `
N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

ě C
N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

.
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Proof. It follows from

}δi}
2
L2pΩq “ }Wi ´Wi}

2
L2pΩq “ ωi ´Wi

2
“
`?

ωi ´Wi

˘`?
ωi `Wi

˘

that

Wi “
?
ωi ´ Zi}δi}L2pΩq, where Zi “

}δi}L2pΩq
?
ωi `Wi

ě 0.

Since

Z2
i “

}δi}
2
L2pΩq

p
?
ωi `Wiq

2
“

ωi ´Wi
2

p
?
ωi `Wiq

2
“

?
ωi ´Wi

?
ωi `Wi

ď 1,

we infer that 0 ď Zi ď 1.
We continue by performing a Taylor expansion:

W
µa

“

n`1
ź

i“1

`?
ωi ´ Zi}δi}L2pΩq

˘µai “

n`1
ź

i“1

`?
ωi
µai `R˚i }δi}L2pΩq

˘

,

where R˚i depends continuously on Zi and }δi}L2pΩq. Therefore, with another function S˚

depending continuously on Zi and }δi}L2pΩq,

W
µa

“
?
ω
µa

` S˚
n`1
ÿ

i“1

}δi}L2pΩq.

This shows that
N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

“

N
ÿ

a“1

ˆ

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa

`
`

pkaf q
1{2
´ pkab q

1{2
˘

S˚
n`1
ÿ

i“1

}δi}L2pΩq

˙2

ě
1

2

N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

´ Cpn,NqpS˚q2
n`1
ÿ

i“1

}δi}
2
L2pΩq.

Then, by the Poincaré inequality with constant CP , for some θ P p0, 1q,

n`1
ÿ

i“1

|∇ω1{2
i |

2dz `
N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

ě CP

n`1
ÿ

i“1

}δi}
2
L2pΩq ` θ

N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

ě CP

n`1
ÿ

i“1

}δi}
2
L2pΩq `

θ

2

N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

´ θCpn,NqpS˚q2
n`1
ÿ

i“1

}δi}
2
L2pΩq
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ě
θ

2

N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

.

The last step follows after choosing θ ą 0 sufficiently small. This is possible since S˚ is
bounded. The proof is complete. �

Proof of Lemma 20. Applying first (58) and then (62) leads to

rDrωs ě
C

2

n`1
ÿ

i“1

ż

Ω

|∇ω1{2
i |

2dz

`
C

2

ˆ n`1
ÿ

i“1

ż

Ω

|∇ω1{2
i |

2dz `
N
ÿ

a“1

ż

Ω

`

kafω
µa

´ kabω
νa˘

ln
kafω

µa

kabω
νa dz

˙

ě
C

2

n`1
ÿ

i“1

ż

Ω

|∇ω1{2
i |

2dz ` C
N
ÿ

a“1

´

pkaf q
1{2W

µa

´ pkab q
1{2W

νa
¯2

ě C
N
ÿ

a“1

´

pkaf q
1{2
?
ω
µa

´ pkab q
1{2
?
ω
νa¯2

.

The proof is finished. �
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[33] A. Jüngel and I. V. Stelzer. Existence analysis of Maxwell–Stefan systems for multicomponent mix-

tures. SIAM J. Math. Anal. 45 (2013), 2421–2440.
[34] M. Marion and R. Temam. Global existence for fully nonlinear reaction-diffusion systems describing

multicomponent reactive flows. J. Math. Pures Appl. 104 (2015), 102-138.
[35] A. Mielke, J. Haskovec, and P. Markowich. On uniform decay of the entropy for reaction-diffusion

systems. J. Dynam. Diff. Eqs. 27 (2015), 897-928.
[36] A. Mielke. Uniform exponential decay for reaction-diffusion systems with complex-balanced mass-

action kinetics. In: P. Gurevich, J. Hell, B. Sandstede, and A. Scheel (eds). Patterns of Dynamics
PaDy 2016. Springer Proc. Math. Stat., vol. 205, pp. 149–171. Springer, Cham, 2018.



REACTION-CROSS-DIFFUSION SYSTEMS OF MAXWELL–STEFAN TYPE 43

[37] R. Penrose. A generalized inverse for matrices. Cambridge Phil. Soc. 51 (1955), 406–413.
[38] M. Pierre, T. Suzuki, and H. Umakoshi. Global-in-time behavior of weak solutions to reaction-diffusion

systems with inhomogeneous Dirichlet boundary condition. Nonlin. Anal. 159 (2017), 393-407.
[39] D. Serre. Matrices. Theory and Applications. 2nd edition, Graduate Texts in Mathematics 216.

Springer, New York, 2010.
[40] S. Shim. Long-time properties of prey-predator system with cross-diffusion. Commun. Korean Math.

Soc. 21 (2006), 293–320.
[41] G. Shinar, M. Feinberg. Concordant chemical reaction networks and the species-reaction graph. Math.

Biosci. 241 (2013), 1–23.
[42] B. Q. Tang. Close-to-equilibrium regularity for reaction-diffusion systems. To appear in J. Evol. Eqs.,

2018. arXiv:1704.01287.
[43] A. Unterreiter, A. Arnold, P. Markowich, and G. Toscani. On generalized Csiszár–Kullback inequali-

ties. Monatshefte Math. 131 (2000), 235-253.
[44] Z. Wen and S. Fu. Global solutions to a class of multi-species reaction-diffusion systems with cross-

diffusions arising in population dynamics. J. Comput. Appl. Math. 230 (2009), 34–43.
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filling. Ann. Inst. H. Poincaré – Anal. Non Lin. 34 (2017), 1–29. (Erratum: 34 (2017), 789–792.)

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at

Institute of Mathematics and Scientific Computing, University of Graz, Heinrich-
strasse 36, 8010 Graz, Austria

E-mail address: quoc.tang@uni-graz.at


	1. Introduction
	1.1. Model equations
	1.2. State of the art
	1.3. Key ideas
	1.4. Main results
	1.5. Notation

	2. Global existence of weak solutions
	2.1. Preliminary results
	2.2. Solution to an approximate problem
	2.3. Uniform estimates

	3. Convergence to equilibrium under detailed balance
	3.1. Conservation laws
	3.2. Detailed-balanced condition
	3.3. Preliminary estimates for the entropy and entropy production
	3.4. The case of equal homogeneities
	3.5. The case of unequal homogeneities
	3.6. Proof of Theorem 1

	4. Example: a specific reaction
	5. Convergence to equilibrium for complex-balanced systems
	Appendix A. Proof of Lemma 20
	References

