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Abstract

The electron flow through quantum waveguides is modeled by the time-dependent Schro-
dinger equation with absorbing boundary conditions, which are realized by a negative
imaginary potential. The Schrodinger equation is discretized by a time-splitting spectral
method, and the quantum waveguides are fed by a mono-energetic incoming plane wave
pulse. The resulting algorithm is extremely efficient due to the Fast Fourier Transform
implementation of the spectral scheme. Numerical convergence rates for a one-dimensional
scattering problem are calculated. The transmission rates of a two-dimensional T-stub
quantum waveguide and a single-branch coupler are numerically computed. Moreover, the
transient behavior of a three-dimensional T-stub waveguide is simulated.
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1. Introduction

Nanoscale quantum electronics is a promising research field for devising new device
classes with a high degree of functionality. The electron transport in these devices can be
considered to be ballistic at low temperatures. Then the electrical properties depend on
quantum interferences, controlled by the bias voltage applied to the gate contacts. These
devices may be used as nanoscale electronic switches, quantum interference transistors,
multiplexers etc. [10, 35, 39]. They are made of different semiconductor materials in such
a way that the electrons are confined to small channels or waveguides. Due to the strong
confinement of the electron gas to one or two space dimensions, the ballistic quantum
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transport may be modeled by the one-dimensional or two-dimensional Schrodinger equa-
tion. Since there are quantum effects which can be only explained in a three-dimensional
model [37], also three-dimensional simulations are of interest.

In this paper, the electron transport in quantum waveguides is modeled by the time-
dependent Schrodinger equation with open boundary conditions, which is suitable for bal-
listic transport. An alternative approach consists in the solution of the nonequilibrium
Green’s function equations (coupled selfconsistently with the Poisson equation), see, e.g.,
(36, 40]. Although the open boundary Schrodinger and non-equilibrium Green’s functions
approaches can be considered to be formally equivalent, their numerical treatment is dif-
ferent [30]. The dynamical behavior of the electrons in a quantum waveguide has been also
described by Wigner function models [38]. The disadvantage of Wigner models is its high
dimensionality, requiring to solve a six-dimensional problem in three-dimensional devices.

We discretize the Schrodinger equation by employing a time-splitting spectral method.
More precisely, the Schrodinger equation is split into the free Schrédinger equation and an
ordinary differential equation for the electric potential (see Section 2). The latter equation
can be solved explicitly, whereas the former one is approximated by a spectral method
8, 27]. There are several time-splitting strategies such as the Trotter and Strang splitting;
see [17] for the corresponding error estimates. These methods are unconditionally stable,
mass conservative, and gauge invariant [8]. Another advantage of the spectral method is
that the discrete set of equations can be solved very efficiently by using the Fast Fourier
Transform. In fact, the complexity of the full algorithm for one time step is of the order
O(Mlog M), where M = M --- My and M; is the number of grid points in the j-th
direction (see Section 2).

For the open boundary problem it is necessary to devise appropriate absorbing bound-
ary conditions at the interface between the leads and the active device domain in order to
avoid unphysical reflections at the boundary. In the literature, there are several ways of
deriving absorbing or transparent boundary conditions (TBC). Analytic TBC are nonlocal
in time, and their numerical implementation requires some care (see the review [1] and
references therein). Moreover, inadequate discretizations may introduce strong reflections
at the boundary [12].

In the quantum transmitting boundary method, the contact region along the leads is
replaced by outgoing waveguide modes with known transmitting characteristics [20, 30].
This method needs to sum up a large number of modes of the incident, reflected, and
transmitted waves from each terminal, and therefore, its implementation is rather complex.

Another method is to introduce perfectly matched layers, first developed for the Max-
well equations [9]. The idea is to enlarge the computational domain by an artificial damping
layer of finite width, where a modified equation has to be solved. The method has been
applied to the Schrodinger equation in [11, 26].

A different idea has been presented in [34]. The (periodic) wave function is decomposed
periodically in time into a family of coherent states. In contrast to perfectly matched layer
methods, the phase-space filter method of [34] filters only those regions of the phase space
containing outgoing waves. However, like for perfectly matched layer methods, it is not
easy to treat waves with low kinetic energy.



In the context of finite-difference discretizations such as the Crank-Nicolson method,
discrete TBC have been derived [3]. They yield unconditionally stable numerical schemes
which are completely reflection-free at the boundary [6]. Discrete TBC include the discrete
convolution of the unknown function with a given kernel, and hence, its numerical compu-
tation is rather involved. The evaluation of discrete TBC can be significantly accelerated
by approximating the kernel by a finite sum of exponentials that decay with respect to time
[6]. The limit of vanishing spatial approximation parameters in the discrete TBC coincides
with the temporally semi-discrete TBC of Schmidt and Deuflhard [32] and of Lubich and
Schédle [21, 22, 31]. For more references on TBC, we refer to [1, 41].

Our aim is to develop a fast, easy-to-implement numerical scheme for the open Schro-
dinger problem in up to three space dimensions. Therefore, in order to reduce the com-
putational cost, we have chosen to model absorbing boundary conditions by the simple
imaginary absorbing potential method. Negative imaginary potentials have been proposed
to damp the wave function before it reaches the boundary of the computational domain
(14, 19, 23, 25]. In [25] criteria for selecting the optimal height and width of such poten-
tials are investigated. It turns out that for low-energy waves, the computational domain
has to be large compared to the physical domain, thus increasing the computational cost.
However, due to the low complexity of the time-splitting spectral scheme, the overall com-
plexity is still low, and three-dimensional simulations of quantum transistors are possible
on modern standard PCs within a few hours of computing time (see Section 3).

Surprisingly, there are only few results in the literature on dynamical simulations of
quantum devices in two and three space dimensions. In fact, most of the numerical results
(in three dimensions) concern the stationary Schrodinger equation, see e.g. [11, 30, 33].
Transient simulations are typically performed in one or two space dimensions only, see
e.g. [7, 34] for Schrodinger simulations and [24] for Wigner simulations. In [15], the time-
dependent Schrodinger equation is numerically solved in three space dimensions, but no
devices have been simulated. In this paper, we present dynamical simulations of a three-
dimensional quantum device.

Our work is organized as follows. In Section 2, we detail the time-splitting spectral
method, the choice of the negative imaginary potential, and the injection of a continuously
incoming mono-energetic plane wave pulse. Section 3 is devoted to the numerical exam-
ples. First, we perform a numerical test in one space dimension to compute numerical
convergence rates. Furthermore, in two space dimensions, the stationary behavior in a
T-stub interference transistor and a single-branch coupler are simulated. The numerical
results are compared with those from [10]. Moreover, the dynamics of a three-dimensional
T-stub waveguide are presented.

2. Numerical scheme

We consider the time-dependent Schrodinger equation for the wave function u:

h2
1thoyu = —FAU +V(z)u, inQ, t>0, u(-,0)=wuy in (1)
m



where Q € R? (d < 3) is a bounded domain. The physical constants are the reduced
Planck constant h and the effective mass m*, and V' denotes the external potential. The
device domain is generally included in the computational domain 2 which is taken as a
rectangle or cuboid in the simulations. We prescribe periodic boundary conditions on {2.

In this paper, the potential is a given function and models the confinement structure (as
in [7]). It is possible to couple the Schrédinger equation selfconsistently with the Poisson
equation; see, e.g. [29, 30].

2.1. Numerical discretization

Let Q = IT3_,(a;,b;) be a cuboid. We introduce the spatial grid (z,) = (asgal),aséw),
25, where xg-aj) = a; + ojAz;, Axy; = (b —aj)/M;, o; € {0,...,M; — 1}, and M,
are even integers (j = 1,2,3). The time steps are given by ¢, = nAt, where At > 0
and n € N. We denote by u” the numerical approximation of u(x,,t,). In this notation,
o = (a1, 2, a3) denotes a multiindex with o € T :=1I3_,{0,..., M; — 1}.

The solution to the Schrodinger equation (1) at time ¢, with initial datum w(t,) can
be formally written as u(t,,,) = e A2 (t,), where A = —(h/2m*)A and B = V(z)/h,

and u(t) denotes the function u(-,t). The Trotter splitting is based on the approximation

U/<tn+1) ~ efiBAtefiAAtu(tn)7

i.e., first the free Schrodinger equation is solved for one time step,

2
1thoyu, = —%Aul, u1(0) = u(t,), t>0, (2)

followed by solving the ordinary differential equation
ihOwug = V(x)ug, ug(0) =uy(At), t >0, (3)
for another time step. Then uy(At) is an approximation of u(t,+1).

An alternative approximation is the Strang splitting

U(tn-i-l) ~ e_iBAt/Qe_iAAte_iBAt/Zu(tn).
Convergence of this approximation follows from the Trotter product formula, and error
estimates have been derived in [8, 17]. Equation (2) will be discretized in space by the
spectral method and integrated in time exactly. Then (3) is solved exactly. The method
is given as follows. Let the Fourier coefficients of u! be given by

27Tk'j
bj — CLj7

~n n _—ipp-(ra—a o o
u, = E ule” e wema) oy — (Hh1s M2y fk3)s Mok =
acl

where k = (ki, ko, ks) € J := IE_ {—M;/2,...,M;/2 — 1} and a = (a1, a,a3). Then,
given u} at time step t,, the approximation at step ¢, is computed from
ot — 1 iV(wa)At/hZefihmk|2At/2m*/\n€i,uk-(wa7a)

= =M g

Y

keJ
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where M = M, M;Mj. The initial value is given by

u) = u(z4,0) = up(z4), a€l.

The Strang time splitting is similar to the Trotter splitting. Indeed, n steps of the
Strang splitting can be reformulated as n steps of the Trotter splitting framed by e *844/2,
ie.

uStans — o=iBA2 (e—iBAte—z‘AAt>ne—iBAt/Qu(tO).

The symmetric structure of the Strang splitting increases the order from 1 (Trotter) split-
ting to 2 (Strang). As the computational work is nearly the same, the Strang splitting is
clearly preferable (see Section 3.1).

In the simulations below, the above algorithm is implemented in the Matlab program-
ming language. The discrete Fourier transforms are computed by the Fast Fourier Trans-
form (FFT) based on the FFTW library [13]. This FFT implementation is fastest when the
length of the vector is a power of two, but it is almost as fast for lengths which have small
prime factors. Thus, the numbers M, Ms, and M3 do not necessarily need to be powers
of two. This fact is employed particularly in our two- and three-dimensional simulations.
The complexity of the time-splitting spectral method for one time step is dominated by
the d-dimensional FFT and is therefore of the order O(M log M).

2.2. Absorbing boundary conditions

Due to the periodic boundary conditions, wave packets will, after some time, wrap
around the computational domain which is not physical for our applications. One way to
overcome this problem is to damp the wave function before it reaches the boundary of the
computational domain by using a complex potential with negative imaginary part in the
vicinity of the boundaries. Other methods for designing absorbing boundary conditions
have been described in the introduction. Our choice is based on the observation that the
resulting numerical scheme can be solved very efficiently.

Negative imaginary potentials have been employed in quantum chemistry computations
since several years; see, e.g. [19] and the references in [16, 23]. In [25], a linear imaginary
potential has been suggested, and criteria for selecting the optimal height and width of
the potential have been derived. The Saxon-Woods potential Vyps(z) = —iVy/(1 + e*(#=2)
has been used in [19] for studies of the multiphonon dissiciation in diatomic molecules.
Since it is generally difficult to absorb outgoing waves with low frequency, some authors
have added a negative real potential to increase the kinetic energy of the wave function,
thereby reducing its de Broglie wave length. For instance, a complex absorbing potential
with power functions has been chosen in [14], whereas in [16] exponential functions have
been taken.

In three dimensions, assuming that the wave packet travels in x;-direction, we use a



potential of quadratic type

_#\2 .
—z%(ml xl) if 2, < 2t

a1_${
_ : VA
Vabs (21, 22, 23) = ¢ 0 if of <@y <af, (4)
~\ 2
. T1—T] . r
—iVy (bl_x;) if 27 < xq,

where z¢ and 27 (2§ < 27) denote the boundaries of the device domain in the x;-direction.
As an example, the imaginary part of (4) is presented in Figure 1. In all of the following
simulations, we have chosen Vy = 50meV, a; = —100nm, b; = 180 nm, xf = Onm,
and ] = 80nm. Thus, in the simulations, we replace the external potential V' in the

Schrodinger equation (1) by V' + V.
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Figure 1: Imaginary part of the absorbing potential (4) with Vj = 50 meV.

As a numerical example, the evolution of a free Gaussian wave packet in one space
dimension under the influence of the potential (4) is illustrated in Figure 2. The wave
packet (dashed line) is given by

u(z,t) = (1 + zé) e exp {(1 + z;)_l (— (x 2_0%)2 +ik(z — ;) — i02k2£)} :

where 7 = 2m*c?/h, k = V2m*E/h, 2, = 40nm, 0 = 10nm, and F = 16.74 meV.

The effective mass is m* = 0.067mg, where mg is the electron mass at rest, corre-
sponding to GaAs. The other wave packet in Figure 2 (solid line) is computed from the
Strang time-splitting spectral scheme, with Az = 0.25nm and At = 0.25fs, using the
complex absorbing potential (4). The device domain is the interval [0,80 nm|, whereas
the computational domain extends from —100nm to 180 nm and is more than three times
larger than the physical domain. This ensures that the numerical solution (solid line) is
indistinguishable from the exact solution (dashed line) in the physical domain.

The drawbacks of absorbing potentials are that they require an enlarged computational
domain to absorb the wave function and that they have to be fitted to the frequency range
of the incoming wave packets. However, since the numerical algorithm is dominated by the
O(M log M) complexity of the time-splitting spectral scheme, the additional computational
effort due to the enlarged domain is less important. Moreover, the algorithm is not difficult
to implement and can be parallelized easily. In order to met the second drawback, we
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Figure 2: Propagation of a Gaussian wave packet under the influence of the potential (4)
with averaged kinetic energy 16.74meV at times 0, 150fs (upper row) and 300fs, 2ps
(lower row). Solid line: numerical solution, dashed line: exact solution.

utilize large absorbing regions outside the quantum device, in which the absorbing potential
increases smoothly. This allows us to absorb wave packets over a broad spectrum of
momenta and for low kinetic energies (see Section 3 for details).

2.3. Injection of plane waves

The incoming electrons are modeled by the mono-energetic plane waves e'**=%) which
describe electrons with kinetic energy E = h?|k|?/2m* and angular frequency w = FE/h.
More precisely, we create a continuously incoming plane wave pulse spreading from the
incoming lead contact to the outgoing leads. In one space dimension, we start with the
wave function

(z)(xj) if T; < 0,
u;-) = { eika; (% + % coS (xjﬂ/é)) if 0 <x; <9,

Here, ¢ denotes the numerical solution of the stationary Schrodinger equation

FLQ 82 hk 2
@)+ Vam () = Eo(r) = Do) v e, 0],

with the boundary conditions ¢(x = a;) = 0 and ¢(z = 0) = 1, where we use a simple
central finite-difference approximation. Further, let j, be such that z;, = 0. Then we
define the difference p; = e*"“’mug — u; for j =1,...,jo — 1 and p; = 0 elsewhere, where
ujl is the numerical solution of the time-splitting spectral scheme at the grid point z; and

7



time ¢, = At. The factor e=%* corrects the phase shift after one time step. The solution
at time ¢, is then computed from

U}L _ u’; + e—i(n—l)w&tpj7 j=0,.... M -1, n>1.

This process is illustrated in Figure 3 for £ = 16.74meV, § = 40nm, Ax = 0.25nm, and
a time step size of At = 0.25fs. The real part of the incoming plane wave pulse is shown
for various times. We see that the pulse spreads from the left to the right lead and equals

a plane wave in the physical domain [0,80] nm. In Figure 3 we also show the complete
computational domain which is much larger than the physical interval.

= 15
£ 0
2
& —1.5 I I
—100 0 80 180
z [nm]
= 15
2
& —1.5 I I
—100 0 80 180
z [nm]
= 15
£ 0
2
£ -15 : :
—100 0 80 180
z [nm]
= 15
) O—W
2
= —1.5 T I
—100 0 80 180
z [nm]

Figure 3: Real part of the incoming plane wave pulse at times 0 fs, 50 fs, 100 fs, and 5 ps.

In several space dimensions, we assume that the incoming pulse travels in the ;-
direction, whereas the electrons are confined in the other directions. Then the incoming
plane wave pulse is the product of the one-dimensional pulse, as described above, in the
x1-direction and the solution to the stationary Schrodinger equation in the zo-direction
(and x3-direction if d = 3).



3. Numerical simulations

3.1. Numerical test in one space dimension

As a test of the numerical scheme described in Section 2, we consider the evolution of
the incoming plane wave pulse in the interval [0,80 nm] with a Gaussian external potential

V(l’) = V* e 002 (zr;io) , X € [O’ 80 nm]7

placed at g = 40nm (see Figure 4). The maximum value of the potential V* equals the
energy of the incoming plane wave ' = 16.74 meV. The dotted line in Figure 4 represents
the scattering state computed with the quantum transmitting boundary method [20, 30]
on a very fine grid with Az = 0.0025nm. This is taken as a reference solution for the
expected scattering state. The solid line is the numerical solution of the time-splitting
spectral method using Az = 0.25nm and At = 0.25fs. Apparently, the solution converges
to the scattering state computed with the quantum transmitting boundary method. The
relative error in the 2 norm between the particle densities at various times is shown in
Figure 5.

4 — 40 4 — 40

z [nm] z [nm]

Figure 4: Evolution of the incoming plane wave pulse in the presence of a Gaussian external
potential (dashed line) at times 0fs, 100 fs (upper row) and 200fs, 5ps (lower row). Solid
line: numerical solution computed with the spectral method. Dotted line: scattering state
computed with the quantum transmitting boundary method.

Next, we present the numerical convergence rates with respect to the time and space
discretization parameters. The relative error is here computed from the difference of the
numerical solution and a reference solution in the ¢? norm.
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Figure 5: Relative error between the spectral approximation and the solution of the quan-
tum transmitting boundary method in the ¢? norm at various times.

The reference solution is obtained from a Crank-Nicolson finite-difference scheme in
combination with discrete transparent boundary conditions (TBC); see Section 1. More
precisely, a homogeneous TBC is used at x = 80 nm, whereas an inhomogeneous TBC is
used at * = Onm, modeling the incoming plane wave pulse. For further details, we refer
to [4]. The numerical scheme is unconditionally stable and completely reflection-free at
the boundary [6]. Taking Az = 0.0025nm and At = 0.005 as discretization parameters,
we calculate a very accurate reference solution at ¢t = 500 fs which corresponds to 100, 000
time steps. As in each time step a convolution of size n (time step number) has to be
computed, this calculation is very expensive.

Now we perform the same simulation as above until ¢ = 500 fs with the time-splitting
spectral method, where we use different time step sizes At but a fixed spatial discretization
Az = 0.025nm. The relative error in the £2 norm between the numerical solution and the
reference solution is shown in Figure 6 (left). Here we distinguish between the Trotter
time splitting (triangles) and the Strang time splitting (squares). Obviously, the Strang
splitting is superior to the Trotter splitting. When the time step size is getting very
small, both numerical schemes yield approximately the same error. This is probably due
to the influence of the complex absorbing potential outside of the device domain. The
convergence rate of the Trotter splitting for moderate time step sizes is approximately
1.1, which corresponds to the first-order time splitting. The convergence rate of the Strang
splitting for moderate time step sizes is approximately 2.0, which corresponds to the second-
order time splitting. Next, we repeat the experiment with variable spatial discretizations
Az and a fixed time step size At = 0.1fs. The relative errors are presented in Figure 6
(right).

We notice that the convergence rate obtained in [8] for the Trotter time-splitting spec-
tral method without absorbing potentials reads as follows [8, Thm. 4.1]:

1

n T "
|lu(tn) — ufllr2 < CmE (M) +CTAt forallmeN, t, <T,

where u is the solution to the Schrodinger equation (1) with periodic boundary conditions

10



and uf} is the time-splitting spectral approximation, obtained from

M/2—1

2.

k=—M/2

1

~n _ipg(x—ar)

ul () upe

The constant C,, > 0 depends on the L>® norm of the m-th derivative of V' and the L?
norm of the m-th derivative of u, and C' > 0 contains the operator-splitting error. It is
difficult to compare our numerical convergence rate with the theoretical result, since we
would need to include the error due to the absorbing potential and since the value of ), is
not easy to compute. However, on a graphical level, the solution obtained from the time-
splitting spectral method cannot be distinguished from the reference solution as illustrated
in Figure 7.

100 E””l T T TTTTIT T T TTTTIT T IIIIIIE 100 E T T TTTTIT T T TTTTIT T T IIIIIE
-1 [ _ -1 [ - —
s10F 3§10 E .3
~ - 3 ~ - 3
< - 3 « E ]
N\ - - \§) - . i
S0 4 fw72g ] E
—_ IIIIT I.IIIIIIII 1 ||||||I| | N —3_ I.I IIIIIII 1 1 IIIIIII 1 L1111l
1073 10
1071 10° 10! 102 1072 107t 10° 10!
At [fs] Az [nm]

Figure 6: Relative errors for various time step sizes At (left) and spatial discretizations
Az (right) at time t = 500 fs. Triangles: Trotter time-splitting approximation, squares:

Strang time-splitting approximation.
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Figure 7: Evolution of a reference solution and the solution computed with the spectral
method at times 0fs, 250 fs and 500 fs. The reference solution is obtained from a Crank-
Nicolson discretization in combination with discrete transparent boundary conditions. The
discretization parameters are Az = 0.0025nm and At = 0.005fs. The time-splitting
spectral approximation is computed with Az = 0.25nm and At = 0.25fs. Solid line:
time-splitting spectral method, dotted line: reference solution.

3.2. Simulation of two-dimensional quantum wavequides

The electron transport in a quantum T-stub waveguide is based on the interference of
the particles. The electrons have two main paths, one straight path from source to drain
and another path going by the stub (Figure 8). The gate voltage modifies the penetration
of the electron wave function in the lateral stub. The trajectories interfere constructively
or deconstructively, depending on the stub length [2]. Thus, there are two states: the
transmission is (almost) one, corresponding to an on-state, or zero, corresponding to an
off-state. In this sense, the device acts as a nanoscale switch, also referred to as a quantum
(interference) transistor [2]. The electron gas is assumed to be confined in two space
dimensions realized by Al 3Gag7As/GaAs heterostructures such that it is sufficient to solve

12



the two-dimensional Schrodinger equation (see the next subsection for three-dimensional
simulations).

90
. 25+ s
g
=
a I [ I 25
I I I I IT I
Omf)
0 30 50 80

x1 [nm]

Figure 8: Geometry of the quantum stub transistor.

The geometry of the simulated quantum transistor is similar to that of [7, 10|, see
Figure 8. The length of the transistor is 80nm, the width of the stub is 20nm and
its length varies between 20nm and 60nm. The computational domain is the rectangle
Q = [—100, 180] x [0,90] nm?, and the periodic boundary conditions are imposed on that
domain. In contrast to the simulations in [7, 10], the heterostructure is not modeled by
hard walls and square corners but by a smooth, finite confining potential with maximal
value 1eV. The profile of the potential is depicted in Figure 9. The material is GaAs with
the effective mass m* = 0.067my.

0 10 20 30 40
Z2 [nm]

Figure 9: Profile of the confining potential (dashed line), the ground state with E, =
13.16 meV (solid line) and the first excited state with £y = 52.33 meV (dotted line).

Due to the translation invariance of the waveguide problem without stub in the ;-
direction, the stationary full wave function can be separated as

Uk (71, 72) = e* 1 ¢, (9),

where the exponential part corresponds to a plane wave associated to the wave vector k.
The energy is given by the sum of the energy corresponding to ¢, and the wave energy in
zy-direction, F = E, + (hk)?/2m*. The wave function ¢, is a solution to the stationary

13



Schrodinger equation o
h* 0°¢y,

with periodic boundary conditions. This equation is solved by a simple central finite-
difference scheme together with the sparse eigenvalue solver eigs of Matlab. The ground
state ¢y and the first excited state ¢, are shown in Figure 9. The wave functions decrease
exponentially at the transition to the finite potential, whereas in the case of hard walls,
they vanish at the walls. The ground state has the energy Ey = 13.16 meV, which is not
much smaller than the energy of the ground state £} = 14.03meV corresponding to the
infinite square well case.

The electrons are continuously fed into the lead using the plane wave pulse described
in Section 2.3. We notice that the angular frequency w = E/h occuring in the factor
e~ @At is computed by employing the total energy E. The incoming wave has the energy
E =29.9meV (as in [7]), comprised of the ground-state energy Fy = 13.16 meV to confine
the electrons in the channel and the kinetic energy 16.74 meV. This means that we perform
the simulation using the lowest transversal mode only. We have chosen Axz; = Axy =
0.5nm corresponding to M; = 560 and M, = 160 grid points. The time step size equals
At =0.251s.

In this subsection, we are interested in the stationary behavior in order to compare our
simulation results with those of [7, 10]. A (quasi) steady state is reached after about 2 ps
within 67 seconds computing time on an Intel Core 2 Quad CPU Q9550 with 4 x 2.8 GHz.
The corresponding probability densities for stub lengths s; = 22.5nm, sy = 31.5nm,
s3 = 41nm, and s, = 50nm are shown in Figure 10. The conductance of the transistor
with stub lengths s; and s; almost vanishes, i.e., the electrons interfere in such a way that
(almost) no electrons can flow through the device. This corresponds to an off-state of the
transistor. The transmission becomes maximal at the stub lengths s; and s3, corresponding
to an on-state of the device.

The transmission through the device depending on the stub length is shown in Figure
11. As above, the incident energy equals 29.9meV. The transmission at time t¢,, is defined

as the quotient
Ma—1
n Zj:20 ‘qu‘Q

S a2 o
where uj ; approximates the wave function u(a, + kAwy, jAry,t,) and £ and r are the
indices of the grid points at 1 = 0 and x; = 80 nm. Since the numerical solution does not
reach a perfect steady state, the transmission is averaged over the time interval from 5 ps
to 6ps. Interestingly, we find the off- and on-states (31.5nm and 41.0 nm, respectively)
at almost the same stub lengths as in [10] (32nm and 40.5nm), although we employ a
smoothed confining potential in contrast to the hard-wall potential of [10]. This shows
that the solution using a smoothed potential does not differ significantly from the hard-
wall solution.

As a second example we simulate a single-branch coupler, which is an example of a
multiport structure. The coupler consists of four ports, coupled through a small window in
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Figure 10: Probability densities in the quantum transistor for stub lengths 22.5nm, 31.5nm
(upper row) and 41 nm, 50 nm (lower row) at ¢ = 2 ps. Isolines of the density |u|? are shown
at the values 0.05, 0.5, 2, 4, and those of the potential V' at 0.05eV, 0.95eV.

the middle; see Figure 12. A detailed study of the conductance in a single-branch coupler
with hard walls can be found in [10]. The geometry is taken from [10]. The window width
equals w = 30 nm, and the computational domain is [—100, 180] x [0, 100] nm?. We employ
as in the previous example a smoothed potential with the maximal value 1eV.

The mono-energetic plane wave pulse is injected at the lower left lead of the device (port
). The other ports are numbered counter-clockwise. Depending on the incident energy
(and the window width), we obtain different steady states and different transmissions 72,
713, and T4, which are defined similarly as in (5). The transmissions as a function of
the kinetic energy are shown in Figure 13. The transmission 714 from port I to port IV
is maximal at 16.5meV, i.e., the injected electrons leave most likely the device at port
IV. The corresponding probability density is illustrated in Figure 14 (left). In Figure 14
(right), the density for a window width w = 51 nm is shown. Compared to the results of
[10], we find the same interference patterns, and 714 reaches its maximum value for almost
the same energy (which equals 16.37 meV = 30.4 meV —14.03 meV in [10, p. 710]), although
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Figure 11: Transmissions of the quantum transistor, averaged over the time interval from
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Figure 12: Geometry of the single-branch coupler.

we employ a smoothed potential.

We notice that all simulations are performed with the same absorbing potential (4) with
Vo = 50meV. This choice turned out to be appropriate if the kinetic energy of the electrons
is between 15 meV and 25 meV. For different kinetic energies, the absorbing potential needs
to be adapted, which is clearly a disadvantage of the method compared to, for instance,
the method of [7]. However, we stress the fact that, due to the simple absorbing potential
technique, our algorithm is very fast, and three-dimensional simulations are feasible (see
below).

3.8. Sitmulation of a three-dimensional quantum wavegquide

A quantum waveguide has a three-dimensional structure, in which the electrons may
be confined in the (21, x9)-direction. Therefore, we choose the channel height 3 = 5nm,
whereas the total length of the quantum transistor is ;1 = 80 nm and the waveguide width
is x9 = 20nm (see Figure 15). The stub length is between 33 nm and 43 nm.

The channel profile is presented in Figure 16. The ground state and the first excited
state are computed from the two-dimensional Schrodinger equation. The three-dimensional

16



0.25 —

15 17.5 20 22.5 25
injected kinetic energy [meV]

Figure 13: Transmissions from port I to ports II, III, and IV, respectively, of the single-
branch coupler, averaged over the time interval from 5 ps to 6 ps.

simulations are performed on a grid with Az, = Az = Azg = 0.5nm and with time step
size At = 0.25fs. Complex arrays of size 560 x 150 x 30 are needed to store the numerical
wave function, the potential, and three auxiliary variables, using only 322 MB memory
capacity. The simulation presented below took about four hours computing time on an
Intel Core 2 Quad CPU Q9550 with 4 x 2.8 GHz.

Figures 17-18 show the transient behavior of the probability densities in the quantum
transistor at different times. At time ¢ = 0, the stub length is fixed at s; = 33nm. It
takes about 2 ps to reach the (quasi) steady state. The stub length is chosen such that the
device is in the off-state. From 2ps to 2.5 ps, the sub length is continuously increased to
sy = 43nm. After another transient phase, the solution converges to a new (quasi) steady
state. The electrons flow through the device which is in the on-state. The stub length is
decreased from 5.5 ps to 6 ps to s1, and the simulation is stopped at 7.5 ps.

Figures 17-18 are realized as follows. Every 25 time steps, the isosurfaces of the electron
density are calculated using the Matlab built-in function isosurface. This yields vertices
and faces of a triangle mesh. The normals of the isosurface vertices are derived from the
Matlab command isonormals. The matrices describing the faces, vertices, and normals are
needed to create a mesh representation which can be included in the POV-Ray language
[28]. In order to visualize the inner and outer surfaces of the electron density at 0.05
and 0.25, the outer surface is made almost transparent. In total, 1200 scene description
files have been rendered. The rendered images are used to create a movie illustrating
the switching process, see http://www. jungel.at.vu, item “Simulations”. The rendering
process took about six hours computing time on the above mentioned CPU.
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