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Abstract. An implicit Euler finite-volume scheme for a parabolic reaction-diffusion sys-
tem modeling biofilm growth is analyzed and implemented. The system consists of a
degenerate-singular diffusion equation for the biomass fraction, which is coupled to a dif-
fusion equation for the nutrient concentration, and it is solved in a bounded domain with
Dirichlet boundary conditions. By transforming the biomass fraction to an entropy-type
variable, it is shown that the numerical scheme preserves the lower and upper bounds of
the biomass fraction. The existence and uniqueness of a discrete solution and the conver-
gence of the scheme are proved. Numerical experiments in one and two space dimensions
illustrate, respectively, the rate of convergence in space of our scheme and the temporal
evolution of the biomass fraction and the nutrient concentration.

1. Introduction

Biofilms are accumulations of microorganisms that grow on surfaces in liquids and can
be prevalent in natural, industrial, and hospital environments [26]. They can form, for in-
stance, on teeth as dental plaque and on inert surfaces of implanted devices like catheters.
Another example are biofilms grown on filters, which may extract and digest organic com-
pounds and help to clean wastewater. A biofilm growth model that well describes the
spatial spreading mechanism for biomass and the dependency on the nutrient was sug-
gested in [14]. The model was analyzed in [15, 21] and numerically solved in [2, 11]. Up to
our knowledge, there does not exist any analysis for the numerical approximations in the
literature. In this paper, we provide such an analysis for an implicit Euler finite-volume
scheme for the model in [15].

The biofilm is modeled by the biomass fraction M(x, t) and the nutrient concentration
S(x, t), satisfying the diffusion equations

∂tS − d1∆S = g(S,M),(1)

∂tM − d2 div(f(M)∇M) = h(S,M) in Ω, t > 0,(2)
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and the initial and boundary conditions

(3) S(0) = S0, M(0) = M0 in Ω, S = 1, M = MD on ∂Ω, t > 0,

where Ω ⊂ Rd (d ≥ 1) is a bounded domain and 0 < MD < 1. Other boundary conditions
can also be considered; see Remark 1.

The nutrients are consumed with the Monod reaction rate g(S,M), while biomass is
produced by the production rate h(S,M) that is the sum of a Monod reaction term and a
wastage term,

(4) g(M,S) = −κ1
SM

κ4 + S
, h(M,S) = κ3

SM

κ4 + S
− κ2M,

where κi ≥ 0 for i = 1, 2, 3 and κ4 > 0. The diffusion coefficients d1 and d2 are assumed
to be positive numbers. Postulating that there is a sharp biomass front, spatial spreading
occurs only when there is a significant amount of biomass, and the biomass fraction cannot
exceed the maximum bound Mmax = 1, the authors of [14] have suggested the density-
dependent diffusion term

(5) f(M) =
M b

(1−M)a
, where a > 1, b > 0.

The diffusion operator in (2) can be written as div(f(M)∇M) = ∆F (M), where

(6) F (M) =

∫ M

0

f(s)ds, M ≥ 0,

which gives a porous-medium degeneracy for M close to zero. This degeneracy leads to a
finite speed of propagation and is responsible for the formation of a sharp interface between
the biofilm and the surrounding liquid. The superdiffusion singularity forces the biomass
fraction to be smaller than the maximal amount Mmax = 1.

The aim of this paper is to analyze an implicit Euler finite-volume scheme for (1)–(5)
that preserves the bounds 0 ≤ S ≤ 1 and 0 ≤M < 1. We show the existence of a discrete
solution, prove the convergence of the scheme, and present some numerical tests in one
and two space dimensions. The main difficulty of the analysis is the degenerate-singular
diffusion term. On the continuous level, if M0 ≤ 1 − ε0 in Ω and MD ≤ 1 − ε0 for
some ε0 ∈ (0, 1) then the comparison principle implies that there exists δ(ε0) > 0 such
that M ≤ 1 − δ(ε0) in Ω [15, Prop. 6]. Unfortunately, we have not found any suitable
comparison principle on the discrete level.

We overcome this issue by using two ideas. First, we formulate equation (2) for the
biomass in terms of the approximate “entropy variable” [22]

W ε
K := F (M ε

K)− F (MD) + ε log
M ε

K

MD
,

where K ⊂ Ω denotes a control volume and ε > 0 is a regularization parameter. For given
W ε
K ∈ R, the biomass fraction is defined implicitly by the invertible mapping (0, 1) → R,

M ε 7→ W ε. The advantage is that the bounds 0 < M ε
K < 1 are guaranteed by this

definition. In fact, the singularity in F provides the upper bound, while the ε-regularization



ANALYSIS OF A FINITE-VOLUME SCHEME 3

gives the lower bound. Second, we prove an ε-uniform bound for F (M ε) in L1(Ω), which
shows that the a.e. limit MK = limε→0M

ε
K satisfies 0 ≤ MK < 1 for all control volumes

K.
The original biofilm model of [14] contains the transport term u ·∇M in the equation for

the biofilm fraction. The flow velocity u is assumed to satisfy the incompressible Navier–
Stokes equations in the region {M = 0}, while u = 0 in {M > 0}. Thus, model (1)–(2)
implicitly assumes that M > 0. We do not require this condition but we prove in Theorem
2 below that this property is fulfilled if M0 and MD are strictly positive.

The existence and uniqueness of a global weak solution to (1)–(5) was shown in [15],
while the original model was analyzed in [21] by formulating it as a system of variational
inequalities. The model of [14] was extended in [13] by taking into account nutrient taxis,
which forces the biofilm to move up a nutrient concentration gradient. In that work, a
fast-diffusion exponent a ∈ (0, 1) instead of a superdiffusive value a > 1 (like in [14]) was
considered. Equations (1)–(5) were numerically solved using finite differences [14] or finite
volumes [2] but without any analysis. Some properties of the semi-implicit Euler finite-
difference scheme were shown in [12]. A finite-element approximation for (2) with linear
diffusion f(M) = 1 but a constraint on the upper bound for the biomass was suggested in
[1].

Local mixing effects between different biofilm species can be described by multispecies
biofilm models [24]. The resulting cross-diffusion system for the biofilm proportions (with-
out nutrient equation) was analyzed in [9] and numerically investigated in [8]. A nutrient
equation was included in a two-species biofilm system in [20], where a time-adaptive scheme
was suggested to deal with biomasses close to the maximal value. A finite-volume method
was proposed in [23] for a biofilm system for the active and inert biomasses, completed by
equations for the nutrient and biocide concentrations, but without performing a numerical
analysis.

Let us mention also related biofilm models. The first model was suggested by Wanner
and Gujer [27] and consists of a one-dimensional transport equation for the biofilm species
together with a differential equation for the biofilm thickness. A nonlinear hyperbolic
system for the formation of biofilms was derived in [7]. Other works were concerned with
diffusion equations coupled to a fluiddynamical model as in [14]. For instance, the paper
[25] provides a formal derivation of the diffusion equations for the biomass and nutrient,
coupled to the Darcy–Stokes equation for the fluid velocity. Numerical simulations of a
gradient-flow system for the dead and live biofilm bacteria, coupled to the incompressible
Navier–Stokes equations for the fluid velocity, were presented in [28], based on a Crank–
Nicolson discretization and an upwinding scheme.

With the exception of [1, 8], these mentioned works do not contain any analysis of the
numerical scheme. The paper [1] is concerned with a finite-element method and assumes
linear diffusion, while [8] does not contain an equation for the nutrient. In this paper, we
provide a numerical analysis of a finite-volume scheme to (1)–(2) for the first time. Our
results can be sketched as follows:
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• We prove the existence of a finite-volume solution (SkK ,M
k
K), where K denotes a

control volume and k is the time step, satisfying the bounds 0 ≤ SkM ≤ 1 and
0 ≤Mk

K < 1 for all control volumes K and all time steps k.
• If the initial and boundary biomass are strictly positive, we obtain the uniqueness

of a discrete solution.
• The discrete solution converges in a certain sense, for mesh sizes (∆x,∆t)→ 0, to

a weak solution to (1)–(6).

The paper is organized as follows. The numerical scheme and the main results are
formulated in Section 2. Section 3 is concerned with the existence proof (Theorem 2),
while the uniqueness result (Theorem 3) is shown in Section 4. The convergence of the
scheme requires uniform estimates which are proved in Section 5. The convergence result
(Theorem 4) is then shown in Section 6. Numerical simulations are presented in Section 7.

2. Numerical scheme and main results

2.1. Notation and assumptions. Let Ω ⊂ R2 be an open, bounded, polygonal domain.
We consider only two-dimensional domains, but the generalization to higher space dimen-
sions is straightforward. An admissible mesh of Ω is given by a family T of open polygonal
control volumes (or cells), a family E of edges, and a family P of points (xK)K∈T associated
to the control volumes and satisfying Definition 9.1 in [18]. This definition implies that
the straight line xKxL between two centers of neighboring cells is orthogonal to the edge
σ = K|L between two cells. The condition is satisfied, for instance, by triangular meshes
whose triangles have angles smaller than π/2 [18, Example 9.1] or by Voronöı meshes [18,
Example 9.2].

The family of edges E is assumed to consist of interior edges Eint satisfying σ ⊂ Ω and
boundary edges σ ∈ Eext fulfilling σ ⊂ ∂Ω. For a given control volume K ∈ T , we denote
by EK the set of edges of K. This set splits into EK = Eint,K ∪ Eext,K . For any σ ∈ E , there
exists at least one cell K ∈ T such that σ ∈ EK . When σ is an interior cell, σ = K|L, Kσ

can be either K or L.
The admissibility of the mesh and the fact that Ω is two-dimensional imply that

(7)
∑
K∈T

∑
σ∈EK

m(σ)d(xK , σ) ≤ 2
∑
K∈T

m(K) = 2 m(Ω),

where d is the Euclidean distance in R2 and m is the one- or two-dimensional Lebesgue
measure. Let σ ∈ E be an edge. We define the distance

dσ =

{
d(xK , xL) if σ = K|L ∈ Eint,K ,
d(xK , σ) if σ ∈ Eext,K ,

and introduce the transmissibility coefficient by

(8) τσ =
m(σ)

dσ
.
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We assume that the mesh satisfies the following regularity assumption: There exists ξ > 0
such that for all K ∈ T and σ ∈ EK ,

(9) d(xK , σ) ≥ ξdσ.

The size of the mesh is denoted by ∆x = maxK∈T diam(K).
Let T > 0 be the end time, NT ∈ N the number of time steps, ∆t = T/NT the time

step size, and set tk = k∆t for k = 0, . . . , NT . We denote by D an admissible space-time
discretization of ΩT := Ω × (0, T ), composed of an admissible mesh T and the values
(∆t, NT ). The size of D is defined by η := max{∆x,∆t}.

As it is usual for the finite-volume method, we introduce functions that are piecewise
constant in space and time. The finite-volume scheme yields a vector vT = (vK)K∈T ∈ R#T

of approximate values of a piecewise constant function v such that v =
∑

K∈T vK1K ,
where 1K is the characteristic function of K. We write vM = (vT , vE) for the vector that
contains the approximate values in the control volumes and on the boundary edges, where
vE := (vσ)σ∈Eext ∈ R#Eext . For such a vector, we use the notation

(10) vK,σ =

{
vL if σ = K|L ∈ Eint,K ,
vσ if σ ∈ Eext,K

for K ∈ T and σ ∈ EK and introduce the discrete gradient

(11) Dσv := |DK,σv|, where DK,σv = vK,σ − vK .

The discrete H1(Ω) seminorm and the discrete H1(Ω) norm are defined by

(12) |v|1,2,M =

(∑
σ∈E

τσ(Dσv)2

)1/2

, ‖v‖1,2,M =
(
‖v‖2

0,2,M + |v|21,2,M
)1/2

,

where ‖ · ‖0,p,M denotes the Lp(Ω) norm

‖v‖0,p,M =

(∑
K∈T

m(K)|vK |p
)1/p

for 1 ≤ p <∞.

Then, for a given family of vectors vk = (vkT , v
k
E) for k = 1, . . . , NT and a given nonnegative

constant vD such that vkσ = vD for all σ ∈ Eext, we define the piecewise constant in space
and time function v by

(13) v(x, t) =
∑
K∈T

vkK1K(x) for x ∈ Ω, t ∈ (tk−1, tk], k = 1, . . . , NT .

For the definition of an approximate gradient for such functions, we need to introduce a
dual mesh. Let K ∈ T and σ ∈ EK . The cell TK,σ of the dual mesh is defined as follows:

• If σ = K|L ∈ Eint,K , then TK,σ is that cell (“diamond”) whose vertices are given by
xK , xL, and the end points of the edge σ.
• If σ ∈ Eext,K , then TK,σ is that cell (“half-diamond”) whose vertices are given by
xK and the end points of the edge σ.
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An example of a construction of a dual mesh can be found in [6]. The cells TK,σ define, up
to a negligible set, a partition of Ω. The definition of the dual mesh implies the following
property. As the straight line between two neighboring centers of cells xKxL is orthogonal
to the edge σ = K|L, it follows that

(14) m(σ)d(xK , xL) = 2 m(TK,σ) for all σ = K|L ∈ Eint,K .

The approximate gradient of a piecewise constant function v in ΩT is given by

∇Dv(x, t) =
m(σ)

m(TK,σ)
DK,σv

kνK,σ for x ∈ TK,σ, t ∈ (tk−1, tk], , k = 1, . . . , NT ,

where the discrete operator DK,σ is given in (11) and νK,σ is the unit vector that is normal
to σ and that points outward of K.

2.2. Numerical scheme. We are now in the position to formulate the finite-volume dis-
cretization of (1)–(3). Let D be an admissible discretization of ΩT . The initial conditions
are discretized by the averages

(15) S0
K =

1

m(K)

∫
K

S0(x)dx, M0
K =

1

m(K)

∫
K

M0(x)dx for K ∈ T .

On the Dirichlet boundary, we set Skσ = 1 and Mk
σ = MD for σ ∈ Eext at time tk.

Let SkK and Mk
K be some approximations of the mean values of S(·, tk) and M(·, tk),

respectively, in the cell K. Then the elements SkK and Mk
K are solutions to

m(K)

∆t
(SkK − Sk−1

K ) +
∑
σ∈EK

FkS,K,σ = m(K)g(SkK ,M
k
K),(16)

m(K)

∆t
(Mk

K −Mk−1
K ) +

∑
σ∈EK

FkM,K,σ = m(K)h(SkK ,M
k
K),(17)

the numerical fluxes are defined as

(18) FkS,K,σ = −τσd1DK,σS
k, FkM,K,σ = −τσd2DK,σF (Mk),

where K ∈ T , σ ∈ EK , k ∈ {1, . . . , NT}, and we recall definitions (4) for g and h, (6) for
F , and (8) for τσ.

For the convenience of the reader, we recall the discrete integration-by-parts formula for
piecewise constant functions v = (vT , vE) :

(19)
∑
K∈T

∑
σ∈EK

FK,σvK = −
∑
σ∈E

FK,σDK,σv +
∑
σ∈Eext

FK,σvσ,

where FK,σ is a numerical flux like in (18).
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2.3. Main results. We impose the following hypotheses:

(H1) Domain: Ω ⊂ R2 is a bounded polygonal domain.
(H2) Discretization: D is an admissible discretization of ΩT := Ω × (0, T ) satisfying the

regularity condition (9).
(H3) Initial data: S0, M0 ∈ L2(Ω) satisfy 0 ≤ S0 ≤ 1 and 0 ≤M0 < 1 in Ω.
(H4) Dirichlet datum: 0 < MD < 1.
(H5) Parameters: d1, d2 > 0, κi ≥ 0 for i = 1, 2, 3, κ4 > 0, a ≥ 1, and b ≥ 0.

Remark 1 (Discussion of the hypotheses). Conditions M0 < 1 and MD < 1 allow for
the proof of Mk

K < 1 for all K ∈ T and k = 1, . . . , NT , thus avoiding quenching of the
solution, i.e. the occurrence of regions with Mk

K = 1. We assume that MD is positive to
be able to introduce an entropy variable. This condition can be relaxed by introducing
an approximation procedure. The assumption that the boundary biomass is constant is
imposed for simplicity. It can be generalized to piecewise constant or time-dependent
boundary data, for instance. Moreover, mixed Dirichlet–Neumann boundary conditions
for the biomass could be imposed as well; see [15, Section 4]. On the other hand, pure
Neumann boundary conditions for M may lead, in the continuous case, to a quenching
phenomenon in finite time, as shown in [15]. We may assume that the diffusion coefficents
d1 and d2 depend on the spatial variable if d1(x) and d2(x) are strictly positive. The
condition a ≥ 1 corresponds to “very fast diffusion”. In numerical simulations, usually the
values a = b = 4 are chosen [14, Table 1]. �

Our first main result concerns the existence of solutions to the numerical scheme. We
introduce the function

(20) Z(M) :=

∫ M

MD

F (s)ds− F (MD)(MK −MD), M ∈ [0, 1).

Theorem 2 (Existence of discrete solutions). Assume that Hypotheses (H1)–(H5) hold.
Then, for every k = 1, . . . , NT , there exists a solution (Sk,Mk) to scheme (15)–(18) satis-
fying

(21) 0 ≤ SkK ≤ 1, 0 ≤Mk
K < 1 for all K ∈ T ,

and there exist positive constants C1 and C2 independent of ∆x and ∆t such that

(22) ‖Z(Mk)‖0,1,M + ∆tC1‖F (Mk)‖2
1,2,M ≤ ‖Z(Mk−1)‖0,1,M + ∆tC2.

Moreover, if M0 ≥ m0 in Ω and MD ≥ m0 for some m0 > 0 then

(23) Mk
K ≥ m0 exp(−κ2tk) for all K ∈ T , k = 1, . . . , NT .

The existence result is proved by a fixed-point argument based on a topological degree
result. The main difficulty is to approximate the equations in such a way that the singular
pointM = 1 is avoided. This can be done, as in [15], by introducing a cut-off approximation
fε(M) of f(M). Then, by the comparison principle, it is possible to show the bound
M ε ≤ 1− δ(ε) for the approximate biomass M ε, where δ(ε) ∈ (0, 1). Since the comparison
principle cannot be easily extended to the discrete case, we have chosen another approach.
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We introduce the “entropy variable” W ε
K := Z ′ε(M

ε
K), where Zε is the sum of Z(M ε

K) and
ε times the Boltzmann entropy (see (26)). Then 0 < M ε

K < 1 by definition and we can
derive a uniform estimate similar to (22). The uniform bound for F (M ε) allows us to infer
that the a.e. limit function MK = limε→0M

ε
K satisfies MK < 1 for all K ∈ T . The positive

lower bound for Mk comes from the fact that the source term h(SkK ,M
k
K) is bounded from

below by the linear term −κ2M
k
K , and it is proved by a Stampacchia truncation method.

Theorem 3 (Uniqueness of discrete solutions). Assume that Hypotheses (H1)–(H5) hold
and that there exists a constant m0 > 0 such that M0(x) ≥ m0 for x ∈ Ω and MD ≥ m0.
Then there exists γ∗ > 0, depending on the data, the mesh, and m0, such that for all
0 < ∆t < γ∗, there exists a unique solution to scheme (15)–(18).

The proof of the theorem is based on a discrete version of the dual method. On the
continuous level, the idea is to choose test functions ψ and φ solving −∆ψ = S1 − S2 and
−∆φ = M1−M2 with homogeneous Dirichlet boundary data, where (S1,M1) and (S2,M2)
are two solutions to (1)–(2) with the same initial data, and to exploit the monotonicity of
the nonlinearity F (M). On the discrete level, we replace the diffusion equations for ψ and
φ by the corresponding finite-volume schemes and estimate similarly as in the continuous
case. The restriction on the time step size is due to L2(Ω) estimates coming from the
source terms.

We also prove that our scheme converges to the continuous model, up to a subsequence.
For this result, we introduce a family (Dm)m∈N of admissible space-time discretizations of
ΩT indexed by the size ηm = max{∆xm,∆tm} of the mesh, satisfying ηm → 0 as m→∞.
We denote byMm the corresponding meshes of Ω and by ∆tm the corresponding time step
sizes. Finally, we set ∇m := ∇Dm .

Theorem 4 (Convergence of the scheme). Assume that the Hypotheses (H1)–(H5) hold.
Let (Dm)m∈N be a family of admissible meshes satisfying (9) uniformly and let (Sm,Mm)m∈N
be a corresponding sequence of finite-volume solutions to scheme (15)–(18) constructed in
Theorem 2. Then there exist (S,M) ∈ L∞(ΩT ;R2) and a subsequence of (Sm,Mm) (not
relabeled) such that, as m→∞,

Sm → S, Mm →M a.e. in ΩT ,

∇mSm ⇀ ∇S, ∇mF (Mm) ⇀ ∇F (M) weakly in L2(ΩT ).

The functions S − 1 and F (M)− F (MD) belong to the space L2(0, T ;H1
0 (Ω)). Moreover,

the limit (S,M) is a weak solution to (1)–(3), i.e., for all ψ, φ ∈ C∞0 (Ω× [0, T )),

−
∫ T

0

∫
Ω

S∂tψdxdt−
∫

Ω

S0(x)ψ(x, 0)dx+ d1

∫ T

0

∫
Ω

∇S · ∇ψdxdt(24)

=

∫ T

0

∫
Ω

g(S,M)ψdxdt,

−
∫ T

0

∫
Ω

M∂tφdxdt−
∫

Ω

M0(x)φ(x, 0)dx+ d2

∫ T

0

∫
Ω

∇F (M) · ∇φdxdt(25)
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=

∫ T

0

∫
Ω

h(S,M)φdxdt.

The convergence proof is based on the uniform estimates derived for the proof of Theorem
2 and a discrete compensated compactness technique [3] needed to identify the nonlinear
limits. For the limit m → ∞, we use the techniques of [6]. If uniqueness for the limit-
ing model holds in the class of weak solutions, the whole sequence (Sm,Mm) converges.
Uniqueness in a smaller class of functions is proved [15, Theorem 3.2], but we have been
unable to show the required regularity of the limit (S,M) from our approximate system,
since the time discretization is not compatible with the technique of [15].

Remark 5. We could adapt the construction of scheme (15)–(18) and the proofs of our
main results, Theorem 2 and Theorem 4, for the approximation of the solution to a quorum-
sensing-induced biofilm dispersal model introduced in [16], which can be seen as a gener-
alization of (1)–(6). �

3. Existence of solutions

For the proof of Theorem 2, we proceed by induction. By Hypothesis (H3), 0 ≤ S0
K ≤ 1,

0 ≤ M0
K < 1 holds for K ∈ T . Let (Sk−1,Mk−1) satisfy 0 ≤ Sk−1

K ≤ 1, 0 ≤ Mk−1
K < 1 for

all K ∈ T and some k ∈ {1, . . . , NT}. We use the function Zε : [0, 1)→ R, defined by

(26) Zε(M) =

∫ M

0

F (s)ds− F (MD)(M −MD) + ε

(
M log

M

MD
+MD −M

)
,

where ε > 0 and F (M) is given in (6).
Step 1: Definition of a linearized problem. Let R > 0 and set

KR :=
{

(S,W ) ∈ R2θ : ‖S‖0,2,M < R, ‖W‖1,2,M < R, Sσ = 1, Wσ = 0 for σ ∈ Eext

}
,

where θ = #T + #Eext. We define the fixed-point mapping Q : KR → R2θ by Q(S,W ) =
(Sε,W ε), where (Sε,W ε) solves

m(K)

∆t
(SεK − Sk−1

K ) +
∑
σ∈EK

FS,K,σ = m(K)g([SK ]+,MK),(27)

ε

(
m(K)W ε

K −
∑
σ∈EK

τσDK,σW
ε

)
(28)

= −m(K)

∆t
(MK −Mk−1

K )−
∑
σ∈EK

FM,K,σ + m(K)h([SK ]+,MK),

the fluxes are as in (18), [z]+ := max{0, z}, and we impose the Dirichlet boundary condi-
tions Sεσ = 1, W ε

σ = 0 for σ ∈ Eext. The value MK is a function of WK , implicitly defined
by

(29) WK = Z ′ε(MK) = F (MK)− F (MD) + ε log
MK

MD
, K ∈ T .
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The map (0, 1) → R, MK 7→ WK is invertible because the function Z ′ε is increasing. This
shows that MK is well defined and MK ∈ (0, 1) for K ∈ T . The existence of a unique
solution (Sε,W ε) to (27)–(28) is a consequence of [18, Lemma 9.2].

We claim that Q is continuous. To show this, we first multiply (28) by W ε
K , sum over

K ∈ T , and use the discrete integration-by-parts formula (19):

ε‖W ε‖2
1,2,M = ε

∑
K∈T

(
m(K)(W ε

K)2 −
∑
σ∈EK

τσDK,σ(W ε)W ε
K

)
= J1 + J2 + J3, where

J1 = −
∑
K∈T

m(K)

∆t
(MK −Mk−1

K )W ε
K ,

J2 = −
∑
K∈T

∑
σ∈EK

FM,K,σW
ε
K ,

J3 =
∑
K∈T

m(K)

(
κ3[SK ]+
κ4 + [SK ]+

− κ2

)
MKW

ε
K .

By the Cauchy–Schwarz inequality and the bound 0 < MK < 1, we find that

|J1| ≤
2

∆t
m(Ω)1/2‖W ε‖0,2,M,

|J2| ≤
(∑
K∈T

1

m(K)

∑
σ∈EK

|FM,K,σ|2
)1/2

‖W ε‖0,2,M,

|J3| ≤
(

κ3

κ4 + 1
+ κ2

)
m(Ω)1/2‖W ε‖0,2,M.

Because of the assumption ‖W‖1,2,M < R, the flux |FM,K,σ| is bounded from above by
a constant depending on R. This implies that |J2| ≤ C(R)‖W ε‖0,2,M, where C(R) > 0
is some constant. (Here and in the following, we denote by C, Ci > 0 generic constants
whose value change from line to line.) This shows that ε‖W ε‖1,2,M ≤ C(R) for (another)
constant C(R) > 0. Using similar arguments, we obtain the existence of C(R) > 0 such
that ‖Sε‖0,2,M ≤ C(R).

Next, let (Sn,Wn)n∈N ⊂ KR be a sequence satisfying (Sn,Wn) → (S,W ) as n → ∞.
The previous uniform estimates for (Sεn,W

ε
n) := Q(Sn,Wn) show that (Sεn,W

ε
n) is bounded

uniformly in n ∈ N. Therefore, there exists a subsequence which is not relabeled such
that (Sεn,W

ε
n) → (Sε,W ε) as n → ∞. Taking the limit n → ∞ in (27)–(28), we see that

(Sε,W ε) = Q(S,W ). We deduce from the uniqueness of the limit that the whole sequence
converges, which means that Q is continuous.

Step 2: Definition of the fixed-point operator. We claim that Q admits a fixed point.
We use a topological degree argument [10, Chap. 1] and prove that deg(I −Q,KR, 0) = 1,
where deg is the Brouwer topological degree. Since deg is invariant by homotopy, it is
sufficient to show that any solution (Sε,W ε, ρ) ∈ KR × [0, 1] to the fixed-point equation
(Sε,W ε) = ρQ(Sε,W ε) satisfies (Sε,W ε, ρ) 6∈ ∂KR × [0, 1] for sufficiently large values of
R > 0. Let (Sε,W ε, ρ) be a fixed point and assume that ρ 6= 0, the case ρ = 0 being clear.
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Then (Sε,W ε) solves

m(K)

∆t
(SεK − ρSk−1

K ) + ρ
∑
σ∈EK

F εS,K,σ = ρm(K)g([SεK ]+,M
ε
K),(30)

ε

(
m(K)W ε

K −
∑
σ∈EK

τσDK,σW
ε

)
(31)

= −ρm(K)

∆t
(MK −Mk−1

K )− ρ
∑
σ∈EK

FM,K,σ + ρm(K)h([SεK ]+,M
ε
K)

for K ∈ T with the boundary conditions Sεσ = 1, W ε
σ = 0 for σ ∈ EK , the fluxes are given

by (18) with (S,M) replaced by (Sε,M ε), and M ε
K is the unique solution to (29) with WK

replaced by W ε
K .

Step 3: A priori estimates. We establish some a priori estimates for the fixed points
(Sε,W ε) of Q, which are uniform in R. Definition (29) immediately gives the bound
0 < M ε

K < 1 for all K ∈ T .

Lemma 6 (Pointwise bounds for Sε). The following bounds hold:

0 ≤ SεK ≤ 1 for K ∈ T .

Proof. First, we multiply (30) by ∆t[SεK ]−, where [z]− = min{0, z}, and sum over K ∈ T .
Then, after a discrete integration by parts,∑

K∈T

m(K)[SεK ]2− + ρd1∆t
∑
σ∈E

τσDK,σ(Sε)DK,σ[Sε]− = ρ
∑
K∈T

m(K)Sk−1
K [SεK ]− ≤ 0,

since g([SεK ]+,M
ε
K)[SεK ]− = 0 and Sk−1

K ≥ 0 by the induction hypothesis. The second term
on the left-hand side is nonnegative, since z 7→ [z]− is monotone. This implies that the
first term must be nonpositive, showing that [SεK ]− = 0 and hence SεK ≥ 0 for all K ∈ T .

To verify the upper bound for Sε, we multiply (30) by ∆t[SεK − 1]+, sum over K ∈ T ,
and use discrete integration by parts:∑

K∈T

m(K)
(
(SεK − 1)− (ρSk−1

K − 1)
)
[SεK − 1]+ + ρd1∆t

∑
σ∈E

DK,σ(Sε − 1)DK,σ[Sε − 1]+

= ρ∆t
∑
K∈T

m(K)g
(
SεK ,M

ε
K

)
[SεK − 1]+ ≤ 0,(32)

since we have always g(SεK ,M
ε
K) ≤ 0. It follows from the induction hypothesis and ρ ≤ 1

that ρSk−1
K ≤ 1, and the first term on the left-hand side can be estimated according to∑

K∈T

m(K)
(
(SεK − 1)− (ρSk−1

K − 1)
)
[SεK − 1]+ ≥

∑
K∈T

m(K)[SεK − 1]2+.

We deduce from the monotonicity of z 7→ [z]+ that the second term on the left-hand side
of (32) is nonnegative as well. Hence,

∑
K∈T m(K)[SεK−1]2+ ≤ 0 and consequently SεK ≤ 1

for all K ∈ T . �
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Lemma 7 (Estimate for F (M ε
K)). There exist constants C1, C2 > 0, only depending on

the given data, such that

ε∆t‖W ε‖2
1,2,M + ρ‖Z(M ε)‖0,1,M + ρ∆tC1‖F (M ε)− F (MD)‖2

1,2,M(33)

≤ ∆tC2 + ‖Zε(Mk−1)‖0,1,M.

Proof. We multiply (31) by ∆tW ε
K , sum over K, and use discrete integration by parts:

ε∆t‖W ε‖2
1,2,M + J4 + J5 = J6, where(34)

J4 = ρ
∑
K∈T

m(K)(M ε
K −Mk−1

K )W ε
K ,

J5 = ρ∆td2

∑
σ∈E

τσDK,σF (M ε)DK,σW
ε,

J6 = ρ∆t
∑
K∈T

m(K)h(SεK ,M
ε
K)W ε.

By the convexity of Zε, (M ε
K −Mk−1

K )Z ′ε(M
ε
K) ≥ Z(M ε

K)− Zε(Mk−1
K ) such that

J4 ≥ ρ
∑
K∈T

m(K)

{
Z(M ε

K) + ε

(
M ε

K log
M ε

K

MD
+MD −M ε

K

)
− Zε(Mk−1

K )

}
≥ ρ‖Z(M ε

K)‖0,1,M − ρ‖Zε(Mk−1
K )‖0,1M.

The definition of W ε
K and the monotonicity of the functions F and log imply that

J5 = ρ∆td2

∑
K∈T

m(K)
(
[DK,σ(F (M ε)− F (MD))]2 + εDK,σF (M ε)DK,σ logM ε

)
(35)

≥ ρ∆td2|F (M ε)− F (MD)|21,2,M ≥ ρ∆td2C(ξ)‖F (M ε)− F (MD)‖2
1,2M,

where the last step follows from the discrete Poincaré inequality [4, Theorem 3.2]. Finally,
by the Young inequality and taking into account the bounds SεK ≤ 1 and M ε

K < 1, we find
that

J6 ≤ ρ∆t

(
κ2 +

κ3

κ4 + 1

)∑
K∈T

m(K)

(
|F (M ε

K)− F (MD)|+ εM ε
K

∣∣∣∣ log
M ε

K

MD

∣∣∣∣)
≤ η

2
ρ∆t

(
κ2 +

κ3

κ4 + 1

)
‖F (M ε)− F (MD)‖2

1,2,M +
∆t

2η

(
κ2 +

κ3

κ4 + 1

)
m(Ω)

+ ε∆tC(Ω),

where η > 0. Inserting the estimates for J4, J5, and J6 into (34) yields

ε∆t‖W ε‖2
1,2,M + ρ∆t

(
d2C(ξ)− η

2

(
κ2 +

κ3

κ4 + 1

))
‖F (M ε)− F (MD)‖2

1,2,M

+ ρ‖Z(M ε)‖0,1,M ≤ ρ‖Zε(Mk−1)‖0,1,M + ∆tC(η).

Then, choosing η > 0 sufficiently small shows the conclusion. �
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Step 4: Topological degree argument. We deduce from the estimates of Lemmas 6–7 that

‖Sε‖0,2,M ≤ m(Ω)1/2, ‖W ε‖1,2,M ≤
1√
ε∆t

(‖Zε(Mk−1)‖0,1,M + ∆tC)1/2.

Thus, choosing

R = max

{
m(Ω)1/2,

1√
ε∆t

(‖Zε(Mk−1)‖0,1,M + ∆tC)1/2

}
+ 1,

we see that (Sε,W ε) 6∈ ∂KR and deg(I−Q,KR, 0) = 1. We conclude that Q admits a fixed
point, i.e. a solution (Sε,W ε) to (30)–(31).

Step 5: Limit ε → 0. Thanks to Lemmas 6–7 and the bound 0 < M ε
K < 1, there exist

subsequences, which are not relabeled, such that SεK → SkK , M ε
K →Mk

K , and εW ε
K → 0 as

ε → 0, where 0 ≤ SkK ≤ 1 and 0 ≤ Mk
K ≤ 1 for all K ∈ T . Passing to the limit ε → 0 in

(33) and taking into account the lower semicontinuity of F , we find that

∆tC1‖F (Mk)− F (MD)‖2
0,2,M ≤ ‖Z(Mk−1)‖0,1,M + ∆tC <∞.

Thus, F (Mk
K) is finite, which implies that Mk

K < 1 for any K ∈ T . We can perform the
limit ε→ 0 in (30)–(31) to deduce the existence of a solution (Sk,Mk) to scheme (15)–(18).

Step 6: Positive lower bound for Mk. Again, we proceed by induction. Let M0 ≥ m0 in
Ω and MD ≥ m0. Then M0

K ≥ m0 for all K ∈ T . Set mk = m0(1+κ2∆t)−k. The induction
hypothesis reads as Mk−1

K ≥ mk−1 for K ∈ T . We multiply (17) by ∆t[Mk
K −mk]−, sum

over K ∈ T , and use discrete integration by parts:∑
K∈T

m(K)(Mk
K −Mk−1

K )[Mk
K −mk]− = J7 + J8, where

J7 = −∆t
∑
σ∈E

τσDK,σF (Mk)DK,σ[Mk
K −mk]−,

J8 = ∆t
∑
K∈T

m(K)h(Sk,Mk)[Mk
K −mk]−.

Taking into account that Mk−1
K −mk−1 ≥ 0 and mk −mk−1 = −κ2∆tmk, we estimate the

left-hand side according to∑
K∈T

m(K)(Mk
K −Mk−1

K )[Mk
K −mk]−

=
∑
K∈T

m(K)
(
(Mk

K −mk)− (Mk−1
K −mk−1)

)
[Mk

K −mk]−

+
∑
K∈T

m(K)(mk −mk−1)[Mk
K −mk]−

≥
∑
K∈T

m(K)[Mk
K −mk]2− − κ2∆tmk

∑
K∈T

m(K)[Mk
K −mk]−.
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Since F and z 7→ [z −mk]− are monotone, we have J7 ≤ 0. Furthermore,

J8 = ∆t
∑
K∈T

m(K)

(
κ3S

k
K

κ4 + SkK
− κ2

)
Mk

K [Mk
K −mk]−

≤ −κ2∆t
∑
K∈T

m(K)Mk
K [Mk

K −mk]− ≤ −κ2∆t
∑
K∈T

m(K)mk[Mk
K −mk]−.

The terms involving κ2 cancel and we end up with∑
K∈T

m(K)[Mk
K −mk]2− ≤ 0.

It follows that [Mk
K −mk]− = 0 and hence Mk

K ≥ mk ≥ m0 exp(−κ2k∆t).

4. Uniqueness of solutions

We proceed by induction. Let k ∈ {1, . . . , NT}, let (Sk1 ,M
k
1 ) and (Sk2 ,M

k
2 ) be two

solutions to scheme (15)–(18), and assume that Sk−1
1 = Sk−1

2 , Mk−1
1 = Mk−1

2 . We wish
to show that Sk1 = Sk2 , Mk

1 = Mk
2 . The functions Sk1 − Sk2 and Mk

1 −Mk
2 are solutions,

respectively, to

m(K)

∆t
(Sk1,K − Sk2,K)− d1

∑
σ∈EK

τσDK,σ(Sk1 − Sk2 ) = m(K)Gk
K ,(36)

m(K)

∆t
(Mk

1,K −Mk
2,K)− d2

∑
σ∈EK

τσDK,σ(F (Mk
1 )− F (Mk

2 )) = m(K)Hk
K(37)

for K ∈ T , where

Gk
K = −

κ1S
k
1,K

κ4 + Sk1,K
(Mk

1,K −Mk
2,K)−

κ1κ4M
k
2,K

(κ4 + Sk1,K)(κ4 + Sk2,K)
(Sk1,K − Sk2,K),

Hk
K =

(
κ3S

k
1,K

κ4 + Sk1,K
− κ2

)
(Mk

1,K −Mk
2,K) +

κ3κ4M
k
2,K

(κ4 + Sk1,K)(κ4 + Sk2,K)
(Sk1,K − Sk2,K).

Now, let the vectors (ψkT , ψ
k
E) and (φkT , φ

k
E) be the unique solutions to

−
∑
σ∈EK

τσDK,σψ
k = m(K)(Sk1,K − Sk2,K),

−
∑
σ∈EK

τσDK,σφ
k = m(K)(Mk

1,K −Mk
2,K)

for K ∈ T , where we impose the boundary conditions ψkσ = φkσ = 0 for σ ∈ Eext. The
existence and uniqueness of these solutions is a direct consequence of [18, Lemma 9.2]. We
multiply (37) by φkK and sum over K ∈ T :

1

∆t

∑
K∈T

m(K)(Mk
1,K −Mk

2,K)φkK = I1 + I2, where(38)
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I1 = d2

∑
K∈T

∑
σ∈EK

τσDK,σ(F (Mk
1,K)− F (Mk

2,K))φkK , I2 =
∑
K∈T

m(K)Hk
Kφ

k
K .

Inserting the equation for φk and using discrete integration by parts gives∑
K∈T

m(K)(Mk
1,K −Mk

2,K)φkK = −
∑
K∈T

∑
σ∈EK

τσDK,σ(φk)φkK =
∑
σ∈E

τσ(DK,σφ
k)2 = |φk|21,2,M.

Concerning the sum I1, we use the equation for φk again, apply discrete integration by
parts twice, and take into account the positive lower bound for Mk

i from Theorem 2:

I1 = d2

∑
K∈T

(F (Mk
1,K)− F (Mk

2,K))
∑
σ∈EK

τσDK,σφ
k

= −d2

∑
K∈T

m(K)(F (Mk
1,K)− F (Mk

2,K))(Mk
1,K −Mk

2,K)

≤ −d2c0

∑
K∈T

m(K)(Mk
1,K −Mk

2,K)2,

where c0 > 0 depends on the minimum of Mk
1 or Mk

2 . Finally, because of the bounds
0 ≤ SkK ≤ 1 and 0 ≤ Mk

K < 1 from Theorem 2, the Young inequality and the discrete
Poincaré inequality [4, Theorem 3.2],

I2 ≤ −κ2|φk|21,2,M +
∑
K∈T

m(K)

(
κ3

κ4 + 1
|Mk

1,K −Mk
2,K |+

κ3

κ4

|Sk1,K − Sk2,K |
)
|φkK |

≤ δ

2

(
κ2

3

(κ4 + 1)2
‖Mk

1 −Mk
2 ‖2

0,2,M +
κ2

3

κ2
4

‖Sk1 − Sk2‖2
0,2,M

)
+
C

δξ
|φk|21,2,M,

where δ > 0 is arbitrary. Collecting these estimates, we infer from (38) that(
1

∆t
− C

δξ

)
|φk|21,2,M +

1

2
d2c0‖Mk

1 −Mk
2 ‖2

0,2,M

≤ δ

2

(
κ2

3

(κ4 + 1)2
‖Mk

1 −Mk
2 ‖2

0,2,M +
κ2

3

κ2
4

‖Sk1 − Sk2‖2
0,2,M

)
.

Arguing similarly for equation (36), we arrive to(
1

∆t
− C

δξ

)
|ψk|21,2,M +

1

2
d1‖Sk1 − Sk2‖2

0,2,M

≤ δ

2

(
κ2

1

(κ4 + 1)2
‖Mk

1 −Mk
2 ‖2

0,2,M +
κ2

1

κ2
4

‖Sk1 − Sk2‖2
0,2,M

)
.

We set Rk := ‖Sk1 − Sk2‖2
0,2,M + ‖Mk

1 −Mk
2 ‖2

0,2,M. Then an addition of the previous two
inequalities yields(

1

∆t
− C

δξ

)(
|φk|21,2,M + |ψk|21,2,M

)
+

1

2

(
min{d1, d2c0} − δ

κ2
1 + κ2

3

κ2
4

)
Rk ≤ 0.
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Choosing δ ≤ κ2
4/(κ

2
1 + κ2

3) min{d1, d2c0} and ∆t < C/(δξ), both terms are nonnegative,
and we infer that φkK = ψkK = 0 and consequently Mk

1,K −Mk
2,K = Sk1,K − Sk2,K = 0 for all

K ∈ T .

5. Uniform estimates

We establish some estimates that are uniform with respect to ∆x and ∆t. The first
bounds follow from the results of the previous section.

Lemma 8 (Uniform estimates I). There exists a constant C > 0 independent of ∆x and
∆t such that

0 ≤ SkK ≤ 1, 0 ≤Mk
K < 1 for K ∈ T ,

NT∑
k=1

∆t
(
‖F (Mk)‖2

1,2,M + ‖Sk‖2
1,2,M

)
≤ C.

Proof. The L∞ bounds follow directly from Theorem 2, while the discrete gradient bound
for F (Mk) is a consequence of Lemma 7. It remains to show the discrete gradient bound
for Sk. We multiply (16) by ∆t(SkK − 1), sum over K ∈ T , and use discrete integration by
parts: ∑

K∈T

m(K)(SkK − Sk−1
K )(SkK − 1) = −∆t

∑
σ∈E

τσDK,σ(Sk)DK,σ(Sk − 1)(39)

+ ∆t
∑
K∈T

m(K)g(SkK ,M
k
K)(SkK − 1)

≤ −∆t
∑
σ∈E

τσ(DK,σ(Sk − 1))2 + ∆t
∑
K∈T

m(K)
κ1S

k
KM

k
K

κ4 + SkK
.

The left-hand side is bounded from below by∑
K∈T

m(K)
(
(SkK − 1)− (Sk−1

K − 1)
)
(SkK − 1) ≥ 1

2

∑
K∈T

m(K)
(
(SkK − 1)2 − (Sk−1

K − 1)2
)
.

In view of the upper bounds for SkK and Mk
K , the last term on the right-hand side of (39)

is bounded by ∆tm(Ω)κ1/(κ4 + 1). Therefore, it follows from (39) that

1

2

∑
K∈T

m(K)(SkK − 1)2 + ∆t|SkK − 1|21,2,M ≤
1

2

∑
K∈T

m(K)(Sk−1
K − 1)2 + C∆t.

Summing this inequality from k = 1, . . . , NT , we find that

1

2
‖SNT − 1‖2

0,2,M +

NT∑
k=1

∆t|SkK − 1|21,2,M ≤
1

2
‖S0 − 1‖2

0,2,M + CT.

This yields the desired estimate. �



ANALYSIS OF A FINITE-VOLUME SCHEME 17

We also need an estimate for the time translates of the solution. For this, let φ ∈ C∞0 (ΩT )
be given and define φk = (φkT , φ

k
E) ∈ Rθ (recall that θ = #T + #E) for k = 1, . . . , NT by

φkK =
1

m(K)

∫
K

φ(x, tk)dx, φkσ =
1

m(σ)

∫
σ

φ(s, tk)ds = 0,

where K ∈ T and σ ∈ Eext.

Lemma 9 (Uniform estimates II). For any φ ∈ C∞0 (ΩT ), there exist constants C3, C4 > 0,
only depending on the data and the mesh, such that

NT∑
k=1

∑
K∈T

m(K)(Mk
K −Mk−1

K )φkK ≤ C3‖∇φ‖L∞(ΩT ),

NT∑
k=1

∑
K∈T

m(K)(SkK − Sk−1
K )φkK ≤ C4‖∇φ‖L∞(ΩT ).

Proof. We multiply (17) by ∆tφkK , sum over K ∈ T and k = 1, . . . , NT , and use discrete
integration by parts. Then

NT∑
k=1

∑
K∈T

m(K)(Mk
K −Mk−1

K )φkK = I3 + I4, where(40)

I3 = −d2

NT∑
k=1

∆t
∑
σ∈E

τσDK,σF (Mk)DK,σφ
k,

I4 =

NT∑
k=1

∆t
∑
K∈T

m(K)

(
κ3S

k
K

κ4 + SkK
− κ2

)
Mk

Kφ
k
K .

It follows from the Cauchy–Schwarz inequality, Lemma 8, and the mesh regularity (9) that

|I3| ≤ d2C‖∇φ‖L∞(ΩT )

( NT∑
k=1

∆t
∑
K∈T

∑
σ∈EK

m(σ)dσ

)1/2

≤ d2Cξ
−1/2‖∇φ‖L∞(ΩT )

( NT∑
k=1

∆t
∑
K∈T

∑
σ∈EK

m(σ)d(xK , σ)

)1/2

= d2C
√

2 m(Ω)Tξ−1‖∇φ‖L∞(ΩT ),

where we used (7) in the last step. Next, using similar arguments and the discrete Poincaré
inequality [4, Theorem 3.2],

|I4| ≤
(
κ2 +

κ3

κ4 + 1

)√
T m(Ω)

( NT∑
k=1

∆t‖φk‖2
0,2,M

)1/2

≤
(
κ2 +

κ3

κ4 + 1

)√
T m(Ω)Cξ−1

( NT∑
k=1

∆t|φk|21,2,M
)1/2
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≤
(
κ2 +

κ3

κ4 + 1

)√
T m(Ω)Cξ−1‖∇φ‖L∞(ΩT )

( NT∑
k=1

∆t
∑
K∈T

∑
σ∈EK

m(σ)dσ

)1/2

≤ C(T,Ω, ξ)ξ−1

(
κ2 +

κ3

κ4 + 1

)
‖∇φ‖L∞(ΩT ).

Inserting these estimates into (40) shows the first statement of the lemma. The second
statement is proved in a similar way. �

6. Convergence of the scheme

The compactness follows from the uniform estimates proved in the previous section and
the discrete compensated compactness result obtained in [3, Theorem 3.9].

Lemma 10 (Compactness). Let (Sm,Mm)m∈N be a sequence of solutions to scheme (15)–
(18) constructed in Theorem 2. Then there exists (S,M) ∈ L∞(ΩT ;R2) satisfying F (M),
S ∈ L2(0, T ;H1(Ω)) such that, up to a subsequence, as m→∞,

Mm →M, Sm → S a.e. in ΩT ,

F (Mm)→ F (M) strongly in Lr(ΩT ) for 1 ≤ r < 2,

∇mF (Mm) ⇀ ∇F (M), ∇mSm ⇀ ∇S weakly in L2(ΩT ).

Proof. The a.e. convergence for Mm is a consequence of [3, Theorem 3.9]. Indeed, the esti-
mates in Lemmas 8–9 correspond to conditions (a)–(c) in [3, Prop. 3.8], while assumptions
(At1), (Ax1)–(Ax3) are satisfied for our implicit Euler finite-volume scheme. We infer that
there exists a subsequence which is not relabeled such that Mm →M and F (Mm)→ F (M)
a.e. in ΩT . In view of Lemma 8, the sequence (F (Mm)) is bounded in L2(ΩT ), and thanks to
the Vitali’s lemma, we conclude that F (Mm)→ F (M) strongly in Lr(ΩT ) for all 1 ≤ r < 2.

As a consequence of the gradient estimate in Lemma 7, there exists a subsequence of
(∇mF (Mm)) (not relabeled) such that ∇mF (Mm) ⇀ Ψ weakly in L2(ΩT ) as m→∞. The
limit Ψ can be identified with F (M) by following the arguments in the proof of [6, Lemma
4.4]. Indeed, the idea is to prove that for all φ ∈ C∞0 (ΩT ;R2),

Am :=

∫ T

0

∫
Ω

∇mF (Mm) · φdxdt+

∫ T

0

∫
Ω

F (Mm) div φdxdt→ 0

as m→∞. This is done by reformulating the two integrals:∫
Ω

∇mF (Mm) · φdx = −1

2

∑
K∈T

∑
σ∈Eint,K

m(σ)

m(TK,σ)
DK,σF (Mm)

∫
TK,σ

φ(s, t) · νK,σdx,∫
Ω

F (Mm) div φdx =
1

2

∑
K∈T

∑
σ∈Eint,K

DK,σF (Mm)

∫
σ

φ(s, t) · νK,σds.

Because of the property (see [6, Lemma 4.4])∣∣∣∣ 1

m(TK,σ)

∫
TK,σ

φ(t, s) · νK,σdx−
1

m(σ)

∫
σ

φ(s, t) · νK,σds
∣∣∣∣ ≤ ηm‖φ‖C1(Ω)
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and the uniform estimates for F (Mm) from Lemma 8, it follows that

|Am| ≤
1

2

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

m(σ)DK,σF (Mk)

×
∣∣∣∣ 1

m(TK,σ)

∫
TK,σ

φ(t, s) · νK,σdx−
1

m(σ)

∫
σ

φ(s, t) · νK,σds
∣∣∣∣

≤ ηmC‖φ‖C1(Ω) → 0 as m→∞.

This implies that Ψ = ∇F (M). Finally, similar arguments as above show the convergence
results for Sm and ∇mSm. �

Lemma 11 (Convergence of the traces). Let (Sm,Mm)m∈N be a sequence of solutions to
scheme (15)–(18) constructed in Theorem 2. Then the limit function (S,M) obtained in
Lemma 10 satisfies

S − 1, F (M)− F (MD) ∈ L2(0, T ;H1
0 (Ω)).

Proof. The proof for S is a direct consequence of [5, Prop. 4.9]. For F (M), we follow the
proof of [5, Prop. 4.11]. In particular, we aim to prove that

(41)

∫ T

0

∫
∂Ω

(F (Mm)− F (M))ψdxdt→ 0 as m→∞

for every ψ ∈ C∞0 (∂Ω× (0, T )). If this result holds then, as Mm = MD on ∂Ω× (0, T ), we
obtain∫ T

0

∫
∂Ω

(F (M)− F (MD))ψdxdt = lim
m→∞

(∫ T

0

∫
∂Ω

(F (M)− F (Mm))ψdxdt

+

∫ T

0

∫
∂Ω

(F (Mm)− F (MD))ψdxdt

)
= 0,

which implies that F (M) = F (MD) a.e. on ∂Ω× (0, T ).
To prove (41), we choose a fixed m ∈ N and introduce another definition of the trace of

Mm, denoted by M̃m, such that M̃m(x, t) = Mk
K if (x, t) ∈ σ × (tk−1, tk] with σ ∈ Eext,K.

Following [5], we notice that the property (41) is equivalent to

(42)

∫ T

0

∫
∂Ω

(F (M̃m)− F (M))ψdxdt→ 0 as m→∞

for all ψ ∈ C∞0 (∂Ω× (0, T )). Indeed, we have, by the Cauchy–Schwarz inequality,∫ T

0

∫
∂Ω

|F (Mm)− F (M̃m)|dxdt =

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eext,K

m(σ)|F (MD)− F (Mk
K)|

≤
( NT∑

k=1

∆tm
∑
K∈T

∑
σ∈Eext,K

τσ|F (MD)− F (Mk
K)|2

)1/2
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×
( NT∑

k=1

∆tm
∑
K∈T

∑
σ∈Eext,K

m(σ)dσ

)1/2

.

Hence, thanks to Lemma 8 and the fact that dσ = d(xK , σ) ≤ diam(K) ≤ ηm for every
σ ∈ Eext,K , it follows that∫ T

0

∫
∂Ω

|F (Mm)− F (M̃m)|dxdt ≤ C(T m(∂Ω)ηm)1/2 → 0 as m→∞,

which proves the claim.
Now, as Ω is assumed to be a polygonal domain, ∂Ω consists of a finite number of faces

denoted by (Γi)1≤i≤I . Similarly to [5, 19], we define for ε > 0 the subset Ωi,ε of Ω such that
every x ∈ Ωi,ε satisfies d(x,Γi) < ε and d(x,Γi) < d(x,Γj) for all j 6= i. We also define
the subset ωi,ε ⊂ Ωi,ε as the largest cylinder of width ε generated by Γi. Let νi be the unit
vector that is normal to Γi, i.e., more precisely, we introduce the set

ωi,ε :=
{
x− hνi ∈ Ωi : x ∈ Γi, 0 < h < ε and [x, x− hνi] ⊂ Ωi,ε

}
for all 1 ≤ i ≤ I.

Finally, we also introduce the subset Γi,ε := ∂ωi,ε ∩ Γi, which fulfills m(Γi \ Γi,ε) ≤ Cε for
some constant C > 0 only depending on Ω.

Let i ∈ {1, . . . , I} be fixed and let ψ ∈ C∞0 (Γi×(0, T )). Then there exists ε∗ = ε∗(ψ) > 0
such that for every ε ∈ (0, ε∗), we have supp(ψ) ⊂ Γi,ε × (0, T ). We write∫ T

0

∫
Γi

(F (M̃m)− F (M))ψdxdt = B1,m,ε +B2,m,ε +B3,ε, where

B1,m,ε =

∫ T

0

1

ε

∫
Γi,ε

∫ ε

0

(
F (M̃m(x, t))− F (Mm(x− hνi, t))

)
ψ(x, t)dhdxdt,

B2,m,ε =

∫ T

0

1

ε

∫
Γi,ε

∫ ε

0

(
F (Mm(x− hνi, t))− F (M(x− hνi, t))

)
ψ(x, t)dhdxdt,

B3,ε =

∫ T

0

1

ε

∫
Γi,ε

∫ ε

0

(
F (M(x− hνi, t))− F (M)

)
ψ(x, t)dhdxdt.

We apply the Cauchy–Schwarz inequality to the first term and then use [5, Lemma 4.8]
and Lemma 8 to find that

|B1,m,ε| ≤
(∫ T

0

1

ε

∫
Γi,ε

∫ ε

0

(
F (M̃m(x, t))− F (Mm(x− hνi, t))

)2
dhdxdt

)1/2

×
(∫ T

0

∫
Γi

ψ(x, t)2dxdt

)1/2

≤
√
ε+ ηm‖F (Mm)‖1,2,M‖ψ‖L2(Γi×(0,T )).

Taking into account that Lemma 10 implies that F (Mm)→ F (M) strongly in Lr(ΩT ) for
1 ≤ r < 2, we infer that the second term B2,m,ε converges to zero as m→∞. This shows
that

lim
m→∞

∣∣∣∣ ∫ T

0

∫
Γi

(F (M̃m)− F (M))ψdxdt

∣∣∣∣ ≤ C
√
ε+ |B3,ε|.
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Since F (M) ∈ L2(0, T ;H1(Ω)), the function F (M) has a trace in L2(∂Ω × (0, T )) such
that B3,ε → 0 as ε → 0. Hence, performing the limit ε → 0, we conclude that (42) holds,
finishing the proof. �

It remains to verify that the limit function (S,M) obtained in Lemma 10 is a weak
solution to (1)–(5). We follow the ideas of [6] and prove that M solves (25), as the proof
of (24) is analogous. Let φ ∈ C∞0 (Ω× [0, T )) and let ηm = max{∆xm,∆tm} be sufficiently
small such that supp(φ) ⊂ {x ∈ Ω : d(x, ∂Ω) > ηm} × (0, T ). The aim is to prove that
Fm

10 + Fm
20 + Fm

30 → 0 as m→∞, where

Fm
10 = −

∫ T

0

∫
Ω

Mm∂tφdxdt−
∫

Ω

Mm(x, 0)φ(x, 0)dx,

Fm
20 = d2

∫ T

0

∫
Ω

∇mF (Mm) · ∇φdxdt,

Fm
30 = −

∫ T

0

∫
Ω

h(Sm,Mm)φdxdt.

The convergence results from Lemma 10 allow us to perform the limit m → ∞ in these
integrals, leading to

Fm
10 + Fm

20 + Fm
30 → −

∫ T

0

∫
Ω

M∂tφdxdt−
∫

Ω

M0(x)φ(x, 0)dx

+ d2

∫ T

0

∫
Ω

∇F (M) · ∇φdxdt−
∫ T

0

∫
Ω

h(S,M)φdxdt.

Now we set φkK = φ(xK , tk), multiply (17) by ∆tφk−1
K , and sum over K ∈ T and k =

1, . . . , NT :

Fm
1 + Fm

2 + Fm
3 = 0, where(43)

Fm
1 =

NT∑
k=1

∑
K∈T

m(K)(Mk
K −Mk−1

K )φk−1
K ,

Fm
2 = −d2

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσDK,σF (Mk)φk−1
K ,

Fm
3 = −

NT∑
k=1

∆tm
∑
K∈T

m(K)h(SkK ,M
k
K)φk−1

K .

We claim that Fm
j0 −Fm

j → 0 as m→∞ for j = 1, 2, 3. Then (43) implies that Fm
10 +Fm

20 +
Fm

30 → 0 for m→∞, finishing the proof.
For the first limit, we argue as in [6, Theorem 5.2]:

Fm
10 = −

NT∑
k=1

∑
K∈T

m(K)Mk
m,K(φkK − φk−1

K )−
∑
K∈T

m(K)M0
m,Kφ

0
K
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= −
NT∑
k=1

∑
K∈T

∫ tk

tk−1

∫
K

Mk
m,K∂tφ(xK , t)dxdt−

∑
K∈T

∫
K

M0
m,Kφ(xK , 0)dx.

This shows that |Fm
10 − Fm

1 | ≤ C‖φ‖C2(ΩT )ηm → 0 as m→∞.
Next, we use discrete integration by parts to rewrite Fm

2 :

Fm
2 = d2

NT∑
k=1

∆tm
∑
K∈T

∑
σ∈Eint,K

τσDK,σF (Mk)DK,σφ
k−1.

By the definition of the discrete gradient, we can also rewrite Fm
20 :

Fm
20 = d2

NT∑
k=1

∑
K∈T

∑
σ∈Eint,K

DK,σF (Mk)
m(σ)

m(TK,σ)

∫ tk

tk−1

∫
TK,σ

∇φ · νK,σdxdt.

Hence, using [6, Theorem 5.1] and the Cauchy–Schwarz inequality, we find that

|Fm
20 − Fm

2 | ≤ d2

NT∑
k=1

∑
K∈T

∑
σ∈Eint,K

m(σ)DσF (Mk)

×
∣∣∣∣ ∫ tk

tk−1

(
1

m(TK,σ)

∫
TK,σ

∇φ · νK,σdx−
1

dσ
DK,σφ

k−1dx

)
dt

∣∣∣∣
≤ d2

NT∑
k=1

∑
K∈T

∑
σ∈Eint,K

m(σ)DσF (Mk)× C∆tmηm

≤ Cηmd2

( NT∑
k=1

∆tm
∑
σ∈E

m(σ)dσ

)1/2( NT∑
k=1

∆tm|F (Mk)|21,2,M
)1/2

≤ Cηmd2ξ
−1/2

( NT∑
k=1

∆tm
∑
σ∈E

m(σ)d(xK , σ)

)1/2

,

where we used the mesh regularity (9) in the last step. Taking into account the estimate
for F (Mm) from Lemma 7 and the property (7), we infer that Fm

20 − Fm
2 → 0.

Finally, using the regularity of φ, we obtain

|Fm
30 − Fm

3 | ≤
NT∑
k=1

∑
K∈T

m(K)|h(SkK ,M
k
K)|
∣∣∣∣ ∫ tk

tk−1

(
φk−1
K − 1

m(K)

∫
K

φdx

)
dt

∣∣∣∣
≤
(
κ2 +

κ3

κ4

) NT∑
k=1

∑
K∈T

m(K)

∣∣∣∣ ∫ tk

tk−1

(
φk−1
K − 1

m(K)

∫
K

φdx

)
dt

∣∣∣∣
≤
(
κ2 +

κ3

κ4

)
m(Ω)T‖∇φ‖L∞(ΩT )ηm → 0.

This finishes the proof.
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7. Numerical experiments

We present in this section some numerical experiments for the biofilm model (15)–(18)
in one and two space dimensions.

7.1. Implementation of the scheme. The finite-volume scheme (15)–(18) is imple-
mented in MATLAB. Since the numerical scheme is implicit in time, we have to solve
a nonlinear system of equations at each time step. In the one-dimensional case, we use
Newton’s method. Starting from (Sk−1,Mk−1), we apply a Newton method with precision
ε = 10−10 to approximate the solution to the scheme at time step k. In the two-dimensional
case, we use a Newton method complemented by an adaptive time-stepping strategy to
approximate the solution of the scheme at time tk. More precisely, starting again from
(Sk−1,Mk−1), we launch a Newton method. If the method does not converge with pre-
cision ε = 10−8 after at most 50 steps, we multiply the time step by a factor 0.2 and
restart the Newton method. At the beginning of each time step, we increase the value of
the previous time step size by multiplying it by 1.1. Moreover, we impose the condition
10−8 ≤ ∆tk ≤ 10−2 with an initial time step size equal to 10−5. Our adaptive time-step
strategy aims to improve the numerical performance of our scheme in terms of number
of time steps, CPU time, etc. However, this strategy is not mandatory and, as in our
one-dimensional test case, we can always implement our scheme with a constant time step
with a reasonable size.

7.2. Test case 1: Rate of convergence in space. We illustrate the order of convergence
in space for the biofilm model in one space dimension with Ω = (0, 1). To this purpose,
we choose the coefficients d1 = 4.1667, d2 = 4.2, κ1 = 793.65, κ2 = 0.067, κ3 = 1, κ4 = 0.4
and MD = 0. These values are close to those used in [16]. We take a = 2 and b = 1 such
that, after elementary computations,

F (M) = log(1− x) +
1

1− x
− 1.

Finally, we impose the initial data S0(x) = 1− 0.2 sin(πx) and

M0(x) = 0.2 g(x− 0.38) + 0.9 g(x− 0.62),

where g(x) = max{1− 92x2, 0}.

Since exact solutions to the biofilm model are not explicitly known, we compute a ref-
erence solution (Sref ,Mref) on a uniform mesh composed of 20, 480 cells and with ∆t =
(1/20, 480)2. We use this rather small value of ∆t because the Euler discretization in time
exhibits a first-order convergence rate, while we expect a second-order convergence rate
in space for scheme (15)-(18), due to to two-point flux approximation scheme used in this
work. We compute approximate solutions on uniform meshes made of 80, 160, 320, 640,
1280 and 2560 cells, respectively. In Figure 1, we present the L1(Ω) norm of the difference
between the approximate solutions and the average of the reference solution (Sref ,Mref)
at the final time T = 10−3. As expected, we observe a second-order convergence rate in
space.
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Figure 1. Test case 1: L1 norm of the error between the reference solution
and the solutions computed on coarser grids at final time T = 10−3.

7.3. Test case 2: Microbial floc. We investigate the behavior of S and M in two space
dimensions with domain Ω = (0, 1)× (0, 1) and final time T = 2. As in the first test case,
we choose the coefficients d1 = 4.1667, d2 = 4.2, κ1 = 793.65, κ2 = 0.067, κ3 = 1, κ4 = 0.4
and MD = 0. Here, we take a = b = 4 such that

F (M) = −18x2 − 30x+ 13

3(x− 1)3
+ x+ 4 log(1− x)− 13

3

and the initial data S0(x, y) = 1 and

M0(x, y) = 0.3 p(x− 0.4, y − 0.5) + 0.9 p(x− 0.6, y − 0.5),

where p(x, y) = max{1− 82x2 − 82y2, 0}.
The initial data models a microbial floc, i.e. a biofilm without substratum. This situation
plays an important role in wastewater treatment.

In Figure 2, we illustrate the behavior of S and M along time for a mesh of Ω = (0, 1)2

composed of 3584 triangles. We observe, as in [14, 15, 16], that after a transient time, the
two colonies merge. After this stage, we observe an expansion of the region {M > 0} due to
the porous-medium type degeneracy for the equation of M , which implies a finite speed of
propagation of the interface between {M > 0} and {M = 0}. With the chosen parameters,
the production rate of the biofilm is positive if and only if S > κ∗ := κ2κ4/(κ3−κ2) ≈ 0.029,
and the biomass fraction is increasing in {S > κ∗}, which is confirmed by the numerical
experiments.
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Processing and Applied Mathematics. Lect. Notes Comput. Sci. 8384, Part I, pp. 134–144. Springer,
Heidelberg, 2014.

[24] K. Rahman, R. Sudarsan, and H. Eberl. A mixed-culture biofilm model with cross-diffusion. Bull.
Math. Biol. 77 (2015), 2086–2124.

[25] R. Schulz. Biofilm modeling in evolving porous media with Beavers–Joseph condition. Z. Angew.
Math. Mech. 99 (2019), no. e20180123, 19 pages.

[26] O. Wanner, H. Eberl, E. Morgenroth, D. Noguera, C. Picioreanu, B. Rittmann, and M. van Loosdrecht.
Mathematical Modeling of Biofilms. IWA Publishing, London, 2006.

[27] O. Wanner and W. Gujer. A multispecies biofilm model. Biotechnol. Bioengin. 28 (1986), 314–328.
[28] T Zhang. Modeling of biocide action against biofilm. Bull. Math. Biol. 74 (2012), 1427–1447.



ANALYSIS OF A FINITE-VOLUME SCHEME 27

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: christoph.helmer@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology,
Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at
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