HIGH-FRICTION LIMITS OF EULER FLOWS FOR
MULTICOMPONENT SYSTEMS

XIAOKAI HUO, ANSGAR JUNGEL, AND ATHANASIOS E. TZAVARAS

ABSTRACT. The high-friction limit in Euler-Korteweg equations for fluid mixtures is an-
alyzed. The convergence of the solutions towards the zeroth-order limiting system and
the first-order correction is shown, assuming suitable uniform bounds. Three results are
proved: The first-order correction system is shown to be of Maxwell-Stefan type and its
diffusive part is parabolic in the sense of Petrovskii. The high-friction limit towards the
first-order Chapman-Enskog approximate system is proved in the weak-strong solution
context for general Euler-Korteweg systems. Finally, the limit towards the zeroth-order
system is shown for smooth solutions in the isentropic case and for weak-strong solutions
in the Euler-Korteweg case. These results include the case of constant capillarities and
multicomponent quantum hydrodynamic models.

1. INTRODUCTION

Multicomponent flows appear in many applications including sedimentation, dialysis,
electrolysis, and ion transport [22]. These flows may be described by Euler or Euler-
Korteweg equations for the various species, coupled through interaction forces proportional
to the difference of the partial velocities. The equations can be simplified when the in-
teraction is strong, leading in the zeroth-order limit to the Euler equations for the partial
particle densities and the common velocity and in the first-order correction to diffusive
systems of Maxwell-Stefan type coupled with the momentum balance equation for the
barycentric velocity. While such relaxation and high-friction limits are widely explored
in mono-species situations, there are no results for multicomponent Euler-Korteweg flows.
The aim of this paper is to compute the Chapman-Enskog expansion and to justify the
expansion via a relative entropy approach, extending results for the mono-species case to
fluid mixtures [10, 15, 16].

We consider the following Euler-Korteweg equations for multicomponent fluids,

(1) Oipi + div(psv;) = 0,
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: 6E 1 «
(2) (pivi) + div(pv; ® v;) = —Piv(s—p(P) —Z > bipip(vi = v)),
) =1

where i = 1,...,n, v € R* t > 0, and p = p(x,t) = (p1,...,pn)(x,t). The initial
conditions are
pi(0)=pd,  v(-,0)=0v) ImR* i=1,...,n

The variables p; are the partial densities and v; the partial velocities. The parameters b;; >
0 model the interaction of the ¢th and jth components with a strength that is measured
by € > 0. Model (1)-(2) belongs to the general realm of multicomponent fluid mixtures
whose thermodynamical structure has been extensively analyzed; see, e.g., [3, 18, 19] and
references therein. On the other hand, we adopt the mathematical structure espoused in
[10], in that the dynamics of the flow is determined by the functional £(p) of potential
energy, with 0€/dp; standing for the variational derivatives with respect to the partial
densities p;. Several isothermal models fit into this framework. In this work, we consider
energies of the form

E(p) = / > Filon Vi

For instance, when F; = h;(p;) for some (convex) function h; we obtain the equations of
multicomponent system of gas dynamics with friction. When

1
(3) Fi = hi(pi) + §ﬁi(ﬂz‘)|vpz‘|27

we obtain the multicomponent Euler-Korteweg system

. . 1 ¢
Oulpivi) + div(piv; ® vi) = div Silpi] — > biipipi(vi = vy),

j=1
where

1 .

Silpi] == ( —pi(pi) — 5(01“2(,01') + ki(p:)) Vil + le(pm(m)Vpi))H — ki(pi) Vi ® Vp;
is the stress tensor associated with the ith component and p;(p;) = p;ihi(p;) — hi(p;) is the
partial pressure. A special case is the selection x;(p;) = k;/(4p;) with k; = const., which
yields the multicomponent quantum hydrodynamic system with friction,

2 NG

used to describe quantum effects in semiconductors [12] or multicomponent quantum plas-
mas [17]. The dependence of F; on the density (and its gradient) of the ith component is
crucial; the general case leads to mixed terms like OF;/0p; that we cannot control.

The interaction term (the last term in (2)) has an alignment effect on the partial veloci-
ties, and we expect that all partial velocities are the same in the high-friction limit € — 0,

at(ﬂivi) + le(piUi & Ui) + sz‘(pi) = _ki,oz‘v( \/_) - E Z bijﬂiﬂj(%’ - Uj)u
j=1
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leading to the zeroth-order limit system
_ o = 58
(4) Opi + div(p;v) =0, 0O(pv) + div(po ® ) Z iV
fori=1,...,n, where p = (p1,...,pn), while p = > " | p; stands for the total density. In

the first-order correction, the solution (p, v®) = (p5, v5);=1.._n» to the hyperbolic relaxation
system (1)-(2) is expected to be close to the hyperbolic-diffusive system

_ 0E
(5) Oy + div(p;v) = €diVZij(ﬁ5)V5(ﬁ5),
i=1 J
(6) 0,(p0%) + div(po ®v)=—ZmV5—p,(p)
i=1 v

fori=1,...,n, where p* = (pf,...,p5) and p* = >, p;. When the barycentric velocity
v° vanishes, we recover the Maxwell-Stefan equations analyzed in, e.g., [2, 5, 14].

Before stating our main results, we review the state of the art. The structure of relaxation
systems and their relaxation limits were first explored for examples [7] and later for general
systems [4, 8, 21, 28]. We call the limit € — 0 a relaxation limit if the time scale is of order
O(1/e). Rigorous relaxation limits in the mono-species Euler equations towards the heat
or porous-medium equation were proved, using energy estimates [9], the relative entropy
approach [15], or convergence in Besov spaces [24]. The relaxation limit in non-isentropic
flows was analyzed in, e.g., [23, 25].

When the potential energy £ also depends on the gradient of the particle density, system
(1)-(2) is of Euler-Korteweg type. The relaxation (or high-friction) limit in these equations
for single species was studied in [16] for monotone pressures (i.e. convex energies) and in
[11] for non-monotone pressures. Giesselmann et al. [10] proved stability theorems for the
Euler-Korteweg system between a weak and a strong solution and for the Navier-Stokes-
Korteweg system.

All these results concern the mono-species case. Relaxation limits in multi-species sys-
tems were proved in the Euler-Poisson equations for electrons and positively charged ions
in plasmas or semiconductors [13]. At the zeroth order, such a limit leads to equations
(4). First-order corrections can be derived by a Chapman-Enskog expansion or Maxwell-
iteration technique. This was done in the Euler system with temperature [19], leading
to equations for multitemperature mixtures in nonequilibrium thermodynamics. The
Chapman-Enkog expansion was validated in [26, 27] in the isentropic case, proving an
error estimate for the difference of the solutions of equations (1)-(2) and (5)-(6). Another
validation was recently presented by Boudin et al. [6] by applying the formalism of Chen,
Levermore, and Liu [8]. However, no results seem to be available in the literature for
high-friction limits in Euler-Korteweg systems.

In this paper, we prove the convergence of solutions to (1)-(2) towards the limit system
(4) and the first-order correction system (5)-(6). The main results can be sketched as
follows:
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1. We compute the Chapman-Enskog expansion leading to (5)-(6) and show that (5)
has a gradient-flow structure (Lemma 2). Moreover, when the barycentric velocity v°
vanishes, the system is proved to be parabolic in the sense of Petrovskii (Lemma 3).

2. Assume that the functional (3) satisfies some convexity conditions. For weak solutions
to the relaxation system (1)-(2) and strong solutions to the approximate system (5)-(6)
with uniform bounds on the velocities, assuming that the difference of the initial data
is of order O(g?), we prove that

"L /1 1
x(t :2/ (—pfvf—f)f2+ pi =P+ 5 mpiWi—mﬁfVﬁfz)tde
(t) Rs; 57| [+ ( ) 2Hi(pﬁ)| (5) PV ) (1)

< C(x(0) +¢€)

uniformly in ¢ € (0,7") for some constant C' > 0 independent of ¢, see Theorem 7.
3a. Isentropic case: Smooth solutions to (1)-(2) converge towards a smooth solution to the
limit system (4) in the sense

Sup / Z ((pf = p)” + [vf — 0)°)dz - 0 ase — 0,
R? i1

o<t<T

if the initial relative entropy converges to zero; see Theorem 9.
3b. Euler-Korteweg case with functional (3): Weak solutions to (1)-(2) converge towards
a strong solution to the limit system (4) in the sense

= [ 3 (Gotles o 4 5 = 07+ 5
< Cx(0) +2)

uniformly in ¢ € (0,7") for some constant C' > 0 independent of ¢; see Theorem 11.

Iks(0) V0 wnwz) (t)da

For these results, we need that the functions p; are uniformly bounded away from vac-
uum as well as h; and —1/k; are convex. The case of the multicomponent quantum
hydrodynamic system and the system with constant capillarities are included.

The idea of the proofs is to estimate the relative entropy between two solutions

o - S -
Ewot(p, m|p, m)(t) = /3 Z (Fz'(Pz', Vilpi, Vi) + 5/01'\7% - U¢|2) (t)dx,
R =1

where m = (my,...,m,) with m; = pv;, m = (my,...,m,) with m; = p;0;, and
F;(pi, Vpilpi, Vi) is the relative potential energy density, defined by
~ OF OF,
(pi» Vpilpi, Vi) api<p pi) N,
with F; = Fi(p;, Vp;) and 1/7\’1 = Fi(pi, Vp;). This functional satisfies a relative entropy
inequality, proved in Proposition 6 for solutions to (1)-(2) and (5)-(6) and in Proposition
10 for solutions to (1)-(2) and (4). The relative entropy approach has the advantage of
being very elementary and to be able to treat weak solutions to the original system [10, 16].

V(pi = pi),
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For the proof of the high-friction limit in the isentropic case, we apply the general
relaxation result in [21] which is also based on the relative entropy approach. We show
that the framework is sufficiently general to include multicomponent Euler flows with
friction.

The paper is organized as follows. The formal Chapman-Enskog expansion as well as
the proof of parabolicity of the first-order correction system are performed in section 2.
Section 3 is devoted to the rigorous proof of the Chapman-Enskog expansion in the Euler-
Korteweg case. The high-friction limit in both the isentropic and Euler-Korteweg case is
shown in section 4.

2. FORMAL ASYMPTOTICS

In this section we perform a Chapman-Enskog asymptotic analysis to system (1)-(2) as
e — 0. As a preparation, we analyze the solvability properties of the linear system

(7) Zbijpipj(vi_vj) :dia L= 17"'7”7
j=1

and the associated homogeneous system

(8) Zbijpzﬂj(vi—%’) =0, 2=1,...,n
j=1

The key hypothesis for (8), to be assumed in the whole manuscript, reads as

(IN) Let (b;;) € R™™ be a symmetric matrix with nonnegative coeflicients, b;; > 0. For
any pi,...,pn > 0, system (8) has the one-dimensional null space span{1}, where
1=(1,...,1) e R".

By setting B;; = b;;p;p;, we rewrite (8) in the form
(9) ZBZ]@}Z—U]):O, Z:L,n
j=1

If the coefficients B;; are symmetric and strictly positive, B;; > 0 for i # j, then hypothesis
(IN) is automatically satisfied. Indeed, due to the symmetry of (B;;),

> Bij(vi—vj) v = 5 > Bij(vi—vj) v + 3 > Biilv; =) - v

i,j=1 i,j=1

1 n
2
=3 > Bigloi — vl
ij=1
If (9) is satisfied, it follows that v; = v; for all ¢ # j, and the null space of system (8) is the
linear span of the vector 1. This conclusion cannot be guaranteed if some b;; vanish, which
makes necessary assumption (IN). The assumption guarantees that there are no extraneous
conservation laws associated to the frictional coefficients b;;, beyond the conservation of
mass and total momentum.
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2.1. Solution of a linear system. In the sequel, we will need to solve the linear system

(10) — Z bijpip;(u; —u;) =d; fori=1,...,n, subjectto Zpiui =0.
j=1

i=1
We give a semi-explicit solution to such systems, recalling the notation B;; = b;;pip;.

Lemma 1. Let dy,...,d, € R® satisfy > ;" d; =0, p1,...,pn >0, and (B;;) € R™" be a
symmetric matriz satisfying B;; > 0 for alli,5 = 1,...,n. We suppose that all solutions
to the homogeneous system

j=1
lie in the space span{1}. Then the system
(12) — Z Bij(ui —uj) =d; fori=1,...,n, subject to Zpiui =0,
j=1 i=1

has the unique solution

n—1 n—1
PiPj \ _—
(13) pii =~ (%m - /)Tﬂﬁdm puttn = = 3 pitij
j=1

jk=1

where i = 1,...,n, p = 3" p; > 0 and (7,;') € ROD*0=1 s the inverse of a regular
submatriz, obtained from reordering the matriz (7,;) € R™™ of rank n — 1 with coefficients

n
Tij:@j E Bik_Bij7 i,jzl,...,n.
k=1

Proof. We proceed similarly as in [27, Section 4]. The idea is to formulate the linear system
in n — 1 equations and to invert the resulting linear system semi-explicitly. First, we notice
that we can write (11) as

n
g Tiju; =0 fori=1,...,n,

j=1

where

(14) Tij = —biypip; for i # j and T = — Z Tij-

j=1,j#i
Since we assumed that all solutions to this system lie in the space span{1}, the matrix
(1;5) € R™™ has rank n — 1. Thus, there exists an invertible submatrix 7 = (7;;) €
R(=Dx(=1) (possibly after reordering of the indices).
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The linear system (12) can be formulated in terms of the first n — 1 variables. Indeed,
since )7, 7;; = 0, we find that

n n—1 n—1 n—1 n—1
—dl = E Tl'ju]' = E Tijuj =+ TinUn = E Tijuj‘ — E Tijun = E Tij(uj‘ — un)
j=1 j=1 j=1 j=1

j=1

Using the property pu, = — Sr—1 prug, it follows that

n—1 n—1 n—1 n—1
1 1 1
(15) —d; = E Tij (Uj +— E pkuk) = E Tij (-@M + —> PrUk = E Tij QP
j=1 Prn G k=1 P Pn G k=1

where Q;; = (52-ij-_1 +ptfori,j=1,....,n—1
The matrix @ = (Q;;) € R V*"=D g invertible with inverse (Q;jl), where Qi’jl =

dijp; — pipj/p fori,j =1,...,n — 1. Indeed, a straightforward computation shows that

n—1 n—1
- 1 1 PrPj
05 =5 (B 1) (- 22)
> 0uts! = 3 (o o) (ans =2

k=1
n—1
Pi P Py

_52+ _ 2 pk:517

7 pn PP Z ’

n—1 n—1 pip 1
Z Qi Quj = Z (@'kﬂk - = k) < Oj + )

:5 p+__pz Zpk‘—ém

P Pn PP

Thus, the matrix product 7Q is invertible with inverse Q~'7~!, and we infer that

n—1

PiPj \ _— .
Pilly = Z le’?']k, = Z (5Z]p2— —J)Tjkldk, 1= 1,...,71- 1.
Ji:k=1 7,k=1 p
This ends the proof. O

2.2. Formal derivation of the Chapman-Enskog expansion. We perform a formal
Chapman-Enskog expansion of (1)-(2) in the high-friction regime, i.e. for small £ > 0. We

introduce the moments
n n
pzzplu pv:zpiviu
i=1 i=1

and the relative velocities u; = v; — v for + = 1,...,n. This corresponds to a change of
variables (vq,...,v,) — (v,uq,...,u,). Then system (1)-(2) becomes

(16) Oypi + div(piu; + pv) =0,
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(17)  B(piui + psv) + div (pi(u; + ) ® (u; +v)) = —p;V —= Z bijpip;(ui — uy),

subject to the constraint

(18) Zpiui = ZP@(W - U) = sz‘vi —pv = 0.
i=1 i=1 i=1

The objective is to derive an effective equation in the spirit of the Chapman-Enskog
expansion for the high-friction dynamics of system (16)-(17) subject to (18). For this, we
introduce the Hilbert expansion

pi = pi +ep; +2pf + O(%),
(19) u; = uf + eu; + °uf + O(e%),

v=1"+ev' + O(?).
Inserting this expansion into p = Y"1 | p;, we find that

(20) p=p"+ep' +0(), wherep”: =) pl p':=> pl,

and the constraint (18) leads to

O:ipiui:ipuo—kaz (pu; + pivi) + O(£2).
i=1 i=1

Equating terms of the same order gives

n

(21) Zp‘)uo =0, > (puj +pluf) =0.

i=1

Next, we insert the Hllbert expansion (19) into system (16)-(17) and identify terms of
the same order:
e Terms of order O(1/¢):

(22) Zb,]pzpj u) =0, i=1,...,n.

e Terms of order O(1):
(23) O] +div(piu; + pjv°) =0,
(24) O (P2l + plv 0) + div (p?(uQ +0°) @ (u) + %))

n

wapmg (wf = uj) = D> bigpl g + o)) (] — ).

J=1

= _pz 5p7,

e Terms of order O(¢):
(25) i + div (pi (uf +2°) + i (u + ")) =0,
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(26) (o (g +v°) + pf (u; 4+ 01)) + div (p (u +0°) @ (uf +0°)
+ 0 (u + 0" @ (uf +0°) + pP(u +0°) @ (u; +v"))

55 = (528
_ Zv 0 )
P 501 ( 5p15p]

- Z bij (P25 = 2) + (phef) + plp}) (uf — )

(03 + plot + P2l — ).

First, we consider equations (22) of order O(1/¢). By assumption (N) on page 5, the first
constraint in (21), and Lemma 1, we deduce that u? = 0 for i = 1,...,n, which simplifies
equations (23)-(26). Then, summing (24) from ¢ = 1,...,n and using the symmetry of
(bij), (p,...,p2,0%) can be determined by solving the closed system

(27) ip; + div(piv®) =0,

(28) @(gp?vo)MW(ZpO“O@“): z”: OV§Z< g

1=1

It follows from (24) that u},. .., ul satisfy the linear system

(29) - Zbljpzp] ;) - d?v

o
where dj = 0;(p{v") + div(pfv° @ 0°) + pzvéi (p°).

Since u) = 0, the second constraint in (21) becomes > ;" pPu} = 0. Moreover, (28) is
equwalent to ZZ: d? = 0, which ensures the solvability of (29). By Lemma 1, there exists
a unique solution (ui,...,u}) to (29).

Next, we focus on the terms (25) (26) of order O(g). We rewrite these equations using
u) = 0 and the constraint > 1, pdul =0 as

(30) Oy +div(po” + pivt) = —div(pjuy),

(31) O ( Z piv® + Zp?vl) + div (Z piv® ® v + Z P’ +1'® vl))
i=1 i=1 i=1

i=1

- 0E - (525
1 )
- _ E V= (p ( )}
— { 0p; (5,015pj

This is a closed system providing (p1, ..., pL,v!).
The last task is to reconstruct the effective equations that are valid asymptotically up
to order O(g?). We are adding (27) and ¢ times (30) as well as (28) and ¢ times (31):

O (p) + epi) + div (p)v° + e(pjv” + piv')) = —e div(ply;),
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(P + e (p1° + povl)) + div (0" ®7Jo +e(p® @00 + Pl @00 + O @ ')
" (55 u { < u (525 ) )}
= - Pi — & pz )
2 2 S0, P

where p° and p' are defined in (20). With the notation

o5 =00 +epl +0(?), S =ud+eul +0(?),
v° =" +ev' + O(e?), p—zpw

and recalling that u? = 0, we infer that (p5,. .., p,v°) satisfies
7 P1 Pn
atpze + le(pf,UE) == le(lgz z) + O( )

& 65
U + A ) = =3V (o) + O
[t remains to reconstruct the formula determining (u5,...,u5). We deduce from (29)
that
(32) Z bijp; p5(u; — u5) = —¢ Z bijplp)(ul —ui) + O(?) = edi + O(€?).

The variables d] can be expressed in terms of p® only. Indeed, since 9;p) + div(pdv°) = 0
and 9;p° + div(p®v?) = 0, it follows that

= (0] + div(pv?))v° + p? (80° +° - Vo) 4+ p)V— 0¢ (p")

dp;
o€
dp;

= p} (00" + 07 - V°) + p)V—(p")

5
ZZ (a (p"0°) + div(p®0" @ v%)) + ”?Vap. (p°)
0
05 o€ o€
= LNT Oy PrAY :
S A6+ A o)

J=1

where in the last step we have used (28). This motivates us to define

E,__p_fn (> 5_5 E 65
(3) 4= DS V) iV (6)

E
rF =

Hence, we can formulate (32) as

—wapzp] u; — us ) = sdf—i-O(sQ).
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The constraints Y 7" | pdu} = 0 and Y77 pfu; = 0 from (21) imply that

ipjuf:ip +€Zp0u1+0 = 0(c?).
i=1 i=1

As the functions pf, v¢, and u$ are defined only up to order O(e?), we may set >, pfus = 0
up to that order.

We summarize our calculations. The functions (p°,v°) = (p5,..., p5,v°) satisfy up to
order O(e?) the effective equations

(34) Oip; + div(piv7) = — diV(pfvﬁ)
(35) O (p°v°) + div(p“v® @ v° Zp 5p1

where p* = > " | pf, and u® = (u5, ..., us) is the unique solution to

? n

(36) - wapzpj (uf —u3) = ed;, z:pau‘E =0,

for i =1,...,n, where d is defined in (33).

2.3. Gradient-flow structure and parabolicity. We show that the effective equations
have a formal gradient-flow structure and, if the total mass is constant, a parabolic struc-
ture in the sense of Petrovskii [1]. First, we reformulate system (34)-(36).

Lemma 2 (Gradient-flow structure). System (34)-(36) can be rewritten as

Op; + div(piv®) = ediv Z D;. vV 6p
J

Oy (p*v°) + div(p“v® @ v° Z pr

(5,0z
where i =1,...,n, p° =" p5, and
— G(Qa)—l(,,_a)—l(@a)—lGT c Rnxn’
where (Q°)~! € R1Dx(=1) has the coefficients (Qs)l_]1 = 0ipf — P55/ 07, (75)7" s the

inverse of the (n — 1) x (n — 1) matriz introduced in Lemma 1, and G = (G;;) € R™* (=1
is defined by Gy =1, Gy = —1 fori=1,...,n—1, and G;; = 0 elsewhere.

Proof. In view of Lemma 1, the solution to (36) can be expressed as

n—1

R
(37) pius = —¢ Z (@jpf — plpf]) (T%)5nds, i=1,...,n—1,

jk=1
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where (75)71 = ((79) ) ') is the inverse of a regular matrix in R™=*("=1) whose coefficients

only depend on b;;p;p5. We wish to reformulate df in terms of p®. For this, we compute,
n—1

USIHg pf], = pE - ZJ 1 pg?

& = EV:;SZ( £) — Z—z;p;‘fvg—;(pg)
i
= :2:;(@6);1 g—;(pf) - Z—i(xf - :z_;lf)?)V;—i(Pg)
= E(Qf)wlvg—g(ps) —g <5U § — p;)p’) ;i (p%)

Inserting this expression into (37) gives

s == S (@) () @ (50~ 1)

k=1 5/)@ 5pn
n—1
~ 0 0
38 = —¢ DV —(p°) — —(p°) ),
(39 > i (50~ 50

with lN)fj the elements of the invertible matrix D° = (Q°)~!(7%)~1(Q°)~ € Rn=Lx(n-1),
Finally, setting D¢ := GD*GT, we can formulate (38) as

e, € 15 56 (> N
(39) piu; = —5jleijV6—pj(p ), i=1,...,n.

Note that in this writing, the last row of the matrix expresses the constraint p,u, =
-3 ' pju;. We finish the proof after inserting this expression into (34). O

Let v° = 0. Then the sum of (34) over i = 1,...,n yields, because of >\ | pfuf = 0,
Op° = 0. Thus, p° does not depend on time and is fixed by the initial total mass. It is
sufficient to consider p® := (pf, ..., p5_;) since the last component can be recovered from

o5 =p — Z?:_ll p5. Accordingly, the energy can be formulated as a function of the variable
p*

n—1
(10) S S 3]
=1
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Lemma 3 (Parabolicity in the sense of Petrovskii). Let (p°,v®) be a solution to (34)-(35)
with v* = 0 and let u® be a solution to (36). Suppose that S(ps) is strictly convex. Then
p° solves

58

—(p%), i=1,...,n—1,
5PJ

(41) Ops = €d1VZD

the matriz D = (ij) 18 positive definite, and the energy Eisa Lyapunov functional along

solutions to (41):
e _of
= —¢€ D;; v V—dx <0.
/]R3 Z 5pz 5p]

Moreover, if p; > 0 fori=1,...,n, all ezgenvalues of DeE" are real and positive (here,

E" = d*Edp? is the Hessian of the energy £). This means that (41) is parabolic in the
sense of Petrovskii.

A second-order system is called parabolic in the sense of Petrovskii if the real parts of
the eigenvalues of the diffusion matrix are positive; see [1, Remark 4.2a].

Proof. Since the variational derivative of g equals

6E o0& o0&
_— =1 —1
6p2( ) 5p2( ) 5pn(p) Z Y 7n b
expression (38) in the proof of Lemma 2 shows that fori =1,...,n —1,
. 5 . o
DE. _ — D
5; Nt z:: v (503 )50 ) 62

proving (41). Next, we show that D is positive definite. As (b;j) is a symmetric matrix
with nonnegative entries (by assumption (N) on page 5), the matrix

i = 0ij Z birp; Pk — bijP; 05

is symmetric, diagonally dominant, and has real nonnegative diagonal elements. Therefore,
(75;) is positive semidefinite. We know from the proof of Lemma 1 that there exists an
invertible (n — 1) x (n — 1) submatrix (TE)Z-_jl. This submatrix is symmetric, positive
semidefinite, and invertible, so all its eigenvalues must be positive and, in fact, it is positive
definite. Moreover, since (Qe) is regular, D° = (Q°)~1(7%)~1(Q°)~! is positive definite.

It remains to show that D°E” has only real and positive eigenvalues. We claim that g
is positive definite. To see this, we calculate (dropping the superindex ¢)

gr_ 4 (d€dp\ _ (dp\'&E (dp\  dEdp
“dp\dpdp)  \dp) dp*\dp) ' dpdp*
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Since p = (p1,-- 1 po1,p — Sory pi), we have

1 0 --- 0
0 1
dp
—=| : . e R (1)
dp : -0 ’
0 O 1
-1 -1 .- -1

and d*p/dp? vanishes since the transformation p — p is linear. By the strict convexity of
&, there exists k > 0 such that for any z = (z1,...,2,.1) € R" 1,

_ dp ngg dp 2 n—1 n—1 2
ZT(S,”Z:ZT(_A,) —(—,V 2> K = /{ZZ?JH@ Zz, > klz)?.
dp) dp?*\dp —

i=1
This shows that £” is symmetric and positive definite. Since also D is symmetric and
positive definite, Proposition 6.1 of [20] implies that the eigenvalues of D°E” are real and
positive. ]

dp

—Z

dp

3. JUSTIFICATION OF THE CHAPMAN-ENSKOG EXPANSION

In this section, we justify the validity of the Chapman-Enskog expansion performed in
section 2.2. We recall that the energy is the sum of the partial energies depending on the
partial densities and their gradients,

(42) E(p) = / > Filpn, Vo

It includes Euler-Korteweg models with the partial energy density (3). Under this hypoth-
esis, it is shown in [10, formula (2.25)] that the force term in (2) can be written as the
divergence of a stress tensor S;:

1)
(43) —pivé—j(p) = divSi(p), i=1,...,n,
where
(44) Si(p) = —si(pi, Vi)l + divri(ps, Vi)l — Hi(pi, Vi), and

OF; i
i\Piyqi) — Pi5 \Pi)qi T Ty Wi _E iy Ui )
si(pi, i) pap‘(p %) +a 8%(/) @) — Fi(pi, ;)

)

(]

7“1'(,01',%‘) = sz@—q(%%),

H’i iy i) — {; _Zi7i7
(pir @) q®aqi(p a:)

and ¢; = Vp;, I is the unit matrix in R3*3.
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We consider weak solutions to the original system (1)-(2),

(45) O +div(piv;) =0, i=1,...,n,
(46) 8<pz l)—Fle(prf@Uf) = _pz 6,07, Zbljplpj E_U;?)’
and strong solutions to the approximate system (34)—(35),
(47) Owp; + div(piv°) = — div(,/ofAl‘?) i=1,...,n,
(48) O(FT) + (7T 9 F) = = Y79 =27
j=1 5[)] j=1 !
where (ui,...,us) solves (36),
(49) _Zbljpzp] U’ _U’ ) :‘Edi? Z/p\;:a;: :07
j=1

and & is given by (33),

& 1/515 . ~ o& ~ P~ o0& ~

Our aim is to show that the difference of the solutions of (45)-(46) and (47)-(48) converges
to zero as € — 0 in a certain sense; see Theorem 7 below.

Lemma 2 shows that system (47)-(48) can be written without the variable u$ as a diffu-
sion system. However, the current formulation is more convenient to verify the convergence
result. In the sequel, we replace —p; V(6 /dp;) by div S; using (43).

3.1. Preparations. We reformulate the approximate system (47)-(48) in a form that re-
sembles the original system (45)-(46) with an error term:

Lemma 4. Setting UF = v° + u, system (47)-(48) is equivalent to
(50) 0ip; + div(p;v;) = 0,

(51) (P + div(FTE @ TF) = £ ) ——wapzpj 0 -0 + R,

5p2
where the remainder §5 s given by
(52) RS = =07 div(p) + 0570 + div(pia; ® 07 + 07 @ ) + div(p{ s @ ).

Proof. Equation (50) follows directly from (47) and the definition v5 = ©° 4+ u;. We write
the evolution of the momentum in a similar format as (46),

Zbljpzpj z /U\j) —’_Rf?

0.7TT0) + A (T} ©) = 77V o
Pz
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where R; contains the remaining terms:

R = 0,(50°) + div(p50° @ 0°) + pEV

+ Zbljpzpj z ])

It remains to show that this expression equals (52). The last three terms are already in
the desired form. By (49), we have

O~ 6E €
_ZbZ]pr] U; ]) :% p]v_(ﬁs)_pzv (ﬁa)

Therefore, we can replace the third and fourth terms in Ef by

7 o0&
(54) =) V—(p)
[ 0p;
We reformulate the first and second terms in ﬁf Adding (47) over i = 1,...,n and using

> i1 P35 = 0, we deduce that 9;p° + div(p*°) = 0. This equation and (47), (48) show
that

O (p;0°) + div(p50° @ 0°) = (05 + div(p;0°))0° + 75 (0,0° + 0° - VT©)
— —div(7a)T + %(at(ﬁ%*) — (07 )T + 77 - VT)
= —div(piu; )v° + %(&(/p\%ﬂ + div(p°0° @ 17))
——anae - 23 v,
i P;

where we used (48) in the last step. The last term cancels with (54), showing that (53)
reduces to (52). O

We need later the explicit expressions of the variational derivatives of £ and S;.

Lemma 5 (Variational derivatives of £). Let € be given by (42). Then, for test functions
Vi and ¢,

Z <5P > /]1{3 Z (aF pzvvpz 77ij (Pz,vm) V¢Z>d$,

- 525 O*F;/0p;  0°F;/0p;0g; (0
1<<5pz( 1/’“¢Z>> Z (90 V) (aQFi/apiaqi 9 F,)0q? )(w)

=
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Proof. We compute the first variational derivative with respect to the test function ¥ =

(%, cee 7¢n):
Z <§5 (p),wi> = %E(Wrﬂb)

d n
— = F(p: . . ,
o /RB ;:1 J(pi + T, Vi + VY ) dx

7=0 =0
(9Fi
R3 86]1‘
Next, we calculate the second variational derivative, where ¢ = (¢1,...,0,):
Ny d |~ 08
> 5rte v ¢z>>> - (Xterrene)
d ~ [ OF,
=7 /R:3 121 <8_pz(pl + 7¢:, V(pi + 7)) i
oF;
aq 7=0
O*F; 0 F;
Z ( p)oivi + %m(ﬁ) Vo + ¢im(P) -V,
32
T a2 2 (Vo ®V¢1))
_ O*Fi/0p;  O*Fi/0pi0q;\ ( i
- Z: [ (699 (am/apiaq,- ok jog ) \w,) ™
This finishes the proof. U

Next, we define the relative potential energy

R /0 N
£(0lD) = £0) — £7) - 3 (5Bl )
i=1 ¢
Taking v¢; = ¢; = p; — p; in the above lemma leads to the formula

£l = [ 3" Rl Vnlp. Vi
R* =1
We also define the total energy

(55) Eiot(p,m /Z Spilvil dx—/ Z( (pi» Vpi) + Pz|vz|2)dx

and the relative total energy

P o " )6 ot N
gtot(p7m|p7 m) = gtot(p7 m) - gtot(p7 m) - Z < 5;t (p7 m)upz - pz>
i=1 !
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" R
(56) —Z<5;f(p m), piv — szZ> /RSZ< (i Vil i, Vi) + pzlvz vz‘l2)dr€'

=1

3.2. Relative energy inequality. We compare a weak solution to the original system
(45)-(46) with a strong solution to the approximate system (50)-(51) via a relative energy
inequality. First, we make precise the notion of weak solution to the original system.

Definition 1 (Weak and dissipative weak solutions). A function (p°,v®) is called a weak
solution to (45)-(46) if for alli=1,...,n

0 < pf € CO([0, 00); L(RY)),  pfaf € CO([0, 00); L1 (RS RY)),

pfvf 005, HE € Lh([0,00) x RS R,

s: € Li ([0,00) x R?), 75 € L ([0,00) x R* R?),

loc loc

and (p°,v%) solves for v; € C*([0, 00); C=(RY)) and & € CA([0, 00); C(R% R?)),
/ /sz&swﬁpff V) didt = /Zwow 0)da
R3 R3 i=1

- /Z PEOE - Oubs + pEE @ 0 1 Vi + 5 div g+ 1% - V div gy + HE : Vi) dudt
0 JR® o

:/Rs(pfvf)(x 0) - 6(,0) x——/ /RSZ%MJ S

Moreover, if additionally " (Fi(p5, Vp) + 3p5[v5)?) € C°([0,00); L'(R?)) and the inte-
grated enerqy inequality

- [ el meni g [ [ 3 vopteght - ootz
0

2,7=1

(57) < gtot( (O)a m (O))Q(O)

holds for any 0 € Wh>=([0,00)) compactly supported in [0,00), then we call (p°,v°) a
dissipative weak solution.

We impose the following assumption:

(A1) The dissipative weak solution (p°, v°) to (45)-(46) has finite total mass and finite
total energy, i.e., for any T" > 0, there exists a constant K > 0 independent of ¢

such that
sup / pidr < K, sup / ( (p5,Vps) + pz vy 2) dr < K.
o [2 o [,2 e

We proceed by establishing the relative energy inequality.
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Proposition 6 (Relative energy inequality). Let (p°,v°) be a dissipative weak solution
0 (45)-(46) satisfying (A1), let (p*,7°) be a strong solution to (47), (48), (49) such that
p:>0inR3 ¢ >0, and let assumption (N) on page 5 holds. Then

Eiot(p7, M| P, ) 26// mep,p] (vf —v5) — (T — 5)|"duds

2,7=1

< Sualer.m 5000 ~ [ [ S pites ) o 05 ) Vs
0 JR3 i=1

t n
- / / > (sl V172, 920) div 7 + (o7, Vil 7 V) - Vv
R? =1

1 t
(59) - - / / D b6 — BT ) - (0 — ) dads,

where s;, i, and H; are defined in (44) and RS is defined in (52), and the relative stresses
are given by

d9; 0g;
9:(05: G107 @) = 9:(05. @) — 9:(05. @) — ap( q)(p?—bf)—ﬁq,(ﬁff,fﬁ)-(q;?—?ﬁ),

where ¢ = Vi, q¢ = Vp5 and g; represents s;, r;, and H;.

Proof. The proof is similar to the proof of Theorem 1 in [10], but we need to take care of
the friction terms. To simplify the notation, we drop the superscript €. Recall that the rel-
ative total energy o (p, m|p, m) defined by (56) has four parts, ot (p, M), —Eor(p, M),
- Zz:1<(5gt0t/5pz)(pa ) Pi — Z>7 and — Zz:l <(5‘€t0t/5mz)(pv )a Pili — pzvi)' We first

give the energy inequalities for the first two terms and then use the weak formulations to

calculate the last two terms.
Step 1: The energy inequalities. Introducing the test function

1 for 0 < s <t,
(59) O(s)=¢ (t—s)/6+1 fort<s<t+§,
0 for s >t +09,

in the integrated energy inequality (57) and passing to the limit 6 — 0, we obtain

60 Ealplhm®) + 5 [ [ bt Pdds < €0(p(0).m(0)

To show the energy identity for the strong solution (p®, ¥¢), we write (51) in nonconservative

form:
Z bijp;(v; —

:9>| o)

5 pl
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We multiply this equation by p;v;, multiply (50) by 5 117512, and add the resulting equations:
(61) 5@(Pi|vi|2) + 5 div(p;0:[0:]*) = —pivi - Vg — _Uz szgpng vj) + ;- R;.

Furthermore, we deduce from (50) that

d " /o6& "L /& 55
—E£(p) = D A,L = — di i Ui AzAz dx.
—-£(p) ;<5Pi(p),@p> ;<5ﬂi< p), div(piv; > » - (pih)
Integrating (61), summing over ¢ = 1,...,n, and inserting the previous identity yields
( / Z/)@|vl] d:z:) = ——/ Z bi;pip; (Vs vzda:+/ ZR - v;d.
R3 =1

The symmetry of (b;;) and integration of the above equality over (0, t) lead to the following
energy equality:

SN I NN

Ewot(p(t), m(t)) + 2—5/0 /R3 Z_ bijpip;|0; — 0;|*dads
62 =& R; - v;dxd
(62) (B / / 32 Tidads.

Step 2: FEquation for the difference. We proceed to calculate

0&0 5.7) . ~ [ 0E ot~ S
—2( @ p) md =3 (G )

Op; — i

Following the deﬁmtlon of the weak solutions to (45)-(46) and (50)-(51), the differences of
the solutions (p; — p;, v; — U;) satisfy

/ /]R3 Z ((pi = P1)Osti + (pivi — pivi) - Vabi)dawds

= [ 3 (oia0) = i 0) s, 0)d

_/ /3 Z ((PiUi — Pivi) - 0s0i + (pivi ® v; — piv; ®V;) : Vg
0 JR% =y

+ (si = 8) divey + (H; — H) : Vi + (r; — 73) - Vdiv ;) dds

- / 3 Z«pmixx, 0) = (70:)(x,0))i(, 0)dx

_ _/ /RS Z bis (pip;(vi — v;) — Pip; (i — 0;)) - pidads

2,j=1
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— / / Z }A%, - ¢idxds,
0 JR?

where s; = s;(pi, Vi), 8 = si(pi, Vp;), and similar for the other quantities. Taking the
test functions

59 =06 (22— 2 L) o), o) =000

where 6 is defined in (59) and F; = F;(p;, V7;), the sum of the above equations becomes
& 5513013 ~ -~ 55(',013 o~ AN A
Z << 5/01 <p7 m)> Pi — pz> + < 5ml (pv m) PiVi — Pi; .
i=1
n 8E . 1 ) n
= i i — P d 1 Ui Ui i
/R?)Z( 2!v|>(p x+/§;pv piv;)

” 7- LOF 1, _
L {( —dwa%—gm)(m—p»

F, Fo1
+ (pivi — pivs) - V<8 - div i B —|@|2) }dxds

t

t

dx
0

p; dg; 2
t n
N / / > ((pivs = pivs) - 05 + (pivs @ v — piv; ®T;) : V) dds
0 JR3 i=1
t n
+/ / > ((si =) div; + (H; — H;) : VO + (r; = ) - V div 0;) dvds
0 JR? o

1 [t =
2 [ S et 0) - 50— 9,) - Dudeds
€Jo Jr3 T

t n
—// > " R; - Bidads
0 R3 i=1
(63) = Il+[2+l3+[4+[5-

We reorganize the term I; as follows:

Il :]11+]12+]13, where

OF;
I —// 8( L —div Z) i — p;)dxds,
H R3 Z op; dq; (p P )

OF; OF,
Iy = U (A \Y Z_d. - dd7
19 //]Rg (pivi — piv;) - <8pi W@qi) xds
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1 o 19
Ly = 3 s ([0:*) (pi — pi) — 5(,01'% — piv;) - V([5;]%) ) dzds,
R

Step 3: Calculation of I;; and I5. Using (50), we obtain:

e | LG 2
(dw ( aiigpi 85p,) + div (%2; 9 Vpl))( ,@)}dxds
[ L {(Gp o b 2R S aiv(pn) ) (o )
(dw ( 8(215/% dlv(pzvz)) + div (%2;? leV(pﬂ)J)) (pi — @)}dxds

0°F, . 02F R
/ /1%3 Z ( le plvl)(p'b ) aplaql lev(p’bvl)(pl p’L)

0°F, "
-V(pi — pi) div(p;v;) + e  (Vdiv(pi) @ V(p; pi)))dmds.

(64) aqiapi

We claim that the second-order derivatives of F; can be related to the functional derivative
of S;. Indeed, we take the variational derivative of the weak formulation of (43),

58 0

for some test function ¢;. Let @b = (¢1,...,1,) be another test function. Then the limit
7 —0in

1/6E, - 0 o ..~ 1/6E PN PR
LS54 7) — S ) v ) + 25 )iy (4 rin)er) — div(7io))
1

- /R (i + 75) — Si(70) : Vbuda

and summation over 1 = 1,...,n leads to

N CHENUNCIIRTY ES o RNy
:_Z/Rs<5pz >:V¢idx.
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Inserting the expressions for the variational derivatives from Lemma 5 and choosing ¢; = v;
and ; = p; — ﬁi, we deduce that

/RSZ( () (i~ ) + 5 V(AN (i )

32 SO 02F, PR ~
b o Vo = P () + G (V(E)) @ Vi - 7)) )

OF,
\Y — div L Z—Ali}\zdﬁt?
/Rgz (apz 5o ) (= p0m)
0s; 0s;
= “(pi — pi) + = Vi(pi — pi) ) divey
/RS;{(E)M(p pi) a0, (p p))

or . oF R o
+( : (pi — pi) + ik -V(pi—pi))-levvi

Ipi 0
O H, . 0H; _ _
(65) + (api (pi — pi) + 3_% -V(pi — pz>) : Vvi}dit-

The first four terms on the left-hand side correspond, up to the sign, to the right-hand side

)

" _[OF, oF,
_ \V4 L div — ;) 0; )dx +/ Vi — Di0;) ( — div
/u@ Z ((9% Iq; ) ((pi = 22) RS Z P 2 dp; 9q;

" OF, OF,
= \V4 L div — i(v; — 0;)d,
L2v(G -avgg ) pti-o)
we find that

e [ 5
LG

or; N ai - P
+( - (Pz’—pi)+a; - V(pi — Pz)) -Vdivy;

Jal
— div qu) - pi(v; — 0;)dxds

P 05,
0q;

p;
OH; . OH; N _
(66) + (8{% (pi — pi) + a4, -V(pi — pl)) : Vvi}dxds.

Step 4: Calculation of [13 and Iy. The sum of I3 and I, is

N 1 PN .
La+ 1= / /3 < A5 (|0:?) (ps — i) — §(pivi — pivi) - V(|Uz'|2)>d$d3
R
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t n
* / / > ((pivi = p0i) - 00i + (pivi ® vi — PO @ T;) : V) dwds
0 Jr3
t n
= / / > (=@ (o =)+ (pio 03— 7 @ 3) : Voidads
R3 %

(67) / /IR del : — 0;)050ydads.

Observing that (51) reads in nonconservative form as

J OF,
o; +v; - Vu; = —V(api (9qz) Z biipi(v; —

it follows that

[ zpz vi = ) - OBudods
R3
OF OF,
= lvl—@ . —@V@—V Z—diV ! . Z’Ul—i}\l
//Zp< ) ( (5 - av5e) - twi =)

1 & R;
— g Z szﬁ](i)\l - i)\]) + T) dJZdS
j=1

;;>| )

Di
VAR OF; OF;
= — Z?)Z—i)\Z ®§)\ZV@\Z—V( Z—diV Z)
/ /RS Z ( il ) dpi 0y
(68) - Z ijplpj ) (Uz - UJ) + ZZ (Uz — i}\z) . ﬁz) dxds.

Substituting the above formula into (67) leads to

t n
s+ I / / Z pi(vi—T) ® (vi— B) : Vidads
RS

~

0
\Y —div - pi(v; — v;)dxds
/ /R3Z (apz 8%) p( )
— —/ / E bijpipj(vi — ;) - (U; — U;)dxds
R3

zyl

t
Pi ~\ D
69 +/ / —(v; —v;) - Rydxds.
(69) /. Zf 2o, -7)
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Step 5: Calculation of I,. We collect the terms in I, and the friction term in (69):

- Z( = bigpips (0 = v) + 5Py (B = B)) - B = bipify(vi = B) - (B — )
’Lj 1
1 1
=z D bipipi(vi = vj) - (v = T) — - > biipipi(vi—v;) vy
ij=1 ij=1
(70) + = Z bij P (B — 0j) - B — = Z bij iy (vi — By) - (0; — 0j).
z] 1 zy 1

By the symmetry of (b;;), the second and the third term on the right-hand side become

1 o 1
== D bupipi(vi = vg) v = == > bpipslvi — vy,

ij—l

ij—l
- sz]pzp] Uz_ ) U= — waﬁzb\]‘vz_ | .
z] 1 Z] 1

We write the last term on the right-hand side of (70) as

1 R . SO
T Z bizpipj(vi — ;) - (Vi — V) Z bijpi(p; — pj)(vi — ;) - (Vi — ;)
,j=1 ’Lj 1

- Z bijpipi(vi — 0i) - (Ui — Uy).

z] 1
The last term can be combined with the first term on the right-hand side of (70):

1 n
- Z bijpipj(vi —vj) - (v; = V;) — — Z bijpip;(vi — ;) - (v

—j)
ij=1

2]1

=23 bupins (0 — ) — (3~ 9)) - (0~ )

ij=1
1 & S
= 5% D bipipil (v —v)) — (@ = 5;)[”
ij=1

Then, combining these results, we conclude from (70) that

1 t n ~ - R )
f= _/ / Z bijpipj(vi - U’i) ) (Uz‘ - Uj)dl’ds
13 0 RSi,j:l
1 t n
G bigoips (i — ) — By (B~ ) -
g/O/RSi,JZﬂ« ipip; (Vi —v) — pip; (v v])) 5

25
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+ szp“/O\](U, — i}\z) . (i)\z — @))dmds
L i
= bijpip;|(vi —vj) — (v; — v;)| dxds
2% J4 RBMZ:l JlPilj J J
1/t/ ib | 12+1/t/ ier ;|2 dxd
~ 52 ijPiPj1Vi — Uj 5o ijPiPj|Vi — Vj| ATas
2 J, o = JPilj J 2 J, o = JPilj J

1 [ - . PO
@ 4 [ bunes - )-8 (0 8)dads.
€Jo Jr3 ST
Finally, we insert (66), (69), and (71) into (63) and then subtract the resulting (63) and
equation (62) from (60) to arrive at (58). O

3.3. Convergence of the Chapman-Enskog expansion. We proceed to justify the

Chapman-Enskog expansion using the relative entropy identity. We place a series of as-

sumptions:

(A2) The strong solution (pf,v%) to (47)-(48) satisfies for v7 = v° + u5 with u; being
a solution of (49): There exists a constant C' > 0 such that for all & > 0 and
1=1,...,n,

(A3) The strong solution pf to (47)-(48) satisfies: There are constants K > x > 0 such
that foralle >0, x e R} t € (0,T), and i = 1,...,n,

k< pi(x,t) < K.

(A4) Let Fi(pi,q;) = hi(pi) + %/{i(pi)|qi|2, where h; and k; are C® functions and there
exists a constant a > 0 such that for all e =1,...,n and p; > 0,

W (pi) > o,  rilp)si(pi) — 265(pi)* =0, Ki(ps) > 0.

(A5) The dissipative weak solution (p°, v°) satisfies that pi are uniformly bounded in
L>=([0,T]; L*°(R?)) and there are constants K > x > 0 such that

k<pi <K nR 0<t<T.

Hypothesis (A1) concerns the family of dissipative weak solutions which is assumed to
satisfy the uniform bounds (A5). Hypotheses (A2) and (A3) concern the family of strong
solutions to the target system (47)-(48).

Hypothesis (A4) is a structural hypothesis on the model. It is in particular satisfied for
ki(pi) = pi with s € [—1,0] for p; > 0. The important special cases s = —1 (corresponding
to the quantum hydrodynamic system) and s = 0 (corresponding to constant capillarity)
are included.
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Theorem 7. Let (p°,v°) be a dissipative weak solution to (45)-(46) satisfying assumption
(A1) and (A5), and let (p*,0°) be a strong solution to (47)-(48) satisfying assumptions
(A2)-(A4). Furthermore, let assumption (N) on page 5 hold and let T > 0. We introduce

" /1 1
-[> <§p§|vf =P (0 = P g IRV m<ﬁ5>vfﬁfr2) (t)dz.
R3 i1 Iil(/oz)

Then there ezists a constant C' > 0 such that for alle >0 and t € (0,7,
X(t) < Cx(0) +¢%), t€(0,T).
In particular, if x(0) — 0 as € — 0, we have

sup x(t) >0 ase—0.
te(0,7)

Proof. We apply the relative energy inequality (58). First, we relate the total relative
entropy to x(t). The superscript ¢ is dropped for simplicity of calculations. The relative
potential is

PR R oF;, . . oF;, . N
(72)  Fi(pi, ¢ilpi» @) = Fi(pir ;) — Fi(ps, @) — 8—,0(02‘,%)(,01‘ —Di) — a_q<pi7Qi) (g — @)

~ 1 o~
= ulpl) + (o0l ) o alp )

The second term on the right-hand side of the above equation is calculated in detail as
follows:

1 ~ o~
<§f€i(/h’)|%|2) (pi7 Qi|pi7 Qi)

Srlp)la? = S @) — G~ 7 — mip) i~ 3)
= 5 (el = 2P 7+ w2
+ylal? (= S8 ) - P~ 7))
e L e )
1) = gl - w@al + (- L))
Assumption (A4) implies that
1 1 1 N5 R
(-2 )olp ==+ - 52 ((”;)) @R~ 7)

/ / ﬁg/( spi+ (1= s)pi))dsdr(p; — pi)* = 0.
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Due to assumption (A4), the Taylor expansion of h;(p;|p;) gives
hi(pilpi) = hi(pi) — ha(pi) — hi(Pi) (pi — P3)

= [ [ st 0= st~ 7 = Clos - i
It follows that, for some C' > 0 independent of ¢,

1
Fi(pis 6ilpin @) > Clpi — pil> + =——ri(pi)ai — ri(pi) @]
25i(pi)

We deduce that
51;01;(9 , 1M /3 Z < pzavpz|pzavpz) + PZ|U — |2) dx Z CX(t)
R

We turn to the right-hand side of the energy inequality (58). We write Ji, ..., Jy for the
four integrals on the right-hand side of (58). Thanks to assumption (A2),

-/ sz =) ® (45— ) : Votdads
R3
¢
(74) SC’// Zpﬂvf—i}ﬂdedsgC/ X(s)ds.
o Jrs i 0

To estimate .Jo, we first calculate the stress tensors using (44) and obtain

1
pilpi) + 5 (Ripi) + piri(pi)lail’, pi(pi) = piki(pi) — hi(p:),
ri(pir @) = piki(pi) G,

Hi(pi»qi) = ki(pi) @i @ ¢i.

For s;(p:, ¢;|pi, @), we first split s;(p;, ¢;) as

S (pi7 Qi)

1 1
si(pi, i) = pi(pi) + 5&(&)!%\2 + Ailpiyai),  Ailpi,qi) = §pm2(pi)|qi|2-

Due to assumption (A4), p/ is a continuous function. Furthermore, thanks to assumptions
(A3) and (A5), sp; + (1 — s)p; is bounded for s € [0, 1], so p/(sp; + (1 — s)p;)) is bounded.
The relative pressure becomes

pilpilB) / / P (sps + (1 = )3)dsdr(pi — pi)? < Clpi — pil®.
For A;(p;, i|pi, @;), we can replace k;(p;) in the calculations of (2r;(p;)|a|?)(ps, 4i|pi, @) by
piri(pi) to get
(75)

L 1 e TR (R())? 1
Ai(ﬂh qz"Pm%) = —2p o (p ) ’Pz ( z)Qi - Pz'/?;(/)i)ql'|2 + 9 p (Pz’ﬂz)
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The first term on the right-hand side can be estimated as follows:

1 ~ ~ o~
ﬁ!pmé(m)% - Pm;(ﬂz')qiﬂ?

2)01/'1; Pi
= Ki\pi)qi — Ki\Pi)qi — .  — Pik\pi) |4
2piri(pi) | Ki(pi) Ki(pi)
< Piri(pi) k(00T | piri(pi)  Piki(pi)
= 267 (pi) 2piki(pi) | Ki(pi) Ki(P3)

)

2

2

|ki(pi)ai — ki(Po)@l* +

C
< —— Nkl 0)a: — ki (0512 72
= i) ki(pi)ai — ki(p)@l” + Clpi — pil
We use assumption (A5) in the first item of the last inequality to obtain an upper bound
on p;ki(pi)/ki(pi). Assumptions (A3) and (A5) are used to estimate the second item. By
the same assumptions, a Taylor expansion of the last term on the right-hand side of (75)
leads to

1 - ~
(— p.ﬁ4>(Pi|Pz‘) < Clp;i — pil*.

We thus have

(76) si(pi, ilpis @) < Clpi — pi* + \ki(pi) i — k(P3G

1
2k:(p:)
Observe that

ri(pi, @l i, @)
= piki(pi)@i — Piri(Di)@ — (Ki(Pi) + ﬁiﬁé(ﬁz‘))zfz‘(m — pi) — piki(0i)(¢ — @)
= (pii(pi) — piri(pi))as — w:(P)@i(pi — pi) — Piri(Pi)@i(pi — Pi)
_ piki(pi) — piri(pi)

(ki(pi)@ — ~i(P3) @)

Ki(pi)
PPN 1 1 K (pi) .
2 (AN — _ A
+pl’iz (pl)ql< "iz(pz) + KZ(ﬁ’L) RZQ(@) (Ioz pz))
< o) = P POP + Il — mBIGP + PR A)E(~ ) (oilp)
— Kz(pl) pl 7 pZ pZ (A pl [{:Z( l) T pl K T pl K pZ 7 pZ 3 /{Z pl pl
C
7)< ——lrilpi)ai — wi(P)@l* + Clpi — il
(77) m(pi)| (i) (P:)ai \pi — pil

where we used assumptions (A3) and (A5) to show the boundness of (1/k;)(p;) and
(—1/k;)(pi|p;). They are also used to estimate |p;x;(p;) — pirs(pi)|* < C|pi — pil?.
Next, focusing on the term H;(p;, ¢;),
Hi(pi, @ilpis @) = Ki(pi) @i @ ¢ — ki(Pi) @ @ G — K (pi) @ @ Gi(pi — i)
— ri(Pi) (@ — @) @ @ — Kxi(Pi) @ @ (¢ — @)
1

= oy e = (PG @ (ilpi)as — (D))
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PN 1 1 w5 (Di) ~
+ k7 (P Qi®%’(— + — - = Pi)
) ) * iy = )
1 1
< ki(pi)ai — 6 (D)@ + K7 (0:) |G (——) (pil i
m(ml (pi)q (Pi)al ()@ ( m)(plp)
1
78 < ki(pi)gi — k(PN G* + Clpi — pil*
(78) m(ml (pi)q (Pi)a \pi — il

Combining (76), (77), and (78) and using assumption (A2), we deduce that
t n
_/ / > <Si(P?7Vp§|ﬁf,Vﬁf) divv; + ri(p5, Vpi|p;, Vp;) - V div g
0 Jr3 S
+ Hy(p§, Vil 5. V) - V@f)dxds
t n 1
o e & 0P S ot = )V
t
(79) <C / x(s)ds.
0

From equation (39) we have

= —5ZD” (p°)V

Hence, by definition (52) and upon using assumptions (A3) and (A1), we see that R is
of order O(e) and that

// szE — 05 )dzds

R3

<O// sz|v — 5| d:Bds+C// sz( )d:vds
R3 R3 i

SC/ / pr|vf—@f|2dxds+052t.
0 JR

Also vf —v5 = u; —u; is of order ¢, so the last term J; is estimated using assumption (A5)

r).

5p]

:__//Rszb”p’ p; — p;)(v; — ;) - (U — U;)dxds

z]l

t
SO/ / sz'jpflpj—pjllv — Uj|dxds
0 JRT
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<C’//sz|v — | d:vds+0// sz|p] pj|dxds
R3 R3

i,j=1
§/ x(s)ds.
0

Putting these estimates together, we arrive at

2
bz [ 3 bartedler =) — @~ ) o

2,j=1
< Cx(0 +C/ s)ds + Ce?t.

Then Gronwall’s inequality gives x(t) < C(x(0) + £?)e®T, finishing the proof. O

Remark 8. The assumption h”(p;) > « is not needed if we assume that r;(p;)x}(p;) —
2k(p;)? > a and |Vp;| is bounded away from zero for any i = 1,...,n, because the second
term on the right-hand side of (73) controls |p; — p;|*.

The case of quantum hydrodynamics, x;(p;) = k;/(4p;) is included in the above proof.
Indeed, x(t) is taken to be

. 1 £l,,E ~1|2 & ~£\2 216E ;pa ;p/\a ?
§ oSlvS — OS2 + (pf — 05)% + == KR L t)dz.
/3i - (2 Z|’UZ U’L| ( T Z) kl f /\Zg ()

The condition in assumption (A4) becomes
ki(pi)wi (pi) = 2w7(pi)* = 0,
but one needs the assumption h/(p;) > a to derive the bounds for |pf — p%|*>. The use of
the nonlinear quadratic term (2pf/k;)|V p5/p5 — Vi /pg|? is crucial to obtain the estimate.
Finally, for the case of constant capillarity, x;(p;) = k;, we conclude that r;(p;)k} (p;) —

2k%(p;)? = 0, such that assumption (A4) is satisfied. Thus, Theorem 7 also holds in this
case.

4. JUSTIFICATION OF THE HIGH-FRICTION LIMIT
We recall the original system (45)-(46):
(80) ip; + div(pjv;) =0,

(81) Au(p50) + div(pfes © vf) = div Si(p ——wapzpjv—m

where div .S; = —p;V(0€ /dp;). The limiting system for e — 0 becomes
(82) Opi + div(p;v) = 0,
(83) O (pv) + div(pv ® v) = div S,
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where S = Y7 Si(p), p = doi,pi, and pv = >_i piv;. Indeed, system (82)-(83)
corresponds to the zeroth-order Chapman-Enskog expansion (27)-(28). In this section, we
verify the limit ¢ — 0 rigorously, analyzing the isentropic case F;(p;, q;) = hi(p;) and the
Korteweg case F(p;, ¢;) = hi(pi) + 3i(pi) || separately.

4.1. High-friction limit in the isentropic case. We consider the case when the energy
density only depends on the particle density (and not on its gradients),

E(p) = /3 > Filp)dz, Fi=hi(p;).
R =1
We prove the relaxation limit ¢ — 0 in (80)-(81) by applying the general result of [21].
Noting that p,V(6E/dp;) = Vpi(pi), where
pi(pi) = pihi(pi) — hi(p:)

is the partial pressure, we can formulate (80)-(81) as the system of balance laws

1
(84) QU + div F(U%) = —R(U?),
where U® = (p°, m®), m® = (p;v5)i=1....n,
€ p§U§ 2n
F U — c € Zg ! & E R )
(%) (pivi ® v; +pi(pi))i1 n

77777

0
R UvE = n € HE (1€ € < RQn.
U7) (‘ > bigpf o5 (v — Uﬂ‘))il n

-----

The (formal) relaxation limit € — 0 leads to R(U) = 0, where U = lim._,o U®. This implies
that all limit velocities are the same, v := v; for + = 1,...,n. Thus, the limit equations are
expected to be

Opi + div(piv) =0, O(pv) + div(pv ® v) + Vp =0,
for i =1,...,n, where p = >_"  p; and p = > " | p;. This system can be written as the
conservation law

(85) Oyu + div f(u) =0,

where u = (p,m), m = pv, and f(u) = (p1v,...,puv, pv @ v + p). System (84) has an
entropy

n

o) =3 (o) + 3ou ).

i=1
satisfying 0; fu@ n(U)dz < 0. We introduce the relative entropy density

n

7 = 1 £1,,€ -
o010) = 3 (el + gotle = o),

=1

where hi(pf|pi) = hi(p5) — hi(pi) — 0i(pi) (0§ — pi) and U = (pn, - -, Py 10; - - -, PrD).
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Theorem 9 (Relaxation limit in the isentropic case). Assume that (N) on page 5 holds
and that the function h; : [0,00) — R is uniformly convex on (0,00) for alli =1,... ,n.
Let U¢ = (p®,v®) be a smooth solution to (80)-(81) or (84) and let u = (p, pv) be a smooth
solution to (82)-(83) or (85). We suppose that there exists k > 0 such that p5,p; > k>0
in R3 x (0,T) for alli = 1,...,n. Then for any r > 0, there exist s > 0 and C' > 0
independent of € such that for all t € (0,T),

-AMQ&MUﬂUMxJMxSﬂj(AFKHﬁﬂﬂUﬂUN%OMx+€).

In particular, if

lim n(U=|U)(x,0)dx = 0
e—0 {|z|<r+st}
then

lim sup / Z ((pf — pi)* + |vf — 0]*)dz = 0.
R3St

=0 0<t<T

Proof. As mentioned above, the result follows after applying Theorem 3.1 in [21]. To this
end, we need to verify the structural conditions (h1)-(h7) of [21].

(h1) There exists a projection matrix P : R*® — R™"! satisfying rank(P) = n + 1 and
P(R(U)) = 0 for all U € R?*". This matrix relates the variables u and U and is given

by
Hn @n
u=PU, PZ(Q“w01PHJ>’

where I,, is the unit matrix of R"*™, @,, is the zero matrix in R™*"- It holds for all
U= (p,m), (PRU)); =0fori=1,...,n and

(PR(U))nir = = Y bixpipr(v; — o) = 0.

j,k=1

(h2) The equilibrium solutions to R(U) = 0, called M (u), satisfies PM (u) = u. The equi-
librium solutions are given by M (u) = (p1, ..., Pn, P10, - - -, Puv), since (PM (u)); = p;
fori=1,...,n and (PM(u))ns1 = > 5, pjv = pv.

(h3) The nondegeneracy conditions

dimker(Ry(M(u))) =n+1, dimran(Ry(M(u)))=n—1

hold, where Ry = dR/dU. This can be verified by a straightforward computation.
(h4), (h5) There exists an entropy density 1 : R*" — R which is convex and satisfies
nuFy = Jy and ny - R(U) < 0, where J is the flux vector. We choose

n n

o) =3 (o) + godul). ) =3 (nttpovi + golul ).

i=1 =1

Then the inequality is a consequence of the energy inequality (60).
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(h6) The solution u to (85) has the entropy-flux pair

n n 1
=> hilp:) + plv J(M(u) =) pihifpi)v + S plofo.
=1

i=1
This follows from (62) with p;,v; replaced by p;, 0.
(h7) The following inequality holds:

—(w(U) = (M (u) - (R(U) = R(M(w))) = v|U — M(u)|*.

The inequality in (h7) amounts to proving

(86) P Z bz]plpj|vz U]‘2 > Vzpl |Uz — U’Q

zgl

The proof of this statement is motivated by the analysis in [27]. First, note that dn/dp; =
W(p;) — £|vi|* and On/Om; = v;, where m; = p;v;. Taking into account that R(M (u)) = 0,
we have

= (V) = nu(M(w))) - (R(U) = R(M(u)))
n n 1
= (vi=0)- ) bypipi(vi —v;) = 3 D bipipsloi — vl
=1 =1 ,J
For the proof of (86), let v; = v + u;, and we reformulate the left-hand side of the
inequality in (h7) as

—(nu(U) —nu(M(u))) - (R(U) - R(M(U)))

= Z b”p“oj Z TijU; * Uj,

4,j=1 3,j=1

where 7;; = 8;; Y 1_ bipipk—bijpip; as in (14). Since (7;;) is not positive definite, inequality
(86) does not follow directly. The idea is to use the fact that there exists a submatrix
(1) € R=Dx(n=1) that is positive definite; see the proof of Lemma 3. Recalling the
properties Qi; = 0ij/pi + 1/pn, Dy pitti = 0, > 7 75 = 0, and (15), we compute

_(77U<U) - TIU(MW))) ) (R(U) - R(M(U))) = Zuz i Tz‘ijkpkuk

i=1 k=1
n—1 n—1 n—1
= E U; E 75 QjkPrt + Up E T Qi Pr U
i=1 jk—l jk—l
pu n—1 n—1
(Ug
= E U; E ngngPkuk_E E <— ij>ij/)kuk
i=1  j k=1 Pn G k=1 m=1
n—1
Oir 1
= E peue| — 4+ — | Ti;Qjkpruk
Pe Pn

i’j’k7£:1
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n—1
> Qi Qi prur) = WHQTTQW,

i7j’k7z:1

where W = (pyuy, ..., pp_1tn,_1) . Since (7;;) € RO=D*x(=1 g positive definite and @ is
invertible, Q' 7Q is also positive definite. We infer that there exists a constant x> 0 such
that

n—1

— (o (U) = (M (w)) - (R(U) = R(M(w))) > p|W* = p Y |paus.
i=1
We claim that we may sum from ¢ = 1 to n using another constant. Indeed, we infer from

n—1 2 n—1
o = | = g < (0= 1) 3 o
i=1 =1

that

n n—1 n—1
Dol = |l + [paunl* <0 Y |piusl”
i=1 i=1 i=1

and therefore,
[ n
—(no(U) = (M(u))) - (RU) = R(M(u)) = = > |piusl?
i=1
and the result follows with v = p/n. O
4.2. High-friction limit in the Euler-Korteweg case. We next justify the relaxation

limit ¢ — 0 for energies F; depending on the particle density and its gradient. We place
the assumption:

(A6) u = (p, pv) is a smooth solution to (82)-(83) satisfying u, d;u, Vu, D*u, D3p €
L=((0.7]; L™ (BY).

Proposition 10 (Relative energy inequality). Let (p®,v°) be a dissipative weak solution
o (80)-(81) satisfying assumption (A1) on page 18 and let (p,v) be a smooth solution to
(82)-(83) satisfying assumption (A6). Let assumption (N) on page 5 hold. Then

Eot(p,m|p,m)(t) + — / /Rs Z bijp; 5|05 — v [*dxds
< Eiot(p°, M7 p, M) (0) — / / pr(vf —0) @ (v; —0) : Vodads
0 R3 i=1

t n
- / / Z (51'(0?, Vil pi, Vi) divo + ri(p5, Vil pi, Vi) - Vdivo
0 R3 i=1

+ Hi(pf, Vol |pi, Vi) + V@) dxds
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t n . = . _‘
(87) —/ / S pi(es — ) <le5 - dlvsl)dxds.
0 R3 i=1

P Pi

Proof. The calculation is similar to the proof of Proposition 6. We can replace p5, U7 by p;,
v; in (58). To obtain the relative energy 1nequahty, we need further to write the equation
for p;v into the same form as (51) and replace RE by R;, which is given by

d,(p:0) + div(piv ® ) = —p;V — - Z bi;pip; (T — ) + R;.

Using (82) and (83), R; can be calculated as

_ 6&
R; = (0ip; + div(p;v)) - v+ p;i (00 + v - V) + plvé,

_Pi - 6E

—(0, \E iV —

f’( Hpo) + V- (0@ V) + PV

= P div S — div S;.

p
Replacing RS with the above equation, (58) becomes (87). Notice that 7F — U5 reduces to
v — v = 0 and the last term in (58) vanishes. O

Theorem 11 (Relaxation limit in the Korteweg case). Let (p,v°) be a dissipative weak
solution to (80)-(81) satisfying (A1) on page 18 and (A5) on page 26 and let (p,v) be a
strong solution to (82)-(83) satisfying (A6) on page 35. Suppose that for some constants
K > k > 0, we have the uniform bounds k < pi(x,t) < K and p;(xz,t) > K for all
(z,t) e R®*% (0,T) andi=1,...,n. Furthermore, let assumption (N) hold. We fix T > 0
and set, as in Theorem 7,

~ (1 =12 ~2 1 N2
— Z % f — H AV 0f — ki 5V 512 ) (1)de.
/RSZ(WM ol* + (p; — pi) +2Ki(p§)!ﬁ(m) p; — ri(pi) pl)() x
=1
Then there ezists a constant C' > 0 such that for alle >0 and t € (0,T),

x(t) < C(x(0) +¢), te(0,T).
In particular, if x(0) — 0 as e — 0, we have

sup x(t) >0 ase—0.
te(0,7)

Proof. We estimate the integrals on the right-hand side of the relative entropy inequality
(87). The second and third terms can be estimated in the same way as (74) and (79), and

they are bounded by C fo s)ds. We split the last term on the right-hand side of (87)

into two parts:
¢ . divS div S,
—// Zp‘,f(vf—@)-( Vo A >dmds=L1—|—L2,
0 JR? iy

P Pi
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t n . &
- (5 d”S)d ds,
0 JR3 P Pi

t n di = di
[ [ s (2 s
o Jr3 P pi
We infer that

t n <
L=/ IICE o) L s
R3 Pi
t
)| — v 82dxds+05// (
[ [t - vpanee [

// sz v; — v¥|Pdxds + Cet.
R3 *

Using (86), we conclude that

£12
Ll S E/ /Rs Z bz]pzp] U]| + Cc’t

To estimate Lo, recall that S = ZLI S; and p° =" | pf, yielding

/ / (deér—@dwg)mﬂs
R3 i—1 1% Pi
/ / (t _ b )pa(va — ) - (div S;)dxds
R3 Pip
(88) / / Pl — 0| dwd8+0/ / Z(‘——) dads.
R3 RS o1

To estimate the first term on the right-hand side, we need the uniform lower and upper

bounds for p:

where

| /\

dle) drds
%

2

2 n

n _ nk < _
< EZ(P?)QW —0)* < TZPﬂvf — o]?
=1

i=1

i (Vi =)

p°lv°

The last term in (88) can be estimated according to

n

Xn:(l p§>2 i(ps_p+pi_p§)2<cz<s 2k
- — = = = =~ P — Pi) -
i pop P i

i—1 \P PP pay —
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Therefore,

t n t
Ly < C’/ / Z (p3|vs — o> + (p; — p3)?)dds < C’/ X(s)ds.
0 Jrs 0

Finally, as in the proof of Theorem 7, &t (p°, m®|p,m)(t) > Cx(t). We conclude that

1 ' - e _€|,,E €12 '
(89) X(t) + E/o /R3 ;bijpipﬂvi — v5|*dzds < x(0) + C/o X(s)ds + Cet.

An application of Gronwall’s lemma then finishes the proof. O

Remark 12. In the previous proof, the interaction term involving b;; was crucial to esti-
mate the term L;. The symmetry of (b;;) enables us to control the kinetic energy by the
interaction energy,

n 1 n
2 2 2
/RS ;:1 pilvi — v|*dx < 5 /RS ;:1: ipipj|vi — vy

In the single component case, the interaction energy vanishes, and we recover Theorem 3
in [10].
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