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The mechanical tumor-growth model of Jackson and Byrne is analyzed. The model
consists of nonlinear parabolic cross-diffusion equations in one space dimension for the

volume fractions of the tumor cells and the extracellular matrix (ECM). It describes
tumor encapsulation influenced by a cell-induced pressure coefficient. The global-in-time
existence of bounded weak solutions to the initial-boundary-value problem is proved
when the cell-induced pressure coefficient is smaller than a certain explicit critical value.

Moreover, when the production rates vanish, the volume fractions converge exponentially
fast to the homogeneous steady state. The proofs are based on the existence of entropy
variables, which allows for a proof of the nonnegativity and boundedness of the volume

fractions, and of an entropy functional, which yields gradient estimates and provides a
new thermodynamic structure. Numerical experiments using the entropy formulation of
the model indicate that the solutions exist globally in time also for cell-induced pressure
coefficients larger than the critical value. For such coefficients, a peak in the ECM volume

fraction forms and the entropy production density can be locally negative.
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1. Introduction

The modeling and simulation of tumor growth may provide biologists with com-

plementary insight into the chemical and biological mechanisms which influence

the development of solid tumors. Jackson and Byrne have developed in Ref. 19 a

continuous mechanical model which gives some insight into tumor encapsulation

and transcapsular spread. The model consists of strongly nonlinear cross-diffusion
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equations for the volume fractions of the tumor cells and the extracellular matrix

(ECM). A particular feature of the model is tumor encapsulation which is triggered

by the increase of the pressure of the ECM due to tumor growth. This increase

is modeled by the cell-induced pressure coefficient θ ≥ 0. When θ > 0, the ECM

becomes more compressed as the tumor cell fraction increases. In this paper, we are

interested in a mathematical analysis of this model.

From a mathematical point of view, the challenge is to deal with the cross-

diffusion terms which prevent the use of standard tools such as maximum principles.

Moreover, the diffusion matrix is neither symmetric nor positive definite such that

even the local-in-time existence of solutions does not follow from standard results.

In spite of these difficulties, we are able to prove the global-in-time existence of

bounded weak solutions if θ ≥ 0 is smaller than an explicit critical value θ∗ which

depends on the cell and ECM pressure coefficients (see below). Numerical experi-

ments show that for sufficiently large θ, a peak in the volume fraction of the ECM

forms due to cross diffusion in the ECM equation.

From a more biological point of view, we show that the model, although its

derivation is based on rather simplifying assumptions, possesses a surprising thermo-

dynamic-type entropy structure: For sufficiently small θ ≥ 0 and vanishing tumor

and ECM production rates, the logarithmic entropy is dissipated. Numerical exper-

iments show that this holds true for θ > θ∗ but the entropy production density may

become locally negative. The entropy structure is exploited in the mathematical

analysis, since the entropy production provides a priori estimates for the gradients

of the variables. Moreover, the entropy-variable formulation allows for a proof of the

nonnegativity and boundedness of the solutions, thus circumventing the maximum

principle.

Before explaining the entropy structure in detail, we review briefly the model-

ing of tumor growth (also see the monographs 1, 7). Tumor growth can be very

roughly classified into three stages. The first stage is the avascular growth which

is mostly governed by the proliferation of tumor cells. When the tumor grows, less

and less nutrition is available for the cells in the tumor center, and the tumor starts

developing its own blood supply (vascular stage). Later, the tumor cells are able

to escape from the tumor via the circulatory system and lead to secondary tumors

in the body (metastatic stage). The model considered in this paper describes the

avascular stage only.

Most models for avascular tumor growth fall into two categories: discrete cell

population models that track the individual cell behavior and continuum models

that formulate the average behavior of tumor cells and their interactions with the

tissue structure.2 In the following, we concentrate on continuum models and in

particular only on those which contain cross diffusion.

A possible continuum model ansatz is the use of reaction-diffusion equations.

The system is then composed of mass balance equations for the cellular components,

coupled to a system of reaction-diffusion equations for the concentrations of the

extracellular substances. 2 The mass balance equations need to be closed by defining
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(or deriving) equations for the corresponding velocities. Roughly speaking, there are

two classes of models: phenomenological and mechanical models (see Section 4 in

Ref. 2).

In phenomenological models, it is assumed that the cells or the ECM do not move

or that they move due to diffusion,25 chemotaxis,6 or other mechanisms. Mechanical

models differ from phenomenological ones by the fact that the latter ones do not

take into account mechanical causes of cell movement due to pressure produced by

proliferating tumor cells to the surrounding tissue.2 An example of such a model is

given by Casciari et al.5 When the cells are considered as an elastic fluid within a

rigid ECM, the velocity may be closed according to the Darcy law, i.e., the velocity

is proportional to the negative gradient of the pressure (see Formula (7) in Ref. 8

or Formula (4.4) in Ref. 2). Alternatively, the cell-matrix system may be supposed

to behave as a viscous fluid, in which the stress depends on the viscosity,3 as a

viscoelastic fluid,18 or as a cell mixture in a porous medium made of the ECM filled

with extracellular liquid.16 More details can be found in the review of Roose et al.21

The mechanical model of Jackson and Byrne19 describes the growth and encap-

sulation of solid tumors. The mass balance equations for the volume fractions of the

tumor cell, the ECM, and the water phases are supplemented by equations for the

velocities, depending on the gradient of the corresponding pressure. It is assumed

in Ref. 19 that the pressure of the tumor cells and the ECM increases with the

respective volume fraction and that the presence of tumor cells induces an increase

in the ECM pressure, which leads to a nonlinear term in the ECM pressure. The

model is given by the following scaled equations in one space dimension for the

volume fractions of the tumor cells c and the ECM m (see Section 2 for a sketch of

its derivation),

∂

∂t

(
c

m

)
−
(

D(c,m)

(
cx

mx

))

x

= R(c,m) in Ω, t > 0, (1.1)

where Ω = (0, 1), subject to the Neumann boundary and initial conditions

cx = mx = 0 on ∂Ω, t > 0, c(·, 0) = c0, m(·, 0) = m0 in Ω. (1.2)

The mixture is supposed to be saturated, i.e., the volume fractions of the tumor

cells c, the ECM m and water w sum up to one. Therefore, the volume fraction of

water can be computed from w = 1 − c − m. Assuming that cell proliferation is

proportional to the cell and water fractions (with rate γ), the tumor cells die with

rate δ, and that the ECM production is proportional to all three fractions (with

rate α), the net production rate is given by

R(c,m) =

(
Rc(c,m)

Rm(c,m)

)
=

(
γc(1 − c − m) − δc

αcm(1 − c − m)

)
. (1.3)

The diffusion matrix

D(c,m) =

(
2c(1 − c) − βθcm2 −2βcm(1 + θc)

−2cm + βθ(1 − m)m2 2βm(1 − m)(1 + θc)

)
(1.4)
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with the pressure coefficients β > 0 and θ ≥ 0 is generally neither symmetric nor

positive definite, which makes the analysis of the above system quite challenging.

A key observation is that system (1.1)-(1.2) possesses an entropy functional if

θ < θ∗ := 4/
√

β. To explain this, we introduce the logarithmic entropy

H(c,m) =

∫

Ω

h(c,m)dx (1.5)

=

∫

Ω

(
c(log c − 1) + m(log m − 1) + (1 − c − m)(log(1 − c − m) − 1)

)
dx,

where h(c,m) is the entropy density, which is the sum of the logarithmic entropies

of the three phases c, m, and w = 1−c−m. We call −dH/dt the entropy production

and its integrand the entropy production density. A computation, which is made

rigorous in Section 3, shows that

dH

dt
+

∫

Ω

(
2c2

x + βθmcxmx + 2β(1 + θc)m2
x

)
dx

=

∫

Ω

(
Rc(c,m) log

c

1 − c − m
+ Rm(c,m) log

m

1 − c − m

)
dx.

The right-hand side is bounded for all c, m > 0 satisfying c + m < 1. It turns out

that the integrand of the second term on the left-hand side is a positive definite

quadratic form in cx and mx if θ < θ∗, which provides gradient estimates for c and

m.

Interestingly, system (1.1) features a formal gradient-flow structure. Indeed, in-

troducing the entropy variables

u =
∂h

∂c
= log

c

1 − c − m
, v =

∂h

∂m
= log

m

1 − c − m
, (1.6)

system (1.1) can be written as

∂

∂t

(
c

m

)
−
(
L(c,m)(∇h(c,m))x

)
x

= R(c,m), (1.7)

where the gradient ∇h(c,m) = (u, v)⊤ is computed with respect to (c,m). The

matrix L = D(∇2h)−1 (with ∇2h being the Hessian of h with respect to (c,m))

becomes symmetric and positive definite if θ = 0 and c > 0 and m > 0 satisfy

c + m < 1. System (1.7) can be also written as ρt = −gradH|ρ, which is the more

usual gradient-flow formulation, where ρ = (c,m)⊤ and grad is the gradient of the

entropy functional H with respect to some metric involving the diffusion matrix

L (see Ref. 24). Moreover, (1.7) can be interpreted as a parabolic system in the

variables (u, v), where c and m are functions of (u, v). An important feature of the

entropy-variable formulation (1.7) is that the inverse transformation

c =
eu

1 + eu + ev
, m =

ev

1 + eu + ev

leads automatically to positive volume fractions satisfying c + m < 1, which cir-

cumvents the maximum principle.
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It has been shown in Ref. 12, 20 that the existence of an entropy is equivalent to

the symmetry and positive definiteness of the transformed diffusion matrix. This has

been exploited in several publications to provide a global-in-time existence analysis

for models arising in physics and biology, see, e.g., Ref. 4, 9, 10, 11, 15, 17. The

novelty in this paper is that system (1.1) does not possess this property for θ > 0

which leads to additional difficulties.

We notice that a related cross-diffusion model has been analyzed in Ref. 4.

This model describes a hopping system of two particles with size exclusion. It also

features the entropy functional (1.5) and, consequently, the same entropy variables

(1.6). The diffusion matrix of Ref. 4 in the entropy-variable formulation is diagonal

which simplifies the analysis. However, this is not the case in our model (1.1).

In order to understand the solution behavior when θ > θ∗, we solve (1.1)-(1.2)

using a (standard) finite-difference discretization. It turns out that the discretization

of the entropy-variable formulation (1.7) is more stable than a direct discretization

of (1.1). The numerical results show that for θ > θ∗, a peak forms in the volume

fraction of the ECM, which may indicate a loss of regularity of the solution. The

peak forming has been already observed in Ref. 19. In the absence of production

rates, even for θ > θ∗, the entropy is numerically decreasing and, consequently, the

entropy production −dH/dt is positive. However, the entropy production density

may be negative locally, which indicates that pointwise gradient estimates are not

available. Thus, our analytical results, obtained from the entropy method, seem to

be optimal. It is an open problem to prove the existence of global weak solutions

for θ > θ∗.

Now, let us state our main results.

Theorem 1.1. Let α, γ, δ ≥ 0, β > 0, 0 ≤ θ < 4/
√

β, and let c0, m0 ∈ L1(Ω)

satisfy c0 ≥ 0, m0 ≥ 0, c0 + m0 ≤ 1 in Ω, and H(c0,m0) < ∞. Then there

exists a weak solution c, m ∈ L2
loc(0,∞;H1(Ω)) ∩ H1

loc(0,∞; (H1(Ω))′) to (1.1)-

(1.2) satisfying c,m ≥ 0 and c + m ≤ 1 in Ω × (0,∞).

Although the method of our proof can be extended in principle to several space

dimensions (as shown in, e.g., Ref. 9, 10), we consider the case of one space dimen-

sion only, since this is the situation of the original model in Ref. 19. To prove the

theorem, we first discretize system (1.7) in time by the implicit Euler scheme with

time parameter τ > 0 and add the elliptic operator −ε(uxx − u, vxx − v)⊤ which

guarantees the coercivity of the elliptic system in the entropy variables (u, v). Then

we show the existence of semi-discrete weak solutions to the resulting nonlinear

elliptic equations using the Leray-Schauder fixed-point theorem. A priori estimates

are derived from the entropy inequality, as described above. These estimates are in-

dependent of τ and ε which allows us to pass to the limit τ → 0, ε → 0 using weak

compactness methods. The limit functions are weak solutions to the continuous

problem (1.1)-(1.2).

When the net production terms vanish, we are able to prove the exponential

decay of the weak solution (c,m) to the homogeneous steady state (c∗0,m
∗
0), where
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c∗0 =
∫
Ω

c0dx and m∗
0 =

∫
Ω

m0dx are assumed to satisfy c∗0, m∗
0 > 0 and c∗0 +m∗

0 < 1.

Although the long-time behavior of solutions is less important in the current tumor-

growth model, it reveals a certain mathematical structure of the model equations.

For the statement of the result, we define the relative entropy

H∗(c,m) =

∫

Ω

h∗(c,m)dx

=

∫

Ω

(
c log

c

c∗0
+ m log

m

m∗
0

+ (1 − c − m) log
1 − c − m

1 − c∗0 − m∗
0

)
dx. (1.8)

Notice that for all (c,m) satisfying c, m ≥ 0 and c + m ≤ 1 such that
∫
Ω

cdx = c∗0
and

∫
Ω

mdx = m∗
0, it holds that H∗(c,m) ≥ 0.

Theorem 1.2. Let the assumptions of Theorem 1.1 hold and let (c,m) be the

bounded weak solution to (1.1)-(1.2) constructed in Theorem 1.1. Let α = γ = δ = 0

and let c∗0 =
∫
Ω

c0dx, m∗
0 =

∫
Ω

m0dx satisfy c∗0, m∗
0 > 0 and c∗0 + m∗

0 < 1. Then

there exist constants K, λ > 0 only depending on β, θ, c∗0, and m∗
0 such that

‖c(·, t) − c∗0‖L1(Ω) + ‖m(·, t) − m∗

0‖L1(Ω) ≤ Ke−λt
√

H∗(c0,m0).

The theorem is proved by estimating the discrete entropy production from below

by the discrete relative entropy yielding an inequality which is solved by a discrete

Gronwall-type argument. The main difficulty in the proof is that due to the reg-

ularizing ε-terms, the L1-norms of the approximations of c and m are no longer

conserved, and we need to control the dependence of these L1-norms on ε. This is

achieved by exploiting the Sobolev embedding H1(Ω) →֒ L∞(Ω) which is valid in

one space dimension.

The paper is organized as follows. In Section 2 we sketch the derivation of the

model (1.1). Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively.

Finally, numerical results using a finite-difference discretization are presented in

Section 5.

2. Derivation of the model—scaling

For the convenience of the reader and to specify the biological assumptions, we

sketch the derivation of the tumor-growth model following Jackson and Byrne.19

They assume that the tumor-host environment, given by a fixed interval (−ℓ, ℓ) with

ℓ > 0, consists of the tumor cells, the extracellular matrix (ECM), and interstitial

fluid (water). Supposing that this mixture is saturated, the volume fractions of the

tumor cells c, the ECM m, and water w sum up to one, c + m + w = 1. The tumor

is assumed to expand symmetrically around x = 0 in one space direction such that

it is sufficient to consider the interval (0, ℓ). Treating the tumor, the ECM, and the

water phase as incompressible fluids with constant and equal densities, the mass

balance equations for each phase are given by14

ct+(cvc)x = Rc, mt+(mvm)x = Rm, wt+(wvw)x = Rw, x ∈ (0, ℓ), t > 0, (2.1)
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where vc, vm, and vw are the velocities of the tumor, the ECM, and the water phase,

respectively, and Rc, Rm, and Rw are the corresponding net production rates.

Supposing that the system is closed, the total net production vanishes, Rc +

Rm +Rw = 0. Thus, together with the expression c+m+w = 1, the water volume

fraction w = 1 − c − m can be expressed in terms of c and m. In fact, adding all

equations in (2.1) and recalling the tumor-growth symmetry, which implies that the

velocities vanish at x = 0, we find that

wvw = −cvc − mvm. (2.2)

For the production terms, we make the following assumptions. The tumor cells

proliferate at a rate being proportional to the cell and water fractions and they die

at a rate being proportional to the cell fraction. The rate of the ECM production

is proportional to all the volume fractions. This means that new ECM is produced

only when all three phases are present. Hence, we obtain

Rc = αccw−δcc = αcc(1−c−m)−δcc, Rm = αmcmw = αmcm(1−c−m), (2.3)

where αc, αm, δc ≥ 0, and the water production is computed from Rw = −(Rc +

Rm).

Next, we assume that inertial as well as external forces can be neglected. Then

the momentum balance equations become the force balances

(cσc)x + pcx + Fcm + Fcw = 0, (2.4)

(mσm)x + pmx − Fcm + Fmw = 0, (2.5)

(wσw)x + pwx − Fcw − Fmw = 0, (2.6)

where σj is the stress in phase j = c,m,w, p is a common pressure, and Fij is the

force which phase j exerts on phase i 6= j. We have to determine the stresses and

forces.

The stresses are given by

σc = −(p + Pc), σm = −(p + Pm), σw = −p,

where the pressures Pc and Pm, respectively, distinguish the cell and the ECM

phases from water. We assume that the pressures Pc and Pm are proportional to

their respective volume fractions. Moreover, we expect that the tumor cells increase

the ECM pressure but not inversely. Therefore, we write

Pc = scc, Pm = smm(1 + θc), (2.7)

where sc > 0, sm > 0 are constants, and θ ≥ 0 is a cell-induced pressure coeffi-

cient. When θ > 0, the ECM becomes more compressed as the tumor cell fraction

increases. By adding all three force balance equations (2.4)-(2.6), the force terms

cancel and inserting the above expressions for Pc and Pm, since (c + m + w)x = 0,

we end up with

px = −(cPc + mPm)x = −
(
scc

2 + smm2(1 + θc)
)
x
. (2.8)
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Supposing that the forces are proportional to the difference of the fluid velocities

and to their respective volume fractions, we have

Fcm = kcm(vm − vc)cm, Fcw = kcw(vw − vc)cw, Fmw = kmw(vw − vm)mw.

The equations are significantly simplified when we take k := kcm = kcw =

kmw > 0. Indeed, using this simplification and replacing wvw by (2.2) and w by

1 − c − m, (2.4) becomes

(cPc)x + pxc = Fcm + Fcw = k
(
− c(m + w)vc + cmvm + cwvw

)
= −kcvc.

Employing (2.8) to eliminate px and (2.7) to eliminate Pc and Pm, it follows that

cvc = −k−1
(
(cPc)x + pxc

)
= −k−1

(
(1 − c)(scc

2)x − c(smm2(1 + θc))x

)
.

In a similar way, we find that

mvm = −k−1
(
(1 − m)(smm2(1 + θc))x − m(scc

2)x

)
.

These identities allow us to eliminate the velocities from the mass balance equations

(2.1), leading to the system

ct − k−1
(
(1 − c)(scc

2)x − c(smm2(1 + θc))x

)
x

= Rc,

mt − k−1
(
(1 − m)(smm2(1 + θc))x − m(scc

2)x

)
x

= Rm,

where x ∈ (0, ℓ), t > 0. Introducing the diffusion matrix

D̃(c,m) =
1

k

(
2scc(1 − c) − smθcm2 −2smcm(1 + θc)

−2sccm + smθ(1 − m)m2 2smm(1 − m)(1 + θc)

)

and inserting the production rates (2.3), the above system can be written as

∂

∂t

(
c

m

)
−
(

D̃(c,m)

(
cx

mx

))

x

=

(
αcc(1 − c − m) − δcc

αmcm(1 − c − m)

)
.

System (1.1) is obtained by rescaling time by ts = t/τ and space by xs = x/ℓ,

where τ = kℓ2/sc. Then

∂

∂ts

(
c

m

)
−
(

D(c,m)

(
cxs

mxs

))

xs

=

(
γc(1 − c − m) − δc

αcm(1 − c − m)

)
,

where xs ∈ (0, 1), ts > 0, D(c,m) is defined in (1.4), α = ταm, β = sm/sc, γ = ταc,

and δ = τδc.

We remark that Jackson and Byrne19 have employed a different scaling by setting

τ = 1/αc. Then, with βc = τsc/(kℓ2) and βm = τsm/(kℓ2), the scaled system writes

as

∂

∂ts

(
c

m

)
−
(

DJB(c,m)

(
cxs

mxs

))

xs

=

(
c(1 − c − m) − δc

αcm(1 − c − m)

)
, (2.9)

where

DJB(c,m) = (DJB
ij ) =

(
2βcc(1 − c) − βmθcm2 −2βmcm(1 + θc)

−2βccm + βmθ(1 − m)m2 2βmm(1 − m)(1 + θc)

)
,

and α and δ are defined as above. This formulation is used in the numerical exper-

iments, see Section 5.
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3. Existence of weak solutions

The aim of this section is to prove Theorem 1.1. Let η ∈ (0, 1) and assume that the

initial data satisfy c0 ≥ η, m0 ≥ η, and c0 + m0 ≤ 1 − η in Ω. By the change of

variables (1.6), system (1.1) writes as

∂

∂t

(
c(u, v)

m(u, v)

)
−
(

L(u, v)

(
ux

vx

))

x

= R(u, v),

where

c(u, v) =
eu

1 + eu + ev
, m(u, v) =

ev

1 + eu + ev

and

L(u, v) = D(c(u, v),m(u, v))
(
∇2h(c(u, v),m(u, v))

)−1
, (3.1)

R(u, v) =

(
γc(u, v)(1 − c(u, v) − m(u, v)) − δc(u, v)

αc(u, v)m(u, v)(1 − c(u, v) − m(u, v))

)
.

We notice that the inverse of the Hessian of h, (∇2h(c,m))−1, which is computed

with respect to (c,m), equals

(∇2h(c,m))−1 =

(
c(1 − c) −cm

−cm m(1 − m)

)

and that c(u, v) and m(u, v) are positive and satisfy c(u, v) + m(u, v) < 1 in Ω if u

and v are bounded. The boundary and initial conditions are

ux = vx = 0 on ∂Ω, t > 0, u(·, 0) = u0, v(·, 0) = v0 in Ω,

where

u0 = log
c0

1 − c0 − m0
, v0 = log

m0

1 − c0 − m0
∈ L∞(Ω).

For later use, we remark that the matrix product (∇2h)D simplifies:

(∇2h)D =

(
2 0

βθm 2β(1 + θc)

)
. (3.2)

An elementary computation shows that this matrix product is positive semidefinite,

x⊤(∇2h)Dx ≥ 0 for all x ∈ R
2, c,m > 0 satisfying 1 − c − m > 0, (3.3)

if the condition 0 ≤ θ ≤ 4/
√

β holds. (In the scaling of Jackson and Byrne – see the

end of Section 2 –, this condition becomes θ ≤ 4
√

βc/βm.)

Step 1: Existence of a time-discrete problem. Let T > 0, N ∈ N, τ = T/N , and

define the time steps tk = kτ , k = 0, . . . , N . Let 1 ≤ k ≤ N . For given functions

uk−1, vk−1 ∈ L∞(Ω), we wish to solve the sequence of approximate elliptic problems

in Ω,

1

τ

(
c(uk, vk) − ck−1

m(uk, vk) − mk−1

)
−
((

L(uk, vk) + εI
)((uk)x

(vk)x

))

x

+ ε

(
uk

vk

)
= R(uk, vk),

(3.4)
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subject to the boundary conditions

(uk)x = (vk)x = 0 on ∂Ω. (3.5)

Here, uk and vk are approximations of u and v at time tk, respectively, ck−1 =

c(uk−1, vk−1), mk−1 = m(uk−1, vk−1), I is the identity matrix in R
2×2, and ε > 0

is a regularization parameter which ensures the uniform ellipticity of (3.4) with

respect to (uk, vk).

Lemma 3.1. Let (uk−1, vk−1) ∈ L∞(Ω)2 and 0 ≤ θ < 4/
√

β. Then there exists a

constant Kθ > 0 and a weak solution (uk, vk) ∈ H1(Ω)2 to (3.4)-(3.5) satisfying

H
(
c(uk, vk),m(uk, vk)

)
+ τKθ

∫

Ω

(
c(uk, vk)2x + m(uk, vk)2x

)
dx

+ τε

∫

Ω

(
(uk)2x + (vk)2x + u2

k + v2
k

)
dx (3.6)

≤ H
(
c(uk−1, vk−1),m(uk−1, vk−1)

)
+

τ

e
(α + γ + δ).

Proof. The idea of the proof is to apply the Leray-Schauder fixed-point theorem

(see Theorem B.5 in Ref. 22). To this end, we consider first a linear problem. Let

(ū, v̄) ∈ L∞(Ω)2. We show the existence of a unique solution (u, v) ∈ H1(Ω)2 to the

linear problem

a((u, v), (y, z)) = F (y, z) for all (y, z) ∈ H1(Ω)2, (3.7)

where

a((u, v), (y, z)) =

∫

Ω

(
yx

zx

)⊤

L(ū, v̄)

(
ux

vx

)
dx + ε

∫

Ω

(
uxyx + vxzx + uy + vz

)
dx,

F (y, z) = −1

τ

∫

Ω

(
c(ū, v̄) − ck−1

m(ū, v̄) − mk−1

)
·
(

y

z

)
dx +

∫

Ω

R(ū, v̄) ·
(

y

z

)
dx.

The a.e. boundedness of ū and v̄ implies that the bilinear form a : H1(Ω)2 ×
H1(Ω)2 → R and the linear functional F : H1(Ω)2 → R are well-defined and

continuous. Using the definition L = D(∇2h)−1 and (3.3), we compute

(
ux

vx

)⊤

L(ū, v̄)

(
ux

vx

)
=

(
(∇2h)−1

(
ux

vx

))⊤

(∇2h)L(∇2h)(∇2h)−1

(
ux

vx

)

=

(
(∇2h)−1

(
ux

vx

))⊤

(∇2h)D

(
(∇2h)−1

(
ux

vx

))
≥ 0

in Ω, since 0 ≤ θ < 4/
√

β. This shows that a is coercive:

a((u, v), (u, v)) =

∫

Ω

(
ux

vx

)⊤

L(ū, v̄)

(
ux

vx

)
dx + ε

∫

Ω

(
u2

x + v2
x + u2 + v2

)
dx

≥ ε
(
‖u‖2

H1(Ω) + ‖v‖2
H1(Ω)

)
= ε‖(u, v)‖2

H1(Ω)2 .

By the Lax-Milgram lemma, there exists a unique solution (u, v) ∈ H1(Ω)2 to (3.7).



September 1, 2011 12:6 WSPC/INSTRUCTION FILE p11stumorM3AS

Cross-diffusion tumor-growth model 11

Next, we define the fixed-point operator S : L∞(Ω)2 × [0, 1] → L∞(Ω)2 by

setting, for given (ū, v̄) ∈ L∞(Ω)2 and σ ∈ [0, 1], S(ū, v̄, σ) = (u, v), where (u, v) ∈
H1(Ω)2 is the solution to the linear problem

a((u, v), (y, z)) = σF (y, z) for all (y, z) ∈ H1(Ω)2. (3.8)

We notice that S(ū, v̄, 0) = 0 for all (ū, v̄) ∈ L∞(Ω)2. Standard arguments show

that S is continuous and, because of the compact embedding H1(Ω) →֒ L∞(Ω) in

one space dimension, also compact. It remains to prove that there exists a constant

K > 0 such that for any (u, v, σ) ∈ L∞(Ω)2 × [0, 1] satisfying S(u, v, σ) = (u, v),

the estimate ‖(u, v)‖L∞(Ω)2 ≤ K holds.

In order to prove this bound, we use the test function (u, v) in (3.8), yielding

σ

τ

∫

Ω

(
c(u, v) − ck−1

m(u, v) − mk−1

)
·
(

u

v

)
dx +

∫

Ω

(
ux

vx

)⊤

L(u, v)

(
ux

vx

)
dx

+ ε

∫

Ω

(u2
x + v2

x + u2 + v2)dx = σ

∫

Ω

R(u, v) ·
(

u

v

)
dx. (3.9)

We remark that ck−1 = c(uk−1, vk−1) > 0 and mk−1 = m(uk−1, vk−1) > 0 satisfy

ck−1 + mk−1 < 1. Set c = c(u, v) and m = m(u, v). The convexity of the entropy

density h with respect to (c,m) implies that

h(c,m) − h(c̃, m̃) ≤ ∇h(c,m) ·
(

c − c̃

m − m̃

)

for all c, m, c̃, m̃ > 0 satisfying 1 − c − m > 0 and 1 − c̃ − m̃ > 0. By (1.6),

∇h(c,m) = (u, v) and hence, the first term on the left-hand side of (3.9) can be

estimated as

σ

τ

∫

Ω

(
c − ck−1

m − mk−1

)
·
(

u

v

)
dx ≥ σ

τ

(
H(c,m) − H(ck−1,mk−1)

)
.

We turn to the second integral on the left-hand side of (3.9). Because of (1.6),

we have
(

ux

vx

)
= ∇2h(c,m)

(
cx

mx

)
.

Therefore, in view of L = D(∇2h)−1 and (3.2), we find that the second integral on

the left-hand side of (3.9) equals

∫

Ω

(
cx

mx

)⊤

(∇2h)L(u, v)(∇2h)

(
cx

mx

)
dx =

∫

Ω

(
cx

mx

)⊤

(∇2h)D(c,m)

(
cx

mx

)
dx

=

∫

Ω

(
2c2

x + βθmcxmx + 2β(1 + θc)m2
x

)
dx.

By (3.3), this integral is nonnegative if θ ≤ 4/
√

β. This result can be strengthened:

If 0 ≤ θ < 4/
√

β, there exists a constant Kθ > 0 depending on θ (and β) such that
∫

Ω

(
2c2

x + βθmcxmx + 2β(1 + θc)m2
x

)
dx ≥ Kθ

∫

Ω

(c2
x + m2

x)dx.
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Here, we have used the properties c, m > 0, and c+m < 1, which are a consequence

of the definitions of c = c(u, v) and m = m(u, v).

It remains to estimate the right-hand side of (3.9). Using −1/e ≤ x log x ≤ 0 for

all 0 ≤ x ≤ 1 and c, m, 1 − c − m > 0 as well as log(1 − c − m) < 0, we find that

R(u, v) ·
(

u

v

)
=
(
γc(1 − c − m) − δc

)
log

c

1 − c − m

+ αcm(1 − c − m) log
m

1 − c − m

= γ(c log c)(1 − c − m) − γc(1 − c − m) log(1 − c − m)

− δc log c + δc log(1 − c − m)

+ α(m log m)c(1 − c − m) − αcm(1 − c − m) log(1 − c − m)

≤ (α + γ + δ)e−1.

Summarizing, we estimate (3.9) as

σH(c,m) + τKθ

∫

Ω

(c2
x + m2

x)dx + τε

∫

Ω

(u2
x + v2

x + u2 + v2)dx

≤ σH(ck−1,mk−1) +
στ

e
(α + γ + δ).

This shows that u and v are bounded in H1(Ω), which provides the desired uniform

estimate in L∞(Ω)2. The assumptions of the Leray-Schauder fixed-point theorem

are verified, proving the existence of a fixed point of S(·, 1), which solves (3.4)-(3.5).

Step 2: Uniform estimates. Let (uk, vk) be a weak solution to (3.4)-(3.5), whose

existence is guaranteed by Lemma 3.1. We set ck = c(uk, vk), mk = m(uk, vk) and

define the piecewise constant functions in time u(τ)(x, t) = uk(x), v(τ)(x, t) = vk(x),

c(τ)(x, t) = ck(x), m(τ)(x, t) = mk(x) for x ∈ Ω and t ∈ ((k−1)τ, kτ ], k = 1, . . . , N .

At time t = 0, we set c(τ)(·, 0) = c0 and m(τ)(·, 0) = m0. Furthermore, we introduce

the shift operator (στw(τ))(t) = w(τ)(·, t − τ) for τ < t ≤ T and the discrete time

derivative Dτw(τ) = (w(τ) − στw(τ))/τ , where w = c,m. Then (c(τ),m(τ)) solves

Dτ

(
c(τ)

m(τ)

)
−
(

D(c(τ),m(τ))

(
c
(τ)
x

m
(τ)
x

))

x

− ε

(
u

(τ)
xx − u(τ)

v
(τ)
xx − v(τ)

)
= R(c(τ),m(τ)) (3.10)

in Ω, t > τ . The discrete entropy inequality (3.6) can be solved recursively to yield

H(ck,mk) + τKθ

k∑

j=1

∫

Ω

(
(cj)

2
x + (mj)

2
x

)
dx + τε

k∑

j=1

∫

Ω

(
(uj)

2
x + (vj)

2
x + u2

j + v2
j

)
dx

≤ H(c0,m0) +
T

e
(α + γ + δ), k = 1, . . . , N,

where T = τN . This leads immediately to the following result.



September 1, 2011 12:6 WSPC/INSTRUCTION FILE p11stumorM3AS

Cross-diffusion tumor-growth model 13

Lemma 3.2. The following uniform bounds hold:

‖c(τ)‖L2(0,T ;H1(Ω)) + ‖m(τ)‖L2(0,T ;H1(Ω)) ≤ K,

‖c(τ)‖L∞(0,T ;L∞(Ω)) + ‖m(τ)‖L∞(0,T ;L∞(Ω)) ≤ K,
√

ε‖u(τ)‖L2(0,T ;H1(Ω)) +
√

ε‖v(τ)‖L2(0,T ;H1(Ω)) ≤ K,

where K > 0 is here and in the following a generic constant independent of τ and

ε.

We also need uniform estimates for the discrete time derivatives of c(τ) and m(τ).

Lemma 3.3. The following uniform bounds hold:

‖Dτ c(τ)‖L2(τ,T ;(H1(Ω))′) + ‖Dτm(τ)‖L2(τ,T ;(H1(Ω))′) ≤ K.

Proof. Let φ ∈ L2(τ, T ;H1(Ω)). Then, by (3.10) and the bounds on c(τ), m(τ),

and
√

εu(τ),
∣∣∣∣∣

∫ T

τ

〈Dτ c(τ), φ〉dt

∣∣∣∣∣ =
∣∣∣∣∣−
∫ T

τ

∫

Ω

(
2c(τ)(1 − c(τ))c(τ)

x − βθc(τ)(m(τ))2c(τ)
x

− 2βc(τ)m(τ)(1 + θc(τ))m(τ)
x

)
φxdxdt

− ε

∫ T

τ

∫

Ω

(
u(τ)

x φx + u(τ)φ)dxdt

+

∫ T

τ

∫

Ω

(
γc(τ)(1 − c(τ) − m(τ)) − δc(τ)

)
φdxdt

∣∣∣∣∣

≤ K
(
‖c(τ)

x ‖L2(τ,T ;L2(Ω)) + ‖m(τ)
x ‖L2(τ,T ;L2(Ω))

)
‖φx‖L2(τ,T ;L2(Ω))

+ 2ε‖u(τ)‖L2(τ,T ;H1(Ω))‖φ‖L2(τ,T ;H1(Ω))

+ (γ + δ)‖φ‖L1(τ,T ;L1(Ω))

≤ K‖φ‖L2(τ,T ;H1(Ω)).

The estimate for Dτm(τ) is shown analogously.

Step 3: The limit (ε, τ) → 0. Lemmas 3.2 and 3.3 allow us to apply the Aubin

lemma (see the version in Ref. 13) to conclude the strong convergence for subse-

quences (not relabeled) such that, as τ → 0 and ε → 0,

c(τ) → c, m(τ) → m strongly in L2(0, T ;L∞(Ω)),

observing that the embedding H1(Ω) →֒ L∞(Ω) is compact. In particular, up to

subsequences, (c(τ)) and (m(τ)) converge a.e. in Ω × (0, T ). In view of the uniform

bounds for c(τ) and m(τ) in L∞(0, T ;L∞(Ω)), this implies that

c(τ) → c, m(τ) → m strongly in Lp(0, T ;Lp(Ω)) for all 1 ≤ p < ∞. (3.11)



September 1, 2011 12:6 WSPC/INSTRUCTION FILE p11stumorM3AS
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Moreover, up to subsequences,

c(τ) ⇀ c, m(τ) ⇀ m weakly in L2(0, T ;H1(Ω)),

Dτ c(τ) ⇀ ct, Dτm(τ) ⇀ mt weakly in L2(0, T ; (H1(Ω))′),

εu(τ) → 0, εv(τ) → 0 strongly in L2(0, T ;H1(Ω)).

The above convergence results are sufficient to pass to the limit τ → 0 and ε → 0 in

the weak formulation of (3.10) and (3.5), showing that (c,m) is a weak solution to

(1.1)-(1.2). Finally, in view of the uniform bounds and the finiteness of H(c0,m0),

we can perform the limit η → 0 in the initial data (see the beginning of this section).

This concludes the proof.

4. Long-time behavior of solutions

We assume that the initial data satisfy c0 ≥ η, m0 ≥ η, and 1 − c0 − m0 ≥ η for

some η ∈ (0, 1). Let T > 0 be arbitrary but fixed and let τ = T/N for N ∈ N.

Let (uk, vk) ∈ H1(Ω)2 be a weak solution to (3.4)-(3.5) with vanishing right-hand

side and with the properties stated in Lemma 3.1, where 1 ≤ k ≤ N . We set

ck = exp(uk)/(1 + exp(uk) + exp(vk)) and mk = exp(vk)/(1 + exp(uk) + exp(vk)).

Furthermore, let c∗k =
∫
Ω

ckdx, m∗

k =
∫
Ω

mkdx, u∗

k =
∫
Ω

ukdx, and v∗

k =
∫
Ω

vkdx.

In the presence of the ε-terms, the L1-norms of ck and mk are not conserved, but

taking (1, 0)⊤ and (0, 1)⊤ as test functions in the weak formulation of (3.4)-(3.5),

we find immediately that c∗k = c∗k−1 − ετu∗

k and m∗

k = m∗

k−1 − ετv∗

k, from which we

infer that

c∗k = c∗0 − ετ

k∑

j=1

u∗

j , m∗

k = m∗

0 − ετ

k∑

j=1

v∗

j .

Step 1: Uniform bounds for the L1-norms of ck and mk. We claim that c∗k, m∗

k,

and 1 − c∗k − m∗

k are positive uniformly in ε = τ and k. To this end, let KS > 0 be

the constant of the Sobolev embedding H1(Ω) →֒ L∞(Ω). Furthermore, we choose

0 < δ < min{1, (1 − c∗0 − m∗
0)/(c∗0 + m∗

0)}, ε = τ , and

τ0 =
(δ min{c∗0,m∗

0})2
2TK2

S(|H(c0,m0)| + 3/e + 3)
.

In the following, let 0 < τ < τ0. Observing that H(ck,mk) ≥ −3/e− 3, the discrete

entropy inequality (3.6) shows that

k∑

j=1

(
‖uj‖2

L∞(Ω) + ‖vj‖2
L∞(Ω)

)
≤ K2

S

k∑

j=1

(
‖uj‖2

H1(Ω) + ‖vj‖2
H1(Ω)

)

≤ K2
S

ετ

(
H(c0,m0) − H(ck,mk)

)
≤ K2

S

ετ

(
|H(c0,m0)| +

3

e
+ 3
)
.
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Hence, for all 0 < τ < τ0, since ε = τ , kτ ≤ T , and because of the definition of τ0,

ετ
k∑

j=1

(
|u∗

j | + |v∗

j |
)
≤ ετ

k∑

j=1

(
‖uj‖L∞(Ω) + ‖vj‖L∞(Ω)

)

≤ ετ
√

2k




k∑

j=1

(
‖uj‖2

L∞(Ω) + ‖vj‖2
L∞(Ω)

)



1/2

≤
(
2ετkK2

S(|H(c0,m0)| + 3/e + 3)
)1/2

≤
(
2τTK2

S(|H(c0,m0)| + 3/e + 3)
)1/2

≤ δ min{c∗0,m∗

0}.

This shows that

(1 − δ)c∗0 ≤ c∗k ≤ (1 + δ)c∗0, (1 − δ)m∗

0 ≤ m∗

k ≤ (1 + δ)m∗

0, k = 1, . . . , N, (4.1)

and the claim is proved since 0 < 1 − (1 + δ)(c∗0 + m∗
0) ≤ 1 − c∗k − m∗

k ≤ 1 − (1 −
δ)(c∗0 + m∗

0), by definition of δ > 0.

Step 2: Estimate for the relative entropy. Let ûk = log(c∗k/(1 − c∗k − m∗

k)) and

v̂k = log(m∗

k/(1−c∗k−m∗

k)). By (4.1), ûk and v̂k are uniformly bounded. We employ

(uk − ûk, vk − v̂k)⊤ as a test function in the weak formulation of (3.4)-(3.5):

0 =
1

τ

∫

Ω

(
ck − ck−1

mk − mk−1

)
·
(

uk − ûk

vk − v̂k

)
dx +

∫

Ω

(
(uk)x

(vk)x

)⊤

L(uk, vk)

(
(uk)x

(vk)x

)
dx

+ ε

∫

Ω

(
(uk)2x + (vk)2x + uk(uk − ûk) + vk(vk − v̂k)

)
dx. (4.2)

The modified relative entropy functional

H∗

ε (c,m) =

∫

Ω

h∗

ε(c,m)dx

=

∫

Ω

(
c log

c

c∗k
+ m log

m

m∗

k

+ (1 − c − m) log
1 − c − m

1 − c∗k − m∗

k

)
dx

is well-defined for appropriate c and m, and it holds that ∇h∗
ε(ck,mk) = (uk −

ûk, vk − v̂k)⊤. The convexity of the function h∗
ε(c,m) implies that the first integral

in (4.2) can be estimated as

1

τ

∫

Ω

(
ck − ck−1

mk − mk−1

)
·
(

uk − ûk

vk − v̂k

)
dx =

1

τ

∫

Ω

(
ck − ck−1

mk − mk−1

)
· ∇h∗

ε(ck,mk)dx

≥ 1

τ

∫

Ω

(
h∗

ε(ck,mk) − h∗

ε(ck−1,mk−1)
)
dx =

1

τ

(
H∗

ε (ck,mk) − H∗

ε (ck−1,mk−1)
)
.

As in the proof of Lemma 3.1, for θ < θ∗, the second integral in (4.2) is bounded

below:
∫

Ω

(
(uk)x

(vk)x

)⊤

L(uk, vk)

(
(uk)x

(vk)x

)
dx ≥ Kθ

∫

Ω

(
(ck)2x + (mk)2x

)
dx.
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By Young’s inequality, the third integral in (4.2) can be estimated as

ε

∫

Ω

(
(uk)2x + (vk)2x + uk(uk − ûk) + vk(vk − v̂k)

)
dx

≥ ε

2

∫

Ω

(
2(uk)2x + 2(vk)2x + u2

k + v2
k − û2

k − v̂2
k

)
dx ≥ −ε

2
(û2

k + v̂2
k).

Since ûk and v̂k are uniformly bounded, there exists a constant A > 0 such that

(û2
k + v̂2

k)/2 ≤ A for all k. We conclude that, for k = 1, . . . , N ,

1

τ

(
H∗

ε (ck,mk) − H∗

ε (ck−1,mk−1)
)

+ Kθ

∫

Ω

(
(ck)2x + (mk)2x

)
dx ≤ εA. (4.3)

Step 3: Estimate for the entropy production. We claim that the entropy produc-

tion can be related to the modified relative entropy. To this end, we employ the

elementary estimates

(x − y)2 = (
√

x +
√

y)2(
√

x −√
y)2 ≥ y(

√
x −√

y)2 for all x, y ≥ 0,

x2
(

log
x2

y2
− 1
)

+ y2 ≤ 2(1 − log y)(x − y)2 for all 0 < x, y < 1.

The second inequality is easily verified by Taylor expansion. Thus, by the Poincaré

inequality with constant Kp > 0,

K2
p

∫

Ω

(ck)2xdx ≥
∫

Ω

(ck − c∗k)2dx ≥ c∗k

∫

Ω

(√
ck −

√
c∗k
)2

dx

≥ c∗k
2 − log c∗k

∫

Ω

ck log
ck

c∗k
dx

and, equivalently,

∫

Ω

ck log
ck

c∗k
dx ≤

K2
p(2 − log c∗k)

c∗k

∫

Ω

(ck)2xdx.

Analogously, we obtain

∫

Ω

mk log
mk

m∗

k

dx ≤
K2

p(2 − log m∗

k)

m∗

k

∫

Ω

(mk)2xdx,

∫

Ω

(1 − ck − mk) log
1 − ck − mk

1 − c∗k − m∗

k

dx ≤
K2

p(2 − log(1 − c∗k − m∗

k))

1 − c∗k − m∗

k

×
∫

Ω

(1 − ck − mk)2xdx

≤
2K2

p(2 − log(1 − c∗k − m∗

k))

1 − c∗k − m∗

k

×
∫

Ω

(
(ck)2x + (mk)2x

)
dx.
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Summing up the three expressions and employing (4.1), we infer that

H∗

ε (ck,mk) ≤ K2
p

(
2 − log c∗k

c∗k
+

2 − log m∗

k

m∗

k

+ 2
2 − log(1 − c∗k − m∗

k)

1 − c∗k − m∗

k

)

×
∫

Ω

(
(ck)2x + (mk)2x

)
dx

≤ K2
pKδ

∫

Ω

(
(ck)2x + (mk)2x

)
dx,

where

Kδ =
2 − log((1 − δ)c∗0)

(1 − δ)c∗0
+

2 − log((1 − δ)m∗
0)

(1 − δ)m∗
0

+2
2 − log(1 − c∗0 − m∗

0 − δ(c∗0 + m∗
0))

1 − c∗0 − m∗
0 − δ(c∗0 + m∗

0)
.

Setting K∗ = KθK
−2
p K−1

δ , we write this inequality as

K∗H∗

ε (ck,mk) ≤ Kθ

∫

Ω

(
(ck)2x + (mk)2x

)
dx, k = 1, . . . , N. (4.4)

Step 4: End of the proof. We come back to the entropy estimate (4.3). Employing

(4.4), we obtain

(1 + τK∗)H∗

ε (ck,mk) ≤ H∗

ε (ck−1,mk−1) + ετA, k = 1, . . . , N.

Solving these recursive inequalities, it follows that

H∗

ε (ck,mk) ≤ (1 + τK∗)−kH∗

ε (c0,m0) + ετA
k∑

j=1

(1 + τK∗)−j , k = 1, . . . , N.

Since
∑∞

j=1 xj = x/(1 − x) for |x| < 1, we find that

H∗

ε (ck,mk) ≤ (1 + τK∗)−kH∗

ε (c0,m0) + εA(K∗)−1.

This can be formulated as

H∗

ε (c(τ),m(τ)) ≤ e−K∗tk |H∗

ε (c0,m0)|+εA(K∗)−1 ≤ e−K∗t|H∗

ε (c0,m0)|+εA(K∗)−1

for all t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N . In the limit τ = ε → 0, (subsequences of)

(c(τ)) and (m(τ)) converge strongly to c and m, respectively, in Lp(0, T ;Lp(Ω)) for

all 1 ≤ p < ∞ (see (3.11)). Moreover, we have c∗k → c∗0 and m∗

k → m∗
0 for ε → 0

which follows from

|c∗k − c∗0| =

∣∣∣∣∣∣
ε

k∑

j=1

τ

∫

Ω

ujdx

∣∣∣∣∣∣
≤ ε‖u(τ)‖L1(0,T ;L1(Ω)) → 0 as ε → 0

and similarly for m∗

k (see Lemma 3.2). Hence, by dominated convergence and the

bounds (4.1),

H∗(c(·, t),m(·, t)) ≤ e−K∗tH∗(c0,m0), 0 < t < T.
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However, T > 0 is chosen arbitrary and thus, this bound holds for t > 0. Moreover,

we can pass to the limit η → 0 in the initial data. Finally, by the Csiszár-Kullback

inequality (see, e.g., Ref. 23) for some KCK > 0, since c and m conserve mass,

‖c(·, t) − c∗0‖2
L1(Ω) + ‖m(·, t) − m∗

0‖2
L1(Ω)

≤ KCK

∫

Ω

(
c(·, t) log

c(·, t)
c∗0

+ m(·, t) log
m(·, t)

m∗
0

)
dx

≤ KCKH∗(c(·, t),m(·, t)) ≤ KCKe−K∗tH∗(c0,m0)

for t > 0, which finishes the proof of Theorem 1.2.

5. Numerical results

In this section, the tumor-growth model (2.9), in the scaling of Jackson and Byrne,

is discretized using finite differences in space and the implicit or explicit Euler

method in time. In the experiments we concentrate on the behavior of the relative

entropy and its entropy production since the dependence of the system on the model

parameters has been extensively studied in Ref. 19.

The Neumann boundary conditions are discretized in such a way that, in the

absence of production rates, the approximated total volume fractions
∫
Ω

cdx and∫
Ω

mdx are exactly constant in time. It turns out that the discretization of the

formulation (2.9) has stability problems due to the restrictions 0 ≤ c, m ≤ 1 which

may be violated numerically during the iteration procedure. The entropy-variable

formulation (1.7) does not require any restriction on the variables and behaves

numerically more stably than the direct formulation (2.9). We have compared our

results from the explicit Euler discretization and from the implicit discretization

(solved by Newton’s method) with the output of the software Multiphysics from

COMSOL, and all three algorithms lead to the same results.

Denoting by ck
i and mk

i the approximations of c(xi, tk) and m(xi, tk), respec-

tively, where xi = ih (i = 0, . . . , N , hN = ℓ) and tk = kτ (k ∈ N, τ > 0), the

discretization (using an implicit time discretization) reads as follows:

1

τ
(ck

i − ck−1
i ) =

1

h2

(
Lk

11,i+1/2(u
k
i+1 − uk

i ) + Lk
12,i+1/2(v

k
i+1 − vk

i ) (5.1)

− Lk
11,i−1/2(u

k
i − uk

i−1) − Lk
12,i−1/2(v

k
i − vk

i−1)
)

+ Rc(c
k
i ,mk

i ),

where i = 1, . . . , N − 1, k ≥ 1,

Lk
jℓ,i±1/2 =

1

2

(
Ljℓ(c

k
i±1,m

k
i±1) + Ljℓ(c

k
i ,mk

i )
)
,

uk
i = log

ck
i

1 − ck
i − mk

i

, vk
i = log

mk
i

1 − ck
i − mk

i

,

and Lij(c,m) are the coefficients of the matrix defined in (3.1) with D replaced

by DJB. The equation for m is discretized in a similar way. When an explicit time

discretization is used, the index k on the right-hand side of (5.1) has to be replaced

by k − 1.
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The numerical parameters are chosen, if not stated otherwise, as follows. We take

the interval length ℓ = 1, N = 200 grid points, and the discretization parameters

h = 1/N and τ = 5 · 10−5. The initial data are defined as in Ref. 19:

c0(x) =
C1

2

(
1 + tanh

(x0 − x

η

))
+ ε, m0(x) =

M1

2

(
1 − tanh

(x0 − x

η

))
, (5.2)

where C1 = M1 = 0.25, x0 = 0.1, and η = 0.05. In order to avoid stability prob-

lems, we have added ε = 2 · 10−4 to the initial cell volume fraction. The diffusion

coefficients are taken as in Ref. 19:

βc = 0.2, βm = 0.0015.

First, we consider the case of vanishing production rates, Rc = Rm = 0. Figure 1

shows the volume fractions of the tumor cells and the ECM at various times, where

we have used the cell-induced pressure coefficient θ = 1000. The cross-diffusion term

DJB
21 cx causes a drift of the ECM to the right boundary, induced by variations of the

tumor volume. The diffusion DJB
22 of the ECM outside of the tumor is very small,

DJB
22 ≈ 0.001, such that the ECM cannot diffuse and forms a peak. The peak is not

too singular since the discrete H1-seminorm of m, ‖mx‖1,h, and its maximal value,

maxΩ m, stay bounded when h → 0 numerically (see Table 1). However, the peak

indicates a loss of regularity of m, and we conjecture that global classical solutions

to the tumor-growth model do not exist. With increasing times, the tumor cell front

moves to the right boundary, i.e., the tumor penetrates the surrounding ECM. The

tumor cell fraction at the left boundary x = 0 is decreasing in time since the total

volume fraction
∫ 1

0
cdx is constant in time.

N 400 600 800 1000 1200

‖mx‖1,h 4.070 4.465 4.484 4.526 4.567

maxΩ m 0.630 0.646 0.637 0.645 0.649

Table 1. Discrete H1-seminorm and maximum of m as a function of the number of grid points.
Computed by using the explicit Euler scheme.

We expect that the relative entropy H∗, defined in (1.8), is converging to zero

as t → ∞ when the pressure coefficient θ is smaller than the critical value θ∗ =

4
√

βc/βm ≈ 46. This behavior is illustrated in Figure 2 (left). In fact, the entropy is

decreasing for larger values of θ, too. The semilogarithmic scale in Figure 2 (right)

shows that the convergence for θ = 0 and θ = 100 is exponentially fast with a rate

which is initially larger than for later times. For θ = 1000, the convergence seems

to be no longer exponential.

It is clear from Figure 2 that the entropy production

−dH∗

dt
=

∫

Ω

pdx =

∫

Ω

(
2βcc

2
x + βmθmcxmx + 2βm(1 + θc)m2

x

)
dx
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Fig. 1. Volume fractions of the tumor cells (left) and the ECM (right) versus position using θ = 1000
at times t = 0, 1, 2, 3, 4, 5, 6. The production rates vanish, Rc = Rm = 0. The tumor cell front and

the ECM peaks are moving from left to right as time increases.
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Fig. 2. Relative entropy H∗ versus time. Left: Normal scale; right: Semilogarithmic scale. The
production rates vanish, Rc = Rm = 0.

is positive. Interestingly, this is not true for the entropy production density p =

p(x, t), see Figure 3. The entropy production density p(x, 1) is nonnegative for all

x ∈ [0, 1] if θ is sufficiently small but it may become negative at some points if θ is

large enough. As a consequence, the entropy production does not lead to pointwise

gradient estimates if θ is sufficiently large. This means that the presented existence

analysis using entropy estimates is optimal. Clearly, the question remains if the

existence of global solutions can be proved by another method.

Figure 3 shows that the entropy production density p is nonnegative in [0, 1]

even for θ = 200. However, the existence analysis works for much smaller values

of θ only, namely θ < θ∗ ≈ 46. In the following, we explore this gap. We claim

that there exist initial data such that p(x, t) < 0 at some (x, t) for θ close to

the critial value θ∗. Indeed, let us take the initial data (5.2) with C1 = 0.02 and
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Fig. 3. Entropy production density p at time t = 1 versus position. The production rates vanish,
Rc = Rm = 0.

M1 = 0.95 (the other parameters are unchanged). Figure 4 (left) illustrates the

volume fraction of the ECM at times t = 0, 0.3, 0.6 for θ = 70. The right figure

shows that the corresponding entropy production density p becomes negative in

some region: pmin ≈ −0.0051 at t = 0.6. This holds true even for smaller values

of θ: for θ = 55, we have pmin ≈ −0.0005 at t = 0.6, and for θ = 50 (choosing

C1 = 0.03), pmin ≈ −1.6 · 10−6 at t = 0.4. In the last two experiments, we have

taken N = 500 grid points to improve the accuracy.
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Fig. 4. Volume fraction of the ECM versus position at times t = 0, 0.3, 0.6 (left) and entropy
production density p versus position at time t = 0.6 (right) using θ = 70. The production rates
vanish, Rc = Rm = 0. The minimal value of p is −0.0051.

Next, we include the production terms from (1.3) in the equations. In Figure 5,

we see the time evolution of the volume fractions with θ = 1000. In this experiment,

we have taken ε = 5 ·10−4. Compared to Figure 1, the cell front and the ECM peaks

are moving much faster. Furthermore, because of the production rates, the tumor
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cell volume is increasing. The height of the peak becomes smaller for smaller values

of θ, see Figure 6. This behavior has been also observed by Jackson and Byrne19

We remark that their scaling seems to be different such that we obtain different

numerical results than those presented in Ref. 19.
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Fig. 5. Volume fractions of the tumor cells (left) and the ECM (right) versus position using θ = 1000

at times t = 0, 1, 2, 3, 4, 5. The production rates are α = 0.1, γ = 1, and δ = 0.35.
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Fig. 6. Volume fractions of the tumor cells (left) and the ECM (right) versus position using θ = 100

at times t = 0, 1, 2, 3, 4, 5. The production rates are α = 0.1, γ = 1, and δ = 0.35.

Due to the production terms, we cannot expect that the relative entropy H∗ is

decreasing in time but the analytical results show that H∗ is uniformly bounded

in time. This is confirmed in Figure 7 for various values of θ. Initially, the entropy

is decreasing. Later, it is increasing up to t ≈ 15, then decreasing and finally, it is

very slowly increasing again.
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Fig. 7. Relative entropy H∗ versus time using θ = 0. The curves for θ = 100 and θ = 1000 are
very similar. The production rates are α = 0.1, γ = 1, and δ = 0.35.
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Basel, 2006.

17. L. Hadjadj, K. Hamdache, and D. Hamroun. An existence result to a strongly coupled
degenerated system arising in tumor modeling. Abstr. Appl. Anal. (2008), Art. ID
239870, 19 pp.

18. M. Holmes and B. Sleeman. A mathematical model of tumour angiogenesis incorpo-
rating cellular traction and viscoelastic effects. J. Theor. Biol. 202 (2000), 95-112.

19. T. Jackson and H. Byrne. A mechanical model of tumor encapsulation and transcap-
sular spread. Math. Biosci. 180 (2002), 307-328.

20. S. Kawashima and Y. Shizuta. On the normal form of the symmetric hyperbolic-
parabolic systems associated with the conservation laws. Tohoku Math. J., II. Ser. 40
(1988), 449-464.

21. T. Roose, S. Chapman, and P. Maini. Mathematical models of avascular tumor growth.
SIAM Review 49 (2007), 179-208.

22. M. Taylor. Partial Differential Equations. III. Nonlinear Equations. Springer, New
York, 1997.

23. A. Unterreiter, A. Arnold, P. Markowich, and G. Toscani. On generalized Csiszár-
Kullback inequalities. Monatsh. Math. 131 (2000), 235-253.

24. C. Villani. Optimal Transport. Grundlehren Math. Wiss., vol. 338. Springer, Berlin,
2009.

25. J. Ward and J. King. Mathematical modelling of avascular tumour growth I. IMA J.

Math. Appl. Med. Biol. 14 (1997), 36-69.


