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The mechanical tumor-growth model of Jackson and Byrne is analyzed. The model
consists of nonlinear parabolic cross-diffusion equations in one space dimension for the
volume fractions of the tumor cells and the extracellular matrix (ECM). It describes
tumor encapsulation influenced by a cell-induced pressure coefficient. The global-in-time
existence of bounded weak solutions to the initial-boundary-value problem is proved
when the cell-induced pressure coeflicient is smaller than a certain explicit critical value.
Moreover, when the production rates vanish, the volume fractions converge exponentially
fast to the homogeneous steady state. The proofs are based on the existence of entropy
variables, which allows for a proof of the nonnegativity and boundedness of the volume
fractions, and of an entropy functional, which yields gradient estimates and provides a
new thermodynamic structure. Numerical experiments using the entropy formulation of
the model indicate that the solutions exist globally in time also for cell-induced pressure
coefficients larger than the critical value. For such coefficients, a peak in the ECM volume
fraction forms and the entropy production density can be locally negative.
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1. Introduction

The modeling and simulation of tumor growth may provide biologists with com-
plementary insight into the chemical and biological mechanisms which influence
the development of solid tumors. Jackson and Byrne have developed in Ref. 19 a
continuous mechanical model which gives some insight into tumor encapsulation
and transcapsular spread. The model consists of strongly nonlinear cross-diffusion
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equations for the volume fractions of the tumor cells and the extracellular matrix
(ECM). A particular feature of the model is tumor encapsulation which is triggered
by the increase of the pressure of the ECM due to tumor growth. This increase
is modeled by the cell-induced pressure coefficient 8 > 0. When 6 > 0, the ECM
becomes more compressed as the tumor cell fraction increases. In this paper, we are
interested in a mathematical analysis of this model.

From a mathematical point of view, the challenge is to deal with the cross-
diffusion terms which prevent the use of standard tools such as maximum principles.
Moreover, the diffusion matrix is neither symmetric nor positive definite such that
even the local-in-time existence of solutions does not follow from standard results.
In spite of these difficulties, we are able to prove the global-in-time existence of
bounded weak solutions if § > 0 is smaller than an explicit critical value 6* which
depends on the cell and ECM pressure coefficients (see below). Numerical experi-
ments show that for sufficiently large 6, a peak in the volume fraction of the ECM
forms due to cross diffusion in the ECM equation.

From a more biological point of view, we show that the model, although its
derivation is based on rather simplifying assumptions, possesses a surprising thermo-
dynamic-type entropy structure: For sufficiently small # > 0 and vanishing tumor
and ECM production rates, the logarithmic entropy is dissipated. Numerical exper-
iments show that this holds true for > 6* but the entropy production density may
become locally negative. The entropy structure is exploited in the mathematical
analysis, since the entropy production provides a priori estimates for the gradients
of the variables. Moreover, the entropy-variable formulation allows for a proof of the
nonnegativity and boundedness of the solutions, thus circumventing the maximum
principle.

Before explaining the entropy structure in detail, we review briefly the model-
ing of tumor growth (also see the monographs 1, 7). Tumor growth can be very
roughly classified into three stages. The first stage is the avascular growth which
is mostly governed by the proliferation of tumor cells. When the tumor grows, less
and less nutrition is available for the cells in the tumor center, and the tumor starts
developing its own blood supply (vascular stage). Later, the tumor cells are able
to escape from the tumor via the circulatory system and lead to secondary tumors
in the body (metastatic stage). The model considered in this paper describes the
avascular stage only.

Most models for avascular tumor growth fall into two categories: discrete cell
population models that track the individual cell behavior and continuum models
that formulate the average behavior of tumor cells and their interactions with the
tissue structure.? In the following, we concentrate on continuum models and in
particular only on those which contain cross diffusion.

A possible continuum model ansatz is the use of reaction-diffusion equations.
The system is then composed of mass balance equations for the cellular components,
coupled to a system of reaction-diffusion equations for the concentrations of the
extracellular substances. 2 The mass balance equations need to be closed by defining



September 1, 2011 12:6 WSPC/INSTRUCTION FILE pllstumorM3AS

Cross-diffusion tumor-growth model 3

(or deriving) equations for the corresponding velocities. Roughly speaking, there are
two classes of models: phenomenological and mechanical models (see Section 4 in
Ref. 2).

In phenomenological models, it is assumed that the cells or the ECM do not move
6 or other mechanisms. Mechanical
models differ from phenomenological ones by the fact that the latter ones do not
take into account mechanical causes of cell movement due to pressure produced by
proliferating tumor cells to the surrounding tissue.? An example of such a model is
given by Casciari et al.” When the cells are considered as an elastic fluid within a
rigid ECM, the velocity may be closed according to the Darcy law, i.e., the velocity

or that they move due to diffusion,?® chemotaxis,

is proportional to the negative gradient of the pressure (see Formula (7) in Ref. 8
or Formula (4.4) in Ref. 2). Alternatively, the cell-matrix system may be supposed
to behave as a viscous fluid, in which the stress depends on the viscosity,® as a
viscoelastic fluid,'® or as a cell mixture in a porous medium made of the ECM filled
with extracellular liquid.'® More details can be found in the review of Roose et al.2!

The mechanical model of Jackson and Byrne'® describes the growth and encap-
sulation of solid tumors. The mass balance equations for the volume fractions of the
tumor cell, the ECM, and the water phases are supplemented by equations for the
velocities, depending on the gradient of the corresponding pressure. It is assumed
in Ref. 19 that the pressure of the tumor cells and the ECM increases with the
respective volume fraction and that the presence of tumor cells induces an increase
in the ECM pressure, which leads to a nonlinear term in the ECM pressure. The
model is given by the following scaled equations in one space dimension for the
volume fractions of the tumor cells ¢ and the ECM m (see Section 2 for a sketch of
its derivation),

% (;L) - (D(C, m) (:fx))x = R(e,m) inQ, t>0, (1.1)

where 2 = (0,1), subject to the Neumann boundary and initial conditions
cz=my =0 ondQ, t>0, c(,0)=cy, m(-,0)=mg in Q. (1.2)

The mixture is supposed to be saturated, i.e., the volume fractions of the tumor
cells ¢, the ECM m and water w sum up to one. Therefore, the volume fraction of
water can be computed from w = 1 — ¢ — m. Assuming that cell proliferation is
proportional to the cell and water fractions (with rate ), the tumor cells die with
rate §, and that the ECM production is proportional to all three fractions (with
rate «), the net production rate is given by

[ Re(e;m)\  [ve(l—c—m)—dc
Rle.m) = (Rm(c7 m)) N ( acm(l—c—m) )~ (1.3)
The diffusion matrix

~( 2¢(1—¢) — BOem? —2Bem(1 + be)
Dle,m) = (—2cm + 801 — m)m? 2m(1 —m)(1 + 90))
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with the pressure coefficients 8 > 0 and 6 > 0 is generally neither symmetric nor
positive definite, which makes the analysis of the above system quite challenging.

A key observation is that system (1.1)-(1.2) possesses an entropy functional if
0 < 0* := 4/+/B. To explain this, we introduce the logarithmic entropy

H(c,m)z/gh(c,m)da: (1.5)

= /Q (c(loge —1) + m(logm — 1) 4+ (1 — ¢ — m)(log(1 — ¢ — m) — 1)) dx,

where h(c,m) is the entropy density, which is the sum of the logarithmic entropies
of the three phases ¢, m, and w = 1—c¢—m. We call —dH /dt the entropy production
and its integrand the entropy production density. A computation, which is made
rigorous in Section 3, shows that

dH
o7 + [ (2¢2 + BImcymy + 28(1 + Oc)m?)dx
Q

:/Q(Rc(c,m)log%JrRm(c,m)log %)dw

—c—m
The right-hand side is bounded for all ¢, m > 0 satisfying ¢ +m < 1. It turns out
that the integrand of the second term on the left-hand side is a positive definite
quadratic form in ¢, and m, if 8 < 6*, which provides gradient estimates for ¢ and
m.

Interestingly, system (1.1) features a formal gradient-flow structure. Indeed, in-
troducing the entropy variables

oh c oh m

B T R (16)
system (1.1) can be written as
0 (¢
g (m) — (L(c, m)(Vh(c, m))i)x = R(c,m), (1.7)

where the gradient Vh(c,m) = (u,v)" is computed with respect to (c,m). The

matrix L = D(V2h)~! (with V2h being the Hessian of h with respect to (c,m))
becomes symmetric and positive definite if § = 0 and ¢ > 0 and m > 0 satisfy
¢+ m < 1. System (1.7) can be also written as p, = —gradH|,, which is the more
usual gradient-flow formulation, where p = (¢,m)" and grad is the gradient of the
entropy functional H with respect to some metric involving the diffusion matrix
L (see Ref. 24). Moreover, (1.7) can be interpreted as a parabolic system in the
variables (u,v), where ¢ and m are functions of (u,v). An important feature of the
entropy-variable formulation (1.7) is that the inverse transformation

u v

e e
c=———, m=-——"
1+ev+ev 1+ev+ev
leads automatically to positive volume fractions satisfying ¢ + m < 1, which cir-
cumvents the maximum principle.
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It has been shown in Ref. 12, 20 that the existence of an entropy is equivalent to
the symmetry and positive definiteness of the transformed diffusion matrix. This has
been exploited in several publications to provide a global-in-time existence analysis
for models arising in physics and biology, see, e.g., Ref. 4, 9, 10, 11, 15, 17. The
novelty in this paper is that system (1.1) does not possess this property for § > 0
which leads to additional difficulties.

We notice that a related cross-diffusion model has been analyzed in Ref. 4.
This model describes a hopping system of two particles with size exclusion. It also
features the entropy functional (1.5) and, consequently, the same entropy variables
(1.6). The diffusion matrix of Ref. 4 in the entropy-variable formulation is diagonal
which simplifies the analysis. However, this is not the case in our model (1.1).

In order to understand the solution behavior when 6 > 6*, we solve (1.1)-(1.2)
using a (standard) finite-difference discretization. It turns out that the discretization
of the entropy-variable formulation (1.7) is more stable than a direct discretization
of (1.1). The numerical results show that for § > 6*, a peak forms in the volume
fraction of the ECM, which may indicate a loss of regularity of the solution. The
peak forming has been already observed in Ref. 19. In the absence of production
rates, even for § > 6*, the entropy is numerically decreasing and, consequently, the
entropy production —dH/dt is positive. However, the entropy production density
may be negative locally, which indicates that pointwise gradient estimates are not
available. Thus, our analytical results, obtained from the entropy method, seem to
be optimal. It is an open problem to prove the existence of global weak solutions
for 6 > 0*.

Now, let us state our main results.

Theorem 1.1. Let o, v, § > 0, 3 >0, 0 < 0 < 4/\/B3, and let ¢y, mg € L*(2)
satisfy co > 0, mg > 0, co+mog < 1 in Q, and H(cg,mg) < oo. Then there
exists a weak solution ¢, m € L% _(0,00; HY(Q)) N HL(0,00; (H'(R))) to (1.1)-
(1.2) satisfying ¢, >0 and c+m <1 in Q x (0,00).

Although the method of our proof can be extended in principle to several space
dimensions (as shown in, e.g., Ref. 9, 10), we consider the case of one space dimen-
sion only, since this is the situation of the original model in Ref. 19. To prove the
theorem, we first discretize system (1.7) in time by the implicit Euler scheme with
time parameter 7 > 0 and add the elliptic operator —&(uz; — u, vz, — v) ' which
guarantees the coercivity of the elliptic system in the entropy variables (u,v). Then
we show the existence of semi-discrete weak solutions to the resulting nonlinear
elliptic equations using the Leray-Schauder fixed-point theorem. A priori estimates
are derived from the entropy inequality, as described above. These estimates are in-
dependent of 7 and ¢ which allows us to pass to the limit 7 — 0, ¢ — 0 using weak
compactness methods. The limit functions are weak solutions to the continuous
problem (1.1)-(1.2).

When the net production terms vanish, we are able to prove the exponential
decay of the weak solution (¢, m) to the homogeneous steady state (¢, mg), where
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¢4 = Jo code and m§ = [, moda are assumed to satisfy ¢, m§ > 0 and ¢§+mf < 1.
Although the long-time behavior of solutions is less important in the current tumor-
growth model, it reveals a certain mathematical structure of the model equations.
For the statement of the result, we define the relative entropy

H*(e,m)= | h*(c,m)dx
Q

1—c—
:/ (clog%+mlogﬂ*+(1—c—m)1og%)dw (1.8)
Q o myg 1= ey —mg
Notice that for all (¢, m) satisfying ¢, m > 0 and ¢+ m < 1 such that fQ cdx = ¢
and [, mdz = mg, it holds that H*(¢c,m) > 0.

Theorem 1.2. Let the assumptions of Theorem 1.1 hold and let (c,m) be the
bounded weak solution to (1.1)-(1.2) constructed in Theorem 1.1. Let a =~v=§ =0
and let ¢ = [, codx, m§ = [, modz satisfy i, m§ > 0 and c§ +mf < 1. Then
there exist constants K, A > 0 only depending on 3, 0, ci, and m§ such that

lle(-,) = cillzr) + Im(-,t) = mgllra ) < Ke v/ H*(co,mo).

The theorem is proved by estimating the discrete entropy production from below
by the discrete relative entropy yielding an inequality which is solved by a discrete
Gronwall-type argument. The main difficulty in the proof is that due to the reg-
ularizing e-terms, the L'-norms of the approximations of ¢ and m are no longer
conserved, and we need to control the dependence of these L'-norms on . This is
achieved by exploiting the Sobolev embedding H!(2) < L°°(Q) which is valid in
one space dimension.

The paper is organized as follows. In Section 2 we sketch the derivation of the
model (1.1). Theorems 1.1 and 1.2 are proved in Sections 3 and 4, respectively.
Finally, numerical results using a finite-difference discretization are presented in
Section 5.

2. Derivation of the model—scaling

For the convenience of the reader and to specify the biological assumptions, we
sketch the derivation of the tumor-growth model following Jackson and Byrne.!?
They assume that the tumor-host environment, given by a fixed interval (—¢, ¢) with
£ > 0, consists of the tumor cells, the extracellular matrix (ECM), and interstitial
fluid (water). Supposing that this mixture is saturated, the volume fractions of the
tumor cells ¢, the ECM m, and water w sum up to one, ¢+ m + w = 1. The tumor
is assumed to expand symmetrically around x = 0 in one space direction such that
it is sufficient to consider the interval (0, ¢). Treating the tumor, the ECM, and the
water phase as incompressible fluids with constant and equal densities, the mass
balance equations for each phase are given by'4

ct+(cve)e = Rey, me+(mug)e = R, Wi+ (woy)e = Ry, € (0,£), t >0, (2.1)
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where v., V., and v,, are the velocities of the tumor, the ECM, and the water phase,
respectively, and R., R,,, and R,, are the corresponding net production rates.

Supposing that the system is closed, the total net production vanishes, R. +
R,, + Ry, = 0. Thus, together with the expression ¢+ m+ w = 1, the water volume
fraction w = 1 — ¢ — m can be expressed in terms of ¢ and m. In fact, adding all
equations in (2.1) and recalling the tumor-growth symmetry, which implies that the
velocities vanish at x = 0, we find that

WUy = —CUe — MUy, (2.2)

For the production terms, we make the following assumptions. The tumor cells
proliferate at a rate being proportional to the cell and water fractions and they die
at a rate being proportional to the cell fraction. The rate of the ECM production
is proportional to all the volume fractions. This means that new ECM is produced
only when all three phases are present. Hence, we obtain

R. = accw—bc.c = ace(l—c—m)—bce, Ry = amemw = apem(l—c—m), (2.3)

where a., quy,, 0. > 0, and the water production is computed from R,, = —(R. +
R.,).

Next, we assume that inertial as well as external forces can be neglected. Then
the momentum balance equations become the force balances

(Co—c)x + pc, + ch + ch = Oa (24)
(mam)w +pmg — Fem + P = 0, (25)
(wo—w)x + pwy — Few — Frpw = 0, (26)

where o is the stress in phase j = ¢, m,w, p is a common pressure, and Fj; is the
force which phase j exerts on phase i # j. We have to determine the stresses and
forces.

The stresses are given by

Uczf(pJFPc)v szf(ijPm)v Ow = —P;

where the pressures P. and P,,, respectively, distinguish the cell and the ECM
phases from water. We assume that the pressures P. and P,, are proportional to
their respective volume fractions. Moreover, we expect that the tumor cells increase
the ECM pressure but not inversely. Therefore, we write

P.=s.c, Py, =smm(l+0c), (2.7)

where s, > 0, s, > 0 are constants, and # > 0 is a cell-induced pressure coeffi-
cient. When 6 > 0, the ECM becomes more compressed as the tumor cell fraction
increases. By adding all three force balance equations (2.4)-(2.6), the force terms
cancel and inserting the above expressions for P. and Py, since (¢ +m + w), = 0,
we end up with

Pz = _(CPc + um)x = _(SCCQ + Smm2(1 + 90))1‘ (28)
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Supposing that the forces are proportional to the difference of the fluid velocities
and to their respective volume fractions, we have
Fep = kcm(v’m - vc)cm, Few = kcw(vw - ’UC)CIU, Frw = kmw(vw - Um)mw-
The equations are significantly simplified when we take k := k¢ = kew =

kmw > 0. Indeed, using this simplification and replacing wuv,, by (2.2) and w by
1—c¢—m, (2.4) becomes

(cP.)e + pec = Fepn + Fooy = k( —c(m+ w)v. + cmu,, + cwvw) = —kco,.
Employing (2.8) to eliminate p, and (2.7) to eliminate P. and P,,, it follows that

cve =~k ((cPe)s + puc) = =k~ ((1 = ¢)(sc€®) s — c(smm?(1 + 0c)),).
In a similar way, we find that

Moy, = —k ((1 —m)(s;mm?(1 4 6c)), — m(scc2)1).

These identities allow us to eliminate the velocities from the mass balance equations
(2.1), leading to the system
e — k1 ((1 —¢)(8€%) e — c(smm?(1 + 90))30)1 =R,
my — k7t ((1 — m)(smm2(1 +6¢)), — m(sccz)w)z = R,
where x € (0,¢), t > 0. Introducing the diffusion matrix
_ 1 A 2 _
Dle,m) = = 2s.¢(1 — ¢) — spbem , 2smem(1 4 0c)
k \—2sc.cm + $,0(1 — m)m? 2s,m(1 —m)(1 + 6c)

and inserting the production rates (2.3), the above system can be written as

7 (o) (e () - ()

System (1.1) is obtained by rescaling time by ¢, = t/7 and space by z; = z/¢,
where 7 = kf?/s.. Then

0 (¢ Cx, _ [(ye(l—c—m) —dc

Ot (m) B (D(C’ m) (mrs))r - ( acm(l—c—m) )’

where 25 € (0,1), ts > 0, D(c,m) is defined in (1.4), @ = Tam, 8 = Sm/Se, ¥ = T,
and 6 = 70,.

We remark that Jackson and Byrne!® have employed a different scaling by setting
7 = 1/a.. Then, with 8. = 7s./(k¢?) and 3,, = 75,,,/(kf?), the scaled system writes

ot ()~ (P7em () = (et iloy ) @9

28.c(1 — ¢) — Bpbem? —2Bmem(1 + fe)
—2B8.cm + Bnf(1 — m)m? 28,m(1 —m)(1+6c))’
and « and § are defined as above. This formulation is used in the numerical exper-
iments, see Section 5.

where

D7(em) = (03F) = (



September 1, 2011 12:6 WSPC/INSTRUCTION FILE pllstumorM3AS

Cross-diffusion tumor-growth model 9

3. Existence of weak solutions

The aim of this section is to prove Theorem 1.1. Let 1 € (0, 1) and assume that the
initial data satisfy c¢g > n, mg > 1, and ¢y + mg < 1 —n in Q. By the change of
variables (1.6), system (1.1) writes as

% (;((1;7;))) - (L(u,v) <Zj)>m — R(u,v),

where
C(U,U) = m, m(u,v) = m
and
L(u,v) = D(c(u,v), m(u,v))(VQh(c(mv)7m(u,v)))_l, (3.1)

R(U ’U) — PYC(U7 U)(l - C(”) U) - m(u7 U)) - 56(”7 U)
’ ac(u,v)m(u,v)(1 — c(u,v) — m(u,v)) }°
We notice that the inverse of the Hessian of h, (V2h(c,m))~!, which is computed
with respect to (¢, m), equals
9 1 (c(l—=¢) —cm

(VZh{e,m))™" = ( —cm m(1 —m))
and that c¢(u,v) and m(u,v) are positive and satisfy c(u,v) +m(u,v) < 1in Q if u
and v are bounded. The boundary and initial conditions are

Uy =0, =0 ondQ, t>0, wu(-,0)=uy, v(-,0)=v9 inQ,

where
“ , vozlog$ € L>=(Q).

UOZIOg 176077710

lfcofmo

For later use, we remark that the matrix product (V2h)D simplifies:

2 0
2 -
(ViD= (59m 206(1+ 90)) ' (3:2)
An elementary computation shows that this matrix product is positive semidefinite,
" (V2h)Dx >0 for all z € R?, ¢,m > 0 satisfying 1 — ¢ —m > 0, (3.3)

if the condition 0 < 6 < 4/+/f holds. (In the scaling of Jackson and Byrne — see the
end of Section 2 —, this condition becomes 6 < 4+/8./Bm.)

Step 1: Existence of a time-discrete problem. Let T > 0, N € N, 7 = T/N, and
define the time steps ty = k7, k = 0,...,N. Let 1 < k < N. For given functions
Ug—1, Vp—1 € L>=(Q), we wish to solve the sequence of approximate elliptic problems
in Q,

e ot )= (e ({27)) -+ (2) = At
(3.4)
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subject to the boundary conditions
(ug)z = (vg)z =0 on 0. (3.5)

Here, ux and vy are approximations of v and v at time ti, respectively, cx_1 =
c(up_1,v_1), mp_1 = m(ug_1,vx_1), I is the identity matrix in R?*2, and & > 0
is a regularization parameter which ensures the uniform ellipticity of (3.4) with
respect to (ug, vg).

Lemma 3.1. Let (ug_1,v5_1) € L®(Q)? and 0 < 0 < 4/\/B. Then there ezists a
constant Ky > 0 and a weak solution (ug,vx) € H(Q)? to (3.4)-(3.5) satisfying

H(c(uk, VE), m(uk,vk)) + TK@/Q (c(uk, vg)2 + m(uk,vk)i)dx

+ T&/Q ((uk)2 + (vk)2 + uf + vp)da (3.6)

r

< H(c(uk—1,v6-1), m(ug—1,v5-1)) + Slat+y+9).
Proof. The idea of the proof is to apply the Leray-Schauder fixed-point theorem
(see Theorem B.5 in Ref. 22). To this end, we consider first a linear problem. Let
(6, v) € L>(2)2. We show the existence of a unique solution (u,v) € H'(Q)? to the
linear problem

a((u,v),(y,2)) = F(y,z) forall (y,2) € H'(Q)?, (3.7)
where
.
a((u,v), (y,2)) = /Q <‘Zi> L(u,v) (u;”) dx + s/ﬂ (UgYs + Vo2s + uy + v2)dz,

P =1 [ (et ) (Vars [ pao- () a

The a.e. boundedness of % and © implies that the bilinear form a : H'(Q2)? x
H'(Q)? — R and the linear functional F : H*(2)? — R are well-defined and
continuous. Using the definition L = D(V?h)~! and (3.3), we compute

T T

(:jz) L(u,0) (:jz) = ((v2h)—1 (Z;)) (V2h)L(V2h)(V2h) ! (:Z)

T

= ((v%)l (:Z’)) (V*h)D ((v%)l (:Z)) >0

in Q, since 0 < # < 4/+/8. This shows that a is coercive:
T

(ux) L(u,v) (ux) dr + 5/ (u2 4+ v2 +u® +v*)da
Q

Vg Vg

a((u,v), (u,v)) = /

Q
> e([lullFri ) + 10ll7n o) = €ll(uw, 0) 171 ()2

By the Lax-Milgram lemma, there exists a unique solution (u,v) € H*(Q)? to (3.7).
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2 x [0,1] — L>=(Q)? by

Next, we define the fixed-point operator S : L%°(Q)
v,0) = (u,v), where (u,v) €

setting, for given (4, v) € L>*(Q)? and o € [0, 1], S(a, v,
H'(Q)? is the solution to the linear problem
a((u,0), (9.2)) = oF(y.2) for all (y,2) € H'(Q)°. (38)

We notice that S(@,v,0) = 0 for all (a,v) € L>(2)2. Standard arguments show
that S is continuous and, because of the compact embedding H*(2) — L>(Q) in
one space dimension, also compact. It remains to prove that there exists a constant
K > 0 such that for any (u,v,0) € L=(Q)? x [0,1] satisfying S(u,v,0) = (u,v),
the estimate ||(u, v)|| o (0)2 < K holds.
In order to prove this bound, we use the test function (u,v) in (3.8), yielding
T

PG ) Q) () o (32)
+e/Q(u§+v§+u2+02)dx:a/ﬂza(u,v). (z) da. (3.9)

We remark that c¢x—1 = c(ug—1,v5-1) > 0 and myg_1 = m(ug—1,vx—1) > 0 satisfy
Ck—1 +mr—1 < 1. Set ¢ = ¢(u,v) and m = m(u,v). The convexity of the entropy
density h with respect to (¢, m) implies that

m—m

h(e,m) — h(&m) < Vh(c,m) - ( c—¢ )

for all ¢, m, ¢, m > 0 satisfying 1 —¢c—m > 0 and 1 — ¢ —m > 0. By (1.6),
Vh(e,m) = (u,v) and hence, the first term on the left-hand side of (3.9) can be
estimated as

g/g (T; - ;fzkll) . (z) di > 2 (H(e;m) = H(erv,mi 1),

We turn to the second integral on the left-hand side of (3.9). Because of (1.6),

we have
(%) v2h(c, m) (Cx ) .
Vg My

Therefore, in view of L = D(V?h)~! and (3.2), we find that the second integral on
the left-hand side of (3.9) equals
T T

/Q (;;) (V2h)L(u, v)(V2h) (TZ) do = /Q (Tifm) (V2h)D(c,m) (;Z”z) da
= /Q (2¢2 + BOmcymy + 28(1 + Oc)m?2 ) da.

By (3.3), this integral is nonnegative if § < 4/4/3. This result can be strengthened:
If 0 < 6 < 4/+/13, there exists a constant Ky > 0 depending on 6 (and ) such that

/ (2¢2 + BOmeymy + 2B(1 + Oc)m2)dz > Ko / (¢ +m?2)dz.
Q Q



September 1, 2011 12:6 WSPC/INSTRUCTION FILE pllstumorM3AS

12 A. Jungel and I. V. Stelzer

Here, we have used the properties ¢, m > 0, and ¢c+m < 1, which are a consequence
of the definitions of ¢ = ¢(u,v) and m = m(u,v).

It remains to estimate the right-hand side of (3.9). Using —1/e < xzlogx < 0 for
al0<z<lande¢,m,1—c—m>0as well as log(l — ¢ —m) < 0, we find that

l—c—m

R(u,v) - (Z) = (ye(1 — ¢ —m) — dc) log
+acm(lfcfm)logm
=~(clogc)(1—c—m) —yc(l —c—m)log(l —c—m)
—dclogc+ dclog(l —c—m)
+ a(mlogm)e(l —c—m) —aem(l —c—m)log(l —c—m)
<(a+vy+06)e .

Summarizing, we estimate (3.9) as

ocH(c,m) + 7Ky /

(c2 +m2)dx + 7'5/ (u2 +v2 +u* +v?)dzx
Q Q

< oH(ck_1,mpk_1) + %(a +v+49).

This shows that u and v are bounded in H'(£2), which provides the desired uniform
estimate in L>(Q2)2. The assumptions of the Leray-Schauder fixed-point theorem
are verified, proving the existence of a fixed point of S(-, 1), which solves (3.4)-(3.510

Step 2: Uniform estimates. Let (uy,vg) be a weak solution to (3.4)-(3.5), whose
existence is guaranteed by Lemma 3.1. We set ¢, = c(uk, vg), mr = m(ug, vx) and
define the piecewise constant functions in time u(™) (z,t) = ug(x), v (x,t) = v (z),
A (x,t) = ep(x), m (x,t) = my(z) for x € Qand t € ((k—1)7, k7], k=1,...,N.
At time ¢ = 0, we set ¢(7)(-,0) = ¢g and m ™) (-,0) = mg. Furthermore, we introduce
the shift operator (o, w(™)(t) = w( (-t — 1) for 7 < t < T and the discrete time
derivative D;w(™) = (w(™ — og,w(™) /7, where w = ¢, m. Then (¢!, m(7)) solves

(™) ) RN G
D, — | D(c™) (™ z _ T = ™) (™ 1
<m(7)) (', m'™) (™ € o) o R(\™,m'™) (3.10)

in , t > 7. The discrete entropy inequality (3.6) can be solved recursively to yield

k k
H(cg,my) + TKQ;/Q ((¢j)z + (my)2)dz + TE;/Q ((u)2 + (v;)3 + uf +v7)dx

T
(a+v+9), k=1,...,N,

SH(Co,mo)JrE

where T' = 7N. This leads immediately to the following result.
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Lemma 3.2. The following uniform bounds hold:

||C(T)||L2(0,T;H1(Q)) + ||m(T)||L2(0,T;H1(Q)) < K,

1 s 0,725 () + 1M oo (0,750 () < K,

\/‘gHU(T)HLQ(O,T;Hl(Q)) + ﬁHU(T)”L?(O,T;Hl(Q)) <K,

where K > 0 is here and in the following a generic constant independent of T and
€.

We also need uniform estimates for the discrete time derivatives of ¢(™) and m(7).
Lemma 3.3. The following uniform bounds hold:
1D 20 e yy + 1 Dem O L2 )y < K.

Proof. Let ¢ € L?(r,T; H'(Q)). Then, by (3.10) and the bounds on ¢(7), m(7),
and \/eu(",

T T
/ (D7D, g)dt| = ‘—/ / (27 (1 = t™)elT) = BT (m )2
T T Q

— 28D (1 4+ 0 ym{) b, dwdt

T
‘5/ / (w7 6 + ul”) ¢)dadt
T Q

T
+ / / (fyc(T)(l — M —m() 50(7))¢dxdt
T Q

< KI5 r2rsn20)) + 1m0 2 riz2(0))) |Gl L2 (s L2 ()
+ 2e)|u | Lo oy ) 1D L2 )
+ (v + O)Sllr (00 ()

< KBl 2 (r, 1301 ()

The estimate for D,.m(™) is shown analogously. O
Step 3: The limit (¢,7) — 0. Lemmas 3.2 and 3.3 allow us to apply the Aubin

lemma (see the version in Ref. 13) to conclude the strong convergence for subse-
quences (not relabeled) such that, as 7 — 0 and € — 0,

A e, mD = m  strongly in L2(0,T; L (1)),

observing that the embedding H'(Q) < L>(£) is compact. In particular, up to
subsequences, (¢(7) and (m(7)) converge a.e. in Q x (0,7). In view of the uniform
bounds for ¢ and m(™) in L>(0,T; L°(R)), this implies that

A e, m™ = m strongly in LP(0,T; LP(R)) forall 1 <p<oo. (3.11)
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Moreover, up to subsequences,

A~ mD —~m  weakly in L0, T; HY(Q)),
D, —~ ¢, Dym'™ —m; weakly in L*(0,T; (H'())'),
eu™ -0, e =0 strongly in L2(0,T; H*(2)).

The above convergence results are sufficient to pass to the limit 7 — 0 and € — 0 in
the weak formulation of (3.10) and (3.5), showing that (¢, m) is a weak solution to
(1.1)-(1.2). Finally, in view of the uniform bounds and the finiteness of H(cg, mqg),
we can perform the limit 7 — 0 in the initial data (see the beginning of this section).
This concludes the proof.

4. Long-time behavior of solutions

We assume that the initial data satisfy ¢ > n, mg > n, and 1 — ¢y — mgy > n for
some 1 € (0,1). Let T > 0 be arbitrary but fixed and let 7 = T/N for N € N.
Let (ug,vr) € HY(Q)? be a weak solution to (3.4)-(3.5) with vanishing right-hand
side and with the properties stated in Lemma 3.1, where 1 < k < N. We set
cr = exp(ug)/(1 + exp(ug) + exp(vy)) and my = exp(vi)/(1 + exp(ux) + exp(vi)).
Furthermore, let ¢; = [, cpdx, mj = [, mpde, uj = [,urdzr, and v = [, vida.
In the presence of the e-terms, the L'-norms of ¢; and my, are not conserved, but
taking (1,0)T and (0,1)7 as test functions in the weak formulation of (3.4)-(3.5),
we find immediately that ¢; = c¢;_; —eTuj and mj = mj_, —e7v}, from which we
infer that

k

k
Ck—CO*ST Uj, mk—mO*ET ’Uj.
j=1

Jj=1

Step 1: Uniform bounds for the L'-norms of ¢y, and my. We claim that ¢}, mj,
and 1 — ¢j, — mj, are positive uniformly in € = 7 and k. To this end, let K5 > 0 be
the constant of the Sobolev embedding H!(Q) — L*(£2). Furthermore, we choose
0 <6 <min{l, (1 —cf—m{)/(c§ +my)}, e =7, and

B (6 min{c, my})?
-~ 2TKZ(|H(co,mo)| +3/e+3)

70

In the following, let 0 < 7 < 79. Observing that H(cg, my) > —3/e — 3, the discrete

entropy inequality (3.6) shows that

k k
(||uj||2L°°(Q) + HUJ'”%OO(Q)) < Kg Z (||Uj||izl(9) + ”'Uj”%rl(sz))

- =1

Jj=1

2
< Bs

K3 3
=5 (H(co,mo) = Hewsmi)) < == (1H(co,mo)| + = +3).
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Hence, for all 0 < 7 < 79, since € = 7, k7 < T, and because of the definition of g,

k k
er > (lugl+103]) <em > (lujllz=(e) + lvjllz=(e))
j=1 j=1
. 1/2
<erv2k | 3 (3 ) + 1105130 )
=1
1/2
< (2eTkKZ(|H (co,mo)| + 3/e + 3))
< (2rTK2(|H(co,mo)| + 3/ +3))"/*
< dmin{cj, my}.
This shows that
(1=08)cs<cp <140, (Q—=0mi<mp<(1+dms k=1,...,N, (4.1)

and the claim is proved since 0 < 1 — (1 + 5)(03 +m§) <1l—c;—mp <1-—(1-
9)(c +mf), by definition of § > 0.

Step 2: Estimate for the relative entropy. Let 4y = log(c}/(1 — ¢; —mj)) and
O = log(mj /(1 —cj,—my)). By (4.1), Gy and 9y, are uniformly bounded. We employ
(ug — G, vi — O) | as a test function in the weak formulation of (3.4)-(3.5):

o= L L (o) Cazinyars [ () s ()
+ e/ﬂ (un)? + (o) + s (g, — i) + oi (g — i) da. (4.2)

The modified relative entropy functional
H:(c,m) = / hi(e,m)dz
Q

1 —c—
:/ (clog%+mlogﬁ*+(lfcfm)log%)dz
Q . my, 1—c; —mj

is well-defined for appropriate ¢ and m, and it holds that Vh*(cx,mi) = (ux —
g, v, — 01) T The convexity of the function h’(c,m) implies that the first integral
n (4.2) can be estimated as

1 — Cp_ — 1 1 —
/(Ck k 1)-(uk 1fk)dac:/<ck k- ) VhZ(cy, my)dx
T Jo \MEg — Mi—1 Vi — Vg T Jo \Mk — Mkg—1

1

1
> 2 [ (uzensm) = (s, muca))de = 2 (HE (enmi) = HE (e, mec).
Q

As in the proof of Lemma 3.1, for 8 < 6*, the second integral in (4.2) is bounded
below:
.

[ () mtwm () o= 5o [ G0+ o)



September 1, 2011 12:6 WSPC/INSTRUCTION FILE pllstumorM3AS

16 A. Jungel and I. V. Stelzer

By Young’s inequality, the third integral in (4.2) can be estimated as

5/ ((ur)s + ()3 + up(ug — ) + vi(vg — Op))da
Q

> € / (20u)? + 2(0)? +u + 02 — a2 — 0F)da > — o
Q

Z 5 2(11% + 92).

Since g and 9 are uniformly bounded, there exists a constant A > 0 such that
(43 4+ 93)/2 < A for all k. We conclude that, for k =1,..., N,

%(H:(ck,mk) — HZ (cp—1,mp—1)) + Kg/Q ((er)2 + (mg)2)dz < eA. (4.3)

Step 3: Estimate for the entropy production. We claim that the entropy produc-
tion can be related to the modified relative entropy. To this end, we employ the
elementary estimates

(@ —y)* = Vo + vy’ (Ve —vy)? 2 y(Vae —y)? forallz,y >0,

2
3102<logac—2 — 1) +9% <2(1 —logy)(z —y)* forall0<xzy<l.
Y

The second inequality is easily verified by Taylor expansion. Thus, by the Poincaré
inequality with constant K, > 0,

Kg/g(ck)gdx > /Q(ck —cZ)Qda:ZCZ/Q (v — /&) de

c, Cx
— log —d
- 210ch/KZCk Ogcz .

and, equivalently,
K2(2 —logct
/ck log C—fdaz < p(*gk)/(ck)ida:.
Q Ck Ck Q

Analogously, we obtain

K2(2 —logm;
/mklogm—fdxg p(gk)/(mk)idx,
Q my, Q

my,
1—cp — K2(2 —log(1l — ¢ —m}
/(l—ck—mk)log Cf mfdxg p! g(* k 3)
Q 1—cp —mj 1—cp —my

X /(1 — ¢, —my)idr
Q
- 2K2(2 —log(1 — ¢ —mj))

* *
1—cf —mj

< (@2 + m2)de
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Summing up the three expressions and employing (4.1), we infer that

2 —loger 2 —logm; 2 —log(l —cf —mj3
H:(Ck,mk)SKZ%( g ko g L) g( k k))

cr my, 1—cf —mj
x / ((c)2 + (my)2)de
Q
< KZKJ/ ((cr)2 + (my)2)dz,
Q

where

2—log((1—=9)cs) 2—1log((1—=20)mg) .2—1log(l—cy—my—0d(ch+ms))
Ks = +2 .
(1—90)ch (1—06)mg 1—cf—m§—d(cs +my)

Setting K* = Kng_QKgl, we write this inequality as

K*HZ (e, my) < Kg/ ((er)2 + (mg)2)dz, k=1,...,N. (4.4)
Q
Step 4: End of the proof. We come back to the entropy estimate (4.3). Employing
(4.4), we obtain
(1+7K")H(ck,my) < HX(cgp—1,mp—1) +etA, k=1,...,N.

Solving these recursive inequalities, it follows that

k
HZ (e, my) < (L+7K*)""HZ(co,mo) + 57'AZ(1 +7K*7, k=1,...,N.
j=1

Since E;il ) =x/(1 —z) for |z| < 1, we find that
H (cpymy) < (1+ 7K H (co,mp) + e A(K*) L.
This can be formulated as
HZ (W, m ™) < e X | H (co,mo) |+ A(K™) ™ < e M HE (co,mo)| +eA(K) ™!

for all t € ((k — 1)7,k7], k = 1,...,N. In the limit 7 = ¢ — 0, (subsequences of)
(7)) and (m(7)) converge strongly to ¢ and m, respectively, in L?(0,T; LP(Q)) for
all 1 < p < oo (see (3.11)). Moreover, we have c¢; — ¢§ and m; — mg for ¢ — 0
which follows from

k
ek — ol = EZT/QUjdx <elu o) — 0 ase—0
j=1

and similarly for m} (see Lemma 3.2). Hence, by dominated convergence and the
bounds (4.1),

H*(C('at)vm('at)) < e_K*tH*(c(LmO)v 0<t<T.
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However, T' > 0 is chosen arbitrary and thus, this bound holds for ¢ > 0. Moreover,
we can pass to the limit 77 — 0 in the initial data. Finally, by the Csiszar-Kullback
inequality (see, e.g., Ref. 23) for some K¢k > 0, since ¢ and m conserve mass,

lle(,) = il Za i) + Im () = mgliZa )

C('7t) m(7t)
<K - t)log ——= - t)log ——=)d
< Koxc [ (et)108 22 (010 ™20 )

< KCKH*(C(vt)am(vt)) < KCKG_K*tH*(COamO)

for ¢ > 0, which finishes the proof of Theorem 1.2.

5. Numerical results

In this section, the tumor-growth model (2.9), in the scaling of Jackson and Byrne,
is discretized using finite differences in space and the implicit or explicit Euler
method in time. In the experiments we concentrate on the behavior of the relative
entropy and its entropy production since the dependence of the system on the model
parameters has been extensively studied in Ref. 19.

The Neumann boundary conditions are discretized in such a way that, in the
absence of production rates, the approximated total volume fractions fQ cdx and
fQ mdx are exactly constant in time. It turns out that the discretization of the
formulation (2.9) has stability problems due to the restrictions 0 < ¢, m < 1 which
may be violated numerically during the iteration procedure. The entropy-variable
formulation (1.7) does not require any restriction on the variables and behaves
numerically more stably than the direct formulation (2.9). We have compared our
results from the explicit Euler discretization and from the implicit discretization
(solved by Newton’s method) with the output of the software Multiphysics from
COMSOL, and all three algorithms lead to the same results.

Denoting by ¢ and m¥ the approximations of ¢(x;,t;) and m(x;, ), respec-
tively, where 2; = ¢h (i = 0,...,N, hN = ¢) and ¢, = k7 (k € N, 7 > 0), the
discretization (using an implicit time discretization) reads as follows:

1 " 1

;(Cf -G 71) = w2 (Lllcl,i+1/2(u§+1 - Uf) + L11€2,i+1/2(q)z]'€+1 - Uf) (5.1)

- L]1€1,z‘71/2(ui‘€ —uf ) - Llfz,iq/z(vzk - 0521)) + Re(cf,mb),

wherei=1,... N—1,k>1,

L?Z,i:tl/Q = %(sz(cfﬂ, mfil) + ng(cf, mf))v
: i
_IOgl—cf—mi“

and L;;j(c,m) are the coefficients of the matrix defined in (3.1) with D replaced
by D?B. The equation for m is discretized in a similar way. When an explicit time
discretization is used, the index k on the right-hand side of (5.1) has to be replaced

by k — 1.
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The numerical parameters are chosen, if not stated otherwise, as follows. We take
the interval length ¢ = 1, N = 200 grid points, and the discretization parameters
h=1/N and 7 = 5-1075. The initial data are defined as in Ref. 19:

co(z) = %(1 + tanh (xon— x)) +e&, mo(x) = %<1 — tanh (ﬂfon— x)), (5.2)

2

where C; = M; = 0.25, 9 = 0.1, and n = 0.05. In order to avoid stability prob-
lems, we have added € = 2 - 10~ to the initial cell volume fraction. The diffusion
coefficients are taken as in Ref. 19:

Be=0.2, By =0.0015.

First, we consider the case of vanishing production rates, R, = R,,, = 0. Figure 1
shows the volume fractions of the tumor cells and the ECM at various times, where
we have used the cell-induced pressure coefficient § = 1000. The cross-diffusion term
D3Bc, causes a drift of the ECM to the right boundary, induced by variations of the
tumor volume. The diffusion D32 of the ECM outside of the tumor is very small,
D38 ~ 0.001, such that the ECM cannot diffuse and forms a peak. The peak is not
too singular since the discrete H'-seminorm of m, ||my||1.n, and its maximal value,
maxq m, stay bounded when h — 0 numerically (see Table 1). However, the peak
indicates a loss of regularity of m, and we conjecture that global classical solutions
to the tumor-growth model do not exist. With increasing times, the tumor cell front
moves to the right boundary, i.e., the tumor penetrates the surrounding ECM. The
tumor cell fraction at the left boundary z = 0 is decreasing in time since the total
volume fraction fol cdx is constant in time.

N 400 600 800 1000 1200
[mallin | 4070 4.465 4.484 4.526 4.567
maxom | 0.630 0.646 0.637 0.645 0.649

Table 1. Discrete H'-seminorm and maximum of m as a function of the number of grid points.
Computed by using the explicit Euler scheme.

We expect that the relative entropy H*, defined in (1.8), is converging to zero
as t — oo when the pressure coefficient 0 is smaller than the critical value 8* =
41/ B/ Bm =~ 46. This behavior is illustrated in Figure 2 (left). In fact, the entropy is
decreasing for larger values of 6, too. The semilogarithmic scale in Figure 2 (right)
shows that the convergence for # = 0 and # = 100 is exponentially fast with a rate
which is initially larger than for later times. For 8§ = 1000, the convergence seems
to be no longer exponential.

It is clear from Figure 2 that the entropy production

H*
_ddt - / pdx = / (Qﬁcci + Bmbmeamy + 26, (1 4+ Qc)mi)dac
Q Q




September 1, 2011 12:6 WSPC/INSTRUCTION FILE pllstumorM3AS

20 A. Jingel and I. V. Stelzer

0.6
0.2 %05
T
2]
— L E 04,
3 0.15 -
5 =
g o1 =03
=1 . Q
= 8
5 0.2
0.05

o 02 04 06 08 1 o 02 04 06 08 1
Spatial position Spatial position

Fig. 1. Volume fractions of the tumor cells (left) and the ECM (right) versus position using § = 1000
at times t =0, 1,2, 3,4, 5,6. The production rates vanish, R. = R,, = 0. The tumor cell front and
the ECM peaks are moving from left to right as time increases.
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Fig. 2. Relative entropy H* versus time. Left: Normal scale; right: Semilogarithmic scale. The
production rates vanish, R. = Ry, = 0.

is positive. Interestingly, this is not true for the entropy production density p =
p(z,t), see Figure 3. The entropy production density p(z,1) is nonnegative for all
x € [0, 1] if 0 is sufficiently small but it may become negative at some points if 0 is
large enough. As a consequence, the entropy production does not lead to pointwise
gradient estimates if @ is sufficiently large. This means that the presented existence
analysis using entropy estimates is optimal. Clearly, the question remains if the
existence of global solutions can be proved by another method.

Figure 3 shows that the entropy production density p is nonnegative in [0, 1]
even for # = 200. However, the existence analysis works for much smaller values
of 6 only, namely 6 < 0* ~ 46. In the following, we explore this gap. We claim
that there exist initial data such that p(z,t) < 0 at some (z,t) for 6 close to
the critial value 6*. Indeed, let us take the initial data (5.2) with C; = 0.02 and
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Fig. 3. Entropy production density p at time ¢ = 1 versus position. The production rates vanish,
R.=Rpm =0.

M; = 0.95 (the other parameters are unchanged). Figure 4 (left) illustrates the
volume fraction of the ECM at times ¢t = 0,0.3,0.6 for § = 70. The right figure
shows that the corresponding entropy production density p becomes negative in
some region: ppin, &~ —0.0051 at ¢ = 0.6. This holds true even for smaller values
of 0: for § = 55, we have pmin &~ —0.0005 at ¢ = 0.6, and for § = 50 (choosing
C1 = 0.03), pmin ~ —1.6 - 1076 at t = 0.4. In the last two experiments, we have
taken N = 500 grid points to improve the accuracy.

0.15¢
X c
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= S
K 8 0.1f
2 s
£ 350.05
i i}
0 : : : : oL : : : :
0 0.2 04 06 0.8 1 0 02 04 06 08 1
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Fig. 4. Volume fraction of the ECM versus position at times ¢ = 0,0.3,0.6 (left) and entropy
production density p versus position at time ¢ = 0.6 (right) using 6 = 70. The production rates
vanish, R. = R,, = 0. The minimal value of p is —0.0051.

Next, we include the production terms from (1.3) in the equations. In Figure 5,
we see the time evolution of the volume fractions with # = 1000. In this experiment,
we have taken € = 5-10~%. Compared to Figure 1, the cell front and the ECM peaks
are moving much faster. Furthermore, because of the production rates, the tumor
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cell volume is increasing. The height of the peak becomes smaller for smaller values
of 0, see Figure 6. This behavior has been also observed by Jackson and Byrne!?
We remark that their scaling seems to be different such that we obtain different
numerical results than those presented in Ref. 19.
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Fig. 5. Volume fractions of the tumor cells (left) and the ECM (right) versus position using § = 1000
at times t = 0,1,2,3,4,5. The production rates are « = 0.1, v = 1, and § = 0.35.

0.25
0.2 9 0.25¢
[2] % 0.2+
©0.15 5
5 S 0.15¢
1S @
0.1
= § 0.1;
i
0.05¢ 0.05!
0 : : 0 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Spatial position Spatial position

Fig. 6. Volume fractions of the tumor cells (left) and the ECM (right) versus position using § = 100
at times t = 0,1,2,3,4,5. The production rates are « = 0.1, v = 1, and § = 0.35.

Due to the production terms, we cannot expect that the relative entropy H* is
decreasing in time but the analytical results show that H* is uniformly bounded
in time. This is confirmed in Figure 7 for various values of 6. Initially, the entropy
is decreasing. Later, it is increasing up to t = 15, then decreasing and finally, it is
very slowly increasing again.
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7. Relative entropy H* versus time using 8 = 0. The curves for § = 100 and 8 = 1000 are

very similar. The production rates are « = 0.1, v = 1, and § = 0.35.
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