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Abstract. An implicit Euler finite-volume scheme for general cross-diffusion systems
with volume-filling constraints is proposed and analyzed. The diffusion matrix may be
nonsymmetric and not positive semidefinite, but the diffusion system is assumed to possess
a formal gradient-flow structure that yields L∞ bounds on the continuous level. Examples
include the Maxwell–Stefan systems for gas mixtures, tumor-growth models, and systems
for the fabrication of thin-film solar cells. The proposed numerical scheme preserves
the structure of the continuous equations, namely the entropy dissipation inequality as
well as the nonnegativity of the concentrations and the volume-filling constraints. The
discrete entropy structure is a consequence of a new vector-valued discrete chain rule. The
existence of discrete solutions, their positivity, and the convergence of the scheme is proved.
The numerical scheme is implemented for a one-dimensional Maxwell–Stefan model and
a two-dimensional thin-film solar cell system. It is illustrated that the convergence rate
in space is of order two and the discrete relative entropy decays exponentially.

1. Introduction

Cross-diffusion is a phenomenon in multi-species systems, in which the gradient of the
concentration of one species induces a flux of the other species. Examples include gas
mixtures, ion transport through membranes, and tumor-growth models. Mathematically,
cross-diffusion is described by quasilinear parabolic equations with a non-diagonal diffusion
matrix. The analysis of such systems is challenging since the diffusion matrix is generally
neither symmetric nor positive semidefinite, and standard tools like maximum principles
and regularity theory generally do not apply. In recent years, it has been found that a class
of cross-diffusion systems, which describe volume-filling effects in mixtures, possess global
bounded weak solutions [9, 32]. The existence proof is based on the formal gradient-flow
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or entropy structure of the cross-diffusion equations, leading to the so-called boundedness-
by-entropy method. In this paper, we develop a discrete version of this method for finite-
volume approximations of cross-diffusion systems, preserving the structure of the continu-
ous equations, namely nonnegativity, boundedness, mass control, and entropy dissipation,
and converging to the continuous equations when the mesh parameters tend to zero.

1.1. The boundedness-by-entropy method. We consider the cross-diffusion system

(1) ∂tui + div

(
−

n∑
j=1

Aij(u)∇uj
)

= 0, in Ω, t > 0, i = 1, . . . , n,

where u = (u1, . . . , un) is the vector of volume or mass fractions and Ω ⊂ R2 is a bounded
domain. The volume or mass fraction of the solvent u0 is defined by u0 = 1 −∑n

i=1 ui
such that the identity

∑n
i=0 ui = 1 is fulfilled. These equations describe the evolution of

fluid mixtures or multicomponent systems [33]. We prescribe no-flux boundary and initial
conditions:

(2)
n∑
j=1

Aij(u)∇uj · ν = 0 on ∂Ω, t > 0, ui(0) = u0
i in Ω,

where ν denotes the exterior unit normal vector to ∂Ω. The diffusion matrix A(u) =
(Aij(u)) is generally neither symmetric nor positive definite obstructing the use of standard
techniques. This problem can be overcome when the system possesses a formal gradient-
flow or entropy structure. In the following, we explain this structure.

First, we introduce the open simplex

D =

{
u = (u1, . . . , un) ∈ (0, 1)n :

n∑
i=1

ui < 1

}
and let a strictly convex function h ∈ C2(D; [0,∞)) with h(u) =

∑n
i=0 hi(ui) be given. Note

that u0 is a function of u = (u1, . . . , un), so h depends only on (u1, . . . , un). Furthermore,
we set H[u] =

∫
Ω
h(u)dx. Choosing h′(u) as a test function in the weak formulation of (1),

a formal computation gives

(3)
dH
dt

+

∫
Ω

∇u : h′′(u)A(u)∇udx = 0, 0 < t < T,

where h′′(u) is the Hessian of h, and “:” is the Frobenius matrix product. If h′′(u)A(u) is
positive (semi-) definite, we call h an entropy density, H an entropy, and (3) an entropy
(dissipation) inequality. In many applications, there exist cA > 0 and 0 < s ≤ 1 such that
for z ∈ Rn and u ∈ D,

z>h′′(u)A(u)z ≥ cA

n∑
i=1

u
2(s−1)
i z2

i .

This means that h′′(u)A(u) is positive definite but possibly involving a singularity at ui = 0.
We refer to [32] and Section 3 for some examples. In this situation, (3) provides an
L2(Ω) estimate for ∇usi . Moreover, if h′ : D → Rn is invertible, we conclude an L∞(Ω)
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bound for ui. Indeed, the strategy of the existence analysis is to solve (1) in the entropy
variable w = h′(u) and to define the volume fractions a posteriori via u = (h′)−1(w). Since
(h′)−1 : Rn → D, it holds that u(x, t) ∈ D, which gives the desired L∞(Ω) bound. With
these tools, the global existence of bounded weak solutions to (1)–(2) can be proved [32].

The existence result may be surprising in view of the fact that the diffusion matrix in
(1) may be not positive (semi-) definite, but it can be understood by observing that the
positive definiteness of h′′(u)A(u) implies that equations (1) are parabolic in the sense of
Petrovskii [33, Remark 4.3]. Another explanation is that equations (1) can be written
equivalently as

(4) ∂tui(w)− div

( n∑
j=1

Bij(w)∇w
)

= 0, i = 1, . . . , n,

where the so-called Onsager matrix B = (Bij), defined by B(w) = A(u(w))h′′(u(w))−1, is
positive (semi-) definite. The task is to “translate” this strategy to a finite-volume setting.

1.2. Key ideas. The derivation of the entropy inequality (3) is based on the chain rule
h′′(u)∇u = ∇h′(u). To formulate a discrete version, we assume that Ω is the union of cells
K and let σ = K|L be the edge between two neighboring cells K and L inside of Ω. The
discrete volume fraction ui is constant on each cell, and we write ui,K for its value. The
value on the edge is denoted by ui,σ.

When the entropy density equals the sum h(u) =
∑n

i=1 hi(ui), the Hessian h′′(u) is
diagonal, and the discrete chain rule can be formulated componentwise as

(5) h′′i (ui,σ)(ui,K − ui,L) = h′i(ui,K)− h′i(ui,L) for σ = K|L.
If h′′i is strictly monotone, there exists a unique solution ui,σ to (5) by the mean-value
theorem. In the case of the Boltzmann entropy hi(ui) = ui(log ui − 1) + 1, this leads to
the logarithmic mean

(6) ui,σ =
ui,K − ui,L

log ui,K − log ui,L
,

which has been used to develop entropy-conservative schemes for hyperbolic conservation
laws [29] and entropy-dissipative schemes for drift-diffusion equations [5].

In the present case, we assume that h(u) =
∑n

i=0 hi(ui). Unfortunately, the Hessian
h′′(u) is not diagonal, since ∂2h/(∂ui∂uj) = δijh

′′
i (ui) + h′′0(u0). Then the vector-valued

mean-value theorem does not allow us to determine ui,σ like in (5). We overcome this issue
by introducing two ideas.

Our first idea is to define u0,K = 1 − ∑n
i=1 ui,K on the cells but to define u0,σ (as

well as ui,σ for i = 1, . . . , n) from (5). Thus, in general, u0,σ 6= 1 −∑n
i=1 ui,σ. We set

uK = (u1,K , . . . , uK,n), uσ = (u0,σ, . . . , un,σ), and Hij(uσ) = δijh
′′
i (ui,σ) + h′′0(u0,σ) for i, j =

1, . . . , n. The matrix H(uσ) = (Hij(uσ)) is similar to the Hessian h′′ with the exception
that we use u0,σ as the argument of h′′0 and not 1−∑n

i=1 ui,σ. This means that H depends
on all variables u0,σ, . . . , un,σ, while h is a function of u1,K , . . . , un,K . We prove in Lemma
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4 that

(7)
n∑
j=1

Hij(uσ)(uj,K − uj,L) = (h′(uK)− h′(uL))i, i = 1, . . . , n,

holds, which is the desired discrete chain rule.
Furthermore, we need the positive (semi-) definiteness of h′′(u)A(u) at uσ. Since we have

replaced h′′ by the matrix H(uσ), which contains the new variable u0,σ, we cannot evaluate
A(u) at (u1,σ, . . . , un,σ). Instead, our second idea is to interpret the diffusion matrix A
as a function of uσ = (u0,σ, . . . , un,σ), called Aσ, and to impose the positive definiteness
condition

(8) z>H(uσ)Aσ(uσ)z ≥ cA

n∑
i=1

u
2(s−1)
i,σ z2

i for all z ∈ Rn.

1.3. An illustrative example. Let us explain the second idea on a simple example with
the diffusion matrix

(9) A =

(
1− u1 −u1

−u2 1− u2

)
for u = (u1, u2) ∈ D.

Equations (1) with this diffusion matrix can be formally derived in the diffusion limit from
the Euler equations with friction forces [33, Example 4.3]. We present in Section 3 further
examples. We choose the entropy density

h(u) =
2∑
i=0

ui(log ui − 1) + 3, where u0 = 1− u1 − u2,

and compute

h′′(u) =

(
1/u1 + 1/u0 1/u0

1/u0 1/u2 + 1/u0

)
, h′′(u)A(u) =

(
1/u1 0

0 1/u2

)
.

This shows that h′′(u)A(u) is positive definite with z>h′′(u)A(u)z = z2
1/u1 + z2

2/u2 for all
u ∈ D and z ∈ R2.

For the numerical approximation, we write the diffusion matrix as

Ã(u0, u) =
1

a(u)

(
u0 + u2 −u1

−u2 u0 + u1

)
, where a(u) = u0 + u1 + u2.

Of course, this matrix and (9) coincide if the identity u0 + u1 + u2 = 1 holds. In the
numerical scheme, we do not impose this condition on the edges. Instead, we define

H(uσ) =

(
1/u1,σ + 1/u0,σ 1/u0,σ

1/u0,σ 1/u2,σ + 1/u0,σ

)
and Aσ(uσ) := Ã(uσ), where ui,σ for i = 0, 1, 2 is given by (6). Although u0,σ+u1,σ+u2,σ 6= 1
is not guaranteed, we find that

H(uσ)Aσ(uσ) =

(
1/u1,σ 0

0 1/u2,σ

)
,
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and (8) is satisfied for s = 1/2. Note the factor a(uσ) in the definition of Aσ is crucial for
this result and that ui,σ > 0 for all i cannot be guaranteed in general. However, we prove
that 0 < a(uσ) ≤ 1 holds in the present case; see the paragraph after Theorem 1.

When 1/a(uσ) > 1, this factor may be interpreted as an artificial diffusion coefficient.
Yet, even if in general a(uσ) 6= 1, as a(uσ) is the sum of the logarithmic mean between
ui,K and ui,L of each species, we always observe in our numerical experiments (not shown
here) that a(uσ) is of order one. Moreover, the solution is very close to that one obtained
from a finite-volume scheme with arithmetic mean (which preserves the volume–filling
constraint) instead of the logarithmic mean. Thus, as expected, this factor does not lead
to over-diffusive results. Let us notice that the situation may be different if, for instance,
a(uσ) was only given by u1,σ or u2,σ (or even u1,σ + u2,σ). In this case, we can build initial
data such that 1/a(uσ) is much larger than one at least for the first time steps, leading to
over-diffusive solutions.

1.4. State of the art. First existence results for cross-diffusion systems were stated under
restrictive conditions on the nonlinearities [40]. Amann [2] showed that weak solutions to
strongly coupled parabolic systems exist globally if their W 1,p norm with p > d can be
controlled. Alt and Luckhaus [1] proved global existence results for systems of the form
(4) with uniformly positive definite Onsager matrices. Global bounded weak solutions were
shown for a special cross-diffusion system with volume-filling effects by Burger et al. [9] and
later for a general class of systems in [32], based on the underlying entropy structure. Such
systems arise naturally in the modeling of gas mixtures and in multi-species population
dynamics [33, 44].

Structure-preserving finite-volume-type schemes were first designed for hyperbolic con-
servation laws fulfilling entropy stability or entropy conservation [43]. The application
to cross-diffusion systems is more recent. A convergence study of a finite-volume ap-
proximation for a nondegenerate cross-diffusion problem was carried out in [3], based on
classical quadratic energy estimates. Finite-volume approximations that satisfy a discrete
entropy inequality were suggested and analyzed in [10, 12, 13, 16, 37, 38], while finite-
volume schemes for cross-diffusion systems preserving the volume-filling constraints were
developed in [10, 12, 16, 28].

The preservation of the entropy structure is achieved by designing a discrete chain rule.
In the literature, the elementary inequality (u − v)(log u − log v) ≥ 4(

√
u − √v)2 is used

as a discrete version of the chain rule ∇u · ∇ log u = 4|∇√u|2 [10, 24] and the logarithmic
mean (6) as a discrete version of the chain rule u∇ log u = ∇u [5, 13, 22]. The more general
chain rule (5) was suggested in our previous work [38]. In all these examples, the discrete
chain rule is defined componentwise.

In the discrete gradient method for differential equations, related discrete chain rules
are formulated to achieve energy conservation or entropy dissipation; see the review [42].
Examples are given by the Gonzales scheme [25] and the mean-value discrete gradient [27].
The latter technique was extended to the average vector field method [14], which uses an
average of the differential operator div(B∇w) and is based on the vector-valued mean-value
theorem. However, it seems to be difficult to extract gradient estimates from these discrete
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gradients. Here, we consider for the first time (up to our knowledge) a vector-valued chain
rule leading to gradient estimates.

Let us also mention related approaches for diffusion problems. For finite-difference
schemes, entropy-stable and entropy-dissipative discretizations were developed in, e.g.,
[31, 39, 41], extending Tadmor’s framework or using upwind approximations. When the
equations possess a variational structure involving the variational derivative of the en-
ergy/entropy, discrete variational derivatives were defined in [21]. This approach was
extended to fourth-order parabolic equations [8], but it seems not to cover cross-diffusion
systems. Energy-dissipative schemes for scalar equations were developed also for higher-
order time integrations; see, e.g., [26] for Runge–Kutta methods and [35] for one-leg mul-
tistep methods. Unfortunately, these techniques cannot be easily adapted to our setting.
Interesting approaches are the discontinuous Galerkin time discretization of [18], whose use
in finite-volume schemes has still to be explored, and the space-time Galerkin approach of
[7], which needs a regularizing term.

The paper is organized as follows. The numerical scheme and our main results (existence
of discrete solutions, positivity, and convergence of the scheme) are introduced in Section
2. We present some examples of cross-diffusion models that satisfy our main assumptions
in Section 3. In Section 4, the existence of solutions is proved, while the convergence of the
scheme is shown in Section 5. Finally, some numerical examples are presented in Section
6.

2. Numerical scheme and main results

2.1. Notation and definitions. Let Ω ⊂ R2 be a bounded, polygonal domain. We
consider only two-dimensional domains, but the generalization to higher space dimensions
is straightforward. An admissible mesh of Ω is given by (i) a family T of open polygonal
control volumes (or cells), (ii) a family E of edges, and (iii) a family P of points (xK)K∈T
associated to the control volumes and satisfying Definition 9.1 in [19]. This definition
implies that the straight line xKxL between two centers of neighboring cells is orthogonal
to the edge σ = K|L between two cells. For instance, Voronöı meshes satisfy this condition
[19, Example 9.2]. The size of the mesh is denoted by ∆x = maxK∈T diam(K). The family
of edges E is assumed to consist of interior edges Eint satisfying σ ⊂ Ω and boundary edges
σ ∈ Eext satisfying σ ⊂ ∂Ω. For given K ∈ T , EK is the set of edges of K, and it splits into
EK = Eint,K ∪ Eext,K . For any σ ∈ E , there exists at least one cell K ∈ T such that σ ∈ EK .

We need the following definitions. For σ ∈ E , we introduce the distance

dσ =

{
d(xK , xL) if σ = K|L ∈ Eint,K ,

d(xK , σ) if σ ∈ Eext,K ,

where d is the Euclidean distance in R2, and the transmissibility coefficient

(10) τσ =
m(σ)

dσ
,
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where m(σ) denotes the Lebesgue measure of σ. The mesh is assumed to satisfy the
following regularity assumption: There exists ζ > 0 such that for all K ∈ T and σ ∈ EK ,

(11) d(xK , σ) ≥ ζdσ.

Let T > 0, NT ∈ N and introduce the time step size ∆t = T/NT as well as the time steps
tk = k∆t for k = 0, . . . , NT . We denote by D the admissible space-time discretization of
ΩT = Ω× (0, T ) composed of an admissible mesh T and the values (∆t, NT ).

Next, we introduce the functional spaces. The space of piecewise constant functions is
defined by

VT =

{
v : Ω→ R : ∃(vK)K∈T ⊂ R, v(x) =

∑
K∈T

vK1K(x)

}
,

where 1K is the characteristic function on K. In order to define a norm on this space, we
first introduce the notation

vK,σ =

{
vL if σ = K|L ∈ Eint,K ,

vK if σ ∈ Eext,K ,

for K ∈ T , σ ∈ EK and the discrete operators

DK,σv := vK,σ − vK , Dσv := |DK,σv|.
The (squared) L2 norm, the discrete H1 seminorm, and the discrete H1 norm on VT are

given by, respectively,

‖v‖2
0,2,T =

∑
K∈T

m(K)|vK |2,

|v|21,2,T =
∑
σ∈E

τσ|Dσv|2,

‖v‖2
1,2,T = |v|21,2,T + ‖v‖2

0,2,T .

We associate to these norms a dual norm with respect to the L2 inner product,

‖v‖−1,2,T = sup

{∫
Ω

vwdx : w ∈ VT , ‖w‖1,2,T = 1

}
.

It holds that ∣∣∣∣ ∫
Ω

vwdx

∣∣∣∣ ≤ ‖v‖−1,2,T ‖w‖1,2,T for v, w ∈ VT .

Finally, we introduce the space VT ,∆t of piecewise constant functions with values in VT ,

VT ,∆t =

{
v : Ω× [0, T ]→ R : ∃(vk)k=1,...,NT ⊂ VT , v(x, t) =

NT∑
k=1

vk(x)1(tk−1,tk](t)

}
,

equipped with the discrete L2(0, T ;H1(Ω)) norm(
NT∑
k=1

∆t‖vk‖2
1,2,T

)1/2

for all v ∈ VT ,∆t.
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2.2. Numerical scheme. We define the finite-volume scheme for the cross-diffusion model
(1) and (2). We first approximate the initial functions by

(12) u0
i,K =

1

m(K)

∫
K

u0
i (x)dx for K ∈ T , i = 0, . . . , n.

Let uk−1
K = (uk−1

1,K , . . . , u
k−1
n,K) and uk−1

0,K = 1 −∑n
i=1 u

k−1
i,K be given for K ∈ T . Then the

values uki,K are determined by the implicit Euler finite-volume scheme

m(K)
uki,K − uk−1

i,K

∆t
+
∑
σ∈EK

Fki,K,σ = 0,(13)

Fki,K,σ = −
n∑
j=1

τσAij,σ(ukσ)DK,σu
k
j for K ∈ T , σ ∈ EK ,(14)

and τσ is defined by (10). The matrix Aσ = (Aij,σ) satisfies Aσ(u0, u) = A(u) for all u ∈ D
and u0 = 1−∑n

i=1 ui. By definition of the discrete operator DK,σ, the discrete fluxes vanish
on the boundary edges, guaranteeing the no-flux boundary conditions. Thus, we only need
to define in (14) the mean vector ukσ = (uk0,σ, . . . , u

k
n,σ) for every σ = K|L ∈ Eint:

(15) uki,σ =


ũki,σ if uki,K > 0, uki,L > 0, and uki,K 6= uki,L,

uki,K if uki,K = uki,L > 0,

0 else,

where ũki,K ∈ (0, 1) is the unique solution to

(16) h′′i (ũ
k
i,σ)DK,σu

k
i = DK,σh

′
i(u

k
i ) for K ∈ T , σ ∈ Eint,K , i = 0, . . . , n.

If h′′i is continuous and strictly monotone, the existence of a unique value ũki,σ follows from

the mean-value theorem. Moreover, if uki,K , uki,L ≥ 0 we have for i = 0, . . . , n,

0 ≤ min{uki,K , uki,L} ≤ uki,σ ≤ max{uki,K , uki,L} ≤ 1.

2.3. Main results. Given the entropy density h(u) =
∑n

i=1 hi(ui) + h0(u0), we define for
u ∈ VT the discrete entropy

H[u] =
∑
K∈T

m(K)h(uK),

and replace the Hessian h′′ by the matrix

(17) Hij(uσ) = δijh
′′
i (ui,σ) + h′′0(u0,σ), uσ ∈ (0, 1)n+1, i, j = 1, . . . , n,

where ui,σ is defined by (15). Note that this matrix is symmetric and positive definite (if
hi is strictly convex).

We impose the following hypotheses:

(H1) Domain: Ω ⊂ R2 is a bounded polygonal domain and D = {u = (u1, . . . , un) ∈
(0, 1)n :

∑n
i=1 ui < 1}.

(H2) Discretization: D is an admissible discretization of ΩT = Ω× (0, T ) satisfying (11).
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(H3) Initial data: u0 = (u0
1, . . . , u

0
n) ∈ L1(Ω;D) satisfies

∫
Ω
h(u0)dx < ∞. We set u0

0 =
1−∑n

i=1 u
0
i .

(H4) Entropy density: h(u) =
∑n

i=1 hi(ui)+h0(u0) for u ∈ D and u0 = 1−∑n
i=1 ui, where

h ∈ C0(D; [0;∞)) is convex, h′ : D → R is invertible, hi ∈ C2(0, 1), h′′i is strictly
decreasing, and there exists ch > 0 such that hi(x) ≥ ch(x − 1) for all 0 ≤ x ≤ 1,
i = 1, . . . , n.

(H5) Diffusion matrix: A ∈ C0,1(D;Rn×n) and there exists a matrix Aσ ∈ C0,1([0, 1] ×
(0, 1)n;Rn×n) such that A(u) = Aσ(uσ) for all u ∈ D with ui = ui,σ for i = 1, . . . , n
and u0,σ = 1−∑n

i=1 ui. We assume that ‖Aσ(0, u)‖ <∞, where ‖ · ‖ denotes some
matrix norm, for all u = (u1, . . . , un) ∈ (0, 1)n satisfying

∑n
i=1 ui ≤ 1, and there

exist numbers cA > 0, 0 < s < 1 such that for all z ∈ Rn and for some uσ ∈ (0, 1)n+1,

z>H(uσ)Aσ(uσ)z ≥ cA

n∑
i=1

u
2(s−1)
i,σ z2

i .

These assumptions include all hypotheses needed in the boundedness-by-entropy method;
see [32]. We also need additional conditions. First, the entropy density in Hypothesis (H4)
has a particular structure including the Boltzmann entropy for volume-filling models. The
strict monotonicity of h′′i is required to define properly the mean value ũki,σ in (15). Ad-

missible examples are hi(s) = s(log s − 1) + 1 and, more generally, hi(s) =
∫ s
a

log q(z)dz
with a ∈ (0, 1), q ∈ C2(0, 1) ∩ C0([0, 1]) is strictly monotone, qq′′ > (q′)2, q(0) = 0, and
q(0)/q′(0) = 0.

Second, the positive definiteness condition in Hypothesis (H5) is formulated for the
matrix H(uσ), which replaces the Hessian h′′, and the modified diffusion matrix Aσ(uσ).
This modification is needed to take care of the fact that u0,σ can generally not be identified
with 1 −∑n

i=1 ui,σ. If this identification is possible, the matrices h′′A and HAσ coincide.
The Lipschitz continuity of Aσ is needed in the proof of the convergence of the scheme but
not for the existence analysis. We prove below (see Theorem 1) that uki,σ > 0 holds for all

i = 1, . . . , n but only uk0,σ ≥ 0. Our analysis can be extended under suitable assumptions
to the case s = 1 and allowing for source terms in (1); see Remarks 6, 7, and 11.

The first main result is as follows.

Theorem 1 (Existence of discrete solutions). Let Hypotheses (H1)–(H5) hold. Then there
exists a solution ukK = (uk1,K , . . . , u

k
n,K) to scheme (12)–(15) satisfying ukK ∈ D for K ∈ T

and 0 < uki,σ < 1 for σ ∈ Eint, k ≥ 1, i = 1, . . . , n. Moreover, the following discrete entropy
inequality holds:

(18) H[uk] + cA∆t
n∑
i=1

∑
σ∈Eint

τσu
2(s−1)
i,σ (Dσu

k
i )

2 ≤ H[uk−1].

The proof of Theorem 1 is based on a topological degree argument and the entropy
estimate (18), which follows from the discrete chain rule (7). Generally, we cannot exclude
that

∑n
i=0 u

k
i,σ > 1. However, when the entropy is given by the Boltzmann entropy hi(ui) =

ui(log ui−1) + 1, it holds that
∑n

i=0 u
k
i,σ ≤ 1, since the logarithmic mean is not larger than
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the arithmetic mean, i.e. uki,σ ≤ (uki,K + uki,L)/2 for σ = K|L and
∑n

i=0 u
k
i,σ ≤

∑n
i=0(uki,K +

uki,L)/2 = 1. This shows that the volume-filling constraints are fully satisfied.
For the convergence result, we need some notation. For K ∈ T and σ ∈ EK , we define

the cell TK,σ of the dual mesh:

• If σ = K|L ∈ Eint,K , then TK,σ is that cell (“diamond”) whose vertices are given by
xK , xL, and the end points of the edge σ.
• If σ ∈ Eext,K , then TK,σ is that cell (“triangle”) whose vertices are given by xK and

the end points of the edge σ.

The cells TK,σ define a partition of Ω. It follows from the property that the straight line
xKxL between two neighboring centers of cells is orthogonal to the edge σ = K|L that

m(σ)d(xK , xL) = 2 m(TK,σ) for σ = K|L ∈ Eint.

The approximate gradient of v ∈ VT ,∆t is defined by

∇Dv(x, t) =
m(σ)

m(TK,σ)
(DK,σv

k)νK,σ for x ∈ TK,σ, t ∈ (tk−1, tk],

where νK,σ is the unit vector that is normal to σ and points outwards of K.
We introduce a family (Dm)m∈N of admissible space-time discretizations of ΩT indexed by

the size ηm = max{∆xm,∆tm} of the mesh, satisfying ηm → 0 as m→∞. We denote by
Tm the corresponding meshes of Ω and by ∆tm the corresponding time step sizes. Finally,
we set ∇m := ∇Dm .

Theorem 2 (Convergence of the scheme). Let the assumptions of Theorem 1 hold, let
(Dm)m∈N be a family of admissible meshes satisfying (11) uniformly in m ∈ N. Let (um)m∈N
be a family of finite-volume solutions to (12)–(15) constructed in Theorem 1. Then there
exists a function u = (u1, . . . , un) ∈ L2(0, T ;H1(Ω;Rn)) satisfying u(x, t) ∈ D for a.e.
(x, t) ∈ ΩT and for i = 1, . . . , n,

ui,m → ui strongly in Lp(ΩT ), 1 ≤ p <∞,
∇mui,m ⇀ ∇ui weakly in L2(ΩT ) as m→∞,

up to a subsequence, and u is a weak solution to (1) and (2), i.e., for all ψi ∈ C∞0 (Ω×[0, T )),
it holds that for all i = 1, . . . , n,

(19)

∫ T

0

∫
Ω

ui∂tψidxdt+

∫
Ω

u0
iψi(0)dx =

∫ T

0

∫
Ω

n∑
j=1

Aij(u)∇uj · ∇ψidxdt.

The proof is based on uniform estimates deduced from the entropy inequality (18) and
the compactness result from [23], giving a.e. convergence of a subsequence of (um). We
follow the strategy of [15] to show that the limit satisfies (1) in the weak sense (19).

3. Examples and counter-example

3.1. Three-species Maxwell–Stefan equations. The Maxwell–Stefan equations de-
scribe the evolution of the partial densities in a multicomponent fluid, with diffusion fluxes
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originating from friction forces. The diffusion matrix of the Fock–Onsager formulation is
defined for the three-species case by

A(u) =
1

α(u)

(
d2 + (d0 − d2)u1 (d0 − d1)u1

(d0 − d2)u2 d1 + (d0 − d1)u2

)
,

where α(u) = d1d2(1− u1 − u2) + d0d1u1 + d0d2u2,

where u1, u2 are the volume fractions of the components of the fluid mixture and di are
some positive parameters [33]. The third constitutent is given by u0 = 1 − u1 − u2. We
introduce the entropy density

h(u) = u1(log u1 − 1) + u2(log u2 − 1) + u0(log u0 − 1) + 3, u ∈ D.(20)

Then the Hessian of h equals

h′′(u) =

(
1/u1 + 1/u0 1/u0

1/u0 1/u2 + 1/u0

)
.

Now, for the finite-volume scheme, let (u1,K , . . . , un,K) ∈ D be given for every K ∈ T , we
define for all σ = K|L ∈ Eint and i = 0, . . . , n,

(21) ui,σ =


ui,K − ui,L

log(ui,K)− log(ui,L)
if ui,K > 0, ui,L > 0, and ui,K 6= ui,L,

ui,K if ui,K = ui,L > 0,

0 else,

and

H(uσ) =

(
1/u1,σ + 1/u0,σ 1/u0,σ

1/u0,σ 1/u2,σ + 1/u0,σ

)
,

Aσ(uσ) =
1

ασ(uσ)

(
d2(u2,σ + u0,σ) + d0u1,σ (d0 − d1)u1,σ

(d0 − d2)u2,σ d1(u1,σ + u0,σ) + d0u2,σ

)
,

where ασ(uσ) = d1d2u0,σ + d0d1u1,σ + d0d2u2,σ.

Note that Aσ = A if u0,σ = 1− u1,σ − u2,σ. We compute for z = (z1, z2) ∈ R2,

H(uσ)Aσ(uσ) =
u0,σ + u1,σ + u2,σ

ασ(uσ)

(
d2/u1,σ + d0/u0,σ d0/u0,σ

d0/u0,σ d1/u2,σ + 1/u0,σ

)
,

z>H(uσ)Aσ(uσ)z =
u0,σ + u1,σ + u2,σ

ασ(uσ)

(
d2

u1,σ

z2
1 +

d1

u2,σ

z2
2 +

d0

u0,σ

(z1 + z2)2

)
≥ c

(
z2

1

u1,σ

+
z2

2

u2,σ

)
,

where c = max{d0d1, d0d1, d1d2} > 0. This fulfills Hypothesis (H5) with s = 1/2. More-
over, Theorem 1 shows that ui,σ > 0 for i = 1, 2. Thus, ασ(uσ) is positive and Aσ is well
defined.



12 A. JÜNGEL AND A. ZUREK

3.2. A cross-diffusion system for thin-film solar cells. The physical vapor deposi-
tion process for the fabrication of thin-film crystalline solar cells can be described by the
following cross-diffusion equations:

∂tui = div

( n∑
j=0

aij(uj∇ui − ui∇uj)
)
, i = 0, . . . , n,(22)

where ui are the volume fractions of the components of the thin film and aij > 0 satisfies
aij = aji for all i, j = 1, . . . , n. Since

∑n
i=0 ui = 1, we can remove, as in [4], the equation

for the species i = 0, leading to equations (1) with the diffusion matrix A(u) = (Aij(u)),
where

Aii(u) =
n∑

k=1, k 6=i

(aik − ai0)uk + ai0, Aij(u) = −(aij − ai0)ui for j 6= i,(23)

and i, j = 1, . . . , n. In this case, we consider the entropy density (20) and for (u1,K , . . . , un,K) ∈
D given for every K ∈ T , we define for all σ = K|L ∈ Eint and i = 0, . . . , n the coefficient
ui,σ as in (21). Then we choose the following matrices:

Hii(uσ) =
1

ui,σ
+

1

u0,σ

, Hij(uσ) =
1

u0,σ

for j 6= i,(24)

Aii,σ(uσ) =
n∑

k=1, k 6=i

(aik − ai0)uk,σ + ai0, Aij,σ(uσ) = −(aij − ai0)ui,σ for j 6= i.(25)

We claim that Hypothesis (H5) holds with s = 1/2. The proof follows the strategy in [4,
Section 3.1], but since generally β 6= 1, we need to modify slightly the arguments. To this
end, we introduce the matrix P (uσ) with elements Pij(uσ) = δij − ui,σ for i, j = 1, . . . , n.
A computation shows that

(H(uσ)P (uσ))ii =
1

ui,σ
+

1− β
u0,σ

, (H(uσ)P (uσ))ij =
1− β
u0,σ

for i 6= j.

Recall that β ≤ 1. Then H(uσ)P (uσ) is positive definite with

z>H(uσ)P (uσ)z =
n∑
i=1

z2
i

ui,σ
+

1− β
u0,σ

n∑
i,j=1

(zi + zj)
2 ≥

n∑
i=1

z2
i

ui,σ

for any z ∈ Rn. We also need the matrix Λ(uσ) with elements Λij(uσ) = δij/ui,σ and
α = mini,j=1,...,n aij > 0. The previous inequality gives

z>
(
H(uσ)Aσ(uσ)− αΛ(uσ)

)
z ≥ z>H(uσ)

(
Aσ(uσ)− αP (uσ)

)
z.

Denoting by Ãσ(uσ) the matrix with coefficients aij −α instead of aij and introducing the
matrix D(uσ) with elements Dij(uσ) = ui,σ for i, j = 1, . . . , n, it follows that Aσ(uσ) −
αP (uσ) = Ãσ(uσ) + αD(uσ). Therefore,

z>
(
H(uσ)Aσ(uσ)− αΛ(uσ)

)
z ≥ z>

(
H(uσ)Ãσ(uσ) + αH(uσ)D(uσ)

)
z.
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It remains to show that H(uσ)Ãσ(uσ) and H(uσ)D(uσ) are positive semidefinite. All
elements of H(uσ)D(uσ) are given by the same value β/u0,σ, and so this matrix is positive

semidefinite. Furthermore, H(uσ)Ãσ(uσ) is positive semidefinite if and only if Ãσ(uσ)H(uσ)−1

is positive semidefinite. (At this point, we use the symmetry of H(uσ).) Since the elements
of the inverse H(uσ)−1 are

H(uσ)−1
ii =

1

β
(β − ui,σ)ui,σ, H(uσ)−1

ij = − 1

β
ui,σuj,σ for i 6= j

and i, j = 1, . . . , n, we obtain(
Ãσ(uσ)H(uσ)−1

)
ii

= (ai0 − α)
ui,σ
β

(β − ui,σ) +
1

β

n∑
k=1, j 6=i

(aij − α)ui,σuj,σ,

(
Ãσ(uσ)H(uσ)−1

)
ij

= − 1

β
(aij − α)ui,σuj,σ for i 6= j.

Consequently, using the symmetry of (aij),

z>Ãσ(uσ)H(uσ)−1z

=
1

β

n∑
i=1

(ai0 − α)ui,σ(β − ui,σ)z2
i +

1

β

n∑
i=1

n∑
j=1, j 6=i

(aij − α)ui,σuj,σ(z2
i − zizj)

=
1

β

n∑
i=1

(ai0 − α)ui,σ(β − ui,σ)z2
i +

1

2β

∑
i 6=j

(aij − α)ui,σuj,σ(z2
i + z2

j − 2zizj) ≥ 0.

We conclude that

z>
(
H(uσ)Aσ(uσ)− αΛ(uσ)

)
z ≥ 0.

Summarizing, the result reads as follows.

Lemma 3. et uσ ∈ (0, 1)n+1 be defined by (21) and H(uσ) and Aσ(uσ) by (24)–(25) and
assume that aij = aji for all i, j = 1, . . . , n and α = mini,j=1,...,n aij > 0. Then for any
z ∈ Rn,

z>H(uσ)Aσ(uσ)z ≥ α
n∑
i=1

z2
i

ui,σ
.

Already in [13], a convergent two-point flux approximation finite-volume scheme for this
model with a logarithmic mean was introduced, but with a different strategy. Indeed, the
authors of [13] noticed that if all diffusion coefficients are equal, system (22) reduces to
n+ 1 uncoupled heat equations, and they rewrite the equations as

∂tui − a∗∆ui = div

( n∑
j=0

(aij − a∗)(uj∇ui − ui∇uj)
)
, i = 0, . . . , n,

where a∗ > 0 is arbitrary. Then they designed their scheme for this equivalent system and
proved its convergence, using similar techniques as in our paper. However, the numerical
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results depend on the choice of a∗, and choosing a∗ > 0 too large overestimates the diffu-
sion. In our approach, we avoid the artificial parameter a∗ but still obtain full structure
preservation of the scheme.

3.3. Tumor-growth model. The growth of an avascular tumor can be modeled in the
framework of fluid dynamics and continuum mechanics by diffusion fluxes of the tumor
cells, the extracellular matrix (ECM), and the interstitial fluid (water, nutrients). The
diffusion matrix of the tumor-growth model of [30] is given by

A(u) =

(
2u1(1− u1)− βθu1u

2
2 −2βu1u2(1 + θu1)

−2u1u2 + βθ(1− u2)u2
2 2βu2(1− u2)(1 + θu1)

)
,

where u1 is the volume fraction of the tumor cells and u2 is the volume fraction of the
ECM. The volume fraction of the interstitial fluid is denoted by u0, and it holds that
u0 + u1 + u2 = 1. The entropy density and the mobility coefficients are defined as in the
previous examples, and we choose H(uσ) as before. Furthermore, we define

Aσ(uσ) =
1

a(uσ)

(
2u1,σ(u0,σ + u2,σ)− βθu1,σu

2
2,σ −2βu1,σu2,σ(1 + θu1,σ)

−2u1,σu2,σ + βθ(u0,σ + u1,σ)u2
2,σ 2βu2,σ(u0,σ + u1,σ)(1 + θu1,σ)

)
,

where a(uσ) = u0,σ + u1,σ + u2,σ is a correction factor. The corresponding cross-diffusion
system has an entropy structure under the condition θ < 4/

√
β [36]. We compute

z>H(uσ)Aσ(uσ)z = 2z2
1 + βθu2,σz1z2 + 2β(1 + θu1,σ)z2

2 ≥ δ(z2
1 + z2

2),

where δ > 0 depends on β and θ. This does not fulfill Hypothesis (H5) since s = 1.
Moreover, we cannot deduce that a(uσ) > 0 from Theorem 1. For instance, if σ = K|L
and u1,K = u2,L = 0, u1,L = u2,K = 1, we obtain u0,K = u0,L = 0 and ui,σ = 0 for all
i = 0, 1, 2. In fact, we observe in our numerical simulations that a(uσ) may vanish. This
can be prevented by adding an artificial diffusion term of the form δ∆ui with δ > 0 for
i = 1, 2. Then Hypothesis (H5) is satisfied with s = 1/2. However, such terms regularize
the solutions in such a way that the “spikes” observed in [36, Figure 1] are smoothed out.
Thus, the accurate numerical simulation in the case s = 1 is still an open problem.

4. Proof of Theorem 1

We first prove a discrete version of the chain rule h′′(u)∇u = ∇h′(u).

Lemma 4 (Discrete chain rule). Let Hij(uσ) be defined by (17), where u ∈ D and uσ is
given by (15). Then for all σ ∈ Eint,K, it holds that

H(uσ)DK,σu
k = DK,σh

′(uk).

Proof. Let σ = K|L ∈ Eint,K and i ∈ {1, . . . , n}. By definition (15), we find that
n∑
j=1

Hij(u
k
σ)DK,σu

k
j = h′′i (ui,σ)(ui,L − ui,K) + h′′0(u0,σ)

n∑
j=1

(uj,L − uj,K)

= h′′i (ui,σ)(ui,L − ui,K)− h′′0(uσ)(u0,L − u0,K),
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using
∑n

j=1 ui,K = 1 − u0,K in the last step. Since u ∈ D, we have either ui,σ = ũi,σ or
ui,σ = ui,K = ui,L. Therefore,

n∑
j=1

Hij(u
k
σ)DK,σu

k
j = h′i(ui,L)− h′i(ui,K)−

(
h′0(u0,L)− h′0(ui,K)

)
= DK,σh

′
i(u

k)−DK,σh
′
0(uk) = DK,σ(∂h/∂ui)(u

k).

The result also holds when σ ∈ Eext,K , since then DK,σu
k
j = 0. This finishes the proof. �

The existence proof is similar to [38, Section 2] and we repeat only the main arguments.
The proof of the positivity statements, however, is new.

Step 1: Fixed-point problem. We proceed by induction over k ∈ N ∪ {0}. If k = 0, we
have u0

K ∈ D for K ∈ T by Hypothesis (H3). Let uk−1 be given such that uk−1
K ∈ D for

K ∈ T . We construct uk from a fixed-point argument. For this, let R > 0, ε > 0 and set

ZR =
{
w = (w1, . . . , wn) ∈ V n

T : ‖wi‖1,2,T < R for i = 1, . . . , n
}
.

We define the mapping Fε : ZR → Rnθ, Fε(w) = wε, where θ = #T and wε = (wε1, . . . , w
ε
n)

solves the linear system

(26) ε
∑
σ∈EK

τσDK,σw
ε
i − εm(K)wεi,K =

m(K)

∆t
(ui,K − uk−1

i,K ) +
∑
σ∈EK

Fi,K,σ,

for K ∈ T , i = 1, . . . , n, where Fi,K,σ is defined in (14) and uK = (h′)−1(wK) ∈ D.
The regularization in ε is needed, since the diffusion matrix is only positive semidefinite
in the variable wε. The existence of a unique solution wε to (26) is a consequence of
the proof of [19, Lemma 9.2]. The continuity of Fε is shown as in [38, Section 4] by
exploiting the fact that w ∈ ZR is bounded and so does u = (h′)−1(w), yielding the
estimate ε‖wεi ‖1,2,T ≤ C(R) for some constant C(R) > 0.

We claim that Fε admits a fixed point. To this end, we use a topological degree argument
[17, Chap. 1] and prove that the Brouwer topological degree satisfies deg(I−Fε, ZR, 0) = 1.
It is sufficient to verify that any solution (wε, ρ) ∈ ZR × [0, 1] to the fixed-point equation
wε = ρFε(w) satisfies (wε, ρ) 6∈ ∂ZR × [0, 1] for sufficiently large values of R > 0. Let
(wε, ρ) be a fixed point and ρ 6= 0 (the case ρ = 0 is clear). Then wε solves

(27) ε
∑
σ∈EK

τσDK,σw
ε
i − εm(K)wεi,K = ρ

(
m(K)

∆t
(uεi,K − uk−1

i,K ) +
∑
σ∈EK

F εi,K,σ
)
,

for all K ∈ T and i = 1, . . . , n, where uεK = (h′)−1(wεK) and F εi,K,σ is defined as in (14)
with u replaced by uε. Because of uεi,K ∈ D we have uεi,K > 0 for K ∈ T and i = 0, . . . , n.

Step 2: Discrete entropy inequality. The key step of the proof is the following lemma.

Lemma 5 (Discrete entropy inequality). Let the assumptions of Theorem 1 hold, let 0 <
ρ ≤ 1, ε > 0, and let uε be a solution to (27). Then uεi,σ > 0 for all σ ∈ E, i = 0, . . . , n
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and

ρH[uε] + ρcA∆t
n∑
i=1

∑
σ∈E

τσ(uεi,σ)2(s−1)(Dσu
ε
i )

2 + ε∆t
n∑
i=1

‖wεi ‖2
1,2,T ≤ ρH[uk−1].(28)

Proof. First, we prove that uεi,σ > 0 for all σ ∈ E and i = 0, . . . , n. Indeed, if σ ∈ Eext,K ,
we have uεi,K = uεi,K,σ > 0 and hence uεi,σ = uεi,K > 0. Thus, let σ = K|L ∈ Eint,K . Again, if
uεi,K = uεi,L > 0, it follows that uεi,σ > 0. Otherwise, uεi,σ is the unique solution to

h′′i (u
ε
i,σ) =

uεi,K − uεi,L
h′i(u

ε
i,K)− h′i(ui,L)

> 0,

and we deduce from the strict monotonicity that uεi,σ ≥ min{uεi,K , uεi,L} > 0.
Next, multiplying (27) by ∆twεi,K , summing over i = 1, . . . , n and K ∈ T , and applying

discrete integration by parts, we find that

0 = ρ
n∑
i=1

∑
K∈T

m(K)(uεi,K − uk−1
i,K )wεi,K − ρ∆t

n∑
i=1

∑
σ∈Eint
σ=K|L

F εi,K,σDK,σw
ε
i

+ ε∆t
n∑
i=1

‖wεi ‖2
1,2,T = I1 + I2 + I3.

We know from Hypothesis (H4) that h is convex such that, because of wεK = h′(uεK),

I1 ≥ ρ
∑
K∈T

m(K)
(
h(uεK)− h(uk−1

K )
)

= ρ
(
H[uε]−H[uk−1]

)
.

Furthermore, by Lemma 4, the symmetry of (Hij), and Hypothesis (H5),

I2 = ρ∆t
n∑

i,j=1

∑
σ∈Eint
σ=K|L

τσAij(u
ε
σ)DK,σu

ε
jDK,σ(h′(uε))i

= ρ∆t
n∑

i,j=1

∑
σ∈Eint
σ=K|L

τσ(H(uεσ)DK,σu
ε)iAij(u

ε
σ)DK,σu

ε
j

= ρ∆t
n∑

i,j,`=1

∑
σ∈Eint
σ=K|L

τσDK,σ(uε`)H`i(u
ε
σ)Aij(u

ε
σ)DK,σu

ε
j

= ρ∆t
n∑

j,`=1

∑
σ∈Eint
σ=K|L

τσDK,σu
ε
`

(
H(uεσ)A(uεσ)

)
`j

DK,σu
ε
j

≥ ρcA∆t
n∑
j=1

∑
σ∈Eint
σ=K|L

τσ(uεj,σ)2(s−1)(DK,σu
ε
j)

2.
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Putting these estimates together, we conclude the proof. �

We continue with the topological degree argument. Choosing

R =
1√
ε∆t
H[uk−1]1/2 + 1,

the previous lemma leads to

ε∆t
n∑
i=1

‖wεi ‖2
1,2,T ≤ ρH[uk−1] ≤ ε∆t(R− 1)2,

which gives
∑n

i=1 ‖wεi ‖2
1,2,T < R2. We conclude that wε 6∈ ∂ZR and deg(I − Fε, ZR, 0) = 1.

Thus, Fε admits at least one fixed point.
Step 3: Limit ε→ 0. By construction of uε, we have uεK = (h′)−1(wεK) ∈ D for K ∈ T .

Thus, ‖uεi‖0,∞,T := maxK∈T |uεi,K | ≤ 1 for i = 0, . . . , n, and there exists a subsequence

(not relabeled) such that uεi,K → uki,K ∈ [0, 1] as ε → 0 for K ∈ T , i = 1, . . . , n and

satisfying ukK = (uk1,K , . . . , u
k
n,K) ∈ D. Moreover, there exists a subsequence such that

uεi,σ → uki,σ ∈ [0, 1] as ε→ 0 for σ ∈ Eint and i = 0, . . . , n, and uk0,σ is given by (15). In view

of the bound for
√
εwεi , we have, again for a subsequence, εwεi,K → 0.

We show that the total mass
∫

Ω
uki dx is positive for i = 1, . . . , n. For this, we write

wε,ki,K := wεi,K , sum overK ∈ T in (27), and use the local balance equations F εi,K,σ+F εi,L,σ = 0
and τσDK,σw

ε + τσDL,σw
ε = 0 for all σ = K|L ∈ Eint to deduce that, by induction,∑

K∈T

m(K)uεi,K =
∑
K∈T

m(K)uk−1
i,K − ε∆t

∑
K∈T

m(K)wε,ki,K

=
∑
K∈T

m(K)u0
i,K − ε∆t

k∑
j=1

∑
K∈T

m(K)wε,ki,K ,

for i = 1, . . . , n. The limit ε→ 0 yields

(29)
∑
K∈T

m(K)uki,K =
∑
K∈T

m(K)u0
i,K =

∫
Ω

u0
i (x)dx > 0 for i = 1, . . . , n,

where the positivity in the last step follows from Hypothesis (H3).
Next, we show that 0 < uki,σ < 1 for all σ ∈ Eint and i = 1, . . . , n. In view of definition

(15) of uki,σ and
∑n

i=1 u
k
i,K ≤ 1, it is sufficient to show that uki,K > 0 for all K ∈ T and

i = 1, . . . , n. Let i ∈ {1, . . . , n} be fixed. Assume by contradiction that uki,K = 0 for some

K ∈ T . Then uki,σ = 0 for σ = K|L ∈ Eint. The entropy inequality gives

(uεi,L − uεi,K)2 ≤ C(∆t, uk−1)(uεi,σ)2(1−s),

and in the limit ε→ 0

(uki,L)2 = (uki,L − uki,K)2 ≤ C(∆t, uk−1)(uki,σ)2(1−s).

Thus, uki,σ = 0 implies that uki,L = 0 (here we need s < 1). Next, let L′ be a neighboring cell

of L. By the previous argument, it follows that also uki,L′ = 0. Repeating this argument
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for all cells in T , we find that uki,K = 0 for all K ∈ T . Consequently,
∑

K∈T m(K)uki,K = 0,

which contradicts (29). This shows in particular that uk0,K = 1−∑n
i=1 u

k
i,K < 1 and hence

ukK ∈ D for all K ∈ T . Moreover, we deduce from the definition of uki,σ that 0 < uki,σ < 1
holds for all σ = K|L ∈ Eint and i = 1, . . . , n.

Note that uk0,σ = 0 may be possible, which explains the condition ‖Aσ(uσ)‖ < ∞ in
Hypothesis (H5) whenever u0,σ = 0. Thus, together with the continuity of Aij,σ on [0, 1]×
(0, 1)n and the bounds on uki,σ for i = 1, . . . , n, we can pass to the limit ε→ 0 in (27) and
(28) to finish the proof of Theorem 1.

Remark 6 (Case s = 1). The existence of discrete solutions to scheme (12)–(15) and
the validity of the entropy inequality can be extended to the case s = 1 if ‖Aσ(0)‖ < ∞.
This is possible since the singular term (uki,σ)2(s−1) disappears when s = 1 and the proof

simplifies. However, we cannot ensure in general that uki,σ > 0 holds for σ ∈ Eint, k ≥ 1,
i = 1, . . . , n. For the existence of discrete solutions, the condition ‖Aσ(0)‖ <∞ is crucial.
The example in Section 3.3 shows that the modified matrix Aσ may contain the factor
a(uσ) =

∑n
i=1 ciui,σ for some ci > 0, necessary to prove the positive (semi-) definiteness of

HAσ. In this situation, ‖Aσ(0)‖ is not a number, and the existence of a discrete solution
cannot be guaranteed. �

Remark 7 (Source terms). Our analysis still holds when we include source terms of the
type fi(u) on the right-hand side of (1). We need to assume that fi ∈ C0(D) and that
there exist constants Cf > 0, cf ≥ 0 such that for all u ∈ D,

(30)
n∑
i=1

fi(u)(h′i(ui) + h′0(u0)) ≤ Cf (1 + h(u)) and fi(u) ≥ −cfui for i = 1, . . . , n.

If we assume, in addition to Hypotheses (H1)–(H5), the condition ∆t < 1/Cf on the time
step size, then the statement of Theorem 1 holds with the modified entropy inequality

(1− Cf∆t)H[uk] + cA∆t
n∑
i=1

∑
σ∈E

τσu
2(s−1)
i,σ (Dσu

k
i )

2 ≤ H[uk−1] + Cf∆tm(Ω).

This inequality is a direct consequence of the first assumption in (30); see, e.g., the proof
of [38, Theorem 1]. The second assumption in (30) allows us to adapt the proof of the
positivity of the total mass in Step 3, giving after an induction∑

K∈T

m(K)uki,K ≥
∫

Ω
u0
i (x)dx

(1 + cf∆t)k
> 0.

The remaining proof is unchanged. �

5. Proof of Theorem 2

We prove first some estimates uniform in ∆x and ∆t and then deduce the compactness
properties.
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5.1. A priori estimates. We introduce the discrete time derivative of a function v ∈
VT ,∆t:

∂∆t
t v(x, t) = ∂∆t

t vk(x) =
1

∆t
(vk(x)− vk−1(x)), (x, t) ∈ Ω× (tk−1, tk], k = 1, . . . , NT .

Lemma 8 (Uniform estimates). Let the assumptions of Theorem 1 hold. Then there exists
a constant C > 0 independent of ∆x and ∆t such that for all i = 1, . . . , n,

max
k=1,...,NT

‖uki ‖0,1,T +

NT∑
k=1

∆t‖uki ‖2
1,2,T +

NT∑
k=1

∆t‖∂∆t
t uki ‖2

−1,2,T ≤ C.

Proof. We sum (18) over k = 1, . . . , j (with j ≤ NT ) and i = 1, . . . , n, and use the facts
that 0 < uki,σ ≤ 1 and s < 1 to obtain

H[uj] + cA

j∑
k=1

∆t
n∑
i=1

∑
σ∈E

τσ(Dσu
k
i )

2 ≤ H[u0].

Since the entropy dominates the L1 norm thanks to (H4), the previous inequality implies
that

max
k=1,...,j

n∑
i=1

‖uki ‖0,1,T +

j∑
k=1

∆t
n∑
i=1

|uki |21,2,T ≤ H[u0] + ch m(Ω).

The discrete Poincaré–Wirtinger inequality [6, Theorem 3.6] gives the existence of a con-

stant C only depending on u0 and Ω such that
∑j

k=1 ∆t‖uki ‖2
0,2,T ≤ C.

For the estimate of the discrete time derivative, we choose φ ∈ VT with ‖φ‖1,2,T = 1
and multiply scheme (13) by φK , sum over K ∈ T , k = 1, . . . , NT , and apply discrete
integration by parts:∑

K∈T

m(K)
uki,K − uk−1

i,K

∆t
φK = −

n∑
j=1

∑
σ∈Eint
σ=K|L

τσAij(u
k
σ)DK,σu

k
jDK,σφ =: J1.

The boundedness of uki,σ and the Cauchy-Schwarz inequality imply that

|J1| ≤
n∑
j=1

max
Ω
|Aij(ukσ)||ukj |1,2,T |φ|1,2,T ≤ C

n∑
j=1

‖ukj‖1,2,T ‖φ‖1,2,T .

We infer that

NT∑
k=1

∆t

∥∥∥∥uki − uk−1
i

∆t

∥∥∥∥2

−1,2,T
= sup
‖φ‖1,2,T =1

NT∑
k=1

∆t

∣∣∣∣ ∑
K∈T

m(K)
uki − uk−1

i

∆t
φK

∣∣∣∣2 ≤ C.

This finishes the proof. �
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5.2. Compactness properties. Let (Dm)m∈N be a sequence of admissible meshes of ΩT

satisfying the mesh regularity (11) uniformly in m ∈ N. We claim that the estimates from
Lemma 8 imply the strong convergence of a subsequence of (ui,m).

Proposition 9 (Strong convergence). Let the assumptions of Theorem 2 hold and let
(um)m∈N be a sequence of discrete solutions to (12)–(15) constructed in Theorem 1. Then
there exists a subsequence of (um), which is not relabeled, and u = (u1, . . . , un) ∈ L∞(ΩT )
such that for any i = 1, . . . , n,

ui,m → ui strongly in Lp(ΩT ) as m→∞, 1 ≤ p <∞.
Proof. The result follows from the discrete Aubin–Lions lemma of [23, Theorem 3.4] if the
following two properties are satisfied:

(i) For any sequence (vm)m∈N ⊂ VTm such that there exists C > 0 with ‖vm‖1,2,Tm ≤ C
for all m ∈ N, there exists v ∈ L2(Ω) satisfying, up to a subsequence, vm → v
strongly in L2(Ω).

(ii) If vm → v strongly in L2(Ω) and ‖vm‖−1,2,Tm → 0 as m→∞, then v = 0.

Property (i) follows from [20, Lemma 5.6], while property (ii) can be replaced by the
condition that ‖ · ‖1,2,Tm and ‖ · ‖−1,2,Tm are dual norms with respect to the L2(Ω) norm,
thanks to [23, Remark 6], which is the case here. Then [23, Theorem 3.4] implies that
there exists a subsequence (not relabeled) such that ui,m → ui strongly in L2(0, T ;L2(Ω))
as m → ∞. We deduce from the L∞ bound for (ui,m) that ui,m → ui strongly in Lp(ΩT )
for any 1 ≤ p <∞. �

Lemma 10 (Convergence of the gradient). Under the assumptions of Proposition 9, there
exists a subsequence of (um)m∈N such that for i = 1, . . . , n,

∇mui,m ⇀ ∇ui weakly in L2(ΩT ) as m→∞,
where ∇m is defined in Section 2.

Proof. Lemma 8 implies that (∇mui,m) is bounded in L2(ΩT ). Thus, for a subsequence,
∇mui,m ⇀ vi weakly in ΩT as m→∞. It is shown in [15, Lemma 4.4] that vi = ∇ui. �

5.3. Convergence of the scheme. We show that the limit u from Proposition 9 is a
weak solution to (1)–(2). Let i ∈ {1, . . . , n} be fixed, let ψi ∈ C∞0 (Ω× [0, T )) be given, and
let ηm := max{∆x,∆tm} be sufficiently small such that supp(ψi) ⊂ {x ∈ Ω : d(x, ∂Ω) >
ηm} × [0, T ). Furthermore, let ψki,K := ψi(xK , tk). We multiply scheme (13) by ∆tmψ

k−1
i,K

and sum over K ∈ Tm and k = 1, . . . , NT . Then Fm
1 + Fm

2 = 0, where

Fm
1 =

NT∑
k=1

∑
K∈Tm

m(K)
(
uki,K − uk−1

i,K

)
ψk−1
i,K ,

Fm
2 = −

n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσAσ,ij(u
k
σ)DK,σu

k
jψ

k−1
i,K .
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Furthermore, we introduce

Fm
10 = −

∫ T

0

∫
Ω

ui,m∂tψidxdt−
∫

Ω

ui,m(x, 0)ψi(x, 0)dx,

Fm
20 =

n∑
j=1

∫ T

0

∫
Ω

Aij(um)∇muj,m · ∇ψidxdt.

It follows from the convergence results from the previous subsection, the continuity of Aij,
and the assumption on the initial data that, as m→∞,

Fm
10 + Fm

20 → −
∫ T

0

∫
Ω

ui∂tψidxdt−
∫

Ω

u0
i (x)ψi(x, 0)dx+

n∑
j=1

∫ T

0

∫
Ω

Aij(u)∇uj · ∇ψidxdt.

We prove that Fm
j0 −Fm

j → 0 as m→∞ for j = 1, 2, since this shows that Fm
10 +Fm

20 → 0,
finishing the proof.

We start with the first difference Fm
10 − Fm

1 . It is shown in [15, Theorem 5.2], using
the L∞(ΩT ) bound for ui,m and the regularity of φ, that Fm

10 − Fm
1 → 0. It remains to

verify that |Fm
20 − Fm

2 | → 0. To this end, we apply discrete integration by parts and write
Fm

2 = Fm
21 + Fm

22 , where

Fm
21 =

n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσAij(u
k
K)DK,σu

k
jDK,σψ

k−1
i ,

Fm
22 =

n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσ
(
Aσ,ij(u

k
σ)− Aσ,ij(uk0,K , ukK)

)
DK,σu

k
jDK,σψ

k−1
i .

Here, we used the equality Aσ(uk0,K , u
k
K) = A(ukK) since ukK ∈ D and uk0,K = 1−∑n

i=1 u
k
i,K

for all K ∈ T , coming from Hypothesis (H5). The definition of the discrete gradient ∇m

in Section 2.3 gives

|Fm
20 − Fm

21 | ≤
n∑
j=1

NT∑
k=1

∑
K∈Tm

∑
σ∈Eint,K

m(σ)|Aij(ukK)||DK,σu
k
j |

×
∣∣∣∣ ∫ tk

tk−1

(
DK,σψ

k−1
i

dσ
− 1

m(TK,σ)

∫
TK,σ

∇ψi · νK,σdx
)
dt

∣∣∣∣.
It is shown in the proof of [15, Theorem 5.1] that there exists a constant C0 > 0 such that∣∣∣∣ ∫ tk

tk−1

(
DK,σψ

k−1
i

dσ
− 1

m(TK,σ)

∫
TK,σ

∇ψi · νK,σdx
)
dt

∣∣∣∣ ≤ C0∆tmηm.

Hence, by the uniform L∞ bound for uk and the Cauchy–Schwarz inequality,

|Fm
20 − Fm

21 | ≤ C0ηm

n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

m(σ)|Aij(ukK)| |DK,σu
k
j |
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≤ Cηm

n∑
j=1

NT∑
k=1

∆tm‖ukj‖1,2,Tm

( ∑
K∈Tm

∑
σ∈Eint,K

m(σ)dσ

)1/2

.

We deduce from the mesh regularity (11) and the assumption Ω ⊂ R2 that∑
K∈Tm

∑
σ∈Eint,K

m(σ)dσ ≤
1

ζ

∑
K∈Tm

∑
σ∈Eint,K

m(σ)d(xK , σ) ≤ 2

ζ

∑
K∈Tm

m(K) =
2

ζ
m(Ω).

Hence, we have

|Fm
20 − Fm

21 | ≤ Cηm

n∑
j=1

NT∑
k=1

∆tm‖ukj‖1,2,Tm ≤ Cηm → 0.

For the estimate of Fm
22 , we need the Lipschitz continuity of Aσ,ij, the upper bound

uk`,σ ≤ (uk`,K + uk`,L)/2 for σ ∈ Eint and ` = 0, . . . , n, the equality uk0,K = 1 −∑n
`=1 u

k
`,K for

all K ∈ T , and the Cauchy–Schwarz inequality:

|Fm
22 | ≤ Cηm‖ψi‖C1(ΩT )Gm, where

Gm =
n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσ|Aσ,ij(ukσ)− Aσ,ij(uk0,K , ukK)|Dσu
k
j

≤ C
n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσ

( n∑
`=0

|uk`,σ − uk`,K |
)

Dσu
k
j

≤ C

2

n∑
j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσ

( n∑
`=0

|uk`,L − uk`,K |
)

Dσu
k
j

≤ C
n∑

`,j=1

NT∑
k=1

∆tm
∑
K∈Tm

∑
σ∈Eint,K

τσDσu
k
`Dσu

k
j

≤ C

( n∑
`=1

NT∑
k=1

∆tm
∑
σ∈E

τσ(Dσu
k
` )

2

)1/2( n∑
j=1

NT∑
k=1

∆tm
∑
σ∈E

τσ(Dσu
k
j )

2

)1/2

.

By Lemma 8, the right-hand side is bounded uniformly in m. Thus, |Fm
22 | ≤ Cηm → 0 and

|Fm
20 − Fm

2 | ≤ |Fm
20 − Fm

21 |+ |Fm
22 | → 0 as m→∞. This finishes the proof.

Remark 11. Let us mention some possible extensions of Theorem 2. We can easily adapt
the proof to the case s = 1 if we assume in addition to (H5) that ‖Aσ(0)‖ < ∞ holds.
Moreover, we can include source terms fi ∈ C0(D) for i = 1, . . . , n such that the conditions
(30) and ∆tm < 1/Cf for m ∈ N are fulfilled. Then, following the proof in [38, Theorem
2], we can show that Theorem 2 still holds. �

6. Numerical examples

We present in this section some numerical experiments in one and two space dimensions.
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6.1. Implementation of the scheme. The finite-volume scheme (12)–(15) is imple-
mented in MATLAB. Since the numerical scheme is implicit in time, we have to solve
a nonlinear system of equations at each time step. In the one-dimensional case, we use
Newton’s method. Starting from uk−1 = (uk−1

1 , uk−1
2 ), we apply a Newton method with

precision ε = 10−10 to approximate the solution to the scheme at time step k. In the two-
dimensional case, we use a Newton method complemented by an adaptive time-stepping
strategy to approximate the solution of the scheme at time tk. More precisely, starting
again from uk−1 = (uk−1

1 , uk−1
2 ), we launch a Newton method. If the method does not

converge with precision ε = 10−10 after at most 50 steps, we multiply the time step by a
factor 0.2 and restart the Newton method. At the beginning of each time step, we increase
the value of the previous time step size by multiplying it by 1.1. Moreover, we impose the
condition 10−8 ≤ ∆tk ≤ 10−2 with an initial time step size set to 10−5.

6.2. Test case 1: Rate of convergence in space. In this section, we illustrate the
order of convergence in space for the Maxwell–Stefan model presented in Section 3.1 in
one space dimension with Ω = (0, 1). We consider a similar test case as in [34, Section
6.2] but with a discontinuous initial datum u0

1. We choose the coefficients d0 = 1/0.168,
d1 = 1/0.68, and d2 = 1/0.883 and impose the initial datum

u0
1(x) = 0.8 · 1(0,0.5)(x), u0

2(x) = 0.2.

Since exact solutions to the Maxwell-Stefan model are not explicitly known, we compute
a reference solution on a uniform mesh composed of 5120 cells and with time step size
∆t = (1/5120)2. We use this rather small value of ∆t, because the Euler discretization in
time exhibits a first-order convergence rate, while we expect, as observed for instance in
[13], a second-order convergence rate in space for scheme (12)–(15), due to the logarithmic
mean used to approximate the mobility coefficients in the numerical fluxes. We compute
approximate solutions on uniform meshes made of 40, 80, 160, 320, 640, and 1280 cells,
respectively. In Figure 1, we present the sum of the L1(Ω) norms of the differences between
the approximate solution ui and the average of the reference solution ui,ref at the final time
T = 10−2. As expected, we observe a second-order convergence rate in space as in [34].

6.3. Test case 2: Long-time behavior. Following [13, Section 5.3], we study the long-
time behavior of the scheme for the cross-diffusion system for thin-film solar cells, intro-
duced in Section 3.2, with reactions terms. More precisely, for Ω = (0, 1)2 and the final
time T = 15, we consider the system

∂tu1 − div
(
A11(u)∇u1 + A12(u)∇u2

)
= r1(u),(31)

∂tu2 − div
(
A21(u)∇u1 + A22(u)∇u2

)
= −2r1(u),(32)

where

r1(u) = (u+
2 )2 − 1000u+

1 (1− u1 − u2)+,

and the coefficients of the diffusion matrix A(u) are given by (23). We choose, similar to
[13], a10 = 1, a20 = 0.1, a12 = 0, and a21 = 0. Observe that these coefficients do not satisfy
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Figure 1. Test case 1: L1 norm of the error in space at final time T = 10−2.

the assumptions of Lemma 3. Finally, we impose the initial datum

u0
1(x, y) =

9

44

1(0,0.5)2(x, y)

0.52
, u0

2(x, y) =
2

11

1(0.5,1)2(x, y)

0.52
.

The steady state of this system is given by

u∞1 =
9

44
− α, u∞2 =

2

11
+ 2α,

where α = (−5
√

206530 + 4504)/10956 is the unique root of the polynomial of degree two
given by r1(u∞) which ensures the nonnegative of the steady state u∞ = (u∞1 , u

∞
2 ), see [13,

Section 5.3] for more details.
Let us notice that the source terms in (31)–(32) do not satisfy the assumptions (30) of

Remark 7. Indeed, in this case, we consider the (discrete) relative Boltzmann entropy

H[u|u∞] =
2∑
i=0

∑
K∈T

m(K)

(
ui,K log

ui,K
u∞i

+ u∞i − ui,K
)
,(33)

with u∞0 = 1−u∞1 −u∞2 . Now, since by construction of u∞ we have log(u∞1 u
∞
0 )−2 log(u∞2 ) =

log(1000), we conclude that

r1(u)(h′1(u1) + h′0(u0))− 2r1(u)(h′2(u2) + h′0(u0)) = r1(u)
(
log(1000u1u0)− log(u2

2)
)
≤ 0.

In particular, under the assumptions of Lemma 3 and adapting the proof of Theorem 1,
the following discrete entropy inequality holds:

H[uk|u∞] + α∆t
n∑
i=1

∑
σ∈Eint

τσ
(
Dσ(uki )

1/2
)2 ≤ H[uk−1|u∞],
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Figure 2. Test case 2: Discrete relative entropy versus time.

with α = mini,j=1,...,2 aij. Then, arguing as in [11], there exist constants κ > 0 (depending
on u0) and λ > 0 (depending on α, u0, and ζ) such that

n∑
i=1

‖uki − u∞i ‖2
0,1,T ≤ κH[u0|u∞]e−λtk for all k ≥ 1.

Figure 2 illustrates, in semilogarithmic scale and for a mesh of Ω made of 3584 triangles
(see [38, Fig. 2 left]), the temporal evolution of the discrete relative entropy (33). As in
[13], we observe an exponential decay towards the steady state, although the assumptions
of Lemma 3 are not fulfilled.
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[23] T. Gallouët and J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs –
Application to a turbulence model. Commun. Pure Appl. Anal. 11 (2012), 2371–2391.

[24] A. Glitzky. Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-
diffusion systems. Math. Nachr. 284 (2011), 2159–2174.

[25] O. Gonzalez. Time integration and discrete Hamiltonian systems. J. Nonlin. Sci. 6 (1996), 449–467.
[26] E. Hairer and C. Lubich. Energy-diminishing integration of gradient systems. IMA J. Numer. Anal.

34 (2014), 452–461.
[27] A. Harten, P. Lax, and B. Van Leer. On upstream differencing and Godunov-type schemes for hyper-

bolic conservation laws. SIAM Rev. 25 (1983), 35–61.
[28] M. Ibrahim and M. Saad. On the efficiency of a control volume finite element method for the capture

of patterns for a volume-filling chemotaxis model. Computers Math. Appl. 68 (2014), 1032–1051.
[29] F. Ismail and P. Roe. Affordable, entropy-consistent Euler flux functions II: Entropy production at

shocks. J. Comput. Phys. 228 (2009), 5410–5436.
[30] T. Jackson and H. Byrne. A mechanical model of tumor encapsulation and transcapsular spread.

Math. Biosci. 180 (2002), 307–328.
[31] S. Jerez and C. Parés. Entropy stable schemes for degenerate convection-diffusion equations. SIAM

J. Numer. Anal. 55 (2017), 240–264.
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