ON THE LAGRANGIAN STRUCTURE
OF QUANTUM FLUID MODELS

PHILIPP FUCHS, ANSGARUNGEL, AND MAX VON RENESSE

AsstrAacT. Some quantum fluid models are written as the Lagrangian ffowass distributions
and their geometric properties are explored. The first mogéldes magneticfiects and leads,
via the Madelung transform, to the electromagnetic 8dimger equation in the Madelung rep-
resentation. It is shown that the Madelung transform is apdgatic map between Hamiltonian
systems. The second model is obtained from the Euler-Lggraguations with friction induced
from a quadratic dissipative potential. This model coroe&ls to the quantum Navier-Stokes
equations with density-dependent viscosity. The fact thst model possesses twoffgrent
energy-dissipation identities is explained by the definitof the Noether currents.

1. INTRODUCTION

This work is concerned with the derivation of known and nevargum fluid models using
a Lagrangian method on the space of mass distributions (dyapility measures). The La-
grangian representation of the Satiinger equation in the Madelung picture is well known in
the literature. In fact, Dirac presented already in 1933 thgrangian approach as an alternative
formulation of the Hamiltonian theory in quantum mechaniéte expressed the Sddinger
equation as a critical point of a suitable action functigéil Feynman developped in the 1940s
the path-integral formulation extending the principleedist action to quantum mechanics [10].
Later, Schodinger’'s equation was derived from Newton’s third law gsidelson’s stochastic
mechanics [23], which has been put into the mathematicaddveork of stochastic processes by
Lafferty [18, Corollary 2.8]. The Schdinger equation in its Madelung representation was shown
in [26] to be a lift of Newton’s law using Otto’s Riemannian callus for optimal transportation
of probability measures. In this paper, we will extend thppr@ach in two ways.

Before we explain our main results, we recall some basic ele&naf classical Lagrangian
mechanics. The motion of a particle systenRih(d > 1) is described by the trajectogyt) in
the configuration spadel c RY, whereM is a manifold, with the velocitg(t). The Lagrangian
L(g, ) defines the dynamics of the system. For examip(e,q) = %l(qlz — d(X) is the dttference
of the kinetic and potential energies for some given poaédii: RY — R. The variableq is
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an element oM, whereagj lies in the tangent spadgM. Hence, the Lagrangian is defined on
the tangent bundl@ M = {(q,q) : q € T{M}. We refer to, e.g., [11, 28] for details of geometric
mechanics. The equations of motion are obtained from timeipte of least action by calculating
the critical points of the action functional

.
A(X) = fo L(x(t), X(t))dt.

Criticality of the curvey : [0, T] — RYis (formally) equivalent to the Euler-Lagrange equation

d oL oL, .
dt ax()/a ')’) X()’, 7) - 0, t € (0’ T)

Friction can be included by means of a dissipative poteliaR? x RY — R (see, e.g., [7]):

d oL oL . oD
ai ax(%v)— X(%y) —(7,7) te(0,T).

An example is linear friction which is given by the quadratatentialD(x, X) = a|X?> with a > 0.

Following [18, 26], we consider in this wokklift of this formalism on the space of probability
measuregndderive novel Navier-Stokes equations with quantum cornesti/e will recall the
basic setup in Section 2; here we sketch only our main results

First, we propose a lifted Lagrangian, defined on the tanigentlle of the set of probability
measures, including the magnetic vector poterftiiaind the Fisher information (defined in (6)
below). Then the Euler-Lagrange equations are given bydhérwity equation for the particle
densityu and the Hamilton-Jacobi equation for the velocity potdr@iésee Theorem 1)

8t/1 + div (l,l(VS - A)) =

2 A
at5+—|vs A|2+c1>(x)—h——‘/_—o inRY, t >0,

Vi
where, with a slight abuse of notation,is the scaledPlanck constant. Introduce the wave
function¥ = uexp(S/n) via the so-called Madelung transform, for smooth solii¢n S)
with positive density (or mass distribution) Then¥ solves the magnetic Satdinger equation

_ 1 2 .
iho = 5 (?V - A) ¥+ O(X)¥ inRY t>0.

We give a systematic analysis of the Madelung transform gsnplectic map between Hamil-
tonian systems, preserving the magnetic 8dimger Hamiltonian (see Theorem 10).

Second, we show that the lifted Euler-Lagrange equatiom kmear friction leads to the quan-
tum Navier-Stokes equations. After identifying vector deelmodulo rotational components,
these equations read as (see Theorem 11)

(1) e + div(uv) = 0,
2

: h Au .
(2) O(uv) + div(uv @ v) + Vp(u) + uVao(x) — E,uV (W) = a div(uD(v)),
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where the velocity is given by = VS, v®v is a matrix with componentg vy, p(u) is the pressure,
andD(v) = (Vv + VV") = Vvis the symmetric velocity gradient. This system was firsiveek
by Brull and Mehats [4] from the Wigner-BGK equation (named after Bhatna@aoss, and
Krook) using a Chapman-Enskog expansion. An alternativeaten from the Wigner-Fokker-
Planck model by just applying a moment method was proposgtbin For systems including
the energy equation, we refer to [16, 17]. Our approach gialthird way to derive the quantum
Navier-Stokes equations. An advantage of our method isweatan propose more general
friction terms, leading to a variety of nonlinear viscassti'see Remark 12). The selection of
guantum mechanically correct dissipation terms remairesaarch topic for the future (see [1]
for a Lindblad equation approach).

Surprisingly, system (1)-(2) allows fawo different energies, as observed in [15]. Indeed, a
formal computation shows that the Hamiltonian

2
Sy = f (}MZ + U () + O(X) + h—|V|Ogﬂ|2),udX
Rd 2 8

is a Lyapunov functional along the solutions to (1)-(2), Beeposition 13. Here, the internal
energyU relates to the pressupeby p’(s) = sU”(s), s> 0. Furthermore, the energy
2

1 h
HG = Ld (§|V+ Vod? + U (1) + O(X) + (§ - az) |Vlogu|2),udx,

wherevys = aVlogu is the osmotic velocity, is another Lyapunov functional. Wié explain
this fact by a variant of the Noether theory. Indeed, timairance of the system leads to dis-
sipation of the Hamiltoniag#, (since we have friction, the energy is not a constant of nmytio
Interestingly, a special transformation of the variableg)(leads to a Noether current which
equals; (see Theorem 15). Thus, the existence of the second energidoal is a conse-
guence of a “Noether symmetry”, showing that the quantumiétestokes equations exhibit a
certain geometric structure.

The originality of the present work is twofold. First, we éxipthe Lagrangian approach on
the space of probability measures in a systematic way and sbiflexibility by deriving various
model equations. Second, we suggest an alternative wagltmmdissipativef@ects in quantum
models by using Euler-Lagrange equations with friction.e Talculations are formal but they
can be made rigorous under suitable regularity assumpiensointed out in [18]. In particular,
we provide a consistent extension not only of classical raeids but also of optimal transport
theory towards quantum mechanics, which related to thedragan formulation in Bohmian
mechanics, cf. Markowich et al. [21].

The paper is organized as follows. The basic setup of Laggangechanics on the set of
probability measures is introduced in Section 2. The foltmsections are concerned with three
applications of the Lagrangian method. For the particleiomoih a potential field, we recover
the usual flow equations, showing that our approach incltlteslassical case (Section 3). The
Euler-Lagrange equation for a charged particle in a magfietd is computed in Section 4, and
the symplectic structure of the flow equations is analyzexdtiSn 5 is devoted to the derivation
of the quantum Navier-Stokes equations and the relatiowdst energy functionals and the
Noether theory.



4 P. FUCHS, A. INGEL, AND M. VON RENESSE

2. Basic SeTup

In this section, we extend the classical Lagrangian meckdaia configuration space consist-
ing of probability measures. A similar approach is contdimethe work of Ldterty [18]. We
recall the definition of the phase space, introduce the lragaas considered in this paper, and
formulate the (dissipative) Euler-Lagrange equations.

2.1. Phase spacelLet Z(RY) (d > 1) be the set of probability measures &f Obviously,
the spaceR? is embedded inZ(RY) via the Dirac masses — . A physical interpretation
of u € RY is thatu represents a (possiblyftlise) distribution of mass with fixed total amount.
The following arguments may be made rigorous on the®&(R") of absolutely continuous
probability measures with smooth positive density anddieixponential moments, as pointed
out by Lott [19]. However, similarly to the previous works9[124, 25, 26], we shall not try to
find the maximal subset a#(RY) on which our formulas remain valid, and therefore, we assum
that the measurgse 2 (RY) are stficiently smooth for the formulas to hold. In the following,
we often identify the measugee Z(RY) with its densitydu/dx ~ u and we writeZ instead of
P(RY).

Givenu € & we introduce the tangent space@fatu by

T,2 ={ne.’(RY : Ive C*(RYRY), n + div(uv) = 0},

where.#’(RY) is the dual of the Schwartz space, which is the collectidnfafitesimal variations
of u by smooth flows. The tangent bundle

T2 = T2
pe?

serves as the physical phase space for our Lagrangian mesleimmass distributions. We
remark that the motion of a single particle with veloaitis included in our formalism by means
of the representation = — div(s,v), wherev is any vector field oR? satisfyingv(x) = u. We
also notice that in Hamiltonian mechanics, the phase sgatefined by the pairs of generalized
coordinates im & and generalized momenta in the dual sp&ce?. We refer to Section 4.2 for
details.

2.2. Lagrangians. A function . : T — R is called a Lagrangian. Below, we shall mostly
be concerned with Lagrangiadg, which are obtained as lifts from classic Lagrange funation
L :RYxRY - R, defined by

(3) ZL(u,n) = inf {fRd L(x, v(X))u(dX) : v e C*(R%RY), 5+ div(uv) = O},

whereu € &2 andn € T,&7. The infimum is necessary since the map> —div(uv) € T,Z is
generally not injective. We prefer the notatiécf(u, ) instead of the simpler (and geometrically
more consistent) notatia®’(n) in order to emphasize the importance of the referring bas# p
fornin T,22. Notice that the classical case is embedded in this situatioce

L(0x, —div(oyV)) = f L(x, v(X))o(dX) = L(X, v(X)).
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We present some examples studied in this paper.

2.2.1. Single-particle dynamicsThe kinetic energy.(g,q) = %lql2 is well known from optimal
transport theory [2, 3, 24]. A standard duality argumentghthat the infimum in (3) is attained.
Indeed, we compute formally, fore & andnp e T,2:

P, m) = inf sup f (1|v|2+ Y = V- VX)/J(dX)
\% §% Rd 2

= supinf
x vV Jrd

The infimum is realized at = Vy:
. 1
L= L(u,n) = SUDf (nx - §|VX|2).U(dX)-
X JRd
DefiningS = argsupZ* and inserting/ = VS, y = Sinto .Z, we find that
1
L) = [ 1VSFu(ey.
Rd

We recall thatS : RY — R is the (up to constants) unique solutiontaiv(uVS) = n in RY,
The functionS is called the velocity potential of the variatignwith respect to the staje We
introduce the notation

(4) A,S = div(uVs) inR%
The minimizer defines a quadratic form on the tangent space:

I, » = [ 17S09Fu(ay.
Rd

This is Otto’s Riemannian (weighted*(R%)) tensor orl & inducing thel >-Wasserstein metric
on & as an intrinsic distance [24] and to the square of the Kawatohadistance [3, Prop. 1.1]
(also see [22, Theorem 9]).

1 1
(Elv — Vxl? - EIV)(I2 + n)()u(dX)-

2.2.2. Charged particles in a magnetic fieldhe Lagrange functioh(q, g) = %|c'1|2+q-A—CD(x)
models the motion of a charged particle in a magnetic fielogr@A : R — RY is the magnetic
vector potential [28, Section 12.6] ar®l : RY — R is the electric potential. By a similar
computation as in the previous example, for &7 andn € T, 2,

. 1 1
Z(u, n) = supinf f (—IV + (A= V)P = SIA= VxP +ny - ‘D(X)).U(dx)-
$% \ Rd 2 2
Then, takingv* = Vy — Ato realize the infimum an8 = argsup?, y = S, it holds that

L(u,m) = fRd (%ws —~A?+(VS-A)-A- CD(X)),u(dx)

® - [ (3ivst - 3¢ - 09 uax.
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andS : RY — R is the (up to constants) unique solution to

n = —div(uv) = —div(u(VS - A)) = —div(uVS) + div(uA) in R
With the notation (4), we hav@ = —A (57 — div(uA)) in R,

2.2.3. Charged quantum particlesSubstracting from the kinetic energy of the previous exampl
the Fisher informatiot(u), defined by

®) 1) = f 1V logufu(d),

the lifted Lagrangian

2
™) i) = Il = V) - 16

was considered by Iltterty [18] and von Renesse [26] to formulate the $dmger equation by
means of the Madelung equations. We remark that Feng andddd@yemployed-I (u) instead
of I(u) to derive compressible Euler-type equations from min@rszof an action functional
defined on probability measure-valued paths. One may aug&fesiso by the internal energy
term

® - [ Unts,

whereU : R — R is the (smooth) internal energy potential.

2.3. Smooth curves in#. Letu : [0,T] —» & be a smooth curve, i.e., its time derivative
i = ow(t) exists in the distributional sense apde T,.2 for all t € [0, T]. For instance,
i € .7 (RY) may be defined for eadhe [0, T] by

O, €) = (i, &) for all € e (RY),

where(-, -y is the dual product betwee#” (RY) and.7(RY).

Letu : [0,T] —» & be a smooth curve. i, e .#’(RY) is regular angy € Z2°(RY) (see
Section 2.1 for the definition of7=(RY)), standard elliptic theory provides the existence of (up
to an additive constant) unique smooth solut&n RY — R to the problem

- d|V(/JtVSt) = ,l:lt in Rd.

In particular, the curvee @ (0,T) » T, t > n = iy = —div(u;VS;) is well defined and, by
definition of the tangent spaca, € T, . Again, the single-particle motion: [0, T] — R%is
included by takingy; = 6¢ty andn, = — div(vide) € Z"(RY), wherev; is some vector field such
thatvy(x) = ¢(t) for x € RY.



QUANTUM FLUID MODELS 7

2.4. Action functional and critical points. Given a Lagrangiat?’ on & (see Section 2.2), we
define the action functional on smooth curyes[0, T] —» & by

)
Ay) = fo Lot

A critical point of <7 is a curvey which satisfies

d S
S/

=0
s=0

for all smooth variationy : [~¢,£] X [0, T] — £, (s,1) = 8, satisfying)y? = y, fort € [0, T].
Hence, assuming fierentiability of ., a curve is a critical point if and only if it satisfies the
Euler-Lagrange equation

do¥y, .. 02, .
9) P a—n(% Y) — E(% y) =0.
A Lagrangian system or” with friction is modeled by means of a dissipative potenfial:
T — R:
do¥v,6 .. 02, .. 09, .
(10) gt a—n(% Y) - E(% y)+ a—n(% y)=0.

Renesse identified in [26] the flow (9), witi¥ given by (7), with the Sclidinger equation in
its Madelung representation. We extend this concept indhewing sections for more general
Lagrangians.

3. ExampLE 1: ParTicLE MoOTION IN A POTENTIAL FIELD

We show that the formalism of Section 2 includes as a speasd the motion of a single par-
ticle in a potentialb(x). Indeed, choosing the Lagrangian as the lift of the clatdiagrangian
L(g. §) = 3161 — ®(x), the arguments in Section 2.2 yield, for vector fieldsC*(R%; RY),

(50— div(5.)) = LOCUR) = SV~ 9.

Elementary computations show that curyes- 6y, with % = —V®(x,) are critical flows for the
corresponding lifted action functionat, i.e.,y; is a critical point foreZ (see Section 2.4).

Clearly, the case of a collection of point masses moving inirat jootential is more inter-
esting. When the particle system is coalescing (correspgndi ineleastic particle collisions),
the system may eventually collapse to single Dirac measumsng along a classical particle
trajectory. This situation is described by the above Lagi@m An example is the chemotactic
movement of cells modeled by a Keller-Segel system, whick exhibit finite-time blow-up.
After blow-up, collapsed parts seems to consist of evolidirgc measures.
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4. ExampLE 2: THE MAGNETIC SCHRODINGER EQuUATION

We consider the motion of a charged quantum particle in a etagfeld with magnetic vector
potentialA. According to Section 2.2, the Lagrangian reads as

2
) Butr) = [ (5197 = 1A - 009 - 17 logu?)u(cs,

wherey € &, n € T,Z, andS = —A;l(n — div(uA)). The corresponding action functional
becomes

i
(12) Aaly) = fo Lyt

wherey : [0, T] —» & is a smooth curve.

4.1. Magnetic Madelung equations. We show that the critical points fa#j, solve Madelung-
type and quantum hydrodynamic equations.

Theorem 1 (Magnetic Madelung equationsh smooth curve : [0, T] — £ is a critical point
for oy, i.e.

d ot 02

13 — - =0
(13) dt on ou ’
if and only if the flow of the generalized momenta BY — R, t € [0, T], of
(14) Ayt +div(u(VS—A) =0 inR“
solves the Hamilton-Jacobi equation

1 5 PANH
(15) 6tS+§|VS—A| +(D(X)_EW_O in RE.

For the proof of the above theorem, we need an auxiliary reiset denote
M = {f smooth signed measure B : (¢,1) = 0, f e™|£|(dX) < oo for all & > 0}
Rd

the set of smooth signed measures with zero mean and finittnerpal absolute moments.
Here,(-,-) denotes the dual product between the space of finitely additieasures oR® and
the spac&.(RY). Then, foru € .# andS € .7(RY), the diferential operaton,,(S) = div(uVS)

is well defined. Furthermore, we write

d
6.F(1.8) = T Flu+ed)|

for the first variation ofF aty in the direction of. If 6.F(u,¢) = fRd G&dx, we setG = 9F /dpu,
the variational derivative df with respect tqu.

Lemma 2. For smooth measurgs € &2, the operator-valued functions— A, andu A;l
are differentiable in the direction of € .#, and their first variations are given by

Sl = Aes 8Dy = =D AN
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Proof. The first claim follows from
5. Ae(S) = di div ((u + sf)VS)‘ L= div(EVS) = AS.
_ o o
To prove the second claim, we notice tlzh@x,g)Aa},f)(S) = S implies, by the Leibniz rule, that
0= 0. (Aueup)(S) = 0.84.(8;"S) + A6.A4H(S).
By the first claim, this can be written as
0= A:A'S + AGS.AL(S),

and multiplication byA;1 from the left shows the result. O

Proof of Theorem 1The theorem is proved by calculating the derivatives in thieELagrange
equation (13). To this aim, we s&f = .7 — 7/, where

Tl = [ SPu@) = 5 [ 198,10~ dvA)u(ed,

2
() = fR d (%wz 00+ oy loguF)u(dx)

are the “kinetic energy” and “potential energy” terms. Eiwge find that, for fixeq: € &2 and
foranyé e #,

1d

6.7@.8) =55 | IVAMy— dv(uA) + sg)Pu(dx)|

de Js

_ f VA - diviuA)) - VAT u(dX)

=— f VS - VA *éu(dx) = - f uVS - VA tedx
Rd . Rd .

Then, by integrating by parts and using the definitioAgf

6.7, &) = fR d At div(uVS)édx = fR d AN(A,S)édx = fR d Sédx,
showing thaty.7 /on = S. The expressiory” does not depend om and henced”? /on = 0.
Thus,
0L
on
Next, we computd.”7 /ou. We observe that” can be reformulated as

=S

(16)

T (u,n) = Ef VS - VSdx= —= [ div(uvS)S dx
2 Rd 2 Rd
1

1 . _ )
-2 fR sASdx=— fR (7= div(A)AL G - div(uA)dx
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usingsS = —A;l(n —div(uA)). Hence, the first variation reads as

5.708) =~ o [ 0= AW+ SR - vl + 2)W)N

We employ the product rule and Lemma 2 to compute the firsatran ofA;l:

6.7 (u, &) = fR d div(EA)A, (7 — div(uA))dx
+ % f (n — div(uA) A AA (i — div(uA))dx

The first term becomes, after an integration by parts,

f div(EA)A; (7 — div(uA)dx = - f div(£A)S dx= f (A- VS)édx
Rd Rd R

For the second term, we find that, by the definitiom\gf

= fR (= dV(ADA AN, (7 - divuA)dX

1

=5 fRd A;l(n —divuA) div (fVA;l(n — div(uA)))dx

_ 1 f VA — div A - (EVAZH( - div(uA)))dx

:——f IVS|Zdx

1
6.7 (u, &) = fRd ((A~VS)— E|VS|2 £dx

We conclude that

and therefore, the variational derivative equals

(17) 0T _ p. VS - }|VS|2.
ou 2

It remains to calculaté”? /ou. The first two terms in the integral of depend only linearly
onu which shows that

0

1.0 _1— 2
o fRd(2|A| +(I)(X)),udx— 2|A| + O(X).
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The first variation of the Fisher information becomes
2 d 2
o.| | IVioguPudx|(u.&) = — | Vlogl + s)(u+ s)dx _
Rd € Jrd &e=0
_ d 2 d 2
- fR Vlogufu + e£)dd_+ o fR VIogh + e)ud
= f IV log u|?édx + ngf Viog(u + &) - V(Iog,u),udx1 "

2
|’ulgdx vag Vudx
Rd

rd
2 A
:f (lwl _sz) € iy o _4f AVH
rRA\ M H rd VU
We infer that
0 h2 h2 A\Ju
Summarizing, we conclude that
oV 72 Au
(18) E = é D(x) E 7
and for the Lagrangian
0L 1_., 1 2 A\Ju
o A-VS 2|VS| 2|A| D(X) + > Vi
2A
- Lus_ar- o+ h— Ak
Vi
which finishes the proof. O

We call (14)-(15) the magnetic Madelung equations. Theesgion ?/2)A i/ is re-
ferred to as the Bohm potential. It is the quantum correctithé (magnetic) hydrodynamic
equations. Via the Madelung transformati¥n= /u exp(S/#), smooth solutionsgy, S) to (14)-
(15) with initial datau(-, 0) = uo, S(-, 0) = Sg in RY yield solutions to the magnetic Sdulinger
equation

2
(19)  indY = %(?V - A) ¥+ O(XY, t>0 W(,0)= Vuoexp(So/i) inR

Remark 3. Taking the gradient of (15), multiplying the resulting etjaa by x and employ-
ing (14) similarly as in the proof of Theorem 14.1 in [14], wedithe quantum hydrodynamic
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equations
o + div(uv) = 0,

O(uv) + div(uv e v) — h—zz,uv (A—\/\L_ﬁ) +uvVod(x) =0, t>0,

u(0) = po,  (uv)(-.0) = uo(VSo — A) in R,

wherev = VS - Aandv®v denotes the matrix with components,. Here, we have used the fact
that A does not depend on time. Thus the dynamics of a chargedIpartian electromagnetic
field is formally the same as that of a charged patrticle in actgt field, with diferent initial
conditions and a dierent velocity functiorv. |

Remark 4. Including the internal energy (8) into the Lagrangian (5thaut magnetic field,

2
L) = [ (5957~ UG - 009 - IV loguPu@n. s =vah

we can derive the nonlinear Sélinger equation. Indeed, curves of the correspondingracti
functional are critical if and only ifg, S) solves
O + div(uVS) = 0,
1 2 / hz A \/ﬁ _
6t8+§|VS| +d(x)+U (p)—EW =0.
Taking the gradient, multiplying the equation pyand settingt = +/u exp(S/%), we arrive at
the nonlinear Sclidinger equation

2
im0 = —%A‘I’ + f(IPP)Y + (XY,

wheref is defined byf (s) = s/2U’(s) (s> 0). O

4.2. Almost symplectic equivalence of measure and wave functiaynamics. We have men-
tioned in Section 4.1 that solutions, §) to (14)-(15) yield solutions to the magnetic Satinger
equation (19) via the Madelung transform §) — ¥ = juexp(S/nx). Similarly to the treat-
ment of the standard Sddinger case in [26], we shall now give a systematic analykthis
transformation as a symplectic map between two Hamiltosistems, which turn out to be
almost equivalent, as specified in Theorem 10 below.

4.2.1. Hamiltonian Formulation of magnetic Madelung flowhe first step is to identifiy the
Hamiltonian description of the Lagrangian flow (£4§15) by means of the Legendre transform
on T4 induced by the lifted Lagrangian (11). Since in the curretiasion, % is no longer
quadratic inp € T,, its induced Legendre transform is not a simple Riesz isomsnpon the
Hilbert space T, 2.1l - Ilr,»). As a consequence, the distinct roles played by tangenedpa’
of generalized coordinates and its dual spate”’ of generalized momenta become apparent.
We recall that the cotangent bundlé<” consists of all pairsy, F), whereu € & andF :
T,2 — Rislinear. From the definition of the tangent spdge” follows that any distribution
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n in T2 annihilates the constant functions. Therefore, in ouasitum, T*<” can be defined by
T2 ={uf)ipe 2, fe AR,

where
Fo={f=¢p+c:¢pe.s,ceR}f~
is the space of equivalence classes of shifted Schwartzidusc with f ~ g if and only if
f — g = const.
In analogy to the classical approach, one defines the Hamaho#y, : T*<” — R associated
to the Lagrangiady, : T&? — R as its Legendre transform, i.e.

%/I(/Ja f) = Sup (<777 f> - gM(/J7 77)),

neT, &

where {1, f) € 2 x #(RY) and(-, -y denotes the dual bracket irf’(RY) and.#(RY). Thanks to
the strict convexity of%y, the supremum is attained git € T, which is the unique solution
to f = (0-%u/0n)(u, 7*), and hence,

S, T) =, 1) — L, 7).
Now, the variational derivativéd-%,/on has been computed in Section 4.1, see formula (16).
Therefore,f = (0-Zu/0n)(u,n*) = S*, whereS* = —A;l(n* — div(uA)), andS* is unique as a
solution in.%,(RY). As a result, we have identified the change of coordinates
T -T2, (wn) - @S), S=-An-divuA),

as the Legendre transform from the physical phase spaceiafivasT & to the space of gen-
eralized momenta* #.

Inserting the identificatio” = —A,S* + div(uA) into the Hamiltonian gives an explicit ex-
pression for4y:

f%\/l(fb SX) = <_A/18* + dIV(/.lA), S*> - gM (77*’/1)
- f div (u(VS* — A)S*dx— Zu (7", 10).
Rd

Integrating by parts in the first integral and using the deéiniof .4 gives

%M(ﬂ,s*)=fmvs*ﬁdx—fﬂA.vs*dx
Rd Rd
1 %12 1 2 hz 2
fR d(z'VS' SIAP — @(x) - ¢ IV log | udx

1 2
=5 IVS* — A2udx + f CD(x),udx+% f IV log u|?udx
Rd Rd

Rd
We see that the Hamiltonian is, as expected, the sum of th@etiagpotential, and quantum
energies, respectively. Indeed, the classical magnetmilttaian isHy = %|p - A? + O(X),
wherep is the momentum. In the lifted version, the momentum becoWt&sand therefore,
Fn mag = % fRd IVS — A%u(dx), which is the above expression.
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As a second ingredient for a Hamiltonian description of tesoaiated flow of generalized
momenta o * &, we introduce a symplectic form dit &, similarly as in [26] on the physical
phase spac& &?. We recall that a symplectic form on a vector space is a skew-symmetric,
non-degenerate, bilinear form, i.@(v,w) = —w(w,V) for all u, vandw(v,w) = 0 for all w
implies thatv = 0.

Lemma 5 (Symplectic form onl*#?). Each pair (¢, ¥) € .7(R%) x .#(RY) induces a vector
field \y, : T2 — TT* 2 via
Vou(u, ) = (- div(uVy),¢) € T, nT°2,  (u, f) e T" 2.

Furthermore, T2 is endowed with a unique symplectic fown defined on the above vector
fields by

(20 AV Vere) = [ (V61T = V62 V(e

where(¢;, ) € SR x ARY), j=1,2.

Proof. Expression (20) clearly defines a skew-symmetric bilineamf Furthermore, an elemen-
tary calculation shows that is non-degenerate. Uniqueness follows from the fact thragif@n
(u, f) € T* 2, the set of tangent vectof¥, ,(u, f) : ¢, € Zo(RY)} is total inT(, ) T* 2. |

Recall that a Hamiltonian flow on a manifod with symplectic formw is induced by an
energy functiorp : M — R via the integral curves of the corresponding Hamiltoniacteefield
X, on M. The latter is uniquely defined by the requirement that in ryM, it holds that

w(X,,Z) =dp(Z) forallZe T,M.

The form (20) forM = T*&7 allows us to study Hamiltonian flows for various energy fummas ¢
onT*Z. Foryp = J#4,, we arrive at the following statement, which is the analogfueroposition
3.4in [26] (also see Corollary 3.5 in that paper).

Theorem 6 (Critical points and Hamiltonian flow)A smooth curve of measurgs: [0, T] —
Z, 1 > vy, is a critical point of the action functionads,, defined in(12), if and only if the
corresponding curvéy;, S;) € T* <2 in the space of generalized momenta, whetresx;}('yt -
div(y:A)), is a Hamiltonian flow orfT* <2, w) associated to the Hamiltoniag,.

Proof. It suffices to compute the corresponding Hamiltonian vector #gjg onM = T*Z2. To
this aim, fixp = (u, f) € T*M and choos& =V, ,(u, f) € TT*2? as in Definition 5. Then

d .
T A (Vo= s dv(uvy). | +eg))|

= fRd(Vf — A) - Voudx+ %fRd VIV — AP - Vyudx

A (Vo (. 1)) =

no[ o AVE
+ Vo -V dx——fV—oV dx
fRd 170 2 ) VR Y



QUANTUM FLUID MODELS 15

Comparing with (20), we find that

. 1 h? A\u
_ -1 2
X,ny (/J, f) = (_A,u d|V((Vf - A),Ll), ElVf - Al + 0 - E W) .
Hence, a smooth curve— (1, S;) € T*Z is an integral curve foiX 4, if and only if the
corresponding flow of variationts— i € T 42 solves (14)-(15). O

4.2.2. Hamiltonian Structure of the magnetic Schrodinger flawet us recall the basic fact that
the magnetic Sckdinger equation has a Hamiltonian structure, too. Inddedpting by =
C>(RY; C) the linear space of smooth complex-valued function®b@and identifying as usual
the tangent space over an elem#n¢ ¢ with the spaces’, the tangent bundl€% is naturally
equipped with the symplectic form

wc(F,G) = -2 f IJ(F - G)(x)dx,

where J(2) is the imaginary part oz € C andzis its complex conjugate. This way(fiwc)
becomes a symplectic space. @rwe define the energy functioftz : € — R by

H(P) = %f (?V—A)‘P

2

dx+ [ o) 1¥E) dx
Rd Rd
which is the magnetic Sctdinger Hamiltonian.

Proposition 7. A smooth flow of wave functions+ ¥, € ¥ solves the magnetic Schrodinger
equation(19)if and only if it is a Hamiltonian flow induced from the energyétion.7¢ on the
symplectic spac&s’, hiwc).

Proof. We only sketch the proof of this classical but mostly forgotfact. For, ¢ € €, we find
by a straightforward computation that

: (oo o
SfRd i.((?V—A) +22<1)J‘I’-de
i e

This shows that the Hamiltonian vector fieXd,, associated to7: on (¢, wc) is

9 e + ) =% f

X (V) = —;l_l [% (?v - A)2 + cp] P,

Hence, solutions to the magnetic Satlinger equation (19) are precisely the integral curves of
the Hamiltonian vector fielek . . O
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4.2.3. Madelung transform: precise definition and symplectic prbis. Let ¢, = {¥ € ¢ :

fRd [PlPdx = 1, ¥(x) # O for all x € RY} be the set of smooth nowhere vanishing normalized wave
functions. EachV € %, admits a decompositiolf = |¥|exp(S/#i), where the smooth function

S : RY — R is uniquely defined up to an additive constant of the forhk2k € N. In particular,

the Madelung transform is well defined

(21) o€ -T2, o(¥) = (YXPdx S) € Z x.7(RY).

Recall that by the definition of%(RY) as the space of equivalence classes of shifted Schwartz
functions, the majpr is not injective. However, we may apply the abstract notiba asym-
plectic submersion (see [26]) which is a generalization symplectic isomorphism where the
injectivity assumption is dropped.

Definition 8 (Symplectic submersion on manifoldd)et (M, wy), (N, wy) be symplectic mani-
folds equipped with the symplectic formg, wn, respectively, and let sM — N be a smooth
map. Then s is called symplectic submersioifits differential s : TM — TN is surjective and
satisfiesun(s. X, S.Y) = wu(X, Y) forall X, Y € TM.

Similarly to the isomorphism case one may easily see thatiktarian flows are stable under
sympletic submersions. This is stated in the following fon, cf. [26, Prop. 4.2].

Proposition 9 (Submersions between Hamiltonian flowget M, N be symplectic manifolds
equipped with the symplectic forms,, wy, respectively, and let sM — N be a symplectic
submersion. If the Hamiltonians & C*(M) and Ge C*(N) are related by F= G o s, the sub-
mersion s maps Hamiltonian flows associated to KMrnw)y) to Hamiltonian flows associated
to G on(N, wy).

We are now ready to state the main result of this section whgderts that the Madelung
transform is a symplectic submersion fréfhto T* .

Theorem 10(Madelung transform as a symplectic submersidif)e Madelung transforro- :
¢. —» T2, defined in(21), is a symplectic submersion frof#., iwc) to (T* 2, w), preserving
the magnetic Schrodinger Hamiltonian,

He = Hy o 0.

Proof. Since the proof is very similar to the proof of Theorem 4.326]] we give only a sketch.
First, we restrict the phas®/% in |¥|exp(S/#) to the intervall [Q277%) by defining an appro-
priate bijection. We can prove that theffdrential s, is surjective. A calculation shows that
w1+ 2(SVgy 1. SNVppu,) = hwc(Vpy e Va,y,) TOr all vector fieldsVy, ., Vy,4,. Thus,sis a sym-
plectic submersion. The remaining pa#t = %4, o o is a computation; see [26, Section 4] for
details. O

In light of Proposition 9 and Theorem 10, the magnetic 8dhrger equation (19) for wave
functions can be interpreted as the lift of the physicaltyitive Lagrangian flow on probability
measures (or mass distributions) (15) to the larger spacernplex wave functions. The lifted
Hamiltonian system is the familiar magentic Satlinger equation for wave functions and has
the advantage that it is linear. However, a disadvantadeatsat new and unphysical degree of
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freedom, incorporated in the constant phase shift for wanetfons and describing the same
physical state, is introduced.

5. ExampLE 3: QuanTum NAVIER-STOKES EQUATIONS

In this section, we consider the quantum Lagrangian

2
(22) Zolun) = [ (%wsﬁ - UG - 90 - 19 l0guf) u(ax.

whereue #Z,neT,#,S = —A;ln, andU (u) denotes the internal energy which is assumed to
be a smooth function. Here, we are interested in the Lagaarftpw with dissipation

Pu) =5 [ (@),

wherea > 0, andv = VS is the unique potential velocity field inducing the variatip of the
Stateu.

5.1. Quantum Navier-Stokes equations.We show that the dissipative Lagrangian flow on
2 can be related to the Navier-Stokes equations including@3titen potential and a density-
depending viscosity. Our result reads as follows.

Theorem 11(Quantum Navier-Stokes equationg) smooth curve : [0, T] — &2 satisfies
d 0% 0%o
dt on ou

if and only if the mass fluxw> v, with v = —VA;lu solves the quantum Navier-Stokes equation

(23) (o) = 22y + %ﬂ,p) -0

(24)  0y(uv) + div(uv® V) + Vp(u) + uVO(X) — %Z/N (%) = auVAH(V? 1 (uVV)).

Here, v® v is a tensor with componentsw; the pressure function (p) is defined through
p’(s) = sU”(s) for s> 0; and the product “:” signifies summation over both indicedenhtifying
vector fields modulo rotational components, we can write thisagon as

. h? A _
(25) Ot(uv) + div(uv @ v) + Vp(u) + uVao(x) — E,LLV 7 = adiv(uD(v)),
u
where A= B if and only ifdiv(A - B) = 0, and D(v) = %(Vv+ Vv') = Vv is the symmetric
velocity gradient.

The system of quantum Navier-Stokes equations is given4yg@ad the continuity equation
(26) o + div(uv) = 0.

In this model, the viscous stress tensaf is vD(v), where the viscosity = au depends on the
particle density:. For variants of the stress tensor, see Remark 12.
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Proof. We write %5 = .7 - 7/, where

TG =, = [ 198, miu(e

corresponds to the “kinetic energy” and

h2
@) P = [ (069 UG + 17 logi) ey
R
corresponds to the “potential energy”. By the proof of Theofie(see (18) wittA = 0), we have
oV n? A \/,E
28 — =0(X)+U () - = —

Since”?” does not depend ap it follows thata”ﬂ/an = 0. Furthermore, by (16) and (17) (with
A=0),
£
“Q _ g =S, g - —1'|VS|2.
on on ou 2

It remains to computéZ/dn. To this end, let € .# and set = A;lg. Sincev = VS =
—VA,'n, we infer that

(29)

6.70.8) = 5 5 | V8 a+ oy

- [t e @),

15

NI R I\)lQ I\JlQ
%|Q-Q'|Q-°'|Q-

T

V(=S + &) : V(=S + el)u(d x)|£:0

—a f V23S : VZiudx = —a f A(VZ: (uVPS))édx
Rd Rd
This implies that

(30) 07 _ —aAH(V?: (uV2S)).
on K
Inserting this expression as well as (28) and (29) into (A&
2A
&S + —|VS| L)+ U - & % aAV2 1 (uV2S).
We take the gradient, multiply this equation foyand replac&'S = v:
2 A
UON + :—L;N|v|2 + uVO(X) + uU” (u)Vu — h—ﬂv AVE) _ auVAIV? (V).
2 2 Vi H
Then, employing the continuity equatief,u + vdiv(uv) = 0 and rearranging terms, we obtain
72 (AVE 12
O(uv) + div(uv ® v) + uVao(x) + Vp(u) — —;N \/_ = auVA "V (uD(V)),
u
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which equals (24). The final step is the projection on the spdcurl-free fields by taking the
divergence which leads to (25). Indeed, observing that

div (,uVA;lV2 : (uD(Vv))) = A,,A;l(Vz . (uD(v)) = div (div(uD(v))),
we conclude the proof. |

Remark 12. The Lagrangian approach allows us to choose other dissipggims. We consider
two simple examples:

D) =2 f VPR, =2,
P Jrd

Talun) = 5 [ S0PV v eiv (e

whereg : R — [0, o) is some function and,, v, > 0. The variational derivatives are computed
similarly as in the proof of Theorem 11. The results are dsvid:

074 _an V2 : (WIDO)P?DW))
on H
08_32 = “AV2 : (ug()(viD(V) + va(divv)I)).

The viscous term in the quantum Navier-Stokes equationbtared after taking the gradient,
multiplying by u, and projecting it on the space of curl-free vectors:

v (7% = ~a v (78,72 (DI 2D(0)

= —adiv (div(u|D(V)|"?D(V))),
and similarly for the second expression. The viscous stezsors become
1= auDMIP?D(V), Sz = ug(u)(v1D(V) + vo(div V)I).

The viscosityv; = au|D(V)|P-? depends not only on the particle density but also on the itgloc
gradient. When we choosfu) = 1/u, the viscosities are constant, which corresponds to the
case of Newtonian fluids (see, e.g., [8, Formula (1.16)]). O

5.2. Energy-dissipation identities and Noether currents. According to Section 4.2, the Ham-
iltonian 77 : T2 — R associated to the Lagrangig#h, : T — R, defined in (22), is given
by

Ao, S) = (., Sy — Lo, ),
whereS = (0.%5/0n)(u.n) = —A;'n. Insertingy = —A,S and the definition (22) af/, into this
expression, we find that

Hfu.S) = [ 1VSPudx- Zogun)
R

2
(31) - fR d (%IVSIZ +UG) + 00 + IV Iogmz)udx,
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which is the sum of the kinetic, internal, potential, andmfuan energies. In this section, we will
derive energy-dissipation identities for smooth soluitmthe quantum Navier-Stokes equations
(24) and (26).

Proposition 13 (Energy-dissipation identity)Let (u, V) be a smooth solution t(24) and (26).
Then

dt

Proof. Multiplying (24) by v and (26) by—3|vi? + U’ (i) + ®(X) + (7%/2)(A v/ yr) and adding
the resulting equations, a stralghtforward computatiehs

Ef —|v|2 + U (u) + ud(X) + h—,u|VIog,u|2 dx = af uv- VATH(V? : (uv))dx
dt Rd 2 8 Rd H

The left-hand side equal$’7g/dt. The right-hand side can be rewritten, uswmg= VS and
integration by parts, as

—a f div(uVS)A, (V1 (uV?S))dx = —a f ASAH(V? 1 (uV?S))dx
Rd Rd

d
(32) 474 +a f ulVviPdx = 0.
d

= —a fR d ATALS(V? 1 (uVPS))dx
= —af V23S : (uV?S)dx = —af ulVviPdx,
Rd Rd

proving the claim. O

Remark 14. Proposition 13 is the counterpart of the energy dissipd#farfor classical damped
Lagrangian systems iR" in which case the analogue of (23) reads as

d aL

(33 G0 -5 aa a0 =0

Writing the dynamics in Hamiltonian coordinate$—> (q(t), p(t)) via the Legendre transform,
i.e.p=p(qg,q) = (0L/99)(q, ), for the Hamiltonian we obtain

: . oL, . .
H(a, p(a. @) = (4, a_q(q’ a)) — L(a. a),
which yields, after dferentiation with respect tband inserting (33),

H
¢ (). p(t)) = <q, (q e))2

In our case, by the same computation and using (30), it fallthat

d
% . @> = —a(A,S, A7(V2 : (uV2S)) = —a f IV2S[2d,
d

which equals (32). O
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It has been shown in [15] that tipeojectedsystem (25)-(26) possesses a second energy func-

tional,
2

(34) 39 = [ G0+ 000 + 009 + g - o?] 7 Iogu

R

wherew = V + Vs andvys = aVlogu is the osmotic velocity first introduced by Nelson [23,
Formula (26)]. More precisely, leti(v) with v = VS = —VA;ln be a smooth solution to

(35) e +diviny) =0, xeRY t>0,

: 72 Au .
(36) Ot(uv) + div(uv @ v) + Vp(u) + uVao(x) — E,uV (W) = adiv(uD(v)).

Then a formal computation [15] shows that
d%* h2
dtQ +a f (,1|Vw|2 +U”(w)|Vul® + (§ - az) ulV2log mz) dx=0,
Rd

which provides additional estimates for the solution&’jf8 > a®>. We wish to understand why
system (35)-(36) possesdas dissipative laws.

A first partial answer was given in [16]. There it was showrt tha osmotic velocity emerges
from gauge field theory by introducing the local gauge tramsfationy — ¢ = expia logu)y,
wherey is a given quantum state. This transformation leaves th&cfgadensity invariant but it
changes the mass fluw = —J (V) according to

nw= -J(¢Ve) = -I(WVy — iauVlogu) = u(v+ aVlog ).
Our goal is to show that the new velociy can be interpreted as a special transformation of

(t, ) and that the HamiltoniaﬁfQ* can be interpreted as the Noether current associated to this

transformation.

To this end, we recall some basic facts from classical No¢tigory (see, e.g., [5, Chapter 9]).
Let a LagrangiarL(t, g, q) be given. We introduce the transformatioh@, g; s) and Q(t, g; s),
wheres > 0 is a parameter, such thiat T(t, g; 0) andg = Q(t, g; 0). Setting

_IaT _0Q.
6t - 88 (t’ q’ 0)’ 6q - as (t’ q1 O)’

Taylor's expansion gives(t,q) = t + sot + O(s?) andQ(t,q) = q + soq + O(s?) asy — 0. For
infinitesimal smalls > 0, we can formulate the transformationtas> t + 6t andq — g + 6Q.
Now, theNoether currents defined as
oL . oL
\] - §t — Y- L —5 -
(aqq ) g
If the Lagrangian densitly(t, g, g) is invariant under the above transformation, Noethegetbm

states that the Noether current is constant along any eatrafithe action integral ovel.
On the space of probability measures, we define the liftedidoeurrent as

A n) = 5t(%(ﬂ,n),n> - <%(ﬂﬁ),5ﬂ>a (w.m) eTZ,
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where(:, -) denotes the dual product in suitable spaces. We prove tlogving result.

Theorem 15(Noether currents)Let the LagrangianZ, be given by(22). Then
o ot=106u=0: ¢ =, definedin31),
o 0t=1opu=abu 7 =73, defined in(34).

Proof. The theorem follows by inserting the transformations ifte tiefinition of the Noether
current. We recall from (29) th@ %5/0n = S, whereS = —A;ln. Then, ifét = 1, 6u = 0, we
find that

7 = f Sndx— %5 = f uUVSPdx— Lo = #.
Rd Rd
Next, if 6t = 1, 6u = aAu, we compute

F = f (S — aAuS)dx— %4

Rd
= EprSl + Uu) +y(X) + gpr logul”+ aVu - VS| dx
Rd

2

- f (%MV(S +alogu)l® + (% -~ az)mv logul® + U (u) + zp(x)) dx
Rd
= A3,
completing the proof. |

Notice that Noether’s theorem, which yields energy coret@ya, can be applied onlyif = 0,
otherwise we have dissipation of energy. For a classicakidwodaheory including dissipative
terms, we refer to [7, 27] or the more recent works [12, 13]e €ktension of this theory to our
context is an open question.
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