VIENNACL - LINEAR ALGEBRA LIBRARY
FOR MULTI- AND MANY-CORE ARCHITECTURES
KARL RUPP*| PHILIPPE TILLET} FLORIAN RUDOLF;} JOSEF WEINBUB;
ANDREAS MORHAMMER} TIBOR GRASSER} ANSGAR JUNGEL]
SIEGFRIED SELBERHERR*

Abstract. CUDA, OpenCL, and OpenMP are popular programming models for the multi-core
architectures of CPUs and many-core architectures of GPUs or Xeon Phis. At the same time, com-
putational scientists face the question of which programming model to use to obtain their scientific
results. We present the linear algebra library ViennaCL, which is built on top of all three program-
ming models, thus enabling computational scientists to interface to a single library, yet obtain high
performance for all three hardware types. Since the respective compute backend can be selected at
runtime, one can seamlessly switch between different hardware types without the need for error-prone
and time-consuming recompilation steps.

We present new benchmark results for sparse linear algebra operations in ViennaCL, comple-
menting results for the dense linear algebra operations in ViennaCL reported in earlier work. Com-
parisons with vendor-libraries show that ViennaCL provides better overall performance for sparse
matrix-vector and sparse matrix-matrix products. Additional benchmark results for pipelined iter-
ative solvers with kernel fusion and preconditioners identify the respective sweet spots for CPUs,
Xeon Phis, and GPUs.

Key words. ViennaCL, Iterative Solvers, CUDA, OpenCL, OpenMP, CPU, GPU, Xeon Phi

AMS subject classifications. 65F10, 65F50, 65Y05, 65Y10

1. Introduction. The availability of fast implementations of linear algebra op-
erations is crucial for the efficient solution of many problems in scientific computing.
Typical use cases are the inversion of dense or sparse matrices, but also application
areas such as graph algorithms or text mining, where linear algebra operations are
less apparent, yet the limiting factor for overall performance. In order to maximize
the numerical resolution possible for a given time budget, optimized software libraries
for linear algebra operations are broadly available. In the era of sequential process-
ing on single-core processors, reasonable performance can often be obtained with
custom implementations. However, this is no longer true for modern multi-core cen-
tral processing units (CPUs) or graphics processing units (GPUs): First, additional
knowledge of the underlying hardware must be acquired, which can quickly consume
a substantial amount of time. Second, efficient parallel algorithms may differ sub-
stantially from efficient algorithms for sequential execution. For historical reasons,
sequential algorithms are covered more prominently in curricula or text books, so
additional time must be spent on finding proper algorithms in addition to the actual
implementations.

Several programming approaches for modern hardware are available: OpenMP [17]
relies on code annotations via compiler directives for generating multi-threaded pro-
grams. Such an approach is particularly attractive for legacy applications, because
— ideally — existing code does not need to be modified. At the same time, OpenMP
is frequently used in new projects, because it is supported by all major compilers
and platforms, thus making only a minimum of assumptions about the target system.

*Institute for Microelectronics, TU Wien, GuBhausstraie 27-29/E360, A-1040 Wien, Austria

Institute for Analysis and Scientific Computing, TU Wien, Wiedner HauptstraBe 8-10/E101,
A-1040 Wien, Austria

¥School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge,
MA 02138, USA

2 K. RUPP ET AL.

Based on valuable experiences from OpenACC?, the OpenMP forum also standardized
support for accelerators such as GPUs in OpenMP 4.0.

If full control over individual threads is desired, the POSIX standard for threads
(pthreads) can be used on all POSIX-conformant operating systems as well as Mi-
crosoft Windows. In fact, compilers typically transform OpenMP-annotated code into
executables which ultimately call the respective pthreads functionality. A direct use
of pthreads instead of OpenMP-annotated code also prevents certain portability prob-
lems which can arise, if object files were compiled with different versions of OpenMP.
Other multi-threading approaches such as CILK [11] or the Threading Building Blocks
library? [41] exist, but are used less frequently and therefore not considered further
in this work.

The message passing interface (MPI) [21] is a language-independent communica-
tions protocol and the de-facto standard for parallel systems. In contrast to OpenMP,
where non-local data is per default shared across all threads, data is by default local
to each process in the parallel run and all data exchange is explicit. While MPI has
primarily been used in distributed memory systems in the past, current benchmarks
also demonstrate comparable or even better performance of purely MPI-based codes
on shared memory machines than OpenMP-based codes [12]. However, the choice of a
purely MPI-based execution model (flat MPI) including shared memory additions in
the MPI 3.0 standard versus a hybrid model, where data exchange across distributed
memory domains is handled with MPI and shared memory parallelism is handled with
e.g. OpenMP, is still debated in the scientific community [32]. For the remainder of
this work we will focus on parallelism for shared memory machines, hence we will only
comment occasionally on MPI.

The Compute Unified Device Architecture (CUDA) [39] and the Open Computing
Language (OpenCL)? [52] are the two main programming models for GPUs. CUDA is
a proprietary programming model by NVIDIA and consequently only targets NVIDIA
GPUs. Compute kernels are written in a way very similar to C or C++, so existing
code may be ported with only little changes. Compilation requires the compiler wrap-
per NVCC, which separates the GPU-specific code from the host code. GPU-specific
code is then either compiled into a native binary code, or a portable intermediate
representation. After replacing the original GPU-specific code with the transformed
code, the modified source is passed on to the host compiler. However, only some host
compilers are supported by NVCC, which can cause problems, if the host compiler is
updated, but the CUDA framework is not.

OpenCL is a royalty-free, cross-platform standard for parallel programming. De-
vice code is written in a kernel language similar to C and passed to a just-in-time
compiler for the respective target platform at runtime, which results in several key
differences to CUDA: First, no compiler wrapper like NVCC is required, allowing for
maximum flexibility in the choice of the host compiler. The resulting application only
must be linked to the shared OpenCL library. Second, the just-in-time compilation
step enables high flexibility and optimization potential for the target hardware, but
entails additional overhead in each run. While a significant share of this overhead can
be eliminated by buffering the binaries obtained from the just-in-time compilation on
the local filesystem, this option is likely not available on all machines.

A computational scientist working in typical application areas such as materials

'http://www.openacc.org/
2https://software.intel.com/en-us/intel-tbb
3http://www.khronos.org/opencl/

http://www.openacc.org/
https://software.intel.com/en-us/intel-tbb
http://www.khronos.org/opencl/

VIENNACL - LINEAR ALGEBRA LIBRARY 3

science, climate modelling, or computational fluid dynamics has a high interest in
using the computational resources of a given machine as efficiently as possible. In an
ideal world, the computational scientist should not have to deal with hardware details
of a given workstation or supercomputer, but instead be provided with a performance-
portable, machine-independent set of libraries which take care of the machine’s details.
These performance-portable libraries must provide reasonable default values, but at
the same time provide appropriate optimization switches for applications for which
every percent of performance is important. Such switches must be available at run-
time, otherwise each user of a particular application must be exposed to the build
process - the build process becomes part of the application programming interface
(API). However, a built-time configuration is unacceptable in non-scientific software,
but somehow passes for the norm in scientific packages [13]. This situation may be
a direct consequence of the low credit for writing and maintaining scientific software,
which makes it very hard for authors of scientific software to pursue academic ca-
reers [6, 7].

Since CUDA, OpenCL, and OpenMP are in wide-spread use in the scientific com-
munity, a software library for current and future parallel architectures should support
all three programming models. The Vienna Computing Library (ViennaCL)?* [42]
aims to provide individual building blocks as well as larger blocks of linear alge-
bra functionality with CUDA, OpenCL, and OpenMP compute backends, so that
functionality is available to users irrespective of their chosen programming model.
Moreover, the API of ViennaCL enables users to build their own algorithms using
a high-level C++ interface and run on either compute backend rather than dealing
with low-level details of a single compute backend. As the comparison of other library
approaches with similar functionality in Section 2 shows, the ability to switch between
compute backends at runtime is a unique feature of ViennaCL. In Section 3 we discuss
generic requirements on a linear algebra library, while in Section 4 we discuss how
ViennaCL seeks to fulfill the same. The library architecture is discussed in Section 5,
providing an overview of the API as well as the internals of ViennaCL. Benchmark
results in Section 6 demonstrate that ViennaCL provides performance comparable to
or better than vendor-tuned libraries for sparse matrix-vector products and sparse
matrix-matrix products. These results complement earlier work, which reported com-
petitive performance of ViennaCL for dense linear algebra operations [44, 54]. In
addition, benchmark results for pipelined iterative solvers with kernel fusion and two
important types of preconditioners allow for a comparison of solver performance on
different hardware platforms. We discuss lessons learnt from the development of Vi-
ennaCL and discuss future directions in Section 7, where we do not shy away from a
discussion of early design decision which ultimately turned out to be non-optimal. In
retrospective, these earlier design errors reflect general issues in designing scientific
software libraries in the ecosystem of programming models available today.

2. Related Work. Although graphics processing units have been used for gen-
eral purpose computations for several years already, the library ecosystem is still
relatively small. Most libraries are provided by vendors directly: NVIDIA provides
several optimized libraries including dense and sparse linear algebra for their GPUs,
but some developers are discouraged by the implied vendor-lock and its impact on
computational science. One exception is the Thrust library® [31] included in the

4http://viennacl.sourceforge.net/
Shttp://thrust.github.io/

http://viennacl.sourceforge.net/
http://thrust.github.io/

4 K. RUPP ET AL.

CUDA development kit: Thrust provides parallel primitives through a generic C++
API where an OpenMP backend is available as a fallback mechanism if a CUDA de-
vice is not available. AMD provides the OpenCL-based cIBLAS library®, which is
a-priori also suitable for hardware from other vendors. However, compute kernels are
optimized exclusively for AMD GPUs, resulting in the absence of any performance
portability across vendors. INTEL offers optimized implementations for x86 CPUs as
well as Xeon Phis via their Math Kernel Library (MKL)”. While an OpenCL driver
for targeting integrated GPUs is provided, no optimized linear algebra functionality
for GPUs is offered by INTEL.

Non-vendor libraries with support for computations on GPUs are often focused
on only a few operations using one particular programming model. For example,
cISpMV [53] and yaSpMV [60] provide several sparse matrix-vector product kernels
and their own sparse matrix vector storage formats in OpenCL. While such approaches
perform well in isolated benchmarks, their use in practice often suffers from additional
overhead such as data conversion at library boundaries, which can have a considerable
hit on the overall application’s performance. Consequently, we focus on packages
with a sufficiently large set of linear algebra functionality allowing users to compose
algorithms from a rich set of small building blocks within the same library. The
emphasis is on outlining differences of the individual packages to ViennaCL from a
user’s perspective.

2.1. Boost.Compute. Boost.Compute® provides parallel OpenCL-based imple-
mentations of functionality implemented sequentially in the C++ standard template
library. The inclusion into the popular Boost C++ libraries” [50] resulted in a broader
availability of the library, but at the same time leads to a huge dependence for ap-
plications which aim to stay light-weight. Functionality very similar to NVIDIA’s
Thrust library is offered, for example sort and prefix sum operations. However, the
just-in-time compilation of OpenCL kernels enforces a stronger separation between
host code and device code when using Boost.Compute in comparared to using Thrust.
Only very basic vector and matrix operations are provided.

2.2. CUSP. CUSP' [18] is a standalone, CUDA-based open source library for
sparse linear algebra primarily developed by NVIDIA. It provides several sparse ma-
trix formats [10], iterative solvers, and advanced preconditioners including algebraic
multigrid methods [9]. An OpenMP-accelerated compute backend is also available
as a fallback mechanism. NVIDIA also supplemented CUSP, which is a header-only
C++ library, with the CUDA-only CUSPARSE library'!, which provides a C inter-
face, simplifying the use with other languages such as FORTRAN.

2.3. MAGMA, cIMAGMA, MAGMA MIC. MAGMA'? cIMAGMA, and
MAGMA MIC [1] implement linear algebra functionality for CUDA, OpenCL, and
OpenMP targeting Xeon Phis, respectively. All three libraries aim to provide opti-
mized implementations of functionality from the BLAS and LAPACK libraries. The
APIs of MAGMA, cIMAGMA, and MAGMA MIC are similar, but mutually incom-
patible. The three libraries share no common code base and there is a broad diversity

Shttps://github.com/clMathLibraries/c1BLAS
"http://developer.intel.com/software/products/mkl/
8https://github.com/boostorg/compute
Mmttp://www.boost .org/
Ohttp://cusplibrary.github.io/
http://developer.nvidia.com/cusparse/
2http://icl.cs.utk.edu/magma/

https://github.com/clMathLibraries/clBLAS
http://developer.intel.com/software/products/mkl/
https://github.com/boostorg/compute
http://www.boost.org/
http://cusplibrary.github.io/
http://developer.nvidia.com/cusparse/
http://icl.cs.utk.edu/magma/

VIENNACL - LINEAR ALGEBRA LIBRARY)

in functionality offered. For example, MAGMA now provides operations for sparse
linear algebra, which is absent in cIMAGMA and MAGMA MIC.

2.4. PARALUTION. Paralution '3 [55] is a C++ software library with a focus
on providing iterative solvers and preconditioners for sparse systems of linear equa-
tions. It provides CUDA, OpenMP, and OpenCL compute backends, out of which one
has to be selected at compile time. Many preconditioners, however, are not available
with the OpenCL backend. Support for distributed memory machines is available via
an MPI layer.

2.5. VexCL. VexCL!" [20] is a vector expression library for OpenCL and CUDA
written in C++11. The library provides a convenient syntax for vector operations,
either on a single or multiple devices accessible from the same shared memory domain.
Similar to PARALUTION, the compute backend must be selected at compile time.
VexCL generates OpenCL or CUDA kernels for each vector expression encountered
during the execution [20], which may lead to many invocations of the just-in-time
compiler during the execution step. These overheads are reduced by a separate kernel
cache, which stores the resulting binary on the file system after the first just-in-time
compilation and then reloads the binary in subsequent runs. While the NVIDIA GPU
driver offers such a kernel buffer mechanism out of the box, such a feature is missing
for many other OpenCL implementations.

3. Requirements on Linear Algebra Software Libraries. Before discussing
ViennaCL in greater depth, we discuss generic requirements of computational scien-
tists on a linear algebra library in this section. The computational scientist may be
either a developer using the API of the library, or a user of a larger application based
on the respective linear algebra library. Since the importance of the individual aspects
discussed in the following subsections depends on the particular use case, we discuss
these aspects in lexicographical order.

3.1. Composability. The mathematical description of linear algebra algorithms
makes a minimum of assumptions about the objects involved. Therefore, a software
library should not impose additional restrictions, so that one can choose from the
product space of all available options. For example, a library that provides M dif-
ferent storage formats for matrices, K different Krylov solvers, and P different pre-
conditioners should support all M x K X P combinations. Going one step further, a
preconditioner for a 2 x 2-block matrix

A B
C D
may be based on the Schur complement A —BC~!'D, which is commonly implemented

using a solver involving C. A library should also offer the full set of solver options for
the inner block matrix C, allowing for arbitrarily nested solvers.

3.2. Extensibility. In order to minimize the amount of code changes necessary
in a linear algebra library, it needs to be extensible by anticipating growth in the
future. For example, it should be possible to use a specialized routine, which may only
be available in binary form from a third party, for computing matrix-vector products
in a Krylov solver. A common implementation paradigm to achieve extensibility is

Bhttp://www.paralution.com/
Mhttps://github.com/ddemidov/vexcl/

http://www.paralution.com/
https://github.com/ddemidov/vexcl/

6 K. RUPP ET AL.

the use of a plugin architecture, through which additional functionality is registered
at runtime.

3.3. Portability. Supercomputers are in operation for about four to five years,
while codes tend to have a lifetime spanning decades. Therefore, a linear algebra
library should not be written for a particular machine, but instead aim to support a
broad range of machines. Different targets may run on different operating systems,
provide different software toolchains, or provide vastly different computational power.

Also, an application interfacing to the linear algebra library may be written in a
different language. The linear algebra library should provide an API which makes it
easy for any application to call the respective functionality.

3.4. Robustness. A linear algebra library is used to fulfill a set of tasks such
as the solution of a system of linear equations or the computation of eigenvalues of
a given matrix. If a task cannot be completed, the library must report the error
with an appropriate error handling mechanism such that the enclosing application
can select further steps. If a successful execution of a task is more important than
the use of a particular algorithm, a hierarchy of fallback methods should be provided.
For example, a library for the solution of a sparse system of equations may first use
an iterative solver and in the case of failure use a different preconditioner or a direct
solver.

Even though fallback routines are usually less efficient in a benchmark scenario,
an automatic fallback mechanism can save a lot of computational time when compared
to an error encountered at a very late state in the overall progress using a non-robust
algorithm. Also, the application developer may not possess the knowledge to select
the best algorithm for a particular task, but only provide structural information about
the problem.

3.5. Speed. Because the performance of linear algebra functionality within an
application is indicative for total application performance, many computational sci-
entists select the fastest linear algebra library they can find. Consequently, library
performance in terms of floating point operations per second is a common target
metric for comparisons with other packages.

Speed, however, manifests itself not only in terms of raw compute performance,
but also in terms of the time it takes to set up the corresponding code. For a typical
code-compile-debug development cycle, a good linear algebra library should assist the
developer in all three stages: First, the time spent in the coding stage can be substan-
tially reduced by a concise API, good documentation, tutorials, and responsiveness
to user questions. Second, the time spent on the compilation stage consists of two
contributions. On the one hand, there is a one-time effort of setting up the build
environment, and on the other hand one has to account for the time spent on code
recompilation after each change of the code. Ideally, both the time needed for set-
ting up the build environment and the time needed for recompilations are negligible.
Third, the time spent on the debugging stage can be reduced by integrated debugging
features such as stack traces or array bound checks.

4. ViennaCL Overview. Before going into the details of ViennaCL, this sec-
tion will discuss our approach of fulfilling the requirements on linear algebra libraries
from Section 3. Where appropriate, we will discuss the relevant API functionality. A
full description of the API is, however, part of the documentation and not the purpose
of this work.

VIENNACL - LINEAR ALGEBRA LIBRARY 7

ViennaCL’s aim is to provide portable performance for common parallel pro-
gramming models in a way that the user can manipulate objects similar to existing
packages for single-threaded execution. For example, a matrix-vector product, an
inner product, and a vector update when using the C++ library uBLAS included in
the Boost libraries is written as

matrix<double> A(42, 42);
vector<double> x(42);

/% Initialize A and z with data x/
vector<double> y = prod (A, x);

double s = inner_prod(x, y);
y = s % X;

A denotes a dense matrix represented by the templated type matrix<> consisting
of double precision floating point numbers. Similarly, x and y are vector objects
consisting of double precision floating point numbers. prod() calls a matrix-vector
product routine, while inner_prod() computes the inner product of two vectors. Some
C++ linear algebra libraries even overload the multiplication operator for matrix-
vector products. This, however, can cause some unexpected side-effects when chaining
products such as y = A * B x x, because the left-to-right operator evaluation would
result in the costly computation of AxB rather than in two computationally cheaper
matrix-vector products. Certain expression template techniques have been proposed
to overcome most of these issues [34], but also lead to a higher load on the compiler.

The translation of the above code snippet to lower-level CUDA or OpenCL code
requires familiarity with the respective programming model. With ViennaCL the
above code snippet remains unchanged when executed with either of the compute
backends; the user merely has to include ViennaCL’s header files and use the re-
spective namespace instead of using the header files and namespaces from uBLAS.
Therefore, ViennaCL uses expression template techniques at API level similar to those
used conventional C++ linear algebra libraries. However, as will be discussed in Sec-
tion 5, the implementation details for providing such an API are distinctly different
from conventional expression template implementations in order to be able to sup-
port not only pure host code, but also CUDA code and just-in-time compiled OpenCL
code.

The functionality provided by ViennaCL 1.7.1 is listed in Table 1. An outlook
of future functionality and changes to ViennaCL can be found in Section 7. In the
following be discuss how ViennaCL addresses the generic library requirements from
Section 3.

4.1. Composability. ViennaCL extensively uses C++ generic programming
techniques for composability. The dispatches occur at compile time, which on the
one hand reduce the ability to compose functionality at runtime, but on the other
hand allow for additional optimizations by the compiler. Operations involving dense
matrices and vector may not only be called for the full objects, but may also be called
for submatrices and subvectors, enabling almost unlimited nesting.

4.2. Extensibility. The iterative solvers in ViennaCL can not only be called for
objects with a ViennaCL class type, but also for types from other libraries. Support

8 K. RUPP ET AL.

BLAS Levels 1,2,3
Dense Solvers LU factorization

Sparse Matrix Formats | Compressed Sparse Row (CSR), Coordinate Format (COO),
ELLPACK (ELL), Hybrid (HYB) [10], Sliced ELLPACK [35]

Sparse Solvers CG, BiCGStab, GMRES (classic and pipelined)

Preconditioners Incomplete Cholesky, Incomplete LU (ILUO, ILU with
threshold, block-ILU), Algebraic Multigrid, Sparse Approx-
imate Inverses, Jacobi

Eigenvalue Routines QR method, Lanczos, Bisection, Power Iteration
Bandwidth Reduction Cuthill-McKee, Gibbs-Poole-Stockmeyer
Structured Matrices Circulant, Hankel, T6plitz, Vandermonde
Miscellaneous Fast Fourier Transform (Radix-2, Bluestein), Singular Value
Decomposition, QR factorization
TABLE 1

Overview of features provided by ViennaCL 1.7.1.

for classes from Armadillo'® [48], Eigen'® [29], MTL4!'" [26], and uBLAS are provided
with ViennaCL and serve as a template for extending the available functionality to
other libraries.

4.3. Portability. ViennaCL is written according to the 2003 standard of C++.
This ensures broad support even on machines with operating systems released many
years ago.

A unique feature of ViennaCL is that it provides support for CUDA, OpenCL,
and OpenMP with the ability to switch between any of the three compute backends
at runtime. For the cases where either CUDA or OpenCL is not available at the
target system, the respective backend can also be statically disabled in the build
system. If OpenMP is not available or disabled, the host-based backend falls back to
a single-threaded execution.

We will discuss aspects of portable performance below.

4.4. Robustness. ViennaCL uses C++ exceptions to report errors to higher
entities. The algorithms used for running particular tasks such as computing eigen-
vectors are selected by the surrounding application. An automatic switch to a different
algorithm in the case of failure of the selected algorithm is not provided.

4.5. Speed. The OpenCL backend is particularly attractive for a broad set of
hardware from different vendors. However, the availability of a portable programming
model does not automatically imply portable performance. To also ensure portable
performance, ViennaCL contains a device database, which allows for fine-tuning the
respective compute kernels to the target devices at runtime. Performance higher or
at least comparable has already been presented for dense linear algebra in former
work [54]. Section 6 presents additional results for sparse matrix-vector and sparse
matrix-matrix multiplications as well as solver performance for preconditioners.

5. Library Architecture. We will discuss the current architecture of ViennaCL
1.7.1 in the following subsections. The starting point is the code line u =x +y

5http://arma.sourceforge.net/
16http://eigen.tuxfamily.org
http://mtl4.org/

http://arma.sourceforge.net/
http://eigen.tuxfamily.org
http://mtl4.org/

VIENNACL - LINEAR ALGEBRA LIBRARY

Operation Specification Truncated Expression Templates

Section 5.1

Device

Compute Backend Dispatch
Section 5.2

Compute Kerel Generation Handlin

Section 5.3

IID Properties Kernel_ Code
0 S ¥ ¥
P OpenCL |Code Generation| | Kernel Compilation
(=) -2 -> : > :
C OpenMP \ \
H Kernel Code Kernel Binary

g Just-in-Time Compilation
Section 5.4

Testing
Section 5.5

Fic. 1. Overview of the individual steps required in the ViennaCL backend for executing the

vector operation U = T + Y + 2.

A=DB; A += B; A-= B;

A = +aB; A += *ab; A -= tabB;
A=+ B+ C; | A+=+ B+ C;| A=+ B+ C,
A=+4aB+ C; | A+=+aB+ C;| A-=+aB+ C,
A=+4aB+pC; | A+=+aB+8C; | A-=+aB + BC,
A=+ B+pC; | A+=+ B+pC; | A-=+ B+pC;

TABLE 2
The predefined set of operator-overloaded operations in ViennaCL. A, B, and C are either all
vectors or matrices, while o and B denote scalars.

+ z for vectors u, x, y, and z. We start with a discussion of how the expression-
template encoded operation is mapped to a set of predefined operations and how these
operations dispatch into the respective compute backend. For the OpenCL backend
we additionally discuss how we manage device-specific kernels and the implications
OpenCL just-in-time compilation on the OpenCL kernel management. A schematic
overview of these steps is given in Figure 1, where the enclosing testing methodology
is outlined in the last subsection.

5.1. Truncated Expression Templates. Expression templates are an estab-
lished C++ technique for providing operator overloads without the performance hit
of expensive intermediate temporary objects [58, 59]. For example, a naive operator
overload applied to the vector operation u = x + y + z results in temporary objects
for x + y and for the addition of z from the first temporary object. By replacing
expensive temporary vector objects with lightweight objects encoding the operation
via templated types, the compiler is able to optimize away any temporary objects,
resulting in an implementation that is equivalent to an efficient C-like for-loop-based
implementation. However, a direct application of expression templates to OpenCL
is not attractive because of the just-in-time compilation overhead for more complex
algorithms.

ViennaCL internally uses a technique we refer to as truncated expression tem-
plates. The expression is encoded via conventional expression templates, but the
execution is mapped to a predefined set of operations. Table 2 lists the set of prede-
fined operations for vectors and matrices, which resembles the set of operations at the
basic linear algebra subprograms (BLAS) level 1. The scalars « and 8 may either be
an integer or floating point type, or a scalar<T> object representing a single scalar
on the compute device. Longer expressions are decomposed into these predefined op-

N

10

10 K. RUPP ET AL.

erations. Reconsidering the vector expression u = x 4+ y + z, it gets decomposed into
the operations ¢t = x 4 y for a temporary vector ¢, followed by uv = t 4+ z. Even though
truncated expression templates do not eliminate all temporary objects in complex
expressions, they have certain advantages: First, temporary objects are completely
removed for the most common operations. Complex expressions result in less tem-
poraries than naive operator overloading, so the overhead due to temporaries may
still be lower than the overhead for an additional just-in-time compilation. Second, a
predefined set of operations enforces a separation of the API from the computational
backends. In other words, computational backends are fully decoupled from the use
of expression templates for the API.

5.2. Multi-Backend. Since CUDA memory, OpenCL memory, and main mem-
ory each have distinct representations of memory buffers, memory buffers are repre-
sented by a mem_handle class in an abstract way. A mem_handle object may hold either
a raw CUDA pointer, an OpenCL memory handle (of type cl.mem), or a host pointer.
Since the memory handle in OpenCL is not type-safe, mem_handle was also designed
to be type-agnostic of the underlying memory. The type-agnostic mem_handle was
selected over a type-safe mem_handle<T> in order to avoid repeated instantiation of
memory management functionality for different data types. These memory manage-
ment functionality includes read and write operations from main memory, as well as
raw buffer copies within each compute backend. Moreover, routines for the migration
of a memory buffer from one type of memory (e.g. CUDA) to another (e.g. OpenCL)
are provided. Extra care had to be taken with respect to binary data representations:
Certain integer types may have a different binary representation for conventional host
types such as int than on the OpenCL device, so appropriate conversion routines are
necessary.

With the abstraction of memory handles via mem_handle and the associated rou-
tines for reading, writing, and copying memory handles, all other data containers are
implemented in a backend-agnostic way using mem_handle. The computational back-
end consists of a dispatcher interface, which calls the respective operations from the
correct compute backend. Let us consider the matrix-vector product

y = prod (A, x);

of a matrix A and vectors x and y. With the use of expression templates, a temporary
vector is avoided and the computation is deferred to a compute backend dispatcher
routine prod_impl(A, x, y). The compute dispatcher routine inspects the operands and
calls the operations from the respective compute backend:

void prod_impl(matrix<I> const & A,
vector<T> const & x, vector<I> & y)

{
switch (A.handle().get_active_handle_id ()) {
case MAINMEMORY: host_based :: prod_impl(A, x, y); break;
case OPENCLMEMORY: opencl:: prod_impl (A, x, y); break;
case CUDA MEMORY : cuda:: prod_impl (A, x, y); break;
default: /x error handling x/
}

}

A.handle() returns the memory object of type mem_handle, from which an identifier for
the currently active memory domain is requested. Then, the implementation in the

VIENNACL - LINEAR ALGEBRA LIBRARY 11

associated compute backend is called, where additional checks of the input arguments
are performed.

The implementations in the three compute backends are distinct from each other.
Although this results in the same operations being implemented multiple times, it
allows for maximum flexibility at only moderately increased development time. The
following workflow has been found to be most efficient: First, any new operation is
implemented for the host (OpenMP) backend under the assumption of a high number
of threads. This requires to use algorithms similar to the ones implemented for the
CUDA and OpenCL compute backends later. At the same time, the host backend
can be easily debugged and tested with the full set of debugging tools available.
Once the implementation for the host backend is completed, the new functionality is
implemented in the CUDA backend. This is accomplished by copying and altering
the code for the host backend to consider CUDA-specifics. Significant differences only
arise if reduction-like operations in on-chip shared memory are used. The CUDA
implementation is then tested with the already existing, backend-agnostic test suite
initially implemented for the host backend. Because a reference implementation is
available on the host and because the CUDA toolchain provides a rich set of debugging
tools, bugs can be located and fixed quickly. Finally, the OpenCL implementation is
derived from the CUDA implementation by a substitution of keywords.

5.3. Device Database. OpenCL allows for a device-specific kernel to be just-
in-time compiled on the target machine with all optimizations for the target device
enabled. However, there is no automatic performance portability: The optimization
of a kernel for a particular target device does not imply good performance on a
different device. Even though there is good correlation of performance across devices
of the same type [44], target-specific characteristics of the device need to be taken
into account for best performance. To generate such optimized kernels, a database
holding the best kernel parameters for target devices is integrated into ViennaCL.

Kernel parameters are used to transform abstract kernel code templates into the
final kernel code [54]. These kernel code templates must be general enough in order to
be able to generate efficient kernel code, but at the same time be specialized enough
to remain managable. ViennaCL provides the following kernel code templates for
manipulating full vectors and matrices as well as subvectors and submatrices described
by index-offsets and non-unit strides:

e Vector operations without reductions: This template covers element-
by-element vector operations. Examples are vector additions, vector sub-
tractions, and element-wise operations such as element-by-element multipli-
cations.

e Vector operations with reductions: This template describes element-by-
element vector operations followed by a reduction operation over the whole
vector. Typical examples are inner products and vector norms.

e Matrix operations without reductions: This template extends vector
operations without reductions to matrices.

e Matrix operations with row- or column-wise reduction: This template
is used for kernels which involve a reduction step within rows or columns.
Examples are matrix-vector products or the computation of row-norms.

e Matrix-matrix products: Kernels for general dense matrix-matrix prod-
ucts are generated with this template.

The database is populated by dedicated autotuning runs on as many target devices as
possible. We currently follow a static approach where the device database is integrated

12 K. RUPP ET AL.

T T T
—#— AMD APP SDK 3.0, CPU
--4-- AMD fglrx 14.301.1019, GPU
10 p —@— INTEL OpenCL SDK 14.2, CPU
=—&— NVIDIA CUDA 7, GPU ./“

---A--- NVIDIA CUDA 7, GPU, cached / __________

Time (sec)

0.01 N

0.001
1x64 2x32 4x16 8x8 16x4 32x2 64x1

Programs x Kernels

Fi1c. 2. Bvaluation of the just-in-time compilation overhead of different OpenCL vendor imple-
mentations for compiling 64 OpenCL kernels split over one to 64 OpenCL programs. Splitting the
64 OpenCL kernels into two or four OpenCL programs results in shortest compilation times overall.
One OpenCL program per kernel consistently results in highest overheads. A caching mechanism
reduces the overhead by two orders of magnitude.

into the source code. This is the most robust approach, since it avoids possible
errors when otherwise interacting with the system environment by e.g. loading device
parameters from the filesystem.

If a device is not yet available in the device database, the procedure for selecting
parameters is as follows:

e If there is an explicit mapping of a device to another device available in the
database, the parameters from the mapped device is used. This is common
for devices within the same product generation, where products differ only by
minor details such as clock frequency, but otherwise use the same hardware.

e If no explicit mapping for a device is available, default parameters for devices
from the respective vendor are used.

e If no default parameters for devices of the vendor are available, a default for
the device type (either CPU, GPU, or accelerator) is used.

The parameters in the device database are also useful for the CUDA compute backend,
since it includes the best parameters found for the local and global workgroup sizes.
Because architectural differences for GPUs from NVIDIA are smaller than across ven-
dors, we found that only setting proper workgroup sizes at runtime is enough to obtain
good performance for memory-bandwidth limited kernels on NVIDIA GPUs [44].

An earlier study of the impact of different kernel parameters on device per-
formance has shown that there is a strong correlation of best kernel parameters
among different operations [44]. Thus, a good parameter set for vector operations
(cf. STREAM benchmark'® [38]) is also a good choice for operations for which no
full template is available. For example, parallel prefix sums benefit directly from
good parameters for vector operations with reductions. This correlation enables us
to provide good default values even if the respective target device is not available in
the database, and helps to speed up the autotuning process used for populating the
database [54].

5.4. OpenCL Just-in-Time Compilation. One possible approach for OpenCL
just-in-time kernel compilation, which is taken by VexCL, is to generate an OpenCL
compute kernel each time a vector expression is encountered. To avoid unnecessary
and time-consuming recompilation in each run, the resulting binary may be cached

18https://www.cs.virginia.edu/stream/

https://www.cs.virginia.edu/stream/

VIENNACL - LINEAR ALGEBRA LIBRARY 13

on the filesystem. Subsequent runs may thus skip the recompilation step and only
load the respective binary from the file system. Such a caching option, however,
is not available on systems with a read-only filesystem. Similarly, certain network
filesystems may provide too high a latency to cache kernel binaries there. ViennaCL
per default does not cache kernels to avoid additional sources of errors. However,
caching can be enabled for optimization purposes by setting the cache path through
an environment variable.

Figure 2 compares the time spent on the just-in-time compilation of 64 simple
OpenCL kernels for different OpenCL vendor implementations, where the kernels are
distributed over a varying number of OpenCL programs. Each OpenCL program
represents a compilation unit containing one or several kernels, hence the OpenCL
just-in-time compiler is invoked as many times as there are OpenCL programs. A
linear increase in the overhead is observed for more than ten OpenCL programs,
indicating that the total overhead is dominated by the number of invocations of the
just-in-time compiler. Therefore, OpenCL kernels in ViennaCL are grouped into a
moderate number of OpenCL programs based on functionality: For example, vector
operations at BLAS level 1 are grouped into one OpenCL program, matrix-vector
operations defined at BLAS level 2 into another OpenCL program, and so on. Typical
functionality accessed by a user can thus be provided with about two to five OpenCL
program compilations.

5.5. Testing. Continuous integration as well as nightly tests are considered best
practices [33] and used in the development of ViennaCL. The development of a GPU-
accelerated library, however, needs to consider one important difference to the devel-
opment of purely CPU-based libraries: GPUs are not fully virtualized (yet). This
implies that it is not sufficient to use a single physical machine with many virtual ma-
chines in which the different target operating systems are emulated. Instead, different
physical test machines consisting of low- to high-end GPUs of different hardware gen-
erations are required to verify the correct operation of the library on a broad range
of hardware. If we estimate three main operating systems (Windows, Linux, MacOS)
and two GPU vendors with at least three different hardware architectures each, 18 dif-
ferent configurations are required for full test coverage. The combinatorial complexity
explodes if one also takes different versions of operating systems, compilers, or drivers
into account. Even after considerable effort, ViennaCL’s set of nightly test machines
covers only about half of the possible configurations outlined above. However, the
focus on ’extreme’ configurations with old compilers and low-end hardware'® helped
a lot in improving the robustness of the library without sacrificing good performance
on high-end hardware.

6. Benchmarks. We will demonstrate the portable high performance of Vien-
naCL by the examples of sparse matrix-vector multiplications, sparse matrix-matrix
multiplications, pipelined iterative solvers with kernel fusion, algebraic multigrid pre-
conditioners, and parallel incomplete LU factorization preconditioners. For results
underlining the portable high performance of ViennaCL for dense linear algebra op-
erations including dense matrix-matrix multiplications we refer to earlier publica-
tions [44, 54]. The set of sparse matrices used for the performance evaluations is
listed in Table 3 and is similar to the sets of matrices used for assessing performance
in earlier publications [27, 28, 35]. All tests are run on Linux-based machines equipped

190ne of our most useful test machines is equipped with an NVIDIA GeForce 8600 GT (released
in 2007) running CentOS 5.11, where the default compiler is GCC 4.1.

14 K. RUPP ET AL.

Nonzeros | Maximum Average
Name Dimension (NNZ) | NNZ/row | NNZ/row
cantilever 62451 4007 383 78 64.2
economics 206 500 1273389 44 6.2
epidemiology 525825 | 2100225 4 4.0
harbor 46835 | 2374001 145 50.7
protein 36417 | 4344765 204 119.3
qed 49152 1916928 39 39.0
ship 140874 7813404 102 55.5
spheres 83334 6010480 81 72.1
windtunnel 217918 | 11634424 180 53.4
accelerator 121192 2624 331 81 21.7
amazon0312 400727 | 3200440 10 8.0
ca-CondMat 23133 186 936 280 8.1
cit-Patents 3774768 | 16518948 770 4.4
circuit 170998 958 936 353 5.6
email-Enron 36 692 367662 1383 10.0
p2p-Gnutella3l 62 586 147892 78 2.4
roadNet-CA 1971281 5533214 12 2.8
webbaselm 1000005 | 3105536 4700 3.1
web-Google 916428 | 5105039 456 5.6
wiki-Vote 8297 103 689 893 12.5

TABLE 3

Properties of the square sparse matrices from the Florida Sparse Matriz Collection [19] used for
performance comparisons. The grouping into somewhat more regular (upper 9) and more irregular
(lower 11) matrices is taken from the work by Gremse et al. [28].

FirePro | Dual Xeon | Xeon Phi Tesla
W9100 | E5-2670 v3 | T7120P K20m
Vendor AMD INTEL INTEL | NVIDIA
Memory Bandwidth (GB/sec) 320 136 352 208
GFLOP/sec (float) 5238 1766 2416 4106
GFLOP /sec (double) 2619 884 1208 1173
TDP (Watt) 275 240 300 244
TABLE 4

Overview of hardware used for the comparisons. All values are theoretical peaks. Practical
peaks for memory bandwidth and floating point operations per seconds are around 70 to 80 percent
of the theoretical peaks [/4], except for the Xeon Phi, where only 50 percent of the theoretical peak
bandwidth can be obtained [49].

with hardware from AMD, INTEL, and NVIDIA (using CUDA SDK 7) as listed in Ta-
ble 4. Within a sparse matrix-vector multiplication benchmark we also compare with
two additional NVIDIA GPUs (GeForce GTX 470, GeForce GTX 750 Ti) to evaluate
performance portability. Since the four hardware platforms are comparable in their
thermal design power (TDP), our benchmark results allow for a fair comparison also
in terms of performance per Watt.

VIENNACL - LINEAR ALGEBRA LIBRARY 15

6.1. Sparse Matrix-Vector Multiplication. Sparse matrix-vector multipli-
cations (SpMVs) are the essential building blocks of iterative solvers from the family
of Krylov methods. Also, several preconditioners such as algebraic multigrid precon-
ditioners or polynomial preconditioners rely on the availability of fast sparse matrix-
vector multiplications. Consequently, many publications have focused on optimizing
SpMVs to exploit fine-grained parallelism available in modern hardware by not only
optimizing SpMVs for conventional sparse matrix formats such as the compressed
sparse row (CSR) format, but also by proposing new formats [5, 8, 10, 27, 35, 37,
49, 53, 60]. ViennaCL provides optimized SpMV implementations for several differ-
ent sparse matrix formats, but recent improvements for SpMVs in the common CSR
format [27] reduced resiliance on specialized sparse matrix formats: On the one hand,
other operations such as sparse matrix-matrix multiplications may be very inefficient
for a sparse matrix format exclusively tailored to SpMVs, for example if individual
rows can no longer be accessed quickly. On the other hand, many applications already
provide their data in CSR format, so any other sparse matrix format requires addi-
tional conversion overhead. Consequently, the higher flexibility and the wide-spread
use of the CSR format may outweigh the nowadays only small performance gains of
SpMVs using specialized sparse matrix formats.

ViennaCL implements the CSR-adaptive SpMV algorithm initially proposed for
AMD GPUs [27]. Our evaluations have shown that CSR-adaptive is also very efficient
for very sparse matrices (less than six nonzeros per row on average) on NVIDIA GPUs.
If the average number of nonzeros per row exceeds six, we assign 8, 16, or 32 threads
per row on NVIDIA GPUs. We always use CSR-adaptive on AMD GPUs, as it has
been demonstrated to be the most efficient SpMV implementation compared to other
SpMV implementations for CSR as well as specialized sparse matrix formats [27].

A performance comparison of ViennaCL’s SpMV routine with SpMV routines in
CUSP and CUSPARSE on an NVIDIA Geforce GTX 750 Ti GPU (Maxwell architec-
ture), an NVIDIA Tesla K20m (Kepler architecture), and an NVIDIA GeForce GTX
470 (Fermi architecture) is given in Figure 3. These devices represent the three most
recent architectures from NVIDIA in order to also assess performance across different
architectures. ViennaCL outperforms CUSPARSE on the GTX 750 Ti by 36 percent
and on the Tesla K20m by 24 percent in terms of geometric averages of giga floating
point operations per second (GFLOP /sec). On the GTX 470 the performance of Vi-
ennaCL is 13 percent lower than CUSPARSE. Better performance of ViennaCL over
CUSP of 31 percent, 32 percent, and 31 percent is observed for the three GPUs, re-
spectively. Overall, ViennaCL provides higher overall performance than CUSPARSE
and CUSP by reusing performance optimizations initially proposed for AMD GPUs.

6.2. Sparse Matrix-Matrix Multiplication. Sparse matrix-matrix multipli-
cations (SpMMs) are important for computing coarse grid operators in algebraic
multigrid methods [56], but also the basis for graph processing operations such as
subgraph extraction [14], breadth-first search [25], transitive closure [40], or graph
clustering [57]. In contrast to SpMVs, which are usually computed many times for
a given matrix, SpMMs are often only computed once for a given pair of factors.
Also, the performance in terms of GFLOP /sec is lower than for SpMVs because of
the additional level of indirection in memory accesses required to compute the result.

We have recently extended the RMerge algorithm proposed by Gremse et al. [28].
RMerge is based on computing each of the result rows c; of C = AB by simultaneously

16 K. RUPP ET AL.

@ \iennaCL 1.7.1 CUSPARSE 7 CUSP 0.5.1
GeForce GTX 470
20 N0 OOn No®m An® ®IR ©NY NhE —Q0 Do QNh 0on —a- NYY 000 onh ©O¥0 0on ~Non ond Y00 20
OoxB ©ONem BBG SoN SONT KT oo O 20N | 1o Gual Afal —ais O oaa Aol 660 G0 —ais e

215 15
2
& 10 10
—
[T
G 5+ i l ‘ I I l I 5

0 - =0

. = @ = = - = -
I3 3) s £ B o 2 3 5 N I} 2 £ S 5 < 3 o o
s £ & € & 5 § F £ § ¥ =z § 38 g2 8 9 5 ®» =
Z s £ g 8 s 2 s 2 2 9§ S u B B] S T
= g g < s s B © s 5 o 1 5 z s Q z
T S S < Q N o I = < b=1 a 1 s
o S ° s o @ 7 = < g el 2
3 he} H] g 5 g (o} 2 8
S © 1 o H H
g & 8 3 &4
&
a
Tesla K20m
©¥o ¥OF —00 Y4- Ko morn KON NN NOY NO© NoW 20
OO COF FAB NN BNG W@ AN BIBE Sv¥e Bad ~on
o
g 15
@2
o
S 10
-
[T
0] 5
=0
= o > 5 @ 5 5 o = -~
3 3 3 5 < B 2 8 2 <} & g 2 5 s & S E 2 2
3 E S £ 2 s 0§ 5 g s a = 3 & = kit 7 o g 8
= s 2 s 2 5 2 o 2 2 bt S w K] 3 @ 8 1
= < £ a 5 E = 5 S o £ 5 z 8 Q X
< o I c Q N (&} T = c S a ! =
© 8 o 3 o « =] o 2
3 he] E] g 1 5 £ (o} <4 5 8
S © 1 o H H
8 & 8 3 & °
e
GeForce GTX 750 Ti
20 ©IN ©¥0 OO OND —YN ©Orn Q9= NNO —NO | ONe 000 Onm Nrr oo G- YO- 000 ho®m hYm Ov© 20
SBG FBH KBG ONE BG0 ONY Oo6 ONN Sois | Nl 6@ 6aie —rr OFY Faal B BAG 8050~ ord
o
815 15
@2
o
o101 10
-
w
G 5+ 5
0 - =0

cantilever
economics
epidemiology
harbor
protein

qed

ship

spheres
windtunnel
accelerator
amazon0312
ca-CondMat
cit-Patents
circuit
email-Enron
p2p-Gnutella31
roadNet-CA
webbaseim
web-Google
wiki-Vote

F1a. 3. Performance comparison of sparse matriz-vector multiplication routines in ViennaCL
1.7.1, CUSPARSE 7, and CUSP 0.5.1 on an NVIDIA Geforce GTX 470 (Fermi architecture), an
NVIDIA Tesla K20 (Kepler architecture), and an NVIDIA GTX 750 Ti (Mazwell architecture).
The geometric averages over all test runs on all three devices are 5.9 GFLOP/sec for ViennaCL,
5.2 GFLOP/sec for CUSPARSE, and 4.5 GFLOP/sec for CUSP.

merging multiple rows of B according to

C; = E aijbj

J:aij#0

where a;; denote the entries of A and b; denote the j-th row of B. We extend the
idea of merging multiple rows to AMD GPUs by generalizing the idea of subwarps on
NVIDIA GPUs to subwavefronts on AMD GPUs, and to Haswell CPUs as well as Xeon
Phi by merging multiple rows using advanced vector extension (AVX) intrinsics [43].

The performance comparison in Figure 4 for matrix squaring (C = AA) shows
that ViennaCL outperforms CUSPARSE and CUSP by a factor of 2.5 and a factor of
2.0, respectively. A 30 percent performance gain over MKL is obtained on geometric
average on the CPU. The situation is reversed on the Xeon Phi, were ViennaCL is on
average 65 percent slower, which can be explained by a lower degree of optimization
for the Xeon Phi in ViennaCL 1.7.1. We had no other implementation available for
a comparison on AMD GPUs when running the benchmarks. A comparison of the
geometric averages in terms of GFLOP /sec of ViennaCL’s implementation on the
NVIDIA Tesla K20m with ViennaCL’s implementation on the AMD FirePro W9100

VIENNACL - LINEAR ALGEBRA LIBRARY 17

@ ViennaCL 1.7.1, FirePro W9100 @=® ViennaCL 1.7.1, Tesla K20m CUSPARSE 7, Tesla K20m CUSP 0.5.1, Tesla K20m
@ ViennaCL 1.7.1, Xeon E5-2670 v3 MKL 11.2.1, Xeon E5-2670 v3 @» ViennaCL 1.7.1, Xeon Phi 7120 MKL 11.2.1, Xeon Phi 7120
15 15
RAONEMMO NITNN—O-T ©OTOANNM ONNMOT—EO® NrrOFTIrmrm ONNOONON TNOOWODN —RNNONOOT WwANONT -~
~--o¥N-da o S o~ S o - SS r~roomBor Arrode-a Ar-row~-a Aa-oeSaN
» 10 I 10
a
o
-
[
O 5 5
0 - -0
= S ° s £ 5 2
g 2 £ 8 S £
g] s ® £
53 2 H
o
3 3
QINOONON DRONITTNY NNONNDTT HCONNNOT INNNNNDT) TYNHNMEEO NrOmHNOT IECNCINON OOrOTIOT NEONMIINY FNTNNNOT
»
[
[}
|
[
(0]

circuit
wiki-Vote

5 o g 2
s oy = s
g 3 3 g
k5 2 2 g
8 g 8 5
8 B} <Q s
8 g 5 3
§ g

email-Enron
p2p-Gnutella31
roadNet-CA
webbase1m
web-Google

FiG. 4. Performance comparison of sparse matriz-matriz multiplication routines in ViennaCL
1.7.1, CUSPARSE 7, and CUSP 0.5.1, and MKL 11.2.1 for matriz squaring on the hardware
listed in Table 4. Best overall performance is obtained on the CPU-based system, with ViennaCL
outperforming MKL by 30 percent on geometric average. ViennaCL outperforms CUSPARSE by a
factor of 2.5 and CUSP by a factor of 2.0 in geometric mean.

shows a 53 percent higher performance on the AMD GPU. While the results for sparse
matrix-vector multiplications in the previous section showed a better performance on
NVIDIA GPUs when leveraging optimizations for AMD GPUs, our results for sparse
matrix-matrix multiplications in this section extend optimizations for NVIDIA GPUs
to AMD GPUs as well as CPUs.

Overall, our benchmark results suggest that the large caches of CPUs result in
significantly better SpMM-performance of CPUs as compared to GPUs, because re-
peatedly accessed rows in B may already be available in cache. This, however, also
implies that the sparsity pattern of the matrix A is especially important for cache
hit rates. The throughput-oriented architectures of GPUs and Xeon Phis have much
smaller caches, resulting in many inefficient reloads of data from global memory.

6.3. Pipelined Iterative Solvers with Kernel Fusion. Iterative solvers from
the family of Krylov methods are the methods of choice whenever sparse direct solvers
are not appropriate. Many applications require preconditioners for fast convergence,
but a fine-grained acceleration of efficient preconditioners is difficult. In contrast, it-
erative methods with no preconditioner or diagonal preconditioners provide the fine-
grained parallelism required to run efficiently on GPUs. The only global synchro-
nization points are sparse matrix-vector products and inner products, from which
estimates for the residual reduction are obtained. However, global synchronization
points translate into new kernel launches, which have a certain latency due to the
communication of the host with the device through PCI-Express in the case of dis-
crete GPUs. Such latencies are also observed for parallel runs on CPUs or Xeon
Phis for process or thread synchronization, but these latencies are smaller and can be
avoided by switching to a single-threaded execution.

18 K. RUPP ET AL.

AMD FirePro W9100 NVIDIA Tesla K20m

N
<

—— ‘ViennaCI‘_ 1.71 ‘
<<<<< ¥ PARALUTION 1.1.0
MAGMA 2.0

CUSP 0.5.1 ‘/’u 3
: e

[g

—— "ViennaGL 1.7.1
<<<<< v PARALUTION 1.1.0

—_

S
S}
T

W vV'/l/

-

=]
S
T

Time per lteration (sec)
=
w
Time per lteration (sec)
=
w
T

-
<
o

7 2 7

Il Il
10° 10* 10° 108 10 10° 10* 10° 108 10
Unknowns Unknowns

-
o

Fi1G. 5. Comparison of execution times per solver iteration for the conjugate gradient algorithm
applied to a first-order finite element method on unstructured triangular meshes for the Poisson
equation on the unit square on an AMD FirePro W9100 (left) and an NVIDIA Tesla K20m (right).
The pipelined implementation in ViennaCL (and MAGMA for the Tesla K20m) provide up to three-
fold better performance for small system sizes due to a reduced number of kernel launches and syn-
chronization points than the classical implementations in PARALUTION and CUSP. Nevertheless,
execution times below 10* unknowns are limited by kernel launch overheads on either GPU, because
latency effects due to PCI-Express communications can no longer be hidden by computations.

AMD FirePro W9100

200 200
S
o 150 150
€
=
<
£ 100 100
3
o
o]
i
— 5047 [© [50
[7] < [~ ~ [N
o S| e S| e
0 - 0
NVIDIA Tesla K20m
200] ~ 200
S
o 150 ~ 150
£
£
o
S 100 - 100
3
(%]
&
E 50 =) Il) 50
2 o ~ =
clo S |o
0 - 0
windtunnel ship spheres cantilever protein
e \iennaCL 1.7.1 @m» PARALUTION 1.1.0 MAGMA 2.0.1 CUSP 0.5.1

FiG. 6. Comparison of execution times in milliseconds per conjugate gradient solver iteration
for symmetric positive definite matrices from Table 3. FEven though kernel launch overheads are
negligible here, the reduced data transfers of the pipelined implementation in ViennaCL results in
better overall performance than for other libraries.

VIENNACL - LINEAR ALGEBRA LIBRARY 19

Pipelined iterative solvers with kernel fusion use recurrence relations to rewrite
the original algorithm. In the context of this work, the term pipelined refers to a
reduction of synchronization points and a reduction of load and store operations in
global memory by reusing intermediate results. The term is also used for overlapping
computation with communication (e.g. [23, 24]), which, however, is not the case here.
Kernel fusion, on the other hand, refers to merging the operations in subsequent
kernels into a single kernel. The combination of pipelining and kernel fusion allows
for a reduction of the number of synchronizations per solver iteration. As a result,
better performance is obtained particularly for small systems, where synchronization
overheads become important.

We have recently developed and implemented a pipelined conjugate gradient (CG)
method with kernel fusion, a pipelined stabilized biconjugate gradient (BiCGStab)
method with kernel fusion, and a pipelined general minimum residual (GMRES)
method with kernel fusion, each tailored to GPUs [45]. Similar ideas have been used
by other authors for reduced energy consumption [2, 3] or improved performance [4].
Results obtained for a linear finite element discretization of the Poisson equation on
triangular meshes of the unit square in two spatial dimensions for the CG method are
shown in Figure 5. Our pipelined implementation with kernel fusion reduces the num-
ber of kernel launches per solver iteration from six for the classical CG method to only
two, thus providing a three-fold performance gain for small systems when compared to
classical implementations (PARALUTION, CUSP). In other words, pipelined imple-
mentations enable GPU-based solvers to scale to three-times smaller systems, which
is particularly important if many small systems such as in time-stepping schemes need
to be solved instead of only a single big systems. Figure 6 depicts performance results
for the sparse matrices in Table 3, investigating the performance for larger systems
where kernel launch overhead is negligible. Overall, these results show that Vien-
naCL’s implementation based on fused kernels is on-par with MAGMA also for large
matrices, and outperform the implementations based on dedicated SpMV kernels in
PARALUTION and CUSP.

6.4. Algebraic Multigrid Preconditioners. Algebraic multigrid precondi-
tioners are attractive because they are entirely based on entries in the system matrix
and thus can be used in a black-box manner [56]. The algebraic multigrid precon-
ditioners in ViennaCL 1.7.1 are based on earlier work by other authors on exposing
fine-grained parallelism in algebraic multigrid methods for NVIDIA GPUs [9, 22]. We
extended these techniques to support AMD GPUs, CPUs and Xeon Phis [46]. In this
work we will only summarize the key results for an aggregation-based and a smoothed
aggregation algebraic multigrid method.

We consider linear finite element discretizations of the Poisson equation Au = 1
with homogeneous Dirichlet boundary conditions at the = and y boundaries on un-
structured simplex meshes of the unit square and unit cube, respectively. Since the
resulting system matrices are symmetric positive definite, we use the CG method for
the Krylov solver. For better comparison with other available solver alternatives we
also include the pipelined CG solver from Section 6.3 as well as classical AMG im-
plementations using single-threaded one-pass Ruge-Stiiben coarsening supplemented
with direct interpolation [56]. The number of pre- and post-smoothing steps was
chosen such that the smallest time to solution was obtained: One pre- and one post-
smoothing step at each level in the multigrid hierarchy are applied for the classical
AMG implementation, whereas the aggregation AMG preconditioner as well as the
smoothed aggregation AMG preconditioner use two pre- and post-smoothing steps.

20 K. RUPP ET AL.

Solver Iterations Multigrid Levels
10000 T T T 10 T T
—— No Preconditioner —&— One-Pass RS
—@— One-Pass RS b Aggregation
e Aggregation ——yp—Smoothed Aggregation
=——p—Smoothed Aggregation 8
1000
2 / R » 6 Pes
£ 100 — s H / —_—
5 L — K o
2 Ju— — 4 - —
— _» -~
10
2 =/
13 5 6 7 03 5 6 7
10 10* 10 10 10 10 10* 10 10 10
Unknowns Unknowns

Fi1G. 7. Comparison of the number of solver iterations (left) and levels in the AMG hierarchy
(right) required for solving the two-dimensional Poisson equation when using a classical one-pass
Ruge-Stiben AMG preconditioner (One-Pass RS), an aggregation-based AMG preconditioner, and
a smoothed aggregation AMG preconditioner. Asymptotic optimality is only achieved with classical
one-pass Ruge-Stiben AMG, at the expense of a higher number of levels.

The coarsest unstructured meshes were generated using Netgen®? [51] and then sub-
sequently refined uniformly to obtain higher resolution. Note that this simple setting
ensures good convergence of the unpreconditioned solvers relative to solvers with
AMG preconditioners. Thus, AMG preconditioners are likely to perform better rela-
tive to unpreconditioned solvers in practical situations involving e.g. inhomogeneous
or anisotropic diffusion.

A comparison of solver iterations required to reach a relative reduction of the
initial residual by a factor 1078 and the number of levels in the AMG hierarchy is given
in Figure 7. Aggregation-based coarsening is more aggressive than classical coarsening
and thus results in a smaller number of levels, but is not asymptotically optimal.
Smoothed aggregation coarsening is even more aggressive and requires only four levels,
but nevertheless shows better asymptotic behavior: The number of iterations grows
only by a factor of two for system sizes ranging over three decades. Looking at only the
number of solver iterations required, the unpreconditioned solver is not an attractive
choice at all.

Solver setup times, solver cycle times, and total solver execution times (i.e. the
sum of the former two) for each of the four hardware platforms are depicted in Fig-
ure 8. The sequential one-pass Ruge-Stiilben AMG preconditioner takes about one
order of magnitude longer to set up than the two parallel AMG preconditioners.
Kernel launch overheads on GPUs as well as OpenMP synchronization costs become
visible for problem sizes below 10° unknowns. The highest overheads are observed for
the AMD FirePro W9100, where problem sizes above 10° are needed for negligible
overheads.

The solver cycle times in the center column of Figure 8 reflect the small number of
iterations required for the classical one-pass Ruge-Stiiben AMG preconditioner. Sim-
ilarly, the smoothed aggregation AMG preconditioner outperforms the aggregation-
based AMG preconditioner because of the smaller number of iterations needed. The
better asymptotic behavior of the aggregation-based AMG preconditioner over the
unpreconditioned pipelined CG solver only starts to show at very large problem sizes
above 10% unknowns, but the gains are very mild.

Total solver execution times in the right column of Figure 8 show that the

20nttp://sourceforge.net/projects/netgen-mesher/

http://sourceforge.net/projects/netgen-mesher/

VIENNACL - LINEAR ALGEBRA LIBRARY 21

Solver Setup Time Dual INTEL Xeon E5-2670 v3 Solver Cycle Time Dual INTEL Xeon E5-2670 v3 Total Solver Time Dual INTEL Xeon E5-2670 v3
, [—— One-Pass RS i o [—— No Preconditioner i , [—— No Preconditioner
o 102 f —a— Aggregation 4 & 10°F —e— One-Pass RS 4 & 10° F —e— One-Pass RS 1
3 ——vp— Smoothed Aggregation 3 =& Aggregation 3 =& Aggregation
2 10' Y o 10! f = Smootl ed Aggregation] o 10" f —v— Smoot ed Aggregation]
£ v £ £
S0 /// o /(/ 20 /,/
] S / S
Ee - E o E
& rea & — & =
102 [o~ 102 [pa 102
10° 10 10° 10° 107 10° 10 10° 10° 107 10° 10 10° 10° 107
Unknowns Unknowns Unknowns
Solver Setup Time AMD FirePro W9100 Solver Cycle Time AMD FirePro W9100 Total Solver Time AMD FirePro W9100

) —&— No Preconditioner) —&— No Preconditioner

—e— One-Pass RS 5 5
10° f —@— One-Pass RS & 10° f —@— One-Pass RS 1

10° | ot Aggregation E

§ =——v—Smoothed Aggregation § = Aggregation § = Aggregation
2 10' A % 10— Aggreg 1 2 o' | —— Smoothed Aggregation]
£ // £ g
T 10° o /" T 10° /r/-/: S 10
2 S 2
E _~ 3 0 O 3 0
— == =
102 - 102 102
10° 10 10° 10° 107 10° 10 10° 10° 107 10° 10* 10° 10° 107
Unknowns Unknowns Unknowns
Solver Setup Time NVIDIA Tesla K20m Solver Cycle Time NVIDIA Tesla K20m Total Solver Time NVIDIA Tesla K20m
—e— One-Pass RS) —&— No Preconditioner) —&— No Preconditioner

& 102 | —a— Aggregation 4 & 10°}F —e— One-Pass RS 4 & 10°F —e— One-Pass RS 1
38 =——mp— Smoothed Aggregation 3 = Aggregation H =& Aggregation
o 10! r/. @ 10 f— Smoothed Aggregation /] @ 10 f— Smoothed Aggregation / J
E / £ £ /
= 100 A = 100 / A = 10° /
g yZak L
5 E] El
g 107 /,- / 3 10" “/ 3 10"
w w w

b = wh B

-

10° 10* 10° 10° 107 10° 10 10° 10° 107 10° 10 10° 10° 107
nknowns Unknowns
Solver Setup Time Dual INTEL Xeon Phi 7120 Solver Cycle Time Dual INTEL Xeon Phi 7120 Total Solver Time Dual INTEL Xeon Phi 7120

—_— (’)ne-Pass R’S — l\’lo Precond\('ioner i — l\’lo Precondi(’\oner

T
< 102 f —a— Aggregation 4 & 10°F —e— One-Pass RS 4 & 10° F —e— One-Pass RS 1
g =——p— Smoothed Aggregation 3 = Aggregation 2 =& Aggregation
o 10 / o 10" f = ‘Smoothed Aggregation = ° 10! f = Smoothed Aggregati]
E 0 I/ E 0 ./) E 0 o /
R Al £ " R
g 10" //‘f g 10" o g0k %
2 o 5‘.— &
w 7 w F w e
102 102 102
10% 10* 10° 10° 107 10° 10* 10° 10° 107 10° 10* 10° 10° 107
Unknowns Unknowns Unknowns

Fic. 8. Comparison of solver setup times (left), solver cycle times (center), and total solver
times (right) of classical one-pass Ruge-Stiieben coarsening (One-Pass RS), aggregation-based AMG,
and smoothed aggregation AMG for the two-dimensional Poisson equation on each of the four hard-
ware platforms considered. The setup for the sequential classical one-pass coarsening has been run
on a single CPU cores for the AMD and NVIDIA GPUs. Overall, performance differences among
the AMG methods are fairly small despite of their different algorithmic nature.

smoothed aggregation preconditioner is the best choice for problem sizes above 2 x 10°
on all four hardware platforms. The unpreconditioned solver is a better choice for
smaller problem sizes in the benchmark setting considered here. In contrast to the
classical one-pass Ruge-Stiiben AMG preconditioner, which spends most time in the
setup stage, and in contrast to the aggregation-based AMG preconditioner, which
spends most time in the solver cycle stage, the smoothed aggregation AMG precondi-
tioner spends about the same amount of time in each of the two stages. This balance
is visible on all four hardware platforms.

The results from Figure 8 are collected in Figure 9 for a better comparison of
the individual hardware platforms. Overall, the performance differences are relatively
small for the largest problem sizes: The dual INTEL Xeon E5-2670 v3 system is on
par with the AMD FirePro W9100, while the Tesla K20m is about 50 percent slower
and the Xeon Phi is about a factor of two slower. The CPU-based execution is the
best choice between 10° and 10 unknowns. Optimizations of the hardware or the
driver stack for small system sizes are desirable for the AMD FirePro W9100 and the

22 K. RUPP ET AL.

Total Solver Execution Times, Poisson Equation in 2D

1 T T
---l--- Dual INTEL Xeon E5-2670 v3, No Preconditioner
=——yp—Dual INTEL Xeon E5-2670 v3, Smoothed Aggregation

---l--- AMD FirePro W9100, No Preconditioner o]
=—p—=AMD FirePro W9100, Smoothed Aggregation

---m-- NVIDIA Tesla K20m, No Preconditioner a
——v—=NVIDIA Tesla K20m, Smoothed Aggregation
------ INTEL Xeon Phi 7120, No Preconditioner
INTEL Xeon Phi 7120, Smoothed Aggregation

—
o
)
L)

{—

—_
o
[=]

Execution Time (sec)

_.
S
T

10° 10* 10° 10° 107
Unknowns

F1G. 9. Comparison of total solver time (i.e. AMG setup time plus solver cycle time) for solving
the two-dimensional Poisson equation using an unpreconditioned iterative solver, and a smoothed
aggregation AMG preconditioner on each of the the four hardware platforms.

INTEL Xeon Phi, which do not take less than 0.1 seconds overall even for very small
problem sizes.

6.5. Fine-Grained Parallel Incomplete LU Factorization Precondition-
ers. Incomplete LU (ILU) factorization [47] is a popular family of preconditioners
because of its black-box nature. However, in classical formulations fine-grained par-
allelism is neither available for the preconditioner setup nor for the preconditioner
application. Techniques such as level scheduling [36] and multi-coloring [30] have
been developed to overcome some of the deficiencies, yet the efficiency of these tech-
niques depends highly on the sparsity pattern of the system matrix.

We extended the recently developed fine-grained parallel ILU factorization pre-
conditioners of Chow and Patel [16] to CUDA and OpenCL and present a perfor-
mance comparison for the different hardware platforms from Table 4 in Figure 10.
An alternative implementation based on CUDA was also developed concurrently by
Chow et al. [15]. Three nonlinear sweeps are carried out in the setup phase, as this
has been identified to be a good default value [16]. Two Jacobi-iterations are ap-
plied to the truncated Neumann series for the triangular solves in each preconditioner
application.

Performance result were obtained for two- and three-dimensional solutions of the
Poisson equation using linear finite elements on unstructured triangular and tetrahe-
dral meshes of the unit square and unit cube, respectively. A BiCGStab solver was
used to account for the asymmetric ILU preconditioner (static pattern, ILUO) and to
better reflect practical applications where the system matrix is no longer symmetric.
We observed that the setup time for the fine-grained ILU preconditioner is negligi-
ble compared to the solver cycle time. Therefore, any savings in execution time are
obtained through reduced overall work in the solver cycle stage. Better performance
than an unpreconditioned, pipelined BiCGStab solver was obtained if the reduction
in solver iterations outweighs the additional cost of preconditioner applications in
each iteration. Similar to the results for AMG, the OpenMP backend is the fastest

VIENNACL - LINEAR ALGEBRA LIBRARY 23

Total Solver Execution Times, Poisson Equation in 2D

3
10
---m--- Dual INTEL Xeon E5-2670 v3, No Preconditioner
=——p—Dual INTEL Xeon E5-2670 v3, Fine-Grained ILU
---l--- AMD FirePro W9100, No Preconditioner
2 | ==+=— AMD FirePro W9100, Fine-Grained ILU i
10° F -—-m--- NVIDIA Tesla K20m, No Preconditioner
NVIDIA Tesla K20m, Fine-Grained ILU
< ---l--- INTEL Xeon Phi 7120, No Preconditioner
& =—v— INTEL Xeon Phi 7120, Fine-Grained ILU
o 10 &
E
'_
c
Kl
5 100 b .
(9]
x
w
1071 -
102 o ; ;
10° 10* 10° 108 107
Unknowns
Total Solver Execution Times, Poisson Equation in 3D
3
10
---m-- Dual INTEL Xeon E5-2670 v3, No Preconditioner
=——yp—Dual INTEL Xeon E5-2670 v3, Fine-Grained ILU
---l--- AMD FirePro W9100, No Preconditioner
2 | =v— AMD FirePro W9100, Fine-Grained ILU i
10° F ---m-- NVIDIA Tesla K20m, No Preconditioner
== NVIDIA Tesla K20m, Fine-Grained ILU
> ---l--- INTEL Xeon Phi 7120, No Preconditioner
@ =—p—INTEL Xeon Phi 7120, Fine-Grained ILU
<]_,101]
£
'_
c
el
3 10° E
(9]
x
L -
U ST 3
-2 1 1 1
10
10° 10* 10° 108 107

Unknowns

F1c. 10. Comparison of total solver time (i.e. ILU setup time plus solver cycle time) for solving
the two- (top) and three-dimensional (bottom) Poisson equation using an unpreconditioned iterative
BiCGStab solver, and the fine-grained ILU preconditioner proposed by Chow and Patel [16] on each
of the the four hardware platforms.

for smaller sized problems, while GPUs are ultimately the fastest platform for larger
problems. While the preconditioned solver results in shorter execution time overall
in the two-dimensional case, the unpreconditioned, pipelined solver is faster in the
three-dimensional case.

Overall, the fine-grained parallel ILU preconditioner is an attractive option when-
ever AMG cannot be applied and unpreconditioned solvers do not converge or con-
verge only slowly. The overheads due to the sequential setup of the conventional
ILU preconditioner are effectively removed, allowing for a full acceleration through
multi-threading and through GPUs.

24 K. RUPP ET AL.

10*
N
™ AS
(OQ \fo A
~ b
3 N
510 o
Q
< N
[0} %
£ N PN
P02 Np 2
o
RS /
01
2010 2011 2012 2013 2014 2015 2016
Year

F1a. 11. Total build time required for a full sequential build of all available targets for different
versions of ViennaCL on a Core 2 Quad Q9550 using GCC 4.6 on Linux Mint Maya. Compiletime
dispatches have increased compilation times for the test suite significantly.

7. Lessons Learnt and Future Directions. In the five years of continuously
improving ViennaCL, a significant amount of experience and feedback from users
has been accumulated. The purpose of this section is to share our experiences and
provide concrete examples for software engineering questions which are often discussed
in either a much more abstract setting, or using overly simplified examples.

7.1. Static vs. Dynamic Dispatch. The design goal for the first ViennaCL
release was to mimic the API of uBLAS as closely as possible in order to make a
transition for C++ developers as easy as possible. As a consequence, the API relies
heavily on static compile-time dispatches. For example, the numeric type of a vector
<T> is statically determined by the template parameter 7', or a sparse matrix type
in compressed sparse row format is implemented in a class compressed_matrix<T>.
If a user wants to switch between single and double precision arithmetic as well as
different sparse matrix-vector formats at run-time, several disadvantages arise: First,
the run time dispatch needs to be written by the user. Second, compilation times
increase in proportion to the number of combinations. With two different precisions
and five sparse matrix formats, a ten-fold increase in compilation times has to be
expected. Third, unnecessary duplicated code ends up in the binary, potentially
reducing performance due to increased instruction cache misses.

Figure 11 plots execution times for sequential builds of all targets in each new
minor version upgrade of ViennaCL. Most of the build time is due to the statically
dispatched test suite, which reflects the overall combinatorial explosion of choices.
For example, the introduction of the CUDA and OpenMP backends in addition to
the already existing OpenCL backend in release 1.4.0 increased compilation times for
the test suite by a factor of three. Support for integer types in release 1.5.0 would
result in another five-fold increase in build times, but a few test combinations are
disabled such that overall compilation times increased only two-fold. Some internal
static dispatches have been converted to run time dispatches in the latest 1.7.0 release
in order to reduce overall compilation times to more productive values.

7.2. Header-Only vs. Shared Library. Because of the initial design goal
to provide an API similar to uBLAS, ViennaCL uses a header-only approach, which
means that the library is entirely implemented in header files. An advantage of this
model is that users only need to include the source tree, but do not need to worry
about linking static or shared libraries. The disadvantages, which we have found to
outweigh the advantages as ViennaCL evolved, are as follows:

VIENNACL - LINEAR ALGEBRA LIBRARY 25

e Leaky abstraction. A header-only model fails to abstract the API from
the internals. Tremendous efforts are required to ensure that the library
compiles without warnings on all major compilers. This includes harmless
warnings or even false positives, which only need to be eliminated because
it would otherwise limit the possible set of compiler warnings the user could
use. While we acknowledge that it is considered good practice to compile
cleanly at high warning levels, a header-only approach forces one to go to
even greater lengths without any additional benefit.

e Compilation times. Each compilation unit needs to parse not only the
API, but also some of the implementations. As a result, compilation times are
increased, which slow down the code-compile-run development cycle, reducing
overall productivity. On machines with small amounts of main memory such
as mobile devices, the compilation may then even fail because it runs out of
memory.

e CUDA compiler enforced on user code. If the CUDA backend of Vien-
naCL is enabled, a compilation with the CUDA compiler NVCC is required.
Unless the user isolates ViennaCL in a separate compilation unit, effectively
creating a static or shared library, the user code also needs to be compiled
with NVCC. However, this severely restricts the user’s compiler choice, par-
ticularly if the user code does not compile with NVCC for reasons beyond
the user’s control. In contrast, a shared library with a clear binary interface
hides the use of NVCC induced by the CUDA backend from the user.

As a consequence, ViennaCL 2.0.0 will no longer be provided using a header-only
approach. Instead, all functionality will be compiled into a static or shared C-library,
through which all functionality is exposed. A C++ layer will then be a lightweight
layer on top, generating a much smaller load for compilers.

7.3. Play Nicely with Others. ViennaCL provides a convenient C++-API
- which is a problem. C++ lacks a standardized binary interface, which makes it
extremely difficult to interface from other languages such as C, FORTRAN, or Python.
Therefore, in addition to what has been discussed earlier, a shared library with a
well-defined binary interface is better suited to the needs of the scientfic computing
community.

Similarly, several users requested that the library is able to work with user-
provided buffers directly. For example, a user may have assembled a sparse matrix
using CUDA already, in which case it is essential that iterative solver implementations
provided by a library are able to work directly with these buffers. Earlier versions
of ViennaCL were unable to directly work on such buffers and required an expensive
data conversion step. The latest version supports such a direct reuse and future work
aims to further simplify such a use case. Conversely, a user may want to run cus-
tom operations on e.g. the OpenCL buffer of a ViennaCL vector. This again requires
access to the low-level buffer handles.

8. Summary and Conclusion. The different parallel programming models
make it hard for the computational scientist to leverage the computational resources of
the various machines available. Ideally, a computational scientist only interfaces with
a single library in order to use multi- and many-core architectures. Unlike most other
libraries available, ViennaCL enables the computational scientist to do exactly that,
whereas the use of vendor-libraries requires application codes to manually manage
different interfaces.

We have demonstrated that good portable performance can be obtained for all

26 K. RUPP ET AL.

three computing backends and that target-specific optimizations can still be applied.
Portable performance for GPUs is obtained via a device database coupled with a
kernel code generator, which transforms device-specific code templates into valid code
to be passed to the just-in-time compiler. Because just-in-time compilation involves
additional overhead, we discussed the OpenCL kernel organization in ViennaCL such
that the overall overhead is minimized.

Our benchmarks have shown that the use of GPUs does not automatically imply
higher performance, because the large caches of CPUs and their broader applicability
to general purpose workloads may result in better performance overall. Performance
differences are seldomly larger than a factor two for typical workloads from sparse ma-
trix linear algebra when comparing similar hardware in terms of cost and performance
per Watt.

Acknowledgment. This work has been supported by the Austrian Science Fund
(FWF), grants P23296 and P23598, by the European Research Council (ERC) through
the grant #247056 MOSILSPIN, and by Google via the Google Summer of Codes
2011, 2012, 2013, and 2014. The authors are grateful to Joachim Schéberl for provid-
ing access to some of the hardware used for performance comparisons in this work,
and to AMD and NVIDIA for hardware donations.

REFERENCES

[1] E. Acurro, J. DEMMEL, J. DONGARRA, B. HaDRI, J. KurzAK, J. LANGou, H. LTAIEF,
P. Luszczek, AND S. ToMov, Numerical Linear Algebra on Emerging Architectures: The
PLASMA and MAGMA Projects, J. Phys.: Conf. Series, 180 (2009), p. 012037.

[2] J. 1. ALiaGA, J. PEREZ, AND E. S. QUINTANA-ORTI, Systematic Fusion of CUDA Kernels for
Iterative Sparse Linear System Solvers, in Euro-Par 2015: Parallel Processing, vol. 9233
of Lecture Notes in Computer Science, Springer, 2015, pp. 675-686.

[3] J. 1. ALiaGA, J. PEREZ, E. S. QUINTANA-ORTI, AND H. ANZT, Reformulated Conjugate Gradient
for the Energy-Aware Solution of Linear Systems on GPUs, in Proc. Intl. Conf. Par. Proc.,
2013, pp. 320-329.

[4] H. AnzT, W. SAWYER, S. Towmov, P. LuszczeEk, I. YAMAZAKI, AND J. DON-
GARRA, Optimizing Krylov Subspace Solvers on Graphics Processing Units, in IEEE
Intl. Conf. Par. Dist. Sys. Workshops, 2014, pp. 941-949.

[5] A. AsHARI, N. SEDAGHATI, J. EISENLOHR, S. PARTHASARATHY, AND P. SADAYAPPAN, Fust
Sparse Matriz- Vector Multiplication on GPUs for Graph Applications, in Proc. HPC
Netw., Stor. Anal., SC ’14, ACM, 2014, pp. 781-792.

[6] W. BANGERTH AND T. HEISTER, What Makes Computational Open Source Software Libraries
Successful?, Computational Science & Discovery, 6 (2013), pp. 015010/1-18.

[7] W. BANGERTH AND T. HEISTER, Quo Vadis, Scientific Software? Editorial, SIAM News,
January 2014.

[8] M. M. BASKARAN AND R. BORDAWEKAR, Optimizing Sparse Matriz-Vector Multiplication on
GPUs, IBM RC24704, (2008).

[9] N. BELL, S. DALTON, AND L. OLSON, Ezposing Fine-Grained Parallelism in Algebraic Multigrid
Methods, SIAM J. on Sci. Comp., 34 (2012), pp. C123-C152.

[10] N. BELL AND M. GARLAND, Implementing Sparse Matriz- Vector Multiplication on Throughput-
Oriented Processors, in Proc. HPC Netw., Stor. Anal., SC ’09, ACM, 2009, pp. 18:1-18:11.

[11] R. D. BrLuMorg, C. F. JoErG, B. C. KuszmauL, C. E. LEISERSON, K. H. RANDALL, AND
Y. Zuou, Cilk: An Efficient Multithreaded Runtime System, ACM SIGPLAN Symp. Princ.
Pract. Par. Prog., 30 (1995), pp. 207-216.

[12] J. BROWN, HPGMG: Benchmarking Computers Using Multigrid. Copper Mountain Multigrid
Conference 2015, 2015. https://jedbrown.org/files/20150324-HPGMG. pdf.

[13] J. BROWN, M.G. KNEPLEY, AND B.F. SMITH, Run-Time Extensibility and Librarization of
Simulation Software, Computing in Science Engineering, 17 (2015), pp. 38-45.

[14] A. BurLug AND J. R. GILBERT, Parallel Sparse Matriz-Matriz Multiplication and Indezing:
Implementation and Ezperiments, SIAM J. on Sci. Comp., 34 (2012), pp. C170-C191.

https://jedbrown.org/files/20150324-HPGMG.pdf

(21]
[22]

(23]

VIENNACL - LINEAR ALGEBRA LIBRARY 27

E. Cuow, H. ANzT, AND J. DONGARRA, Asynchronous Iterative Algorithm for Computing
Incomplete Factorizations on GPUs, in High Perf. Comp., vol. 9137 of LNCS, Springer,
2015, pp. 1-16.

E. CHOw AND A. PATEL, Fine-Grained Parallel Incomplete LU Factorization, SIAM
J. Sci. Comp., 37 (2015), pp. C169-C193.

L. DAGUM AND R. MENON, OpenMP: An Industry Standard API for Shared-Memory Program-

ming, IEEE Comput. Sci. & Eng., 5 (1998), pp. 46-55.

. DALTON, N. BELL, L. OLSON, AND M. GARLAND, Cusp: Generic Parallel Algorithms for
Sparse Matriz and Graph Computations, 2014. Version 0.5.1.

. A. Davis AND Y. Hu, The University of Florida Sparse Matrixz Collection, ACM Trans.
Math. Softw., 38 (2011), pp. 1:1-1:25.

. DEMIDOV, K. AHNERT, K. RUPP, AND P. GOTTSCHLING, Programming CUDA and OpenCL:
A Case Study Using Modern C++ Libraries, SIAM J. Sci. Comp., 35 (2013), pp. C453—
C472.

MESSAGE PAsSSING ForuM, MPI: A Message-Passing Interface Standard, tech. report,

Knoxville, TN, USA, 1994.

R. GAaNDHAM, K. ESLER, AND Y. ZHANG, A GPU Accelerated Aggregation Algebraic Multigrid
Method, Comp. & Math. Appl., 68 (2014), pp. 1151 — 1160.

P. GHYSELS, T. J. AsuBY, K. MEERBERGEN, AND W. VANROOSE, Hiding Global Communication
Latency in the GMRES Algorithm on Massively Parallel Machines, STAM J. Sci. Comp.,
35 (2013), pp. C48-C71.

P. GHYSELS AND W. VANROOSE, Hiding Global Synchronization Latency in the Preconditioned
Congugate Gradient Algorithm, Par. Comp., 40 (2014), pp. 224-238.

J.R. GILBERT, V.B. SHAH, AND S. REINHARDT, A Unified Framework for Numerical and Com-
binatorial Computing, Comput. in Sci. Eng., 10 (2008), pp. 20-25.

P. GOTTSCHLING AND C. STEINHARDT, MetaTuning in MTL4, AIP Conf. Proc., 1281 (2010),
pp. 778-782.

J. L. GREATHOUSE AND M. DAGA, Efficient Sparse Matrixz-Vector Multiplication on GPUs
Using the CSR Storage Format, in Proc. HPC Netw., Stor. Anal., SC 14, ACM, 2014,
pp. 769-780.

F. GREMSE, A. HOFTER, L. O. SCHWEN, F. KIESSLING, AND U. NAUMANN, GPU-Accelerated
Sparse Matriz-Matriz Multiplication by Iterative Row Merging, SIAM J. Sci. Comp., 37
(2015), pp. C54-CT1.

G. GUENNEBAUD, B. JACOB, ET AL., Eigen v3. http://eigen.tuxfamily.org, 2010.

V. HEUVELINE, D. LUKARSKI, AND J.-PH. WEISS, Enhanced Parallel ILU(p)-based Precondsi-
tioners for Multi-core CPUs and GPUs — The Power(q)-pattern Method, Preprint Series
of the Engineering Mathematics and Computing Lab, (2011).

J. HOBEROCK AND N. BELL, Thrust: A Parallel Template Library, 2010.

T. HOEFLER, J. DINAN, D. BUNTINAS, P. BALAJI, B. BARRETT, R. BRIGHTWELL, W. GROPP,
V. KALE, AND R. THAKUR, MPI + MPI: A New Hybrid Approach to Parallel Programming
with MPI Plus Shared Memory, Computing, 95 (2013), pp. 1121-1136.

J. HUMBLE AND D. FARLEY, Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation, Addison-Wesley, 2010.

K. IGLBERGER, G. HAGER, J. TREIBIG, AND U. RUDE, Ezpression Templates Revisited: A
Performance Analysis of Current Methodologies, SIAM J. Sci. Comp., 34 (2012), pp. C42—
C69.

M. KREUTZER, G. HAGER, G. WELLEIN, H. FEHSKE, AND A. R. BisHor, A Unified Sparse
Matriz Data Format for Efficient General Sparse Matriz- Vector Multiply on Modern Pro-
cessors with Wide SIMD Units, SIAM J. Sci. Comp., 36 (2014), pp. C401-C423.

R. L1 AND Y. SAAD, GPU-Accelerated Preconditioned Iterative Linear Solvers, J. Supercomp.,
63 (2013), pp. 443-466.

X. Liu, M. SMELYANSKIY, E. CHOwW, AND P. DUBEY, Efficient Sparse Matriz- Vector Multiplica-
tion on z86-based Many-Core Processors, in Proc. HPC Netw., Stor. Anal., SC ’13, ACM,
2013, pp. 273-282.

J. D. McCALPIN, Memory Bandwidth and Machine Balance in Current High Performance
Computers, IEEE CS TC Comp. Arch. Newsletter, (1995), pp. 19-25.

J. NickorLs, I. Buck, M. GARLAND, AND K. SKADRON, Scalable Parallel Programming with
CUDA, Queue, 6 (2008), pp. 40-53.

G. PENN, Efficient Transitive Closure of Sparse Matrices over Closed Semirings, Theor. Com-

put. Sci., 354 (2006), pp. 72-81.
. REINDERS, Intel Threading Building Blocks, O’Reilly, 2007.
K. Rupp, F. RupOLF, AND J. WEINBUB, ViennaCL - A High Level Linear Algebra Library for

wn

H

w)

-

28

[43]

[44]

[45]

[46]

K. RUPP ET AL.

GPUs and Multi-Core CPUs, in Intl. Workshop GPUs and Sci. App., 2010, pp. 51-56.

K. Rupp, F. RupoLF, J. WEINBUB, A. MORHAMMER, T. GRASSER, AND A. JUNGEL, Opti-
mazed Sparse Matriz-Matriz Multiplication for Multi-Core CPUs, GPUs, and Xeon Phi.
Submitted.

K. Rupp, Pu. TiLLET, F. RupoLF, J. WEINBUB, T. GRASSER, AND A. JUNGEL, Performance
Portability Study of Linear Algebra Kernels in OpenCL, in Proc. Intl. Workshop on
OpenCL 2013-2014, IWOCL ’14, ACM, 2014, pp. 8:1-8:11.

K. Rupp, J. WEINBUB, T. GRASSER, AND A. JUNGEL, Pipelined Iterative Solvers with Kernel
Fusion for Graphics Processing Units. To appear in ACM Trans. Math. Softw.

K. Rupp, J. WEINBUB, F. RUDOLF, A. MORHAMMER, T. GRASSER, AND A. JUNGEL, A Per-
formance Comparison of Algebraic Multigrid Preconditioners on CPUs, GPUs, and Xeon
Phis. Under Review.

Y. SAAD, Iterative Methods for Sparse Linear Systems, Second Edition, STAM, 2003.

C. SANDERSON, Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping
and Computationally Intensive Experiments, tech. report, NICTA, 2010.

E. SAULE, K. Kava, AND U. CATALYUREK, Performance Evaluation of Sparse Matriz Multi-
plication Kernels on Intel Xeon Phi, in Par. Proc. Appl. Math., LNCS, Springer Berlin
Heidelberg, 2014, pp. 559-570.

B. ScHLING, The Boost C++ Libraries, XML Press, 2011.

J. SCHOBERL, NETGEN An Advancing Front 2D/3D-Mesh Generator based on Abstract Rules,
Comp. and Vis. Sci., 1 (1997), pp. 41-52.

J. E. STONE, D. GOHARA, AND G. SHI, OpenCL: A Parallel Programming Standard for Het-
erogeneous Computing Systems, IEEE Des. Test, 12 (2010), pp. 66-73.

B.-Y. Su aND K. KEUTZER, clSpMV: A Cross-Platform OpenCL SpMV Framework on GPUs,
in Proc. ACM Intl. Conf. Supercomp., ICS ’12, ACM, 2012, pp. 353-364.

PH. TiLLET, K. RUPP, S. SELBERHERR, AND C.-T. LIN, Towards Performance-Portable, Scal-
able, and Convenient Linear Algebra, in 5th USENIX Workshop on Hot Topics in Paral-
lelism (HotPar’13), 2013.

N. TrosT, J. JIMENEZ, D. LUKARSKI, AND V. SANCHEZ, Accelerating COBAYAS3 on Multi-
Core CPU and GPU Systems using PARALUTION, Annals of Nuclear Energy, 82 (2015),
pp. 252 — 259.

U. TROTTENBERG, C. W. OOSTERLEE, AND ANTON SCHULLER, Multigrid, Academic Press, 2001.

S. VAN DONGEN, Graph Clustering Via a Discrete Uncoupling Process, STAM J. on Matrix
Anal. and Appl., 30 (2008), pp. 121-141.

D. VANDEVOORDE AND N. M. JosurTtis, C++ Templates, Addison-Wesley, 2002.

T. VELDHUIZEN, Ezpression Templates, C++ Report, 7 (1995), pp. 26-31.

S. YAN, CH. L1, Y. ZHANG, AND H. ZHou, yaSpMV: Yet Another SpMV Framework on GPUs,

in Proc. ACM SIGPLAN Symp. Princ. Pract. Par. Prog., PPoPP ’14, ACM, 2014, pp. 107—
118.

