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Abstract. We study families of convex Sobolev inequalities, which arise as entropy-dissipation

relations for certain linear Fokker-Planck equations. Extending the ideas recently developed by

the first two authors, a refinement of the Bakry-Émery method is established, which allows us to

prove non-trivial inequalities even in situations where the classical Bakry-Émery criterion fails.

The main application of our theory concerns the linearized fast diffusion equation in dimen-
sions d ≥ 1, which admits a Poincaré, but no logarithmic Sobolev inequality. We calculate

bounds on the constants in the interpolating convex Sobolev inequalities, and prove that these
bounds are sharp on a specified range. In dimension d = 1, our estimates improve the cor-

responding results that can be obtained by the measure-theoretic techniques of Barthe and

Roberto. As a by-product, we give a short and elementary alternative proof of the sharp spec-
tral gap inequality first obtained by Denzler and McCann. In further applications of our method,

we prove convex Sobolev inequalities for a mean field model for the redistribution of wealth in

a simple market economy, and the Lasota model for blood cell production.

1. Introduction

This article is concerned with upper bounds on the optimal constant Cp > 0 in specific families
of convex Sobolev inequalities of Beckner type,

1
2− p

[ ∫
Ω

w2 dµ−
(∫

Ω

wp dµ
)2/p

]
≤ Cp

∫
Ω

D|∇w|2 dµ (1 ≤ p < 2).(1)

Above, µ is a probability measure with smooth Lebesgue density f∞(x) := dµ/dx on the domain
Ω ⊂ Rd, the diffusion coefficient D : Ω → R is strictly positive, and w ∈ L2(Ω;µ) is a smooth,
positive function. Such a family of inequalities has first been derived [Bec89] for the d-dimensional
Gaussian measure on Ω = Rd with f∞(x) = (2π)−2/d exp(−|x|2/2) and D(x) ≡ 1: the correspond-
ing optimal constant is Cp ≡ 1 for all 1 ≤ p < 2. Subsequently, variants of (1) have been proven for
different measures µ, see e.g. [LO00], and with various subtle refinements [AD05, BD06, BG09].
Let us recall some of the motivations to study the inequalities (1). First of all, they form an
interpolating family of increasingly (with p) sharp estimates, starting from the Poincaré inequality
at p = 1. In particular, if the Cp are uniformly bounded, i.e. C2 := lim supp↑2 Cp is finite, then
the family (1) is “completed” at p = 2 by the logarithmic Sobolev inequality,∫

Ω

w2 log
( w2

‖w‖2L2(Ω;µ)

)
dµ ≤ 2C2

∫
Ω

D|∇w|2 dµ.(2)

Inequality (2) is of paramount importance in various contexts in probability theory, mathematical
physics, geometric evolution equations etc.
A second motivation is that (1) characterizes very precisely the concentration of the measure
µ [Bar01, LO00]. Assume for the moment that D ≡ 1 in (1). Then boundedness of Cp for
p ↑ 2 implies (2) and thus Gaussian concentration. On the other hand, if Cp diverges, but
lim supp↑2(2− p)2/r−1Cp <∞ for some r ∈ [1, 2], then µ is concentrated like exp(−Kxr).
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A third motivation is the intimate relation between (1) and the rate of equilibration of the µ-
ergodic semigroup on Lq(Ω;µ) generated by the linear diffusion operator L with (recall that f∞
denotes the density of µ)

L[u] = D∆u−Q · ∇u, Q(x) := −D(x)∇ log f∞(x)−∇D(x).(3)

Validity of (2) is equivalent to hypercontractivity of this semigroup. But even if (2) fails, the
convex inequalities (1) guarantee that the semigroup is exponentially contracting in any Lq(Ω;µ)
with 1 < q ≤ 2, i.e.,

exp
( 2t
C2/q

)[∫
Ω

(
exp(tL)[u]

)q
dµ−

(∫
Ω

u dµ
)q]

is non-increasing.(4)

The constant Cp for 1 ≤ p < 2 thus determines the time scale for exponential relaxation in
L2/p(Ω;µ). For example, Cp ≡ 1 for the Gaussian measure means that the speed of contraction in
the associated (standard) Ornstein-Uhlenbeck process is independent of the considered Lq(Ω;µ)-
space. We remark that there is an extensive amount of recent results on the relation between
“exotic” functional inequalities (among which the inequalities (1) are the most basic ones) and
the long-time behaviour of linear and also non-linear diffusion semigroups; the interested reader is
referred to [BCR06, BG09, CGG07, Cha04, DGW08, DNS08] and the numerous references therein.
Despite the illustrated broad interest in the inequalities (1) from probability theory, mathematical
physics, and partial differential equations, there is only a very limited number of specific measures
µ, for which the optimal constant Cp has been calculated so far. A collection of sharp inequalities
for measures µ on discrete sets Ω is provided in [BT]. Apparently, the only examples for sharp
inequalities on continuous domains Ω are those in which µ admits a logarithmic Sobolev inequality
(2) with a constant C2 equal to the sharp Poincaré-constant C1; it then follows that Cp = C1 is
optimal for 1 < p ≤ 2. To our knowledge, we give the first proof of (1) with optimal constants Cp
(on an explicit range 1 ≤ p ≤ p̂ < 2) in a situation where the logarithmic Sobolev inequality fails.
To serve justice, we emphasize that although the constants Cp have not been calculated explicitly,
powerful and profound tools have been developed to estimate them. First of all, there are numerous
perturbative results along the lines of the original Holley-Stroock argument, see e.g. [AD05].
Second, there exist several approaches to prove (1) with measure theoretic tools. Based on a
classical result by Muckenhoupt [Muc72], a connection between (1) and Hardy inequalities was
established by Bobkov and Götze [BG99]. In dimension d = 1, this leads to estimates on Cp from
above and from below. The method has been refined later by Barthe and Roberto [BR03]; we
recall a particular result of their work in Theorem 7 in the appendix. Finally we mention a recent
approach (which is closest in spirit to the one employed here) on basis of the Bakry-Émery method:
in [DNS08], the optimal constant Cp is related to the spectral gap of an associated (p-dependent)
Schrödinger operator.
The mentioned methods apply in very general situations; however, the obtained bounds on Cp
are usually either quite rough or implicitly characterized. In particular, the bounds from [BR03]
can only be approximated numerically in specific examples, and the Schrödinger problem from
[DNS08] is typically not much easier to handle than the original inequality (1). Our approach is
complementary to this as we work with quite elementary tools directly on the examples, exploiting
their specific structure.
To derive our results, we adapt the the Bakry-Émery method [BE85], i.e. we prove (1) by estimat-
ing the entropy dissipation of the associated semigroup generated by L from (3). Originally [BE85],
the method has been used to show that if the celebrated Bakry-Émery condition Γ2 ≥ λBEΓ is
satisfied with some λBE > 0 (where Γ and Γ2 are the first two Gamma operators, see (17)&(18)
in section 2.3), then (1) holds with Cp = 1/λBE uniformly on 1 ≤ p < 2. In our examples, the
logarithmic Sobolev inequality and hence also the Bakry-Émery condition may be violated. We
refine the method of proof from [BE85] by avoiding the pointwise Bakry-Émery condition. Instead,
we work directly on the p-dependent integral expression for the (second) entropy dissipation. In
its core, our method relies on “clever” manipulations of the dissipation term using integration by
parts. Since the selected examples exhibit an extremely nice algebraic structure, it is possible
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Figure 1. Estimates on Cp in (1) for the linearized fast-diffusion equation. Left:
Our estimate on Cp in dimension d = 5. In particular, Cp ≡ 1 when (6) holds.
Right. Comparison of our estimate on Cp (solid line) in dimension d = 1 for
β2 = 1/4 with the upper and lower bounds (dashed lines) corresponding to [BR03].
Notice that Cp ≡ 1 for 1 ≤ p ≤ p̂ = p̂ = 33/25.

to perform these manipulations in a systematic, computer-assisted manner. A comment on this
aspect of our work is given in section 3.3.
We will now define the specific examples we are dealing with and state our main results.

Linearized fast-diffusion equation. Inequality (1) with1

dµβ(x) = Z−1
β

(
α2 + β2|x|2

)−1−1/(2β2)
dx and Dβ(x) = α2 + β2|x|2,

with appropriate positive constants α and β, is associated via (3) to the linearized rescaled fast-
diffusion equation,

∂tu = Lβ [u] := Dβ∆u− x · ∇u,(5)

see section 5 for details. In the limit β ↓ 0, the measure µβ converges weakly to a Gaussian
measure µ0, for which (1) holds with Cp ≡ 1. For every β > 0, the logarithmic Sobolev inequality
is lost, and Cp ↑ ∞ as p ↑ 2. In Theorem 3, we quantify this loss by estimating Cp from above.
We remark that the long-time asymptotics of the full non-linear fast diffusion equation have
been investigated at least since the 1980’s, and are now essential understood, see [BBDGV09]
and the references therein. Functional inequalities associated to the linearized operator Lβ play
a decisive role in this analysis. Over the years, these inequalities and the asymptotics of the
linearized equation (5) have become a field of study on their own right, see e.g. [CT07, CLMT02,
BBDGV07, BDGV09, DM05]. Previous results concerning the specific family (1) amount to the
calculation of the optimal Poincaré constant C1 — along with a complete spectral decomposition
of Lβ — in [DM05]. To our knowledge, the estimates for Cp with 1 < p < 2 presented here are
novel.
Our result is depicted in Figure 1 (left). The precise value of the bound on Cp is of secondary
interest; the important finding is that (1) continues to hold with Cp = 1 even for positive β,
provided that β2 < 1/(2d) and

1 ≤ p ≤ p̂ := 2− (4 + dβ2)β2

(1− 2dβ2) + (4 + dβ2)β2
.(6)

1In our notation, we neglect the dependence of µβ , Dβ etc. on α, since all of our results are independent of its

value, as long as α > 0.
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Figure 2. Left: Spectral gap λ1 = 1/C1 (solid line) of the operator Lβ associated
to linearized fast diffusion equation in dimension d = 5 as a function of β2. Right:
Comparison between our estimate on the constants Cp for the linearized fast
diffusion equation at β2 = 1/4 (solid line) and the wealth distribution model at
θ = 1/4 (dashed line). On the horizontal axis, p̂ = 33/25 and p̌ = 10/7.

Hence, those convex inequalities in (1), which are sufficiently close to the Poincaré inequality,
retain their constant under the perturbation µ0 → µβ . Moreover, Cp = 1 is the optimal constant
in (1) on the given p-range, since C1 = 1 is known [DM05] to be the optimal constant in the
Poincaré inequality, and Cp ≥ C1 by classical results, see Lemma 6 in the appendix.
For β2 < 1/(2d) and p outside of the range (6), another classical estimate provides Cp ≤ (2−p̂)/(2−
p). In Theorem 4, we present a quantitative improvement of this bound in dimension d = 1. In
Figure 1 (right), our estimate on Cp (fat line) is compared to the upper and lower bounds (dashed
lines) obtained by numerical evaluation of the formulas from [BR03]. Our estimates coincide with
their upper bounds for p close to two, and constitute a genuine improvement for smaller values of
p.
The family (1) still persists for 1/(2d) < β2 < 1/(d − 2), now with Cp > 1 for all 1 ≤ p < 2.
In Theorem 3, we estimate the value of C1 in the associated Poincaré inequality, or equivalently,
the width λ1 := 1/C1 of the spectral gap of Lβ . The result is shown as a solid line in Figure 2
(left). The gap width that we compute agrees with the (optimal) one obtained in [DM05], which
is remarkable since our approach relies on much more elementary tools.

Wealth distribution model. The next example concerns a measure on the positive half-line Ω =
(0,∞). Inequalities (1) are investigated with

f∞(x) = Z−1
θ e−1/(θx)x−2−1/θ and Dθ(x) = θx2,

where θ > 0. The respective evolution equation

∂tu = Lθ[u] := θx2uxx − (x− 1)ux,(7)

appears as the grazing collisions limit of a kinetic model for wealth redistribution in a simple
market economy [PT06]. The algebraically fat (Pareto) tail for x → ∞ represents the riches
accumulated by a small high society. We refer to, e.g., [BM00, Sol98] for a derivation and relevant
references. To our knowledge, neither the associated inequalities (1) nor the long-time asymptotics
of solutions to (7) have been investigated before.
The situation is very similar to that of the one-dimensional linearized fast-diffusion equation, upon
replacing β2 by θ. This might be surprising since the relation between the standard Ornstein-
Uhlenbeck process and (7) in the limit θ ↓ 0 is not obvious. The slow decay of µθ as x → ∞
causes the failure of the logarithmic Sobolev inequality (2), but we are able to prove a Poincaré
inequality for arbitrary θ > 0 in Theorem 5. The spectral gap of Lθ amounts to λ1 = 1/C1 = 1
for θ ≤ 1, and to λ1 = (1 + θ)2/(2θ) for θ > 1, which is precisely as for Lβ from (5) with β2 = θ.
On the other hand, the behavior of the associated convex inequalities (1) is apparently different.
When proving non-trivial estimates on Cp for θ < 1 in Theorem 5, we do not achieve Cp ≡ 1 for
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any p < 2; but instead, we prove (1) with

Cp ≤
(

1− θ p− 1
2− p

)−1

(8)

for 1 ≤ p ≤ 2/(1 + θ), see Figure 2 (right). Observe that the bound in (8) is monotonically
convergent to one for each exponent p < 2 as θ ↓ 0. Consequently, also here we recover in the
limit exponential contraction of the Lq(Ω;µ)-semigroup at a q-independent rate.

Lasota model. Finally, we consider (1) for

f∞(x) = Z−1
σ xσ−1e−σxdx and Dσ(x) =

x

σ
(9)

on Ω = (0,∞), where σ > 1/2. The measure (9) is known as the Lasota production function
[Las77], and it is related to the dynamics of a blood cell population [GM90]. Moreover, it appears
as the invariant measure of

∂tu = Lσ[u] := σ−1xuxx − (x− 1)ux,(10)

which is one of the basic models2 for a general equilibrium asset price [CIR85]. The underlying
stochastic differential equation is nowadays called a CIR process. We remark that stochastic
processes like (10) have already been studied by Feller [Fel51] in the fifties, but apparently, the
Lq(Ω;µ)-contraction rates have not been calculated before.
Despite the apparent similarity between (10) and the economy model (7), the contractivity prop-
erties of the associated semigroup are quite different. Thanks to the exponentially small tail of
µσ, there is indeed an associated logarithmic Sobolev inequality (2), with C2 = 2, which yields a
priori Cp ≤ 2 in (1). In Theorem 6, we improve on the constants Cp in the range 1 ≤ p < 2. In
particular, we show that C1 = 1 for all σ ≥ 1/2.

Plan of the paper. In section 2 below, we collect various facts — most of them classical —
about the original Bakry-Émery approach and its generalizations. In section 3 we formulate the
problem of proving (1) in algebraic terms. The remainder of the paper is devoted to applications
of our method. In section 4, we give a proof of (1) under the hypothesis that the Bakry-Émery
condition holds. The linearized fast diffusion equation is treated in section 5 (in dimension d ≥ 2)
and 6 (in dimension d = 1). Sections 7 and 8 are devoted to the wealth redistribution and Lasota
model, respectively. In the appendix, we recall some known properties of the constants Cp, among
them a result from [BR03].

2. Preliminaries

2.1. General assumptions. Although we are mainly interested in the three specific families of
inequalities mentioned in the introduction, we shall formulate the main strategy in rather general
terms and make several assumptions that will simplify the subsequent analysis.
We start with a change of notations. In the proofs, it is more convenient to use an equivalent
representation of the convex Sobolev inequalities (1), namely

kq

[ ∫
Ω

uq dµ−
(∫

Ω

u dµ
)q]
≤ 2(q − 1)

∫
Ω

D
∣∣∇(uq/2)∣∣2 dµ.(11)

The original form (1) is equivalent to (11) upon defining p := 2/q, w := uq/2 and Cp := q/kq. The
seemingly non-canonical choice of the parameters q and kq in (11) will be advantageous in the
subsequent calculations. Whereas C2/q is proportional to the time scale of exponential convergence
in (4), kq is related to the convergence rate. Moreover, kq possesses the useful interpolation
property discussed in secion 3.2.
Next, we impose regularity conditions on Ω, µ, D and u:

A1 The domain Ω ⊂ Rd is bounded and convex with smooth boundary ∂Ω.

2We emphasize that by abuse of notation, σ in (10) denotes the inverse of the volatility in the associated CIR

process.
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A2 The probability measure µ possesses a smooth Lebesgue density f∞ ∈ C∞(Ω), which is
strictly positive, infΩ f∞ > 0. Moreover, the diffusion coefficient D ∈ C∞(Ω) is smooth
and strictly positive, infΩD > 0.

A3 The function u is regular in the sense that u ∈ C∞(Ω), infΩ u > 0 and n · ∇u = 0 on ∂Ω,
where n denotes the outward normal vector.

Notice that w = uq/2 in (11) is regular in the sense of assumption A3 if and only if u is regular.
A comment is due concerning the applicability to our main examples, which are naturally posed on
unbounded domains and with merely non-negative D. For the linearized fast diffusion equation (5),
assumptions A1 and A2 are satisfied for any smoothly bounded and convex domain Ω ⊂ Rd and
the respective restriction µΩ of µ, defined by µΩ(A) = µ(A)/µ(Ω) for all measureable sets A ⊂ Ω.
Notice that the density function f∞,Ω of the restricted measure µΩ satisfies ∇ log f∞,Ω = ∇ log f∞,
so the operator L in (3) is formally the same on any domain Ω. Then Theorem 3 yields (11) for all
regular u with constants kq independent of Ω. By standard approximation arguments, this allows
to conclude (11) on Ω = Rd for all u ∈ Lq(Rd;µ). Likewise, let Ω = (a, b) ⊂ R with 0 < a < b <∞
for the evolution of wealth (7) or the Lasota model (10). The Ω-independent results of Theorems
5 and 6 extend to Ω = R+.

2.2. Entropy functionals for diffusion semigroups. The convex Sobolev inequalities (11) will
be derived as entropy-dissipation relations for the diffusion equation

∂tu(t) = L[u(t)] = D∆u(t)−Q · ∇u(t),(12)

where L has already been introduced in (3). Upon imposing homogeneous Neumann boundary
conditions,

n · ∇u = 0 on ∂Ω,(13)

L extends to a self-adjoint, strongly elliptic differential operator on L2(Ω;µ), with dense domain
Dom(L) ⊂ L2(Ω;µ). Indeed, integrating by parts, it follows for regular u and v that∫

Ω

L[u]v dµ = −
∫

Ω

D∇u · ∇v dµ =
∫

Ω

uL[v] dµ,

which shows that L is symmetric and non-positive. Its kernel consists exactly of the constant
functions. In view of the regularity assumptions A1 and A2 above, standard semigroup theory
[Hen81] applies to L and shows that it generates an analytic semigroup on each Lq(Ω;µ) with
1 < q ≤ 2. For any given regular initial datum U ∈ Lq(Ω;µ), we denote the respective time-
dependent solution to (12) by u(t) = exp(tL)[U ].

Remark 1. In applications, the evolution is typically formulated as a Fokker-Planck equation for
the Lebesgue density

f(t) = u(t)f∞ ∈ L1(Ω; dx),(14)

rather than in terms of u. It is easily seen that f satisfies the L2-dual form of (12),

∂tf = ∇ ·
(
Df∇ log(f/f∞)

)
= ∆(Df) +∇ · (Qf)(15)

subject to variational boundary conditions n · ∇(f/f∞) = 0 on ∂Ω. Notice that f(t) ≡ f∞ is the
unique stationary solution to (15) of unit mass.

The relative entropy functionals Eq are defined for 1 < q ≤ 2 as multiples of the integral expression
on the left-hand side of (11),

Eq[u] =
∫

Ω

φq(u) dµ− φq
(∫

Ω

u dµ

)
with φq(s) =

q

4(q − 1)
sq.(16)

Again, the choice of the pre-factor is non-canonical but simplifies subsequent calculations. In
particular, E2 is half of the variance,

Var[u] := 2E2[u] =
∫

Ω

u2 dµ−
(∫

Ω

u dµ
)2

,
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and in the limit q ↓ 1, one recovers the logarithmic entropy functional,

E1[u] =
1
4

∫
Ω

u(x) log
u(x)∫

Ω
u(x) dµ(x)

dµ(x).

The functionals Eq are non-negative and convex on the set of positive functions u : Ω → R+.
They vanish exactly on the constant functions, i.e. on the kernel of L.

2.3. Convex Sobolev inequalities. The first two iterated gradients are the bi-linear forms Γ
and Γ2 defined on regular functions U and V by

Γ[U, V ] =
1
2
(
L[UV ]− UL[V ]− L[U ]V

)
= D∇U · ∇V,(17)

Γ2[U, V ] =
1
2
(
LΓ[U, V ]− Γ[U,L[V ]]− Γ[L[U ], V ]

)
.(18)

For brevity, we shall also write Γ[U ] = Γ[U,U ] and Γ2[U ] = Γ2[U,U ]. In terms of these quantities,
one of the principal results from the Bakry-Émery theory [BE85] reads as follows.

Theorem 1. Assume that for some λBE > 0, the Bakry-Émery condition

Γ2[U ] ≥ λBEΓ[U ] pointwise on Ω(19)

is satisfied for all regular functions U . Then the convex Sobolev inequalities (11) hold with kq =
qλBE.

This theorem appears as a consequence of the theory we develop below; a short proof is presented
in section 4. At this point, our goal is to formulate a weaker, yet more practical condition than
(19) that allows to conclude convex Sobolev inequalities (11). Following the original ideas from
[BE85], we introduce the first and second entropy production Iq and Jq, respectively, by

Iq[U ] = − d

dt

∣∣∣
t=0+

Eq

[
exp(tL)[U ]

]
, Jq[U ] =

d2

dt2

∣∣∣
t=0+

Eq

[
exp(tL)[U ]

]
.

We define further ψq(s) = sq/2; then (ψ′q)
2 = φ′′q , with φq from (16). Using the chain rule property

Γ[ϕ(u), v] = ϕ′(u)Γ[u, v] for smooth functions ϕ and regular u, v, it follows that

Iq[u] = −
∫

Ω

φ′q(u)L[u] dµ =
∫

Ω

Γ
[
φ′q(u), u

]
dµ =

∫
Ω

φ′′q (u)Γ[u] dµ =
∫

Ω

Γ[ψq(u)] dµ.

Now, observing that L[ψq(u)] = ψ′q(u)L[u] + ψ′′q (u)Γ[u], we obtain

Jq[u] = −2
∫

Ω

Γ
[
ψq(u), ψ′q(u)L[u]

]
dµ = −2

∫
Ω

L[ψq(u)]ψ′q(u)L[u] dµ

= 2
∫

Ω

L[ψq(u)]
(
L[ψq(u)]−

ψ′′q (u)
ψ′q(u)2

Γ[ψq(u)]
)
dµ.

With w := ψq(u) = uq/2, these calculations yield the following explicit representations,

Iq[u] =
∫

Ω

D|∇w|2 dµ =
∫

Ω

D
∣∣∇(uq/2)∣∣2 dµ,(20)

Jq[u] =
2
q

∫
Ω

w2
[
qD2

(∆w
w

)2

+ (2− q)D2
(∆w
w

)∣∣∣∇w
w

∣∣∣2 − 2qD
(∆w
w

)
Q ·
(∇w
w

)
(21)

− (2− q)DQ · ∇w
w

∣∣∣∇w
w

∣∣∣2 + q
(
Q ·
(∇w
w

))2]
dµ.

In particular, inequality (11) at q ∈ (1, 2] is nothing but the dissipation relation

kqEq[u] ≤ q

2
Iq[u].(22)

The essential ingredient of the method is the following.
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Lemma 1. Assume that the first entropy production is estimated by the second one as follows,

kqIq[u] ≤ q

2
Jq[u].(23)

Then the convex Sobolev inequality (22) holds.

Instead of passing from (23) further to the pointwise condition (19), we shall work with (23) directly
on the integral level. As will be made clear in section 3 below, integration by parts provides a
surprisingly powerful tool to prove (23) and calculate kq > 0 explicitly even in situations in which
(19) fails.
We emphasize that the proof of Theorem 1 in [BE85] only uses the weaker integral condition (23),
and (19) has been derived a posteriori as a sufficient condition, using that

Iq[u] =
∫

Ω

(
Γ[φ′q(u)]
φ′′q (u)

)
dµ and Jq[u] ≥

∫
Ω

(
Γ2[φ′q(u)]
φ′′q (u)

)
dµ.(24)

It is well known that the use of integral criteria instead of condition (19) allows to improve the
constants in certain logarithmic Sobolev inequalities, see for instance [Led92, Rot86]. In a recent
article [BG09], it has been shown that the integral criterion

kq

∫
Ω

(
Γ[φ′q(u)]
φ′′q (u)

)
dµ ≤ q

2

∫
Ω

(
Γ2[φ′q(u)]
φ′′q (u)

)
dµ,

which is slightly stronger than (23) but weaker than (19), does not only imply the convex inequal-
ities (11), but also suffices to prove the refined entropy inequalities

kq

[∫
Ω

uq dµ−
(∫

Ω

u dµ
)2(q−1)(∫

Ω

uq dµ
)2/q−1

]
≤ q(q − 1)2

∫
Ω

D
∣∣∇(uq/2)∣∣2 dµ.

On the other hand, it appears that integral criteria of the form (23) have never been employed to
improve the constants kq for 1 < q < 2 in specific examples of (11).

Proof of Lemma 1. Substitute u(t) = exp(−tL)[U ] into (23) and apply Gronwall’s lemma to con-
clude that

Iq[u(t)] ≤ Iq[U ] exp
(
− 2kq

q
t
)
.(25)

Implicitly, we have used that Iq[u(t)] → Iq[U ] as t ↓ 0. This is justified since U is regular by
assumption and thus belongs to Dom(L). Semigroup theory implies that the first time derivative

I[u(t)] =
d

dt
Eq[u(t)] =

∫
Ω

φ′q(u(t))L[u(t)] dx

is right-continuous at t = 0.
Integration of (25) with respect to time yields

Eq[u(t)] =
∫ ∞
t

Iq[u(t′)] dt′ ≤ q

2kq
Iq[U ] exp

(
− 2kq

q
t
)
,(26)

which in particular implies (22), taking t = 0. We have used implicitly that Eq[u(t)] → 0 as
t → ∞. This is justified since (25) above implies in particular that u(t) converges to a constant
function in Lq(Ω;µ). �

3. Formulation as an algebraic problem

In this section, a formalism is introduced that helps to establish inequality (23) for particular
examples of operators L.
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3.1. Algebraic framework for integral manipulations. For a given w : Ω → R+, which is
regular in the sense of assumption A3, define the functions ξG, ξH and ξL by

ξG(x) = w(x)−1∇w(x) ∈ Rd,
ξH(x) = w(x)−1∇2w(x) ∈ Rd×dsym,

ξL(x) = tr ξH(x) = w(x)−1∆w(x),

where Rd×dsym is the set of all symmetric d × d matrices and “tr” denotes the trace of a matrix.
Using the explicit expression for Jq from (21), the desired inequality (23) can be represented as∫

Ω

w2
(
Sq − kqD|ξG|2

)
dµ ≥ 0,(27)

where Sq is given by

Sq = qD2ξ2
L + (2− q)D2ξL|ξG|2 − 2qDξL(Q · ξG)− (2− q)D(Q · ξG)|ξG|2 + q(Q · ξG)2.(28)

The goal is to modify the integrand in (27) using integration by parts, so that the integrand
becomes pointwise non-negative for x ∈ Ω. As in [JM06], integration by parts is considered as the
addition of a divergence under the integral. More precisely, we add suitable linear combinations
of certain functions Ti : Ω→ R, defined in the following way:

w2f∞Ti = ∇ ·
(
w2f∞Ri

)
.(29)

For the functions Ri : Ω → Rd, one needs to make a suitable ansatz. This is not quite as
canonical as in [JM06], where spatially homogeneous evolution equations have been considered.
The following choices have proven to be suitable for our applications.

R1 = D2(ξH · ξG − ξLξG),
R2 = D(Q · ξG)ξG,
R3 = D∇D|ξG|2,
R4 = D2|ξG|2ξG.

A straight-forward calculation yields explicit expressions for the Ti,
T1 = D2

(
‖ξH‖2 − ξ2

L

)
−D(Q−∇D) · ξH · ξG +D(Q−∇D) · ξGξL,

T2 = DQ · ξH · ξG +DξLQ · ξG +DξG · ∇Q · ξG − (Q · ξG)2,

T3 = 2D∇D · ξH · ξG + (D∆D −∇D ·Q)|ξG|2,
T4 = 2D2ξG · ξH · ξG +D2ξL|ξG|2 −D|ξG|2(Q−∇D) · ξG −D2|ξG|4.

(30)

Above, Sq and the Ti have been introduced as smooth real functions on Ω, defined in terms of
w. In order to pass to an algebraic formulation of (27), consider for the moment ξG and ξH not
as x-dependent functions, but merely as elements of Rd and Rd×dsym, respectively. In view of the
explicit representations in (28) and (30), respectively, Sq and the Ti can be canonically identified
with functions Sq and Ti of (x, ξG, ξH) ∈ Ω× Rd × Rd×dsym, which depend on the components of ξG
and ξH in a polynomial way, and on x only indirectly via D and Q. In other words, we define
Sq = Sq(x; ξG, ξH) such that

Sq(x) = Sq
(
x; w−1(x)∇w(x), w(x)−1∇2w(x)

)
,(31)

and likewise for the Ti, which will be referred to as shift polynomials in the following. This
interpretation allows us to give a sufficient condition for the analytical statement (27) in algebraic
terms.

Lemma 2. Assume that σn · ∇D ≤ 0 on ∂Ω for one consistent choice of σ ∈ {−1,+1}. Let
q ∈ (1, 2] and kq > 0 be given. If there exist real constants c1 to c4 with c1 ≥ 0 and σc4 ≥ 0 such
that

∀x ∈ Ω : ∀ξG ∈ Rd, ξH ∈ Rd×dsym :
(
Sq + c1T1 + · · ·+ c4T4

)
(x; ξG, ξH)− kqD(x)|ξG|2 ≥ 0,(32)

then inequality (27) follows, and so does the respective convex Sobolev inequality (11), with (possibly
non-optimal) constant kq.
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Proof. The proof follows by the divergence theorem. Indeed, by definition of the Ti in (29),∫
Ω

w2Ti dµ =
∫

Ω

∇ ·
(
w2f∞Ri

)
dx =

∫
∂Ω

w2n ·Ri dµ∂Ω,

where µ∂Ω is the measure on ∂Ω induced by µ. Hence (27) is equivalent to∫
Ω

w2
(
Sq + c1T1 + · · ·+ c4T4 − kqD(x)|ξG|2

)
dµ ≥

∫
∂Ω

n · (c1R1 + · · ·+ c4R4) dµ∂Ω.(33)

If (32) holds, then the integral on the left-hand side of (33) has a pointwise non-negative integrand
by the relation between Sq, Ti and Sq, Ti, see (31). Provided that the right-hand side, i.e. the
contribution from the boundary integrals, is non-positive, then (33) is clearly true, and so is (27)
by equivalence.
The boundary condition (13) implies that n · ∇w = 0 on ∂Ω. As an immediate consequence, the
contributions from R2 and R4 vanish,

w2n ·R2 = D(Q · ∇w)(n · ∇w) = 0, w2n ·R4 = w−1D2|∇w|2(n · ∇w) = 0.

Elementary geometric considerations reveal that n · ∇w = 0 implies n · ∇2w · ∇w ≤ 0 on the
boundary ∂Ω of the convex domain Ω, so∫

∂Ω

w2n ·R1(ξ) dµ∂Ω =
∫
∂Ω

D2n · ∇2w · ∇w dµ∂Ω ≤ 0.

For c1 ≥ 0, the contribution from R1 to the right hand side of (33) is thus non-positive. Finally,

c3

∫
∂Ω

w2n ·R3(ξ) dµ∂Ω =
∫
∂Ω

D(c3n · ∇D)|∇w|2 dµ∂Ω.

By assumption, σn · ∇D ≤ 0 and σc3 ≥ 0. Hence c3n · ∇D ≤ 0, and the last integral gives a
non-positive contribution. �

Various simplifications can be made if d = 1. It suffices to consider two real-valued function ξ1,
ξ2 defined by

ξ1(x) = w(x)−1∂xw(x), ξ2(x) = w(x)−1∂2
xw(x).

The expression for T1 from (30) degenerates to T1 ≡ 0. Finally, there is no need to impose sign
restrictions on c3 in (32) since the boundary condition (13) implies that R3 = 0 on ∂Ω. Introducing
these simplifications into the above arguments, we obtain the following.

Lemma 3. Assume d = 1. Let q ∈ (1, 2] and kq > 0 be given. If there exist real constants c1, c2
and c3 such that

∀x ∈ Ω : ∀ξ1, ξ2 ∈ R :
(
Sq + c2T2 + c3T3 + c4T4

)
(x; ξ1, ξ2)− kqD(x)ξ2

1 ≥ 0,(34)

then inequality (23) follows, and so does (11).

3.2. An interpolation property. As the polynomial Sq depends on q, so do in general the
coefficients ci and the constant kq that are suitable for (32). Fortunately, the problem enjoys an
interpolation property which reduces the effort of proving (32) on some interval [q−, q+] ⊂ (1, 2]
to proving it at the endpoints q±.
Indeed, observe that the expression Sq in (28) depends on q in an affine manner. Hence, if
inequality (27) is true with constants kq± at q = q±, respectively, then (27) is also true with
constants

kq =
q − q−
q+ − q−

k+ +
q+ − q
q+ − q−

k−(35)

at any intermediate point q ∈ [q−, q+]. For a proof, simply take the respective convex combination
of the inequalities at q = q− and q = q+. As a direct consequence, the optimal constants kq for
(27) — which, however, might be smaller than the respective optimal constants in (11) — form a
concave function with respect to q ∈ (1, 2).
The interpolation property carries over from the integral formulation (27) to the algebraic problem
(32). We state the corresponding result, which we shall frequently invoke in the following.
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Lemma 4. Assume that 1 ≤ q− < q+ ≤ 2, and that (32) holds at q = q+ and q = q− with
respective constants k+ and k−. Then (32) holds for all q ∈ [q−, q+] with respective constants kq
from (35).

Proof. The polynomial Sq depend on q in an affine manner,

Sq =
q − q−
q+ − q−

Sq+ +
q+ − q
q+ − q−

Sq− ,

whereas D|ξG|2 and the Ti are independent of q. Denote by c−1 , . . . , c
−
4 and c+1 , . . . , c

+
4 two

quadruples of coefficients that make (32) true at q = q+ and q = q−, respectively. Let cqi :=
[(q − q−)c+i + (q+ − q)c−i ]/(q+ − q−) be their affine interpolations. With kq defined as in (35), it
is now immediate to conclude that

Sq +
4∑
i=1

cqiTi − kqD|ξG|
2 =

q − q−
q+ − q−

(
Sq+ +

4∑
i=1

c+i Ti − k+D|ξG|2
)

+
q+ − q
q+ − q−

(
Sq− +

4∑
i=1

c−i Ti − k−D|ξG|
2
)

is non-negative for all q ∈ [q−, q+]. �

3.3. Computer-assisted solution of the algebraic problems. A remarkable feature of the
algebraic formulation obtained above is that the problems (32) and (34) can be tackled in a
computer-aided way. In particular, the dependence of D and Q on x is polynomial in our exam-
ples. This makes (32) a quantifier elimination problem of real algebraic geometry, that is always
solvable in an algorithmic way [Tar51]. This fact has already been exploited in [JM06] to obtain
entropy-type Lyapunov functions for certain classes of homogeneous non-linear parabolic evolution
equations of higher order. In the situation at hand, however, the spatial inhomogeneity introduced
by D and Q leads to a much higher complexity of the quantifier elimination problem, which is no
longer solvable directly by the software toolboxes that are currently available.
For our calculations, we resort to the so-called SOS method: a sufficient (but in general far from
necessary) criterion for the non-negativity of a polynomial is the existence of a representation as
a sum of squares (SOS) of other polynomials. Advanced software tools are available to determine
SOS decompositions of parameterized polynomials of arbitrary degree and in arbitrarily many
variables, as long as the coefficients depend linearly on the parameters. This is exactly the case
in (32), where the parameters ci are simply the coefficients in the linear combination of the
polynomials Ti.
To calculate the SOS decompositions, we have mainly employed the software package YALMIP
[Loe04]. The results are purely numerical and cannot be turned into a proof directly. However,
they give an invaluable indication on suitable choices for kq and the parameters ci, which in the
actual proofs below seem to appear out of the blue.

4. Application in the Bakry-Émery setting

The developed machinery is now applied to provide a short proof of Theorem 1. First, we give a
reformulation of the theorem to specify the hypotheses more precisely.

Theorem 2. Assume that the domain Ω ⊂ Rd, the measure µ and the coefficient D : Ω → R+

satisfy assumptions A1 and A2. In dimensions d > 1, assume in addition that n · ∇D ≤ 0 on ∂Ω.
Then the Bakry-Émery condition (19), i.e. Γ2 ≥ λBEΓ, is equivalent to

M := D∇Q+
1
4

(2− d)∇D ⊗∇D +
1
2
(
D∆D − |∇D|2 −Q · ∇D

)
1 ≥ λBED1.(36)

If it holds with λBE > 0, then (32) or (34), respectively, is satisfied with kq = qλBE for all
1 ≤ q ≤ 2. Consequently, the convex inequalities (1) hold with an optimal constant Cp ≤ 1/λBE.

For the proof, we shall derive the representation formula for Jq given in (24). Our argument is
similar to that from the proof of the main theorem in [AMTU01], but our framework allows to
reduce the relevant calculations to a couple of lines.
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Proof. A tedious, but straightforward calculation reveals the following representation of Γ2,

Γ2[U ](x) = Π
(
x;∇2U,∇U

)
,

where the function

Π(x; ξG, ξH) :=
∥∥ DξH +∇D ⊗s ξG − 1

2 (∇D · ξG)1
∥∥2 + ξG ·M · ξG(37)

is a polynomial in ξG ∈ Rd and ξH ∈ Rd×dsym, with coefficients depending on x ∈ Rd. Here and below,
ζ⊗sη ∈ Rd×dsym denotes the symmetrized tensor product of ζ, η ∈ Rd, i.e. (ζ⊗sη)ij = 1

2 (ζiηj+ζjηi).
Condition (36) obviously implies

Π(x; ξG, ξH) ≥ λBED(x)|ξG|2,(38)

and thus also (19), recalling that Γ[U ](x) = D(x)|∇U(x)|2. To prove the reverse implication,
fix a point x̄ ∈ Rd and a vector z ∈ Rd. Choose a regular function Ū with ∇Ū(x̄) = z and
D∇2Ū(x̄) = 1

2 (z · ∇D)1− z ⊗s ∇D. Then the squared norm in (37) vanishes, which implies

z ·M(x̄) · z = Π(x̄;∇2Ū , Ū) = Γ2[Ū , Ū ](x̄) ≥ λBEΓ[Ū , Ū ](x̄) = λBED(x̄)|z|2.

We are going to prove (32) by considering the two extremals q = 1 and q = 2 and applying the
interpolation Lemma 4. First, let q = 2, and observe that

S2(x; ξG, ξH) = 2
(
D(x)ξL −Q(x) · ξG

)2
.

Use c1 = 2, c2 = 2, c3 = 1, and c4 = 0 to achieve(
S2 + c1T1 + c2T2 + c3T3 + c4T4

)
(x; ξG, ξH) = 2Π(x; ξG, ξH) ≥ 2λBED(x)|ξG|2,

employing (38). Thus, (32) holds with k2 = 2λBE . On the other hand, at q = 1,

S1(x; ξG, ξH) =
1
2
S2(x; ξG, ξH) +D(x)2ξL|ξG|2 −D(x)Q(x) · ξG|ξG|2.

Choosing c1 = 1, c2 = 1, c3 = 1/2 and c4 = −1, we infer that

S(x; ξG, ξH) :=
(
S1 + c1T1 + c2T2 + c3T3 + c4T4

)
(x; ξG, ξH)

= Π(x; ξG, ξH)− 2D(x)ξG · ξH · ξG −D(x)|ξG|2∇D(x) · ξG +D2|ξG|4.

The additional terms can now be combined with the squared norm in Π to form a different complete
square, namely

S = Π− 2DξG ·
(
DξH +∇D ⊗s ξG −

1
2
∇D · ξG1

)
· ξG +D2|ξG|4

=
∥∥DξH −DξG ⊗ ξG +∇D ⊗s ξG −

1
2

(∇D · ξG)1
∥∥2 + ξG ·M · ξG.

Condition (36) obviously implies (32) with k1 = λBE . Interpolation by means of (35) finishes the
proof. �

5. Application to the linearized fast-diffusion equation in multiple dimensions

The linearly confined porous medium equation

∂tF = ∆(Fm) +∇ · (xF ) on Ω ⊂ Rd(39)

models the diffusive spreading of a particle concentration F = F (t;x) ≥ 0 on Ω, under the influence
of a linear force towards the origin. In contrast to the heat equation, the mobility of the particles
is not constant, but is a function of the concentration itself. The most relevant case is Ω = Rd,
when (39) is equivalent to the unconfined equation ∂tF = ∆(Fm) upon self-similar rescaling. For
an exhaustive introduction to the subject, the reader is referred to [Vaz07].
In (39), the parameter m > 0 controls the dependence of the particle mobility on the density.
Here we are interested in the range 0 < m < 1, called the fast diffusion regime. Equation (39) is
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known to possess mass-preserving solutions F when m lies above the critical value mc := 1− 2/d.
The stationary solution to (39) is a pseudo-Barenblatt profile,

Bm(x) =
(
C +

1−m
2m

|x|2
)−1/(1−m)

,

where the constant C > 0 controls the mass of Bm. Large-time asymptotics of solutions to
(39) have been studied by a variety of authors; the most complete treatment can be found in
[BBDGV09].
Here, we are only interested in the linear stability analysis around Bm. The linearization of (39)
at F = Bm reads

∂tf = ∆
(
(α2 + β2|x|2)f

)
+∇ · (xf), α2 = mC > 0, β2 =

1−m
2
∈
(

0,
1
d

)
,(40)

which is a Fokker-Planck equation of the form (15) with

Dβ(x) = α2 + β2|x|2 and Q(x) = x.

The unique stationary state to (40) of unit mass is proportional to DβBm,

f∞(x) =
1
Z
Dβ(x)−1−1/(2β2),

where the normalization constant Z = Zα,β,Ω =
∫

Ω
Dβ(x)−1−1/(2β2)dx is well-defined only if

β2 < 1/(d − 2). Define µβ as the measure on Ω with density f∞, and introduce u according to
(14). Then u(t) is a solution to (12) with the associated linear operator from (3),

Lβ [u] = (α2 + β2|x|2)∆u− x · ∇u.

For the proof of associated convex Sobolev inequalities (11) on Ω = Rd, we cannot resort to
Theorem 2, due to the following observation.

Lemma 5. The Bakry-Émery condition (19) is fulfilled on any bounded domain Ω ⊂ Rd with some
λΩ
BE > 0, but the largest Ω-uniform constant is λ∗BE = 0. In fact, the corresponding logarithmic

Sobolev inequality (2) does not hold on Ω = Rd.

Proof. The matrix M defined in (36) becomes

M(x) = α2(1 + dβ2)1 + (d− 2)β4
(
|x|21− x⊗ x

)
,

which is non-negative definite at every x ∈ Ω, since for arbitrary z ∈ Rd \ {0},
ez ·M(x) · ez = α2(1 + dβ2) + (d− 2)β4

(
|x|2 − (x · ez)2

)
> 0

by the Cauchy-Schwarz inequality, with ez = z/|z|. On the other hand, at any fixed x ∈ Ω, the
choice z = x yields

x ·M(x) · x
Dβ(x)|x|2

=
α2(1 + dβ2)
Dβ(x)

,

which can be made arbitrarily small when Ω is sufficiently large. The largest Ω-uniform constant
λBE in (19) is thus zero.
To show that the logarithmic Sobolev inequality (2) does not hold, consider the following H1-
smooth, radially symmetric function w : Rd → R+ with w(x) = W (|x|), where W : [0,∞) → R+

is defined by

W (r) =

{
(r1+1/(2β2)−d/2)/ log r for r > e,

e1+1/(2β2)−d/2 for 0 ≤ r ≤ e.

By the change of variables x = rΘ with r ≥ 0 and Θ ∈ Sd−1,∫
Rd
w2 dµβ =

|Sd−1|
Z

∫ ∞
0

W (r)2(α2 + β2r2)−1−1/(2β2)rd−1 dr

≤ A
(

1 +
∫ ∞
e

dr

r (log r)2

)
= A

(
1 +

∫ ∞
1

dz

z2

)
<∞,
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with some finite constant A = A(α, β) > 0. Similarly, one finds∫
Rd
Dβ |∇w|2 dµβ =

|Sd−1|
Z

∫ ∞
e

W ′(r)2(α2 + β2r2)−1/(2β2)rd−1 dr

≤ A
∫ ∞
e

[(
1 + 1/(2β2)− d/2

)
− (log r)−1

]2 dr

r (log r)2

≤ A
∫ ∞

1

[(
1 + 1/(2β2)− d/2

)
− z−1

]dz
z2

<∞.

On the other hand, there is a positive constant a = a(α, β) > 0 such that∫
Rd
w2 logw2 dµβ =

|Sd−1|
Z

∫ ∞
e

[
W (r)2 logW (r)2

]
(α2 + β2r2)−1−1/(2β2)rd−1 dr

≥ a
∫ ∞
e

[
(2 + 1/β2 − d)− log(log r)

log r

] dr

r log r

≥ a
∫ ∞

1

[
(2 + 1/β2 − d)− log z

z

]dz
z

= +∞,

since β2 < 1/(d−2) and (log z)/z → 0 as z →∞. By standard arguments, w can be approximated
by a sequence of bounded and C∞-smooth functions wn : Rd → R+ for which the right-hand side
in (2) remains n-uniformly bounded whereas the left-hand side tends to infinity as n→∞. �

5.1. Derivation of convex inequalities. Despite the failure of the classical Bakry-Émery con-
dition, our refinement of the method allows us to obtain convex functional inequalities.

Theorem 3. Assume that d ≥ 2 (the case d = 1 is covered by Theorem 4 below) and that3 Ω ⊂ Rd
is such that x · n ≥ 0 on ∂Ω.

(1) Let 0 < β2 < 1/(2d) or, equivalently, 1 − 1/d < m < 1. Then criterion (32) is fulfilled
with kq = q for all q̂d,β ≤ q ≤ 2, where

q̂d,β := 1 +
(4 + dβ2)β2

2(1− 2dβ2) + (4 + dβ2)β2
∈ (1, 2).

The optimal constant Cp in the corresponding convex Sobolev inequalities (1) is Cp = 1
for 1 ≤ p ≤ p̂ with p̂ from (6), and satisfies Cp ≤ (2− p̂)/(2− p) for p̂ < p < 2.

(2) Let 1/(2d) < β2 < 1/(d− 2), or equivalently 1− 2/(d− 2) < m < 1− 1/d. Then criterion
(32) is fulfilled at q = 2 with

k2 =
{

4(1− dβ2) if 1/(2d) ≤ β2 ≤ 1/(d+ 2),
(1− (d− 2)β2)2/(2β2) if 1/(d+ 2) ≤ β2 < 1/(d− 2).

Consequently, the associated linear operator Lβ possesses a spectral gap of width λ1 ≥ k2/2,
and the convex Sobolev inequalities (1) hold with an optimal constant Cp ≤ 2/(2− p)k−1

2 .

Remark 2. Several comments are in order:

• The same estimates on the spectral gap (i.e. on k2 and C1) have been obtained — cal-
culating the spectral decomposition of Lβ — before in [DM05]; these estimates are sharp.
The estimates for kq with 1 < q < 2 are novel.

• For 1 ≤ p ≤ p̂, Cp = 1 is clearly the optimal constant, since C1 = 1 is sharp by the
previous remark, and Cp ≥ C1 for 1 < p < 2 by Lemma 6.

• Although the estimates for k2 have been formulated for the entire range 0 ≤ β2 < 1/(d−2)
on which the steady state f∞ of (40) defines a probability measure, we recall that equation
(40) loses its interpretation as the linearization of (39) when β2 ≥ 1/d, i.e. m ≤ mc.

3For example, one can choose Ω as a ball around the origin.
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Proof. The results will be obtained by applying Lemma 2. To start with, we notice that n ·
∇Dβ(x) = 2β2n·x > 0 on ∂Ω by assumption, and thus we will need to choose c3 ≤ 0. Substitution
of Dβ(x) = α2 + β2|x|2 and Q(x) = x into (28) yields

Sq = qD2
βξ

2
L + (2− q)D2

βξL|ξG|2 − 2qDβξL(x · ξG)− (2− q)Dβ |ξG|2(x · ξG) + q(x · ξG)2,

while the shift polynomials Ti defined in (30) specify to
T1 = D2

β(‖ξH‖2 − ξ2
L) + (1− 2β2)Dβ

(
ξL(x · ξG)− x · ξH · ξG

)
,

T2 = DβξL(x · ξG) +Dβx · ξH · ξG +Dβ |ξG|2 − (x · ξG)2,
T3 = 4β2Dβx · ξH · ξG − 2β2|x|2|ξG|2 + 2dβ2Dβ |ξG|2,
T4 = D2

βξL|ξG|2 + 2D2
βξG · ξH · ξG −D2

β |ξG|4 − (1− 2β2)Dβ(x · ξG)|ξG|2.

(41)

We start by showing (32) on the range β2 ≤ 1/(2d) for q̂d,β ≤ q < 2. Our strategy is to choose
parameters c1, c2, c4 such that the polynomial S with

S := Sq + c1T1 + c2T2 + c4T4 − qDβ |ξG|2(42)

becomes a product of Dβ(x)2 and a polynomial in ξG, ξH , and ξL, which is independent of x. In
order to avoid the appearance of the product x · ξH · ξG, we choose

c1 =
c2

1− 2β2
.

Next, we study the remainder of S after polynomial division by D. Since most of the terms
appearing in Sq and Tk are actually multiples of Dβ or D2

β , this remainder is easily calculated and
reads as

SmodDβ = (x · ξG)2(q − c2).

It vanishes (identically in x and ξG) if and only if c2 = q, and consequently c1 = q/(1 − 2β2).
Finally, c4 is determined such that the remainder of S with respect to D2

β vanishes as well. With
the above choices for c1 and c2,

SmodD2
β = −

(
(2− q) + (1− 2β2)c4

)
Dβ |ξG|2(x · ξG),

which vanishes if and only if c4 = −(2− q)/(1− 2β2). Substitute c1, c2 and c4 into (42) to find

S =
D2
β

1− 2β2

[
(2− q)|ξG|4 − 2(2− q)

(
β2ξL|ξG|2 + ξG · ξH · ξG

)
+ q
(
‖ξH‖2 − 2β2ξ2

L

)]
.

To prove the non-negativity of S, we estimate the norm of ξH from below. By [JM08, Lemma
2.1], the inequality

‖M‖2 ≥ 1
d

(trM)2 +
d

d− 1

(v ·M · v
|v|2

− trM
d

)2

(43)

holds for any matrix M ∈ Rd×dsym and any vector v ∈ Rd. Introducing accordingly

y =
ξG · ξH · ξG
|ξG|4

− ξL
d|ξG|2

, z =
ξL

d|ξG|2
,

we obtain from (43) that

S ≥
D2
β |ξG|4

1− 2β2

[
(2− q)− 2(2− q)

(
y + (1 + dβ2)z

)
+ dq

(
(d− 1)−1y2 + (1− 2dβ2)z2

)]
.

The expression inside the square brackets is a quadratic polynomial in y and z of the special form

a4y
2 + a3z

2 + a2y + a1z + a0 = a4

(
y +

a2

2a4

)2

+ a3

(
z +

a1

2a3

)2

+
a0

a3a4

(
a3a4 −

a2
1a4

4a0
− a2

2a3

4a0

)
.
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Observe that a0 = 2 − q, a3 = dq(1 − 2dβ2), and a4 = dq/(d − 1) are positive quantities since
q̂d,β ≤ q < 2 and 0 < β2 < 1/(2d) with d ≥ 2. Thus, S is a non-negative polynomial if

0 ≤ a3a4 −
a2

1a4

4a0
− a2

2a3

4a0

=
dq

d− 1
(
d(1− 2dβ2)q − (1 + dβ2)2(2− q)− (d− 1)(1− 2dβ2)(2− q)

)
.

A straightforward calculation reveals that the expression inside the parenthesis is non-negative
because q ≥ q̂d,β , proving the criterion (32). By Lemma 2, the inequalities (11) hold with kq = q
for q̂d,β ≤ q ≤ 2, and equivalently, the inequalities (1) hold with Cp = 1 for 1 ≤ p ≤ p̂ = 2/q̂d,β .
To conclude Cp = (2− p̂)/(2− p) for p̂ < p < 2, simply invoke Lemma 6.
To prove the claim about the spectral gap for 1/(2d) < β2 < 1/(d− 2), let q = 2, and recall that

S2(ξ) = 2D2ξ2
L − 4DξL(x · ξG) + 2(x · ξG)2.

First, assume 1/(2d) ≤ β2 ≤ 1/(d+ 2). With k2 = 4(1− dβ2) and the choices

c1 =
2d
d− 1

, c2 =
2

d− 1
(d− 2 + 2dβ2), c3 = − 2dβ2 − 1

(d− 1)β2
,

one finds that

S(ξ) = S2 + c1T1 + c2T2 + c3T3 − 4(1− dβ2)Dβ |ξG|2

=
2

d− 1

[
(2dβ2 − 1)

(
|x|2|ξG|2 − (x · ξG)2

)
+D2

β

(
d‖ξH‖2 − ξ2

L

)]
.

This expression is non-negative; indeed, by the Cauchy-Schwarz inequality,

|x|2|ξG|2 ≥ (x · ξG)2 and d‖ξH‖2 ≥ ξ2
L.

This proves (32) with q = 2 on 1/(2d) ≤ β2 ≤ 1/(d+ 2).
The remaining range 1/(d + 2) < β2 < 1/(d − 2) has to be divided into two zones (for a reason
that will become apparent later), namely above and below of

β2
∗ := (d− 1)/(d2 − d+ 2).(44)

First assume that 1/(d+ 2) < β2 ≤ β2
∗ (or 1/4 < β2 <∞ if d = 2). Shift polynomials T1 to T3 are

added to S2 in such a way that second-order derivatives only appear in the form dξH − ξL1. With

c1 =
2d
d− 1

, c2 = 2 +
2(d− 2)β2

d− 1
, c3 =

1
2β2

[
− 1 +

(
d+

2
d− 1

)
β2
]
,(45)

one finds indeed that

S = S2 + c1T1 + c2T2 + c3T3 −
(1− (d− 2)β2)2

2β2
Dβ |ξG|2

=
1

d− 1

[
2D2

β

(
d‖ξH‖2 − ξ2

L

)
+ 2Dβ

(
(d+ 2)β2 − 1

)(
x · (dξH − ξL1) · ξG

)
+
(
(d− 1)− (d2 − d+ 2)β2

)
|x|2|ξG|2 − 2(d− 2)β2(x · ξG)2

]
+

(d+ 2)2β4 − 1
2β2

Dβ |ξG|2.

As β2 > 1/(d+ 2), the coefficient in front of Dβ |ξG| is non-negative, and we may thus estimate

(d+ 2)2β4 − 1
2β2

Dβ |ξG|2 ≥
(d+ 2)2β4 − 1

2
|x|2|ξG|2.(46)

Further, employing the identity(
dA− (trA)1

)
:
(
dB − (trB)1

)
= d2A : B − d(trA)(trB)
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for all symmetric matrices A, B ∈ Rd×dsym, it is easily verified that

K :=
1
2d

∥∥2Dβ

(
dξH − ξL1

)
+
(
(d+ 2)β2 − 1

)(
d x⊗s ξG − (x · ξG)1

)∥∥2(47)

= 2D2
β

(
d‖ξH‖2 − ξ2

L

)
+ 2Dβ

(
(d+ 2)β2 − 1

)(
x · (dξH − ξL1) · ξG

)
+
(
(d+ 2)β2 − 1

)2(d
4
|x|2|ξG|2 +

d− 2
4

(x · ξG)2
)
.

We can thus incorporate all second-order derivatives into K. Collecting the remaining terms and
plugging into (46), we find

S ≥ 1
d− 1

K +
d− 2

4(d− 1)
(
(d+ 2)2β4 − 2(d− 2)β2 + 1

)(
|x|2|ξG|2 − (x · ξG)2

)
.

The coefficient of |x|2|ξG|2 − (x · ξG)2 ≥ 0 is non-negative, since we have assumed d ≥ 2, and
clearly

(d+ 2)2β4 − 2(d− 2)β2 + 1 = 8dβ2 +
(
(d− 2)β2 − 1

)2 ≥ 0.

This shows criterion (32) for 1/(d+ 2) < β2 ≤ β2
∗ . Unfortunately, yet another strategy is needed

for β2
∗ ≤ β2 < 1/(d − 2), since c3 in (45) would be positive, and thus Lemma 2 is no longer

applicable. On the remaining range, we choose c3 ≡ 0 instead, and

c1 =
1− (d− 2)β2

β2
, c2 = d(1− (d− 2)β2).

In order to prove non-negativity of

S = S2 + c1T1 + c2T2 −
(1− (d− 2)β2)2

2β2
Dβ |ξG|2

=
1− (d− 2)β2

dβ2

[
D2
β

(
d‖ξH‖2 − ξL

)2 − (1− (d+ 2)β2)Dβ

(
dx · ξH · ξG − ξL(x · ξG)

)]
+

(d2 − d+ 2)β2 − (d+ 1)
dβ2

[
D2
βξ

2
L − (1 + (d− 2)β2)DβξL(x · ξG)

]
+

(1− (d− 2)β2)((3d− 2)β2 − 1)
2β2

Dβ |ξG|2 + (d− 2)(dβ2 − 1)(x · ξG)2,

we follow a similar strategy as above, only that we build one additional complete square from
the terms involving ξL and x · ξG. The argument is similar to the one leading to (47). First, we
combine the trivial estimate Dβ(x) ≥ β2|x|2 with the fact that the coefficient in front of Dβ |ξG|2
is non-negative since 1/(d+2) < β2

∗ ≤ β2 ≤ 1/(d−2) and d ≥ 2. Second, we absorb the first group
of second-order terms into one square and complete another square with the terms involving ξL.
Omitting the details, we find that

S ≥ 1− (d− 2)β2

4d2β2

∥∥2Dβ

(
dξH − ξL1

)
− (1− (d+ 2)β2)

(
dx⊗s ξG − (x · ξG)1

)∥∥2

+
(d2 − d+ 2)β2 − (d− 1)

4dβ2

[
2DβξL − (1 + (d− 2)β2)(x · ξG)

]2
+

1
8β2

(1− (d− 2)β2)(−1 + 2dβ2 − (12− 8d+ d2)β4)
(
|x|2|ξG|2 − (x · ξG)2

)
.

The coefficients in front of the two complete squares are non-negative because β2
∗ ≤ β2 ≤ 1/(d−2),

see (44). To prove that the contribution from the last line is also non-negative, observe that the
quadratic expression in β2 in the second bracket is positive at β2 = 1/(d+ 2) and β2 = 1/(d− 2)
(with respective values 8(d− 2)/(d+ 2)2 and 8/(d− 2)) and behaves monotonically between those
points (the respective derivatives are 4(5d − 6)/(d + 2) > 0 and 12). Another application of the
Cauchy-Schwarz inequality finishes the proof. �
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6. Application to the linearized fast diffusion equation in d = 1

The results of section 5 can be improved in dimension d = 1.

Theorem 4. Assume that d = 1. For arbitrary 0 ≤ β2 ≤ 1, define

q̌β = 1 +
2β2

1 + β2
, q̂β = min

(
q̂1,β , 2

)
= min

(
1 +

(4 + β2)β2

2 + β4
, 2
)
.

Then (34) is satisfied with kq = q for q̂β ≤ q ≤ 2, and thus Cp = 1 is the optimal constant in (1)
for 1 ≤ p ≤ p̂ with p̂ from (6). Moreover, for 1 < q < q̂β, condition (34) is verified with

kq = (1 + β2)
q̂β − q
q̂β − q̌β

+ q̂β
q − q̌β
q̂β − q̌β

.(48)

A comparison of our results (in terms of bounds on Cp in (1)) with the estimates obtained from
[BR03] by means of Theorem 7 is given in Figure 1 (right) in the introduction.

Proof. The proof is an application of Lemma 3. Recall that ξ1 and ξ2 symbolize the functions
wx/w and wxx/w, respectively. In view of (31),

Sq = qD2
βξ

2
2 + (2− q)D2

βξ2ξ
2
1 − 2qxDβξ2ξ1 − (2− q)xDβξ

3
1 + qx2ξ2

1 .

Only two of the polynomials from (30) will be used, namely{
T2 = (Dβ − x2)ξ2

1 + 2xDβξ1ξ2,
T4 = −D2

βξ
4
1 − (1− 2β2)Dβxξ

3
1 + 3D2

βξ2ξ
2
1 .

Observe that for q = 2,

S2 + 2T2 = 2D2
βξ

2
2 + 2Dβξ

2
1 ≥ 2Dβξ

2
1 ,

and thus, (34) holds with k2 = 2. Next, consider the point q = q̂β under the assumption q̂β < 2.
The choice

c2 = q̂β =
(1 + β2)2

2 + β4
and c4 = − 2− q̂β

1− 2β2

eliminates both the cubic term ξ3
1 and the product ξ1ξ2 in the sum Sq̂β + c2T2 + c4T4:

Sq̂β + c2T2 + c4T4 = D2
β

[
q̂βξ

2
2 +

2(2− q̂β)(1 + β2)
1− 2β2

ξ2
1ξ2 +

2− q̂β
1− 2β2

ξ4
1

]
+ q̂βDβξ

2
1

= D2
β q̂β

[
ξ2 +

1
1 + β2

ξ2
1

]2
+ q̂βDβξ

2
1 .

Condition (34) thus follows with k = q̂β > 0. The interpolation Lemma 4 yields kq = q for
q̂β ≤ q ≤ 2, corresponding to Cp = 1 for 1 ≤ p ≤ p̂.
On the other hand, for q = q̌β , one has

Sq̌β =
1

1 + β2

[
(1 + 3β2)D2

βξ
2
2 + (1− β2)D2

βξ2ξ
2
1 − 2(1 + 3β2)xDβξ2ξ1

− (1− β2)xDβξ
3
1 + (1 + 3β2)x2ξ2

1

]
.

The choices c2 = 1 + β2 and c4 = −(1− β2)/(1 + β2) yield

Sq̌β + c2T2 + c4T4 =
1

1 + β2

[
(1 + 3β2)D2

βξ
2
2 − 2(1− β2)Dβξ1(Dβξ1 + β2x)ξ2

+ (1− β2)ξ2
1

(
(1− β2)β2x2 + (Dβξ1 − β2x)2

)]
+ (1 + β2)Dβξ

2
1 .

We have written the term inside the square brackets as a quadratic polynomial in ξ2. A sufficient
criterion for the non-negativity of the expression aξ2

2 + bξ2 + c is that the leading coefficient a
is positive and its discriminant ∆ = 4ac − b2 is non-negative. Since Dβ(x) vanishes nowhere,
a = (1 + 3β2)Dβ(x)2 > 0 for all x ∈ Ω. The discriminant

∆ = 4β2(1− β2)D2
βξ

2
1

[
2Dβξ1 − (1 + β2)x

]2
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is obviously non-negative since β2 ≤ 1. This proves (34) at q = q̌β with k = 1 + β2. Another
application of Lemma 4 shows that (34) is satisfied with (48) on q̌β ≤ q ≤ q̂β . �

To conclude the discussion of the linearized fast diffusion equation, we comment on the associated
convex Sobolev inequalities in terms of concentration estimates.

Corollary 1. Define ν as the measure on R with density

g∞(y) =
1
Zβ

(
cosh(βy)

)−(1+β2)/β2

.

Then the convex Sobolev inequalities (11) — with ν in place of µ and D ≡ 1 — hold, with the
same kq as in Theorem 4.

Proof. For given α and β, let D, µ and f∞ be defined as before. Introduce the new real variable

y(x) = β−1 arsinh
(βx
α

)
.

Observe that it satisfies

y′(x) = Dβ(x)−1/2 and g∞(y(x)) y′(x) = f∞(x).(49)

Now, for a given regular function v = v(y), define the function u by u(x) = v(y(x)). By the
change-of-variables formula, the entropy of u with respect to µ equals that of v with respect to ν,∫

R
φq
(
u(x)

)
f∞(x) dx− φq

(∫
R
u(x)f∞(x) dx

)
=
∫

R
φq
(
v(y)

)
g∞(y) dy − φq

(∫
R
v(y)g∞(y) dy

)
,

and likewise for the dissipation,∫
R
Dβ(x)

(
u(x)q/2

)2
x
f∞(x) dx =

∫
R
Dβ(x)yx(x)2

(
v(y(x))q/2

)2
y
f∞(x) dx =

∫
Ω

(
v(y)q/2)2

yg∞(y) dy.

Thus, the inequalities (11) for Dβ(x) = α2 + β2x2 and µ are equivalent to that for D ≡ 1 and
ν. �

This corollary shows in particular that there is a family of convex Sobolev inequalities (1) — with
the same optimal constants Cp as for the linearized fast diffusion equation — for D ≡ 1 and a
measure ν that behaves like dν(x)/dx ∝ exp(−cx) for |x| → ∞. It follows that (2−p)aCp remains
bounded for a = 1 [Bar01], but diverges to +∞ for any a < 1 [LO00] as p ↑ 2. On the other hand,
Theorem 4 and Lemma 6 imply (with p̌ := 2/q̌β)

Cp ≤
2− p̌
2− p

Cp̌ =
4β2

(1 + β2)2
(2− p)−1.

In combination, this gives a quite complete picture of the behavior of Cp as p ↑ 2.

7. Application to the wealth distribution model

The following equation has been derived in the context of wealth distribution among agents in a
simple market economy in [PT06] (see also [DMT08] for a general overview on recent mathematical
results):

∂tf = θ(x2f)xx +
(
(x− 1)f

)
x
.(50)

The value f(x) should be understood as the density of agents in the market with wealth equal
to x. A basic assumption of the model is the absence of debts, so the range of the wealth x is
restricted to Ω = R+. The parameter θ > 0 is related to the agents’ tendencies to spend money
in binary trade interactions and to the intrinsic risk of the market. Roughly speaking, the smaller
θ is, the stronger is the tendency of the model to develop a rich high society, whereas for large θ,
wealth is quite equally distributed in the long-time limit.
Equation (50) is given in Fokker-Planck form (15). Its unique steady state of unit mass is

f∞(x) =
1
Zθ
e−1/(θx)x−2−1/θ, x > 0.
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This function converges exponentially fast to zero as x ↓ 0, but decays only algebraically for
x→∞. Notice that the normalization constant Zθ is well-defined for all θ > 0.
Introducing u(t) by (14), it is immediately seen that u(t) satisfies the dual equation (12) with

Dθ(x) = θx2 and Q(x) = x− 1.

In terms of the Bakry-Émery condition, the situation is similar to that of the linearized fast
diffusion equation: in (36), one has

M(x) = DθQx +
1
4

(Dθ)2
x +

1
2

(Dθ(Dθ)xx − (Dθ)2
x −Q(Dθ)x) = θx = x−1Dθ(x).(51)

The infimum of this expression is positive on all finite intervals (a, b) with 0 ≤ a < b <∞. On the
other hand, λBE = 0 is obviously the largest number such that M ≥ λBEDθ uniformly on R+.

7.1. Derivation of convex inequalities. Our refinement of the Bakry-Émery method allows us
to prove convex Sobolev inequalities with Ω-independent constants.

Theorem 5. Let θ > 0. Then criterion (34) is satisfied for all q ∈ (1, 2] with

kq =


(1 + θ)2

2θ
(q − 1) for 1 < q ≤ min(2, 1 + θ),

q
(

1− θ

2
2− q
q − 1

)
for min(2, 1 + θ) ≤ q ≤ 2,

(52)

giving rise to a family of non-trivial convex Sobolev inequalities (11). In particular, the linear
operator Lθ from (7) possesses a spectral gap at least of width

λ1 =

 1 for 0 < θ < 1,
(1 + θ)2

4θ
for θ ≥ 1.

(53)

Proof. The relevant shift polynomials from (30) specify to

T2 =
(
(θ − 1)x2 + 2x− 1

)
ξ2
1 + 2θ(x− 1)x2ξ1ξ2,

T3 = θ
(
(θ − 1)x+ 1

)
xξ2

1 + 2θ2x3ξ1ξ2,

T4 = 3θ2x4ξ2ξ
2
1 + θ

(
1 + (θ − 1)x

)
x2ξ3

1 − θ2x4ξ4
1 .

First, assume that θ ≥ 1 and observe that

S2 + 2T2 +
θ − 1

2θ
T3 =

(
(θ − 1)x+ (θ2 + 1)x2

)
ξ2
1 + 2θ(θ − 1)x3ξ2ξ

2
1 + 2θ2x4ξ2

2

=
(1 + θ)2

2θ
Dξ2

1 +
x2

4
(
2θxξ2 + (θ − 1)ξ1

)2
.

This proves (34) at q = 2 with k2 = (1 + θ)2/(2θ). Furthermore, by the calculation of M in (51)
above, (34) is satisfied at q = 1 with k1 = 0; see (the proof of) Theorem 2. Hence, the interpolation
Lemma 4 leads to (34) for arbitrary 1 < q < 2 with kq as in (52).
Now, let 0 < θ < 1 and assume 1 + θ ≤ q ≤ 2. With kq as in (52),

Sq + qT2 − (2− q)T4 − kqDξ2
1

= θ2x2
[
(2− q)

( q

2(q − 1)
ξ2
1 − 2xξ3

1 + x2ξ4
1

)
+ qx2ξ2

2 − 2(2− q)x2ξ2
1ξ2
]

=
θ2x2

q

[ 2− q
2(q − 1)

(
qξ1 − 2(q − 1)xξ2

1

)2 + x2
(
qξ2 − (2− q)ξ2

1

)2] ≥ 0,

implying (34). Interpolation by means of Lemma 4 extends the validity of (34) to 1 < q < 1 + θ,
thus proving (52) and (53). �
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8. Application to the Lasota model

Finally, we shall consider the following Fokker-Planck equation on Ω ⊂ R+,

∂tf =
1
σ

(xf)xx +
(
(x− 1)f)x,(54)

which arises in mathematical biology in connection with a model for blood cell production [GM90,
Las77]; see also [Fel50] for an application to a diffusion problem in genetics. Moreover, (54) is the
associated Fokker-Planck equation for the stochastic process (Wt denoting a Brownian motion)

dXt =
√
Xt/σ dWt + (1−Xt) dt.

The latter has been introduced in financial mathematics [CIR85] as the description of the evolution
of interest rates subject to a (stochastic) source of market risk.
Introducing u(t) as in (14) with respect to the stationary solution

f∞(x) =
dµσ
dx

=
1
Zσ

xσ−1e−σx,

it follows that u(t) satisfies (12) with

Dσ(x) =
x

σ
and Q(x) = x− 1.

The cases with σ > 1 are the most relevant ones,4 since this is the situation where a norm-
preserving non-negative solution to (54) exists on Ω = R+, for arbitrary non-negative initial data
f0 ∈ L1(Ω), which is such that both f and its flux vanish as x ↓ 0 for all t > 0, see [Fel51]. On
the other hand, we are able to prove convex Sobolev inequalities (1) for arbitrary σ > 1/2.
The associated Bakry-Émery condition (36) is satisfied with λBE = 1/2, independently of Ω =
(a, b) ⊂ R+. Indeed,

M(x) =
x

σ
+

1
4σ2

+
1
2

(
− 1
σ2
− x− 1

σ

)
=

x

2σ
+

2σ − 1
4σ2

= Dσ(x)
(1

2
+

2σ − 1
4σx

)
.

Theorem 2 applies and yields the Beckner inequalities (1) with Cp = 2 for all 1 ≤ p < 2.

Remark 3. There is no contradiction between the existence of a logarithmic Sobolev inequality
and the density f∞ being concentrated like e−σx on R+, due to the influence of the coefficient
function Dσ. In fact, the change of variables x 7→ y =

√
2σx produces an equivalent evolution

equation (12) with D̃ ≡ 1 and f̃∞(y) ∝ exp(−y2).

8.1. Improvement of the convex inequalities. We improve the result above as follows.

Theorem 6. For σ > 1/2 and 1 ≤ q ≤ 2, define

θq =
1
2
(
(2σ − 1)(q − 1) + 1

)
− 1

2

√(
(2σ − 1)(q − 1) + 1

)2 − q(2− q) ≥ 0.(55)

Then condition (32) is satisfied with kq = q − θq ≥ q/2 in the given range. In particular, there is
a spectral gap of width λ1 = k2/2 = 1.

Remark 4. The inequality kq ≥ q/2 becomes strict for q > 1, meaning that the estimate is a
genuine improvement in comparison to k̃q = λBEq/2 as predicted by the Bakry-Émery theory.

Proof. To start with, observe that the square root in the definition of θq is well defined. Indeed,
the expression under the root can be written as a quadratic polynomial in ζ = (2σ−1)(q−1) ≥ 0,

R = ζ2 + 2ζ + (q − 1)2

which is obviously non-negative on the entire range 1 ≤ q ≤ 2. Next, observe that θq ≤ q/2, since
this inequality is equivalent to ζ+1−q ≤

√
R, which in turn is true since (ζ+1)2−2(ζ+1)q+q2 ≤

(ζ + 1)2 − 2q + q2 for ζ ≥ 0 and q > 0. Moreover, it implies that kq = q − θq ≥ q/2 as claimed.
The proof of condition (32) works without interpolation directly by representation of the polyno-
mial S +

∑
i ciTi as a sum of two squares.

4Clearly, smooth and classical solutions exist on the finite intervals (a, b) ⊂ R with 0 < a < b < ∞ considered

here.



22 D. MATTHES, A. JÜNGEL, AND G. TOSCANI

We turn to prove (34). In the situation at hand, (31) gives

Sq =
q

σ2
x2ξ2

2 +
2− q
σ2

x2ξ2ξ
2
1 −

2q
σ
x(x− 1)ξ2ξ1 −

2− q
σ

x(x− 1)ξ3
1 + q(x− 1)2ξ2

1 ,

while (30) provides the shift polynomials
T2(ξ) =

2x(x− 1)
σ

ξ1ξ2 +
(x
σ
− (x− 1)2

)
ξ2
1 ,

T3(ξ) =
2x
σ2
ξ1ξ2 −

1
σ

(x− 1)ξ2
1 ,

T4(ξ) =
3x2

σ2
ξ2ξ

2
1 +

( x
σ2
− x(x− 1)

σ

)
ξ3
1 −

x2

σ2
ξ4
1 .

Choosing the parameters c2 = q, c3 = θq, and c4 = q − 2, it follows that

S = Sq + c2T2 + c3T3 + c4T4 − kqDξ2
1

=
q

σ2
x2ξ2

2 − 2
2− q
σ2

x2ξ2
1ξ2 +

2θq
σ2

xξ1ξ2 +
2− q
σ2

x2ξ4
1 −

2− q
σ2

xξ3
1 +

θq
σ
ξ2
1 .

This polynomial can be written as a sum of squares:

S =
2− q
σ2

(
xξ2

1 − xξ2 −
1
2
ξ1

)2

+
1

8σ2(q − 1)
(
4(q − 1)xξ2 + (2θq − 2 + q)ξ1

)2
+

1
8σ2(q − 1)

[
− 4θ2

q + 4
(
(2σ − 1)(q − 1) + 1

)
θq − q(2− q)

]
ξ2
1 .

By definition of θq in (55), the coefficient of ξ2
1 vanishes, and we conclude that S is non-negative. �

9. Appendix

In this appendix, a few properties of the constants Cp in (1) are collected. First, we recall the
following elementary relations between the values of Cp for different p.

Lemma 6. The optimal constant Cp in (1) satisfies

(2− q)Cq ≤ (2− p)Cp and C1 ≤ Cp(56)

for all 1 ≤ p ≤ q < 2.

Proof. The first inequality in (56) follows by observing that the second integral on the left-hand
side of (1) is non-decreasing with respect to p, while the other two integrals are independent of p.
The second inequality is obtained by substituting u(x) = ū+ εv(x), where ū > 0 is a constant and
v ∈ C∞(Ω) ∩ L2(Ω;µ) has zero average, into (1) and considering the limit ε ↓ 0. See e.g. [AD05]
for details. �

Second, we recall that in one spatial dimension, there exist powerful tools from measure-capacity
theory to prove convex Sobolev inequalities (1) and to estimate the optimal constants. Below, we
state one particularly useful result from [BR03], which is based on a previous work by Bobkov
and Götze [BG99]. We use the bounds on the optimal constant Cp derived by this approach as
an indication for the quality of our own estimates in section 6.

Theorem 7. Consider the convex inequalities (1) with optimal constant Cp on Ω = R. Assume
that D and µ are symmetric with respect to x = 0, and that µ possesses a density f∞(x) = dµ/dx.
Then bp ≤ (2− p)Cp ≤ 4Bp for all 1 ≤ p < 2, where

bp := sup
x>0

µ[x,∞)
(

1−
(

1 +
1

2µ[x,∞)

)1−2/p
)∫ x

0

dy

D(y)f∞(y)
,

Bp := sup
x>0

µ[x,∞)
(

1−
(

1 +
(p− 1)p/(p−2)

µ[x,∞)

)1−2/p
)∫ x

0

dy

D(y)f∞(y)
.
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