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Abstract Thermal effects in a coupled circuit-device system are modeled and nu-
merically simulated. The circuit equations arise from modified nodal analysis. The
transport in the semiconductor devices is modeled by the energy-transport equations
for the electrons and the drift-diffusion equations for theholes, coupled to the Pois-
son equation for the electric potential. The lattice temperature is described by a heat
equation with a heat source including energy relaxation heat, recombination heat,
hole Joule heating, and radiation. The circuit-device model is coupled to a thermal
network. The resulting system of nonlinear partial differential-algebraic equations is
discretized in time using backward difference formulas andin space using (mixed)
finite elements. Heating effects from numerical simulations in a pn-junction diode
and a clipper circuit are presented.

1 Introduction

In modern ultra-integrated computer chips, secondary effects like self-heating are
strongly influencing the switching behavior of the transistors and the performance
of the circuit. In order to control the thermal effects, accurate circuit simulations are
needed, which go beyond compact modeling and simplified temperature models.
In this paper, we review a coupled circuit-device model taking into account the
temperature of the electrons and the semiconductor latticeand the temperature of the
circuit elements and present new numerical simulations illustrating the self-heating.
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First coupled circuit-device models were often based on a combination of device
and circuit simulators [10]. More recently, electric network models were coupled to
semiconductor transport equations, using drift-diffusion [14,16] or energy-transport
models [8]. Nonisothermal device modeling started in the 1970s, employing drift-
diffusion-type equations and heat flow models for the lattice temperature [1]. A ther-
modynamic approach to extend the drift-diffusion equations to the nonisothermal
case was presented in [17], later generalized in [2] using first principles of entropy
maximization and partial local equilibrium. In [3], the energy-transport equations
were coupled to a heat equation for the lattice temperature.

All these references are concerned with the modeling of certain subsystems.
Here, based on our work [9], we present a complete coupled model, including (i)
the device model consisting of the energy-transport equations for the electrons, the
drift-diffusion equations for the holes, and a heat equation for the lattice tempera-
ture, (ii) the electric-network equations, and (iii) a thermal network model describ-
ing the heat evolution in the circuit elements, electric lines, and devices. The models
are described in Section 2. The three subsystems are coupledby thermo-electric,
electric circuit-device, and thermal network-device interfaces explained in Section
3. Finally, in Section 4, the heating behavior in apn-junction diode and a clipper
circuit is illustrated.

2 Model Equations

Device modeling. The electron transport in the semiconductor device is modeled by
the energy-transport equations, whereas the hole transport is described by the drift-
diffusion equations. The equations for the electron density n, the electron thermal
energy3

2kBnTn (with kB being the Boltzmann constant), the hole densityp, and the
self-consistent electric potentialV read as

∂tn−q−1divJn = −R(n, p), ∂t p+q−1divJp = −R(n, p), (1)

∂t(
3
2kBnTn)−divJw + Jn ·∇V = W (n,Tn)−

3
2kBTnR(n, p), (2)

εs∆V = q(n− p−C(x)), (3)

whereq is the elementary charge,εs the semiconductor permittivity, andC(x) the
doping concentration. The functionR(n, p) models Shockley-Read-Hall recombina-
tion-generation processes andW (n,Tn) describes the relaxation to the lattice tem-
peratureTL,

R(n, p) =
np−n2

i

τp(n+ni)+ τn(p+ni)
, W (n,Tn) =

3
2

nkB(TL −Tn)

τ0
, (4)

whereni is the intrinsic density,τn andτp the electron and hole lifetimes, respec-
tively, andτ0 the energy relaxation time.
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The constitutive relations for the electron current density Jn, the hole current
densityJp, and the electron energy densityJw are given by

Jn = q
(

∇
(

µn
kBTL

q
n
)
−µnTL

n
Tn

∇V
)
, Jp = −q

(
∇

(
µp

kBTL

q
p
)

+ µp p∇V
)
, (5)

Jw = ∇
(3

2
µnTn

k2
BTL

q
n
)
−

3
2

µnkBTLn∇V, (6)

where the mobilities for the electrons and holes,µn and µp, respectively, are as-
sumed to depend on the lattice temperatureTL according to

µ j(TL) = µ j,0

(T0

TL

)α j
, j = n, p, (7)

whereT0 = 300K. The valuesµ j,0 andα j ( j = n, p) are typically determined from
measurements; see, for instance, [13, Table 4.1-1]. The energy-transport equations
were derived from the semiconductor Boltzmann equation by amoment method
assuming dominant elastic scattering [7,11].

The total semiconductor current densityJtot = Jn + Jp + Jd is the sum of the
particle current densities and the displacement current density Jd = −εs∂t∇V . The
current leaving the semiconductor device, which occupies the domainΩ ⊂ R

d (d ≥
1), at terminalΓk is defined by

jk =
∫

Γk

Jtot ·νds, (8)

whereν is the exterior normal unit vector toΓk. Due to charge conservation, the
current through one terminal can be computed by the negativesum of the other
terminal currents. We choose one terminal as the reference terminal and denote by
jS the vector of all terminal currents except the reference terminal.

The model equation for the lattice temperature is derived from thermodynamic
principles. Assuming that the thermal effects are due to themajority carriers (elec-
trons), the free energy for the system of energy-transport and Poisson equations is
the sum of the electric energy, the thermodynamic energy of the lattice subsystem,
and the thermodynamic energy of the electron subsystem [2,5],

f =
εs

2
|∇V |2 +ρLcLTL(1− logTL)+n

[
kBTn

(
log

n
Nc

−1
)

+Ec

]
,

whereρL denotes the material density,cL the heat capacity,Ec the conduction-band
energy, andNc = 2(m∗

ekBTn/2π h̄2)3/2 the effective density of states, with the effec-
tive electron massm∗

e and the reduced Planck constanth̄ = h/2π. Then, the internal
total energy is given by

u = f −Tn
∂ f
∂Tn

−TL
∂ f
∂TL

=
εs

2
|∇V |2 +ρLcLTL +n(Ec −TLE ′

c)+
3
2

kBnTn,
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where the prime denotes the derivative with respect toTL. The associated total en-
ergy flux densityJu is the sum of the energy flux in the electric field, the Fourier
heat flux, and the electron energy flux:

Ju = V Jtot−κL∇TL − (Ec −TLE ′
c)q

−1Jn − Jw,

whereκL is the heat conductivity of the lattice. Inserting the expressions for the
total internal energy and its flux into the energy balance equation ∂tu + divJu =
−γ, whereγ models the radiation, and employing the Poisson equation for ∂tV , a
straightforward computation leads to the heat equation forthe lattice temperature
(see [9] for details):

0 = ∂tu+divJu + γ = ∂tTL(ρLcL −nE ′
c)−div(κL∇TL)−H, (9)

whereγ = SL(TL −Tenv) is the energy loss by radiation with the transmission con-
stantSL and the environmental temperatureTenv, andH is the heat source term,

H =−W +R
(
Ec−TLE ′

c + 3
2kBTn

)
+q−1Jn ·∇(Ec−TLE ′

c)−Jp ·∇V −SL(TL−Tenv),

where the relaxation termW is defined in (4). For related but different choices of the
heat source term, we refer to the discussion in [17]. For nondegenerate homostruc-
ture devices, we can neglect the space dependency of the energy band. Furthermore,
we neglect the dependency of the energy band on the lattice temperature since this
dependency is rather small [13]. Thus, the heat source term becomes

H = −W +R
(
Ec + 3

2kBTn
)
− Jp ·∇V −SL(TL −Tenv),

The first term inH represents the energy relaxation heat, the second term is the
recombination heat, the third term expresses Joule heatingfrom the holes, and the
last term signifies the radiation.

The model equations (1)-(9) are complemented by initial andboundary condi-
tions. The boundary∂Ω of the semiconductor domain is assumed to consist of the
union of Ohmic contactsΓC = ∪kΓk and the union of insulating boundary segments
ΓI such thatΓC ∪ΓI = ∂Ω andΓC ∩ΓI = /0. We prescribe initial conditions for the
electron densityn, the electron temperatureTn, and the lattice temperatureTL in Ω .

On the insulating boundary parts, the normal components of the current densities,
the electric field and the temperature flux are assumed to vanish,

Jn ·ν = Jp ·ν = Jw ·ν = ∇V ·ν = ∇TL ·ν = 0 onΓI , t > 0. (10)

The electric potential at the contacts is the sum of the applied voltageVapp and the
built-in potentialVbi,

V = Vapp+Vbi onΓC, t > 0, where Vbi = arsinh(C(x)/2ni). (11)

According to the numerical results of [4], we may suppose that the normal compo-
nent of the electron temperature vanishes onΓC. In order to model the temperature
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exchange between the semiconductor device and the sourrounding network with the
temperatureTenv, we employ a Robin boundary condition for the lattice temperature:

∇Tn ·ν = 0, −κL∇TL ·ν = R−1
th (TL −Tenv) onΓC, t > 0, (12)

whereRth is the thermal resistivity of the contact. For the particle densities, we use,
as motivated in [8], the Robin conditions

n+(θnµn)
−1Jn ·ν = na, p− (θpµp)

−1Jp ·ν = pa onΓC, t > 0, (13)

where(na, pa) is the solution of the charge-neutrality equationna − pa −C(x) =
0 and the thermal equilibrium conditionna pa = n2

i , andθn, θp are some positive
parameters (θn = θp = 2500 in the simulations; see [8]).

Circuit modeling. The electric circuit is assumed to contain only (ideal) resistors,
capacitors, inductors and voltage and current sources. To simplify the presentation,
the circuit only contains one semiconductor device. The circuit is modeled by em-
ploying modified nodal analysis [16], whose basic tools are the Kirchhoff current
and voltage laws and the current-voltage characteristics of the basic elements. We
replace the circuit by a directed graph with branches and nodes. Branch currents,
branch voltages, and node potentials (without the mass node) are introduced as
(time-dependent) variables. Then, the circuit can be characterized by the incidence
matrix A = (aik) describing the node-to-branch relations,

aik =





1 if the branchk leaves the nodei,
−1 if the branchk enters the nodei,

0 else.

The network is numbered in such a way that the indidence matrix consists of the
block matricesAR, AC, AL, Ai, andAv, where the index indicates the resistive, ca-
pacitive, inductive, current source, and voltage source branches, respectively. The
semiconductor device is included into the network model employing the semicon-
ductor indicence matrixAS = (aS

ik) defined by

as
ik =





1 if the currentjk enters the circuit nodei,
−1 if the reference terminal is connected to the nodei,

0 else.

The current-voltage characteristics for the basic elements are given by

iR = gR(vR), iC =
dqC

dt
(vC), vL =

dφL

dt
(iL),

wheregR denotes the conductivity of the resistor,qC the charge of the capacitor, and
φL the flux of the inductor. Moreover,iα andvα with α = R, C, L, are the branch
current vectors and branch voltage vectors for, respectively, all resistors, capacitors,
and inductors.
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Denoting byis = is(t), vs = vs(t) the input functions for the current and voltage
sources, respectively, the Kirchhoff laws lead to the following system of differential-
algebraic equations in the charge-oriented modified nodal approach [16]:

AC
dqC

dt
(A⊤

C e)+ARgR(A⊤
R e)+ALiL +Aviv +AS jS = −Aiis, (14)

dφL

dt
(iL)−A⊤

L e = 0, A⊤
v e = vs, (15)

for the unknownse(t), iL(t), and iv(t), wheree(t) denotes the vector containing
the node potential andjS is the vector of all terminal currents defined in (8). The
circuit is coupled to the device through the semiconductor current jS in (14) and
through the boundary conditions for the electric potential. At terminalΓk, it holds
V (t) = ei(t)+Vbi if the terminalΓk is connected to the circuit nodei.

Equations (14)-(15) represent a system of differential-algebraic equations. Under
certain assumptions on the topology of the network, it was shown that the (tractabil-
ity) index of the system is at most two [15, 16]. Furthermore,if the circuit does
neither contain so-called LI-cutsets nor CV-loops with at least one voltage source,
the index is at most one.

Thermal network modeling. The thermal network consists of lumped thermal el-
ements, i.e. zero-dimensionally modeled elements with temperature valuêT ℓ(t);
distributed thermal lines, i.e. spatially one-dimensional elements with temperature
T d(x, t); and distributed semiconductor devices with the lattice temperatureTL(x, t)
as described above. Adjacent lumped elements are considered as a zero-dimensional
unit with temperaturêT . We assign the temperature at the interface of connected dis-
tributed elements to an artificial zero-dimensional element (thermal node) with tem-
peraturêT and without thermal mass. This forms a network with lumped-distributed
interfaces only, in which the nodes represent the zero-dimensional units and the
branches represent the distributed elements.

The thermal network is characterized by the thermal incidence matrixAth
d = (ath

i j)

and the thermal semiconductor incidence matrixAth
S = (ath

S,i j) defined by

ath
i j =





1 if the contact atx = 0 of branchj is connected to nodei,
1 if the contact atx = Lth of branchj−md is connected to nodei,
0 else,

ath
S,i j =

{
1 if the terminalj is connected to thermal nodei,
0 else,

wheremd is the number of thermal lines and[0,Lth] the interval of the distributed
element.

The temperature in the thermal nodes evolves according to the heat equation

M̂
dT̂
dt

= F̂d + F̂S − Ŝ(T̂−TenvI)+ P̂, t > 0. (16)
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Here,M̂ is a diagonal matrix containing the thermal masses of the thermal nodes,
each of which is given as the sum of the thermal masses of the lumped elements
contributing to the corresponding node. The thermal mass isthe product of the heat
capacity, the material density, and the physical volume of the corresponding ele-
ment. Furthermore,̂T is the vector of all temperature values in the thermal nodes,
andI is the identity matrix. The electro-thermal source vector for the thermal nodes
P̂ and the heat flux vectors from the distributed linesF̂d and the devicêFS are defined
below in (20), (18), and (19), respectively. The temperature values in the lumped el-
ementsT̂ℓ can be computed from̂T by the formulaT̂ = MT̂ℓ, where the matrix
M = (mi j) relates the lumped elements to the thermal nodes, withmi j = 1 if the
lumped elementj belongs to the thermal nodei andmi j = 0 else.

The vectorTd = (T d
j ) of all temperatures of the thermal lines satisfies

M j∂tT
d
j = ∂x(κ j∂xT d

j )−S j(T
d
j −Tenv)+Pj, x ∈ (0,L j), t > 0, (17)

whereM j denotes the thermal mass of thej-th element of lengthL j, κ j is the thermal
conductivity,S j the transmission function, andP = (Pj) the electro-thermal source
vector defined in (20). The above equation is complemented byinitial conditions
and Dirichlet boundary conditions, collected in the vectors Td

0 andTd
1.

3 Coupling Conditions

The heat equations (16) and (17) are coupled through the boundary conditions,
(Td

0,T
d
1)

⊤ = (Ath
d )⊤T̂, and the following equation for the thermal flux:

F̂d = Ath
d

(
Λ0∂xTd(0, t)

−Λ1∂xTd(Lth, t)

)
, (18)

whereLth denotes the length of a thermal line andΛ0, Λ1 contain the products of
thermal conductivities and the cross sections of the thermal lines at the contacts at
x = 0 andX = Lth, respectively.

Next, we describe the coupling between the thermal network and the device. The
influence of the network on the device is modeled by the last boundary condition
in (12) on Γk, with Tenv replaced by the temperature of the connected elements,
Ta = (Ath

S )⊤T̂. The semiconductor heat flux at terminalk is given by the integral

FS
k =

∫

Γk

JS
th ·ν dσ , such that F̂S(t) = Ath

S (Fj(t)) j, t > 0. (19)

The thermal flux densityJS
th is derived by making the quasi-stationary assumption

divJu = 0. Then, inserting the stationary balance equation for the electric energy, a
computation shows that (see [9] for details)

divJS
th +∇V · (Jn + Jp) = 0, where JS

th = −κL∇TL −q−1EcJn − Jw.
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This equation indicates that the fluxJS
th is responsible for the heat production caused

by the dissipated power and is therefore considered as a heatflux.
For the coupling between the electric and thermal network, we assume that only

semiconductor devices and resistors are thermally relevant. Electric-to-thermal cou-
pling occurs through the power dissipated by a resistor. We assume as in [6, Sec.
5.3] that the resistance is given byR = 1+α1TR +α2T 2

R , whereα1 andα2 are some
nonnegative parameters andTR is the temperature of the resistor. The vectorTR of
all resistor temperature values can be determined from the temperature vectors of
the thermal nodeŝT and of the distributed linesTd by

TR = K̂⊤T̂+K⊤T̃d ,

where the lumped values̃Td are computed from the distributed valuesTd by taking
the mean value, and the matricesK = (kℓ j) andK̂ = (k̂ℓ j) are defined by

kℓ j =

{
1 if the resistorj corresponds to the thermal branchℓ,
0 else,

k̂ℓ j =

{
1 if the resistorj corresponds to the thermal nodeℓ,
0 else.

The electric-to-thermal coupling is realized by the sourcetermsP = (Pj) andP̂ in
the heat equations (16) and (17):

P̂ = K̂PR, P = L−1
R KPR, wherePR = diag(iR)A⊤

R e, (20)

iR contains the currents through all resistors,AR denotes the resistor incidence ma-
trix, e is the vector containing the node potentials, andLR is the resistor length. For
a discussion about the proper choice of the local power distribution, we refer to [6].

4 Numerical examples

The complete coupled system for the electric and thermal network and the semicon-
ductor devices consists of nonlinear partial differential-algebraic equations. In the
following, we restrict ourselves to one-dimensional device models. The equations
are discretized in time by backward difference formulas (BDF-1 or BDF-2) to pay
tribute to the differential-algebraic character of the system. The heat equations and
the Poisson equation are discretized in space by linear finite elements. The transport
equations are discretized by an exponentially fitted mixed finite-element method us-
ing Marini-Pietra elements [12]. It is shown in [12] that, for the stationary model,
this method guarantees current conservation and positivity of the discrete particle
densities. These properties also hold for the BDF-1 time-discrete system and, under
a step size restriction, for the BDF-2 time-discrete system. In the following simula-
tions, the positivity of the discrete particle densities has always been obtained. The
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nonlinear discrete system is iterated by a combination of a fixed-point strategy and
a variant of the Gummel method; see [9] for details.

Bipolar junction diode. We illustrate first the lattice heating in a 100 nm silicon
pn diode consisting of a 50 nmp-doped part with doping−C0 = −5 · 1023 m−3

and a 50 nmn-doped part with dopingC0. Initially, the device is assumed to be in
thermal equilibrium. The same physical parameters as in [9]are employed. We apply
a forward bias of 1.5 V to the diode. The transient response ofthe electron and lattice
temperature is illustrated in Figure 1. The electron temperature increases quickly in
the entire device with a temperature maximum of about 3300 K in then-region and
then decreases slightly until the steady state is reached with a temperature minimum
around the junction. The increase of the lattice temperature is significantly slower
with a maximum of 325 K at steady state. Due to the high thermalconductivity, the
lattice temperature is almost constant in the device.

Fig. 1 Transient electron temperature (left) and lattice temperature (right) in apn diode at 1.5 V.
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Fig. 2 Left: Current-voltage characteristics of apn diode computed from different models. Right:
Averaged lattice temperature in apn diode (stationary computations).

The influence of the lattice heating on the electrical performance of the device
is shown in Figure 2. In the left figure, we compare the resultscomputed from the
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drift-diffusion (DD) model (using low-field mobilities) with those from the energy-
transport (ET) equations with and without lattice heating.We observe that the cur-
rent from the nonisothermal ET model is smaller than that from the ET model with
constant lattice temperature. The right figure shows the averaged lattice temperature
as a function of the applied voltage. For high applied bias, the lattice temperature
reaches up to 420 K. However, we notice that a bias of 2.5 V might be unrealistic
for the considered device.

Clipper circuit. A clipper is employed as an entrance protective circuit to avoid
voltage peaks. It consists of twopn diodes (with the same parameters as in the
previous example), one resistor with resistivityR = 5kΩ , and three voltage sources
(see Figure 3). Here,Vin(t) = 5sin(2π1010Hzt) V represents the input signal. The
remaining voltages are kept constant withVmin(t) = −U andVmax(t) = U , where
U = 2V. A perfect clipper, with a much higher resistance, would clip the input
signal between±(U +Vth), whereVth is the threshold voltage of the diode. In the
present case, it holds approximatelyVth = 0.9 V such that the signal is between
±2.9 V. However, we have chosen the resistance such that the output signal should
stay below 4 V.

−

+

−

+
Vmin Vmax

Vin Vout

Fig. 3 Clipper circuit with twopn diodes, one resistor and three voltages sources.
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Fig. 4 Input and output signal of the clipper during the first oscillations (left) and after 30 oscilla-
tions of the input signal (right).
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In Figure 4 we depict the input and output signals of the circuit. We observe that
during the first oscillations the maximal output signal is below 4 V, however, with
a slight increase of the maximal value (left figure). The maximal output signal in-
creases during the first oscillations from 3.93 V to 3.96 V. This increase becomes
more significant for larger time (right figure). In fact, after 30 oscillations the maxi-
mal output signal is 4.09 V, which corresponds to an increaseof about 5 %. A sim-
ulation of the same circuit with constant lattice heating keeps the maximum output
signal almost constant below 4 V. This shows that the increasing maximal output
voltage is caused by lattice heating, as the heated diode preserves less current lead-
ing to a larger resistance.

The circuit is constructed in such a way that, at the maximal input signal of 5 V,
we have a voltage drop of about 1 V at the resistor, 2 V at the forward-biased diode
and 2 V at the additional voltage source. In the branch containing the backward-
biased diode, the voltage drop is 1 V at the resistor, 6 V at thediode, and−2 V at the
additional voltage source. This behavior is illustrated inFigure 5. Thus, according
to Figure 2 (right), we expect a stationary lattice temperature of about 360 K in the
diodes. This is confirmed by the simulations presented in Figure 6 which shows the
lattice temperature of one of the diodes in the circuit. We observe that the device
heats up while being forward biased. As the backward bias period is to short to cool
down the device, the lattice heating accumulates during thefirst oscillations up to
about 360 K.
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Fig. 5 Voltage drop at the second diode and the resistor during the 29thand 30th oscillation.

Acknowledgements The authors acknowledge partial support from the German Federal Ministry
of Education and Research (BMBF), grant 03JUNAVN. The first author was supported by the
ERCIM “Alain Bensoussan” Fellowship Programme. The second author was supported by the
Austrian Science Fund (FWF), grant P20214 and WK “Differential Equations”, and from the Ger-
man Science Foundation (DFG), grant JU 359/7. This research is part of the ESF program “Global
and geometrical aspects of nonlinear partial differential equations (GLOBAL)”.



12 Markus Brunk and Ansgar Jüngel
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