Heating of semiconductor devicesin electric
circuits

Markus Brunk and Ansgatiihgel

Abstract Thermal effects in a coupled circuit-device system are risabland nu-
merically simulated. The circuit equations arise from nfiedi nodal analysis. The
transport in the semiconductor devices is modeled by theggrteansport equations
for the electrons and the drift-diffusion equations for lttedes, coupled to the Pois-
son equation for the electric potential. The lattice terapee is described by a heat
equation with a heat source including energy relaxation, feaombination heat,
hole Joule heating, and radiation. The circuit-device rhadeoupled to a thermal
network. The resulting system of nonlinear partial différal-algebraic equations is
discretized in time using backward difference formulas angpace using (mixed)
finite elements. Heating effects from numerical simulagiona pn-junction diode
and a clipper circuit are presented.

1 Introduction

In modern ultra-integrated computer chips, secondarycesfike self-heating are
strongly influencing the switching behavior of the trarmistand the performance
of the circuit. In order to control the thermal effects, a@ta circuit simulations are
needed, which go beyond compact modeling and simplified ¢éeatpre models.
In this paper, we review a coupled circuit-device modelrigkinto account the
temperature of the electrons and the semiconductor |attidéhe temperature of the
circuit elements and present new numerical simulatioostitating the self-heating.
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First coupled circuit-device models were often based omabaoation of device
and circuit simulators [10]. More recently, electric netlwonodels were coupled to
semiconductor transport equations, using drift-diffadid4, 16] or energy-transport
models [8]. Nonisothermal device modeling started in the0s9 employing drift-
diffusion-type equations and heat flow models for the latteanperature [1]. A ther-
modynamic approach to extend the drift-diffusion equatitsmthe nonisothermal
case was presented in [17], later generalized in [2] usisgdiinciples of entropy
maximization and partial local equilibrium. In [3], the egg-transport equations
were coupled to a heat equation for the lattice temperature.

All these references are concerned with the modeling ofaterdubsystems.
Here, based on our work [9], we present a complete coupleceminatiuding (i)
the device model consisting of the energy-transport egnatior the electrons, the
drift-diffusion equations for the holes, and a heat equetar the lattice tempera-
ture, (ii) the electric-network equations, and (iii) a tmat network model describ-
ing the heat evolution in the circuit elements, electrieinand devices. The models
are described in Section 2. The three subsystems are cobypldtermo-electric,
electric circuit-device, and thermal network-device ifdees explained in Section
3. Finally, in Section 4, the heating behavior irpajunction diode and a clipper
circuit is illustrated.

2 Model Equations

Devicemodeling. The electron transport in the semiconductor device is neatey

the energy-transport equations, whereas the hole transpmtescribed by the drift-
diffusion equations. The equations for the electron dgnsithe electron thermal
energy%anTn (with kg being the Boltzmann constant), the hole dengitand the

self-consistent electric potentilread as

an—q tdivd, = —-R(n,p), ap-+q divly=—R(n,p), 1)
& (3kenTy) — divdy +Jn- OV =W(n,Ty) — 3keTaR(n, p), 2)
&AV =q(n—p—C(x)), 3)

whereq is the elementary charge; the semiconductor permittivity, ar@(x) the
doping concentration. The functid{n, p) models Shockley-Read-Hall recombina-
tion-generation processes awn, T,) describes the relaxation to the lattice tem-
peraturerl;,

R(n, p) = np—n? W(n, Tn) =
P)= Tp(N+Ni) + Ta(p+ni)’ e

3nks(TL—Tn)
2 To ’

(4)

wheren; is the intrinsic densityr, and 1, the electron and hole lifetimes, respec-
tively, andtp the energy relaxation time.
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The constitutive relations for the electron current dendit the hole current
densityJ,, and the electron energy density are given by

Jn:q(m(un%n)—unTL%DV), Jp=- (D(up%p)wppw), 5)
Jw= D(gunTn T n) - gunkBTLan, (6)

where the mobilities for the electrons and holgs,and i, respectively, are as-
sumed to depend on the lattice temperafiyraccording to

a
w0 =mo(2)" i=np )
L

whereTp = 300K. The valuegtj o anda;j (j = n, p) are typically determined from
measurements; see, for instance, [13, Table 4.1-1]. Theygtansport equations
were derived from the semiconductor Boltzmann equation lnyoanent method
assuming dominant elastic scattering [7, 11].

The total semiconductor current densiy = Jn + Jp + Jg is the sum of the
particle current densities and the displacement curremsitiely = —&s60V. The
current leaving the semiconductor device, which occupiesiomainQ c RY (d >

1), at terminaly is defined by
o= [ Jor-vs, ®)
Tk

wherev is the exterior normal unit vector tf. Due to charge conservation, the
current through one terminal can be computed by the negatiue of the other
terminal currents. We choose one terminal as the referemo@rtal and denote by
js the vector of all terminal currents except the referencmiteail.

The model equation for the lattice temperature is derivechfthermodynamic
principles. Assuming that the thermal effects are due tavibgority carriers (elec-
trons), the free energy for the system of energy-transpattRoisson equations is
the sum of the electric energy, the thermodynamic energgefdttice subsystem,
and the thermodynamic energy of the electron subsysten, [2,5

_ &2 _ n_
f= 2\DV| +pcT(1 IogTL)+n[kBTn<Ioch 1)+EC},

wherep denotes the material density, the heat capacit§. the conduction-band
energy, and\; = 2(m;kgT,/2mh?)%/2 the effective density of states, with the effec-
tive electron masey; and the reduced Planck constant h/2m. Then, the internal
total energy is given by

B of  _ of &, , 3
U—f TnT_I_n TLT_I_L = 2||:|V| +p|_CLT|_+n(EC -|—|_E(:)_~_2|(B|’ﬂ—r|7
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where the prime denotes the derivative with respedi torhe associated total en-
ergy flux densityJ, is the sum of the energy flux in the electric field, the Fourier
heat flux, and the electron energy flux:

Ju=Vdot— kL OTL — (Ec — TLED) G 1dh — J,

wherek is the heat conductivity of the lattice. Inserting the esgiens for the
total internal energy and its flux into the energy balanceatqo g;u + divJ, =
—y, wherey models the radiation, and employing the Poisson equatioYo a
straightforward computation leads to the heat equatioriferlattice temperature
(see [9] for details):

0=adu+divl,+y=aT.(p.cL —nEL) —div(k OT.) —H, 9)

wherey = S (TL — Tenv) IS the energy loss by radiation with the transmission con-
stant§_and the environmental temperatiig,, andH is the heat source term,

H=-W+ R(EC—TLEé—&— %kBTn) +q*1Jn-D(Ec—TLEé) —Jp- OV -8 (TL — Teny),

where the relaxation terkV is defined in (4). For related but different choices of the
heat source term, we refer to the discussion in [17]. For agaderate homostruc-
ture devices, we can neglect the space dependency of thgydyserd. Furthermore,
we neglect the dependency of the energy band on the lattigeet@ture since this
dependency is rather small [13]. Thus, the heat source teoorbes

H=-W+R(Ec+3ksTn) —Jp- OV — SL(TL — Teny),

The first term inH represents the energy relaxation heat, the second terne is th
recombination heat, the third term expresses Joule hefitingthe holes, and the
last term signifies the radiation.

The model equations (1)-(9) are complemented by initial lamdndary condi-
tions. The boundaryg Q of the semiconductor domain is assumed to consist of the
union of Ohmic contactfc = Ukl and the union of insulating boundary segments
I such thatfic U = dQ andlc NI = 0. We prescribe initial conditions for the
electron density, the electron temperatuiig, and the lattice temperatuiig in Q.

On the insulating boundary parts, the normal componentseafdirrent densities,
the electric field and the temperature flux are assumed talvani

h-v=Jph-v=3-v=0V-v=0T.-v=0 onl}, t>0. (20)

The electric potential at the contacts is the sum of the agploltageVapp and the
built-in potentialVy;,

V =Vapp+Wi onlc, t>0, where W,;=arsinHC(x)/2n;). (11)

According to the numerical results of [4], we may suppos¢ i normal compo-
nent of the electron temperature vanisheg@nn order to model the temperature
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exchange between the semiconductor device and the sodimgumetwork with the
temperaturdeny, we employ a Robin boundary condition for the lattice terapene:

OTh-v=0, —k OT-v=RT.—Ten) Onlc,t>0, (12)

whereRy, is the thermal resistivity of the contact. For the partickasities, we use,
as motivated in [8], the Robin conditions

I’H— (en“n)_lJn V= na, p— (ep”p)_l\]p V= pa on I_C, t > 07 (13)

where (ng, pa) is the solution of the charge-neutrality equatign— p; — C(x) =
0 and the thermal equilibrium conditiam pa = niz, and6,, 6, are some positive
parametersff, = 6, = 2500 in the simulations; see [8]).

Circuit modeling. The electric circuit is assumed to contain only (ideal) stss,
capacitors, inductors and voltage and current sourcesniify the presentation,
the circuit only contains one semiconductor device. Theudiis modeled by em-
ploying modified nodal analysis [16], whose basic tools aeeKirchhoff current
and voltage laws and the current-voltage characterisfitiseobasic elements. We
replace the circuit by a directed graph with branches angsioBranch currents,
branch voltages, and node potentials (without the mass)rer@eintroduced as
(time-dependent) variables. Then, the circuit can be dbaraed by the incidence
matrix A = (gjk) describing the node-to-branch relations,

1 if the branchk leaves the node
ax =< —1 ifthe branchk enters the nodie
0 else

The network is numbered in such a way that the indidence xedmsists of the
block matricesAg, Ac, AL, A, andAy, where the index indicates the resistive, ca-
pacitive, inductive, current source, and voltage soureadies, respectively. The
semiconductor device is included into the network modellegipg the semicon-
ductor indicence matrids = (&) defined by

1 if the currentj enters the circuit nodie
a, =< —1 ifthe reference terminal is connected to the nipde
0 else

The current-voltage characteristics for the basic elemarg given by

da

L), =)

— (Vi
ar e
wheregg denotes the conductivity of the resistag, the charge of the capacitor, and
@ the flux of the inductor. Moreoverg andv, with a = R, C, L, are the branch

current vectors and branch voltage vectors for, respégtiak resistors, capacitors,
and inductors.

iR=0r(WR), ic=
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Denoting byis = is(t), vs = Vs(t) the input functions for the current and voltage
sources, respectively, the Kirchhoff laws lead to the feitgy system of differential-
algebraic equations in the charge-oriented modified nquiaiceach [16]:

dac

Ac= g (Ac) + ArGR(ARE) + AliL + Aviy + Asjs = —Alls, (14)
C:T(f‘(iL)—AEe:O, Ale=vs, (15)

for the unknownse(t), i (t), andiy(t), wheree(t) denotes the vector containing
the node potential angk is the vector of all terminal currents defined in (8). The
circuit is coupled to the device through the semiconductorent js in (14) and
through the boundary conditions for the electric potenédalterminal [, it holds
V(t) = &(t) + Wi if the terminall is connected to the circuit node

Equations (14)-(15) represent a system of differentigéhitaic equations. Under
certain assumptions on the topology of the network, it waswsithat the (tractabil-
ity) index of the system is at most two [15, 16]. Furthermafehe circuit does
neither contain so-called LI-cutsets nor CV-loops witheatst one voltage source,
the index is at most one.

Thermal network modeling. The thermal network consists of lumped thermal el-
ements, i.e. zero-dimensionally modeled elements withpeeature valuer’(t);
distributed thermal lines, i.e. spatially one-dimensiaiaments with temperature
Td(x,t); and distributed semiconductor devices with the lattioegeratureT, (x,t)
as described above. Adjacent lumped elements are condideeezero-dimensional
unit with temperaturd . We assign the temperature at the interface of connected dis
tributed elements to an artificial zero-dimensional elen(rermal node) with tem-
perature'f and without thermal mass. This forms a network with lumpetrithuted
interfaces only, in which the nodes represent the zero+usioeal units and the
branches represent the distributed elements.

The thermal network is characterized by the thermal in@dematrixAj' = (af")

and the thermal semiconductor incidence mam‘gk: (a‘é‘ij) defined by

if the contact ak = 0 of branchj is connected to node
if the contact ak = Ly, of branchj — my is connected to node
else

O Rk

th
& =

ah 1 if the terminalj is connected to thermal node
ST 10 else

wheremy is the number of thermal lines anid, L) the interval of the distributed
element.
The temperature in the thermal nodes evolves accordingtbeaht equation

dT ay e o~ ~
Mc(i:Tt:Fd+FS—S(T—TenVI)+P, t>0. (16)
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Here,M is a diagonal matrix containing the thermal masses of therthenodes,
each of which is given as the sum of the thermal masses of thpdd elements
contributing to the corresponding node. The thermal magwiproduct of the heat
capacity, the material density, and the physical volumehefdorresponding ele-
ment. FurthermoreT is the vector of all temperature values in the thermal nodes,
andl is the identity matrix. The electro-thermal source vectoithe thermal nodes
P and the heat flux vectors from the distributed lif€ésand the devic&S are defined
below in (20), (18), and (19), respectively. The temperualues in the lumped el-
ementsT? can be computed fror by the formulaT = MT?, where the matrix
M = (m;;) relates the lumped elements to the thermal nodes, mith= 1 if the
lumped elemen belongs to the thermal nodandm;; = 0 else.

The vectorTd = (Td) of all temperatures of the thermal lines satisfies

de[T]-d - 0X(Kj0XTjd) -5 (Tjd ~Tenv) +P;,  x€(O,Lj), t >0, (17)

whereM; denotes the thermal mass of thth element of length j, k;j is the thermal
conductivity,S; the transmission function, aritl= (P;) the electro-thermal source
vector defined in (20). The above equation is complementeihitigl conditions
and Dirichlet boundary conditions, collected in the vestt§ andT4.

3 Coupling Conditions

The heat equations (16) and (17) are coupled through thedaoyrrconditions,
(T4, THT = (AMTT, and the following equation for the thermal flux:

~d_ ath [ NodT9(0,)
F=A (—AlaxT%Lth,t) ’ (18)

whereLy, denotes the length of a thermal line afig, A1 contain the products of
thermal conductivities and the cross sections of the thelimes at the contacts at
x =0 andX = Ly, respectively.

Next, we describe the coupling between the thermal netwaadklae device. The
influence of the network on the device is modeled by the laghtary condition
in (12) on Ty, with Teny replaced by the temperature of the connected elements,
Ta= (AtSh)TT. The semiconductor heat flux at termitkés given by the integral

FkS:/I_th%vda, such that FS(t) = AD(F;(t));, t>0. (19)

The thermal flux densitytf’] is derived by making the quasi-stationary assumption
divJ, = 0. Then, inserting the stationary balance equation for lbetric energy, a
computation shows that (see [9] for details)

divIg+0V-(Jh+Jp) =0, where J3 = —k 0T —q *Ecdn— -
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This equation indicates that the flul% is responsible for the heat production caused
by the dissipated power and is therefore considered as dlineat

For the coupling between the electric and thermal netwogkassume that only
semiconductor devices and resistors are thermally relelzéactric-to-thermal cou-
pling occurs through the power dissipated by a resistor. ¥g@ime as in [6, Sec.
5.3] that the resistance is given By= 1+ a1 Tr+ azTFf, wherea; anda, are some
nonnegative parameters amglis the temperature of the resistor. The vedigrof
all resistor temperature values can be determined frometipérature vectors of
the thermal node$ and of the distributed lineg? by

Tr= IZT'T + Kde,

where the lumped valuég® are computed from the distributed valuEsby taking
the mean value, and the matridés= (k;j) andK = (k;;) are defined by

Koo — 1 ifthe resistorj corresponds to the thermal branth
7010 else,

=~ [ 1 ifthe resistorj corresponds to the thermal nofle
0 else.

The electric-to-thermal coupling is realized by the sousrensP = (P}) andP in
the heat equations (16) and (17):

P=KR, P=Lg'KP:, wherePs = diag(ir)Ae, (20)

ir contains the currents through all resistdkg,denotes the resistor incidence ma-
trix, eis the vector containing the node potentials, &grds the resistor length. For
a discussion about the proper choice of the local powerilligion, we refer to [6].

4 Numerical examples

The complete coupled system for the electric and thermalar&tand the semicon-
ductor devices consists of nonlinear partial differergilgiebraic equations. In the
following, we restrict ourselves to one-dimensional devicodels. The equations
are discretized in time by backward difference formulas fBDor BDF-2) to pay
tribute to the differential-algebraic character of thetesys The heat equations and
the Poisson equation are discretized in space by lineag Bféiments. The transport
equations are discretized by an exponentially fitted mixatefielement method us-
ing Marini-Pietra elements [12]. It is shown in [12] thaty fihe stationary model,
this method guarantees current conservation and pogitifithe discrete particle
densities. These properties also hold for the BDF-1 tinserdie system and, under
a step size restriction, for the BDF-2 time-discrete systanthe following simula-
tions, the positivity of the discrete particle densities hways been obtained. The
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nonlinear discrete system is iterated by a combination ofealfpoint strategy and
a variant of the Gummel method; see [9] for detalils.

Bipolar junction diode. We illustrate first the lattice heating in a 100 nm silicon
pn diode consisting of a 50 nrp-doped part with doping-Co = —5-10°°m~—3
and a 50 nnm-doped part with dopin@p. Initially, the device is assumed to be in
thermal equilibrium. The same physical parameters as iar@@gmployed. We apply
aforward bias of 1.5V to the diode. The transient responsieoélectron and lattice
temperature is illustrated in Figure 1. The electron ter@jpee increases quickly in
the entire device with a temperature maximum of about 3300#én-region and
then decreases slightly until the steady state is reachtacavié@mperature minimum
around the junction. The increase of the lattice tempegagisignificantly slower
with a maximum of 325K at steady state. Due to the high theooatluctivity, the
lattice temperature is almost constant in the device.

w
[
o

w
N
£3

lattice temperature [K]

N
o
o

50

50

5 - 5 »
time [ps] 0 position [nm] time [ns] 0 position [nm]

Fig. 1 Transient electron temperature (left) and lattice tempeggtight) in apn diode at 15 V.
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Fig. 2 Left: Current-voltage characteristics opa diode computed from different models. Right:
Averaged lattice temperature inpa diode (stationary computations).

The influence of the lattice heating on the electrical penfamce of the device
is shown in Figure 2. In the left figure, we compare the restdtaputed from the
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drift-diffusion (DD) model (using low-field mobilities) wh those from the energy-
transport (ET) equations with and without lattice heatMg. observe that the cur-
rent from the nonisothermal ET model is smaller than thabftbe ET model with

constant lattice temperature. The right figure shows theageel lattice temperature
as a function of the applied voltage. For high applied bilas,lattice temperature

reaches up to 420 K. However, we notice that a bias of 2.5V thighunrealistic
for the considered device.

Clipper circuit. A clipper is employed as an entrance protective circuit toichv
voltage peaks. It consists of twan diodes (with the same parameters as in the
previous example), one resistor with resistiviRy= 5kQ, and three voltage sources
(see Figure 3). Herd/i,(t) = 5sin(2m10Hzt) V represents the input signal. The
remaining voltages are kept constant wWithin(t) = —U andVpnax(t) = U, where

U = 2V. A perfect clipper, with a much higher resistance, wouig@ the input
signal betweent(U + Vin), whereVy, is the threshold voltage of the diode. In the
present case, it holds approximat&ly = 0.9V such that the signal is between

+2.9V. However, we have chosen the resistance such that thataitmal should
stay below 4 V.

N I

Vin VOUt

Fig. 3 Clipper circuit with twopn diodes, one resistor and three voltages sources
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Fig. 4 Input and output signal of the clipper during the first oscidias (left) and after 30 oscilla-
tions of the input signal (right).
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In Figure 4 we depict the input and output signals of the diréMe observe that
during the first oscillations the maximal output signal isole4 V, however, with
a slight increase of the maximal value (left figure). The medioutput signal in-
creases during the first oscillations from 3.93V to 3.96 isTihcrease becomes
more significant for larger time (right figure). In fact, aff0 oscillations the maxi-
mal output signal is 4.09 V, which corresponds to an incredsdout 5%. A sim-
ulation of the same circuit with constant lattice heatinggethe maximum output
signal almost constant below 4 V. This shows that the in@ngasiaximal output
voltage is caused by lattice heating, as the heated diodewes less current lead-
ing to a larger resistance.

The circuit is constructed in such a way that, at the maximadii signal of 5V,
we have a voltage drop of about 1V at the resistor, 2 V at thedoi-biased diode
and 2V at the additional voltage source. In the branch coimgithe backward-
biased diode, the voltage drop is 1V at the resistor, 6 V atlibée, and-2 V at the
additional voltage source. This behavior is illustratedrigure 5. Thus, according
to Figure 2 (right), we expect a stationary lattice temperbf about 360K in the
diodes. This is confirmed by the simulations presented inr€i¢ which shows the
lattice temperature of one of the diodes in the circuit. Weenbe that the device
heats up while being forward biased. As the backward biasgé&s to short to cool
down the device, the lattice heating accumulates durinditseoscillations up to
about 360 K.

voltage drop [V]

2.8 2.85 2.9 2.95 3
time [ns]

Fig. 5 Voltage drop at the second diode and the resistor during thes2@tl30th oscillation.
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