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1 Introduction

The control of thermal effects becomes more and more important in modern
semiconductor circuits like in the simplified CMOS transceiver representa-
tion described by U. Feldmann in the above article Numerical simulation of

multiscale models for radio frequency circuits in the time domain. The stan-
dard approach for modeling integrated circuits is to replace the semiconduc-
tor devices by equivalent circuits consisting of basic elements and resulting in
so-called compact models. Parasitic thermal effects, however, require a very
large number of basic elements and a careful adjustment of the resulting large
number of parameters in order to achieve the needed accuracy.

Therefore, it is preferable to model those semiconductor devices which are
critical for the parasitic effects by semiconductor transport equations. The
transport of electrons in the devices is modeled here by the one-dimensional
energy-transport model allowing for the simulation of the electron temper-
ature. The electric circuits are described by modified nodal analysis. Thus,
the devices are modeled by (nonlinear) partial differential equations, whereas
the circuit is described by differential-algebraic equations. The coupled model,
which becomes a system of (nonlinear) partial differential-algebraic equations,
is numerically discretized in time by the 2-stage backward difference formula
(BDF2), since this scheme allows to maintain the M-matrix property, and the
semi-discrete equations are approximated by a mixed finite-element method.

The objective is the simulation of a benchmark high-frequency transceiver
circuit, using a laser diode as transmitter and a photo diode as receiver. The
optical field in the laser diode is modeled by recombination terms and a rate
equation for the number of photons in the device. The optical effects in the
photo diode are described by generation terms. The numerical results show
that the thermal effects can modify significantly the behavior of the transmit-
ter circuit.



2 Markus Brunk and Ansgar Jüngel

2 Modeling

Circuit modeling. A well-established mathematical description of electric
circuits, consisting of resistors, capacitors, and inductors (RCL circuit) is the
modified nodal analysis (MNA) which can be easily extended to circuits con-
taining semiconductor devices. In the following, the circuit model is described.

The circuit is replaced by a directed graph. The RLC branches are char-
acterized by the incidence matrix A, and the semiconductor branches are
characterized by the semiconductor incidence matrix AS . The basic tools for
the MNA are the Kirchhoff laws and the current-voltage characteristics for
the basic elements,

Ai + ASjS = 0, v = A⊤e, iR = g(vR), iC =
dq

dt
(vC), vL =

dΦ

dt
(iL),

where i, v, and e are the vectors of branch currents, branch voltages, and
node potentials, respectively, and jS denotes the semiconductor current (see
below). The variable g denotes the conductivity of the resistor, q is the charge
of the capacitor, and Φ the flux of the inductor. The incidence matrix A is
assumed to consist of the block matrices AR, AC , AL, Ai, and Av, where
the indices i and v indicate the current source and voltage source branches,
respectively.

Denoting by is = is(t) and vs = vs(t) the given input functions for the
sources, we obtain the system for the charge-oriented MNA [13],

AC

dq

dt
(A⊤

Ce) + ARg(A⊤

Re) + ALiL + Aviv + ASjS = −Aiis, (1)

dΦ

dt
(iL) − A⊤

Le = 0, A⊤

v e = vs, (2)

for the unknowns e(t), iL(t), and iv(t). Equation (1) expresses the Kirchhoff
current law, the first equation in (2) is the voltage-current characteristic for
inductors, and the last equation allows to compute the node potentials.

Semiconductor device modeling. The flow of minority charge carriers
(holes) in the device is modeled by the drift-diffusion model for the hole den-
sity p. The electron flow is described by the energy-transport equations [8].
The first model consists of the conservation law for the hole mass, together
with a constitutive relation for the hole current density. The latter model also
includes the conservation law for the electron energy and a constitutive rela-
tion for the energy flux. Both models can be derived from the semiconductor
Boltzmann equation (see [8] and references therein). They are coupled through
recombination-generation terms and the Poisson equation for the electric po-
tential. More precisely, the electron density n, the hole density p, and the
electron temperature T are obtained from the parabolic equations

µ−1
n ∂tg1 − divJn = −R(µ−1

n g1, p), ∂tp + divJp = −R(µ−1
n g1, p) (3)

µ−1
n ∂tg2 − divJw = −Jn · ∇V + W (µ−1

n g1, T ) −
3

2
TR(µ−1

n g1, p), (4)
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where g1 = µnn and g2 = µnw are auxiliary variables allowing for a drift-
diffusion-type formulation of the fluxes [8], w = 3

2
nT is the thermal energy,

and µn and µp are the electron and hole mobilities, respectively. The electron
current density Jn, the energy flux Jw, and the hole current density Jp are
given by

Jn = ∇g1 −
g1

T
∇V, Jw = ∇g2 −

g2

T
∇V, Jp = −µp(∇p + p∇V ). (5)

The equations are coupled self-consistently to the Poisson equation for the
electric potential V ,

λ2∆V = µ−1
n g1 − p − C(x), (6)

where λ is the scaled Debye length and the given function C(x) models the
doping profile. The functions

W (n, T ) = −
3

2

n(T − TL)

τ0

and R(n, p) =
np − n2

i

τp(n + ni) + τn(p + ni)
(7)

with the (scaled) energy relaxation time τ0 and lattice temperature TL =
1 describe the relaxation to the equilibrium energy and Shockley-Read-Hall
recombination-generation processes with intrinsic density ni and electron and
hole lifetimes τn and τp, respectively.

Equations (3)-(6) are solved in the bounded semiconductor domain Ω,
where some initial values nI , pI , and TI are imposed. The boundary of Ω is
assumed to split into two parts. On the insulating parts of the boundary ΓN ,
it is assumed that the normal components of the current densities and of the
electric field vanish. For the temperature, homogenous Neumann boundary
conditions are assumed as in [1]. We have shown in [5] that boundary layers
for the particle densities can be avoided if Robin-type boundary conditions
similar as in [14] are employed on the remaining boundary parts,

n − θnJn · ν = na and p + θpJp · ν = pa on ∂Ω\ΓN , (8)

where θn and θp are some parameters and na and pa are ambient particle
densities. Notice that in the one-dimensional simulations presented below,
ΓN = ∅.

Coupling to the circuit. The boundary conditions for the electric potential
at the contacts are determined by the circuit and are given as

V = ei + Vbi on Γk, t > 0, where Vbi = arsinh
( C

2ni

)

, (9)

if the terminal k of the semiconductor is connected to the circuit node i.
The semiconductor current entering the circuit consists of the electron cur-

rent Jn, the hole current Jp, and the displacement current Jd = −λ2∂t∇V ,
guaranteeing charge conservation. The current leaving the semiconductor de-
vice at terminal k, corresponding to the boundary part Γk, is defined by
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jk =

∫

Γk

(Jn + Jp + Jd) · ν ds,

where ν is the exterior unit normal vector to ∂Ω. We denote by jS the vector
of all terminal currents except the reference terminal. In the one-dimensional
case, there remains only one terminal, and the current through the terminal
at x = 0 is given by

jS(t) − (Jn(0, t) + Jp(0, t) − ∂tjd,S(0, t)) = 0, jd,S − λ2Vx = 0, (10)

where the circuit equations (1)-(2) have to be appropriately scaled [6].
The complete coupled system consists of equations (1)-(10) forming an

initial boundary-value problem of partial differential-algebraic equations. The
system resulting from the coupled circuit drift-diffusion equations has at most
index 2 and it has index 1 under some topological assumptions [3, 13]. No
analytical results are available for the coupled circuit energy-transport system.

Optoelectronic device modeling. The interaction between optical and
electrical effects is modeled by recombination-generation terms appearing in
(7). In the following, we present the model used in the numerical simulations
and we refer to [6] for a discussion about the model simplifications.

For a vertical photo diode, the supplied photons generate free charge car-
riers generating the photo current. We model this effect by adding to the
Shockley-Read-Hall term (7) the generation rate Gopt(x) of free carriers at
depth x, caused by the (scaled) optical irradiation power Pin with angular
frequency ω [10],

Gopt(x) = η(1 − r)
Pin

~ωA
αabe−αabx, (11)

where the physical parameters are the quantum efficiency η, the reflectivity r
of the irradiated surface with area A, the reduced Planck constant ~ = h/2π,
and the optical absorption αab.

The laser diode is modeled by a pin heterostructure diode in which the
intrinsic (active) region consists of a low-band gap material causing carrier
confinement. The active region works as a Fabry-Perot laser cavity and can be
modeled as a single mode laser. The band discontinuities are simply described
by adding a constant band potential to the electric potential V in the active
region [9]. Additionally to (7), spontaneous and stimulated recombination is
introduced,

Rspon = Bnp and Rstim =
c

µopt

g(n)|Ξ|2S, (12)

respectively, where B is the spontaneous recombination parameter, c the speed
of light µopt the refractive index of the material, g(n) the optical gain depend-
ing on the electron density, |Ξ|2 the intensity distribution of the optical field,
which is a solution of the waveguide equation [6], and S = S(x, t) is the
number of photons in the device.
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The optical gain is approximated by g(n) = g0(n−nth) [7], with differential
gain g0 and threshold density nth. In the lasing mode we can employ the quasi-
neutral assumption n ≈ p in the active region such that the gain becomes
approximately g(p) = g0(p − nth) in the recombination term occurring in the
hole equation (3). This allows for a discretization that guarantees positivity
of the discretized hole density [6]. The number of photons S is balanced by
the rate equation

∂tS = vg(β − α)S + Rspon, where β =

∫

Ωa

(g(n) − αbg)|Ξ|2 ds,

α is the total loss by external output and scattering, αbg denotes the back-
ground loss, and Ωa is the transverse cross section of the active region. We
prescribe the initial condition S(·, 0) = SI in Ω. Finally, the output power is
computed from of the number of photons by

Pout = ~ω
c

µopt

αf |Ξ|2S (13)

(see [2]), where αf denotes the facet loss of the laser cavity.

3 Numerical Simulations

The system of coupled partial differential-algebraic equations is first dis-
cretized in time by the BDF2 method since this scheme allows to maintain
the M-matrix property of the final discrete system. The Poisson equation
is discretized in space by the linear finite-element method. Then the discrete
electric potential is piecewise linear and the approximation of the electric field
−Vx is piecewise constant.

The semi-discrete continuity equations at one time step are of the form

−Jj,x + σjgj = fj , Jj = gj,x −
gj

T
Vx, j = 1, 2, (14)

with the current densities J1 = Jn and J2 = Jw and some expressions σj and
fj . These equations are discretized in space by a hybridized exponentially
fitted mixed finite-element method [8]. We employ the finite elements of [12]
since they guarantee the positivity of the discrete variables if positive initial
and Dirichlet boundary data are prescribed and if σj ≥ 0, fj ≥ 0 for j = 1, 2.
This property also holds for the Robin conditions (8) [6]. Finally, the nonlinear
discrete system is solved by Newton’s method.

Rectifying circuit. As a test example we consider a rectifying circuit con-
taining four silicon pn diodes as in [5] (Fig. 1). Each of the diodes has the
length L = 0.1µm (and Ly = 0.1µm, Lz = 2µm) or L = 1µm (and
Ly = 1µm, Lz = 20µm) and a maximum doping of 1022 m−3. We have
chosen the resistance R = 100Ω and the voltage source v(t) = U0 sin(2πωt)
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Fig. 1. Left: Graetz circuit. Right: Thermal energy in a pn diode during one oscil-
lation of Vin.

Parameter Physical meaning Numerical value

q elementary charge 1.6 · 10−19 As
ǫs permittivity constant 1.05 · 10−10 As/Vm
UT thermal voltage at 300 K 0.026 V
µn/µp low-field carrier mobilities 1500/450 cm2/Vs
τn/τp carrier lifetimes 10−6/10−5 s
ni intrinsic density 1016 m−3

τ0 energy relaxation time 4 · 10−13 s

Table 1. Physical parameters for a silicon pn-junction diode.

with U0 = 5V and ω = 1GHz or ω = 10GHz. The remaining physical param-
eters are listed in Table 1. As initial conditions we take thermal equilibrium
densities in the device and vanishing node potentials and branch currents in
the circuit. The initial value for the displacement current is determined by
(10). A computation according to [11] shows that these values are consistent
for the coupled DAE system.

In Fig. 1 the energy density in one of the diodes during one oscillation
is presented. As expected, we observe a high thermal energy in forward bias
(t ∈ [0, 50 ps]), whereas it is negligible in backward bias (t ∈ [50 ps, 100 ps])
although the electron temperature (not shown) may be very large around the
junction [4].

The impact of the thermal effects on the electrical behavior of the cir-
cuit is shown in Fig. 2. The figure clearly shows the rectifying behaviour of
the cuircuit. The largest current is obtained from the drift-diffusion model
since we have assumed a constant electron mobility such that the drift is
unbounded with respect to the modulus of the electric field. The stationary
energy-transport model is not able to catch the capacitive effect at the junc-
tion which is particularly remarkable at higher frequencies.

Optoelectronic circuit. Next we consider a AlGaAs/GaAs laser diode with
a digital input signal. The transmitted signal is received by a silicon photo
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Fig. 2. Output signal of the Graetz circuit for two frequencies of the voltage source.
Left: ω = 1 GHz and L = 0.1 µm. Right: ω = 10GHz and L = 1 µm.

Parameter Physical meaning Numerical value

Ly/Lz extension of device in y/z-direction 10−6/10−5 m
Un/Up band potentials in active region 0.1/ − 0.1 V
B spontaneous recombination parameter 10−16 m3/s
nth threshold density 1024 m−3

αf/αbg mirror/optical background loss 5000/4000m−1

ǫA
s /ǫG

s material permittivity 1.08 · 10−10/1.14 · 10−10As/Vm
µA

n /µG
n electron mobilities 2300/8300 cm2/Vs

µA
p /µG

p hole mobilities 145/400 cm2/Vs
µA

opt/µG
opt refractive index 3.3/3.15

nA
i /nG

i intrinsic density 2.1 · 109/2.1 · 1012 m−3

gG
0 differential gain in GaAs 10−20 m2

Table 2. Physical parameters for a laser diode of Al0.7Ga0.3As (superscript A) and
GaAs (superscript G). Parameters without superscript are taken for both materials.

diode coupled to a high-pass filter (see Fig. 3). We have taken a capacitance
of 10 pF, the resistances R1 = 1MΩ, R2 = 100Ω, and R3 = 1kΩ, and a
backward bias of 0.2 V. The laser diode has the length of 1µm with an intrinsic
region of 0.1µm length in the center of the device. The doping concentration
is −1024 m−3 in the p-doped region, 1024 m−3 in the n-doped region, and
1018 m−3 in the intrinsic region. The photo diode has a size of L = 6µm,
Ly = 10−5 m and Lz = 10−4 m. For the quantum efficiency we assume η = 0.5,
for the surface reflectivity r = 0.3 and α = 5000m−1 for the absorption. The
remaining parameters are taken from Tables 1 and 2.

In Fig. 3 the energy density in the laser diode during one half oscillation
is shown. After having passed the threshold, the energy density increases
tremendously in the active region. This is due to carrier confinement in the
heterostructure, as in the lasing mode the carrier density is very high in the
active region.

Finally, we operate the transmitter with a 1 GHz digital signal of 2 V.
In Fig. 4 the light output signal and the received signal by the high-pass
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Fig. 3. Left: Laser and photo diode with a high-pass filter. Right: energy density in
the laser diode for signal v(t) = 2 sin(2πt109) V.
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Fig. 4. Output of the laser diode and the high-pass filter for the stationary and
transient energy-transport model with a digital input signal of 1 GHz.

filter is presented. Again we observe that the transient energy-transport model
responds better to the capacitive effects in high-frequency circuits than the
stationary model.

4 Conclusion

We have presented a coupled model consisting of the circuit equations from
modified nodal analysis and the energy-transport model for semiconductor
devices, resulting in a system of nonlinear partial differential-algebraic equa-
tions. This system allows for a direct simulation of thermal effects and can
help to improve compact models of integrated circuits. The coupled model is
tested on a Graetz circuit and a high-frequency transmitter with laser and
photo diodes. The results show the impact of the thermal energy on the cir-
cuit. Compared to the constant-temperature drift-diffusion model, the output
signal is smaller due to thermal effects.
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With decreasing size of the basic components in integrated circuits and
special power devices, the thermal interaction between circuit elements will
increase in importance in the near future. Therefore, we need to model not only
the carrier temperature but also the device temperature and the interaction
between the circuit elements. Thus, a heat equation for the temperature of
the semiconductor lattice needs to be included in the presented model. This
extension is currently under investigation. We expect that the resulting model
will improve significantly the prediction of hot-electron effects and hot spots
in integrated circuits.
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