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Abstract. Explicit energy-transport equations for the spinorial carrier transport in fer-
romagnetic semiconductors are calculated from a general spin energy-transport system
that was derived by Ben Abdallah and El Hajj from a spinorial Boltzmann equation. The
novelty of our approach are the simplifying assumptions leading to explicit models which
extend both spin drift-diffusion and semiclassical energy-transport equations. The explicit
models allow us to examine the interplay between the spin and charge degrees of freedom.
In particular, the monotonicity of the entropy (or free energy) and gradient estimates are
shown for these models and the existence of weak solutions to a time-discrete version of
one of the models is proved, using novel truncation arguments. Numerical experiments
in one-dimensional multilayer structures using a finite-volume discretization illustrate the
effect of the temperature and the polarization parameter.
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1. Introduction

Spintronics is a new emerging field in solid-state physics with the aim to exploit the spin
degree of freedom of electrons, which may lead to smaller and faster semiconductor devices
with reduced power consumption. The aim of the mathematical modeling of spin-polarized
materials is to develop a hierarchy of models that describe the relevant physical phenomena
in an accurate way and, at the same time, allow for fast and efficient numerical predictions.
A model class which seems to fulfill the requirements of precision and simplicity are moment
equations derived from the (spinorial) Boltzmann equation.
In the literature, up to now, mostly lowest-order moment equations for spin transport

have been investigated, namely spin drift-diffusion-type equations [8, 16, 17, 18]. These
models are mathematically analyzed in [10, 11, 14, 19]. When hot electron thermalization
has to be taken into account, the carrier transport needs to be described by higher-order
moment equations including energy transport. This leads to semiclassical energy-transport
equations in semiconductors, see, e.g., [1, 2, 5, 13]. A spinorial energy-transport model
was derived in [3], but the equations are not explicit such that its structure is not easy to
analyze. The goal of this paper is to derive and analyze simplified explicit versions of this
model.
The starting point is the spinorial Boltzmann equation for the distribution function

F (x, k, t) with values in the space of Hermitian 2× 2 matrices,

(1) ∂tF + k · ∇xF −∇xV · ∇kF = Q(F ) +
i

2
[~Ω · ~σ, F ] +Qsf(F ),

where x ∈ R
3 denotes the spatial variable, k ∈ R

3 the wave vector, t > 0 the time, i =
√
−1

the imaginary unit, and [·, ·] the commutator. The function V (x, t) is the electric potential,
which is usually self-consistently defined as the solution of the Poisson equation

−λ2
D∆V = n0[F ]− C(x), n0[F ] =

1

2
tr

∫

R3

Fdk,

where λD is the scaled Debye length, n0[F ] the charge density, “tr” the trace of a matrix,

and C(x) the doping concentration [13]. Furthermore, ~Ω(x, k) is a local magnetization
field and ~σ = (σ1, σ2, σ3) is the vector of the Pauli matrices. We choose the spin-conserving
BGK-type collision operator Q(F ) = M [F ]− F , where the Maxwellian M [F ] is such that
Q(F ) conserves mass and energy, and the operator Qsf(F ) models spin-flip interactions.
Details are given in Section 3.1.
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Assuming dominant collisions and a large time scale, moment equations for the electron
density n[A,C] and energy density W [A,C] can be derived from (1) in the diffusion limit
[3], leading to

(2)
∂tn[A,C] + div Jn = Fn[~Ω, A, C],

∂tW [A,C] + div JW + Jn · ∇V = FW [~Ω, A, C], x ∈ R
3, t > 0,

where Jn and JW are the particle and energy flux, respectively, and Fn, FW are some
functions; we refer to Section 3.1 for details. Furthermore, A and C are the Lagrange
multipliers which are obtained from entropy maximization under the constraints of given
mass and energy, and the electron and energy densities are the zeroth- and second-order
moments

n[A,C] =

∫

R3

M [A,C]dk, W [A,C] =
1

2

∫

R3

M [A,C]|k|2dk,

where M [A,C] = exp(A + C|k|2/2) is the spinorial Maxwellian. Note that A and C are
Hermitian matrices in C

2×2, so n[A,C] and W [A,C] are Hermitian matrices too.
In contrast to the semiclassical situation, the densities cannot be expressed explicitly

in terms of the Lagrange multipliers because of the matrix structure. In order to obtain
explicit equations, we need to impose simplifying assumptions on A and C. Our strategy
is to first formulate the variables in terms of the Pauli basis,

A = a0σ0 + ~a · ~σ, C = c0σ0 + ~c · ~σ,
where σ0 is the unit matrix and a0, c0 ∈ R, ~a, ~c ∈ R

3. The densities may be expanded in
this basis as well, n[A,C] = n0σ0 + ~n · ~σ, W [A,C] = W0σ0 + ~W · ~σ, and the Maxwellian
becomes

(3) M [A,C] = ea0+c0|k|2/2

(

cosh |~b(k)|σ0 +
sinh |~b(k)|
|~b(k)|

~b(k) · ~σ
)

, ~b(k) := ~a+ ~c
|k|2
2

.

The formulation of the energy-transport model (2) in terms of the Pauli components (a0,~a),
(c0,~c) still leads to nonexplicit equations, so we will impose some conditions. We will derive
three model classes by assuming ~c = 0, ~a = 0, or ~a = λ~c for some λ = λ(x, t) and show the
following results:

• First model class (~c = 0): we discretize the one-dimensional equations using a semi-
implicit Euler finite-volume scheme and illustrate the effect of the temperature on
two multilayer structures.

• Second model class (~a = 0): we show the existence of weak solutions to a time-
discrete version.

• Third model class (~a = λ~c): we show that the equation for the spin accumulation
density ~s = ~n/|~n| has some similarities with the Landau-Lifshitz equation.

• All model classes: we compute the entropy (free energy) and the entropy produc-
tion, thus providing not only the monotonicity of the entropy but also gradient
estimates.
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These findings are a first step to understand higher-order spinorial macroscopic models
which may lead to improved simulation outcomes.
The paper is organized as follows. The main results are detailed in Section 2. The

derivation of the general energy-transport model from the spinorial Boltzmann equation is
recalled in Section 3.1 and the general model is formulated in terms of the Pauli components
in Section 3.2. In Section 4, the three simplified energy-transport model classes are derived.
The entropy structure is investigated in Section 5, and the existence result for the second
model is stated and proved in Section 6. Some numerical experiments for the first model
are performed in Section 7.

2. Main results

We detail the main results of this paper.

2.1. Derivation of explicit spin energy-transport models. We derive explicit ver-
sions of (2) under three simplifying assumptions on the Pauli components of A and C.

First model: ~c = 0. If the Lagrange multiplier C is interpreted as a “temperature” tensor,
it might be reasonable to suppose that the “spin” part ~c is much smaller than the non-
vanishing trace part c0, which motivates the simplification ~c = 0. This allows us to write
three of the eight scalar moments (n0, ~n) and (W0, ~W ) in terms of the remaining moments,
leading to equations for five moments. We choose the moments (n0, ~n,W0), leading to the
system (see Section 4.1)

∂tn0 + div Jn = 0, Jn = −
(

∇(n0T ) + n0∇V
)

,(4)

3

2
∂t(n0T ) + div JW + Jn · ∇V = 0, JW = −5

2

(

∇(n0T
2) + n0T∇V

)

,(5)

∂t~n−
3

∑

j=1

∂xj

(

∂xj
(~nT ) + ~n∂xj

V
)

+ ~Ωe × ~n = − ~n

τsf
, x ∈ R

3, t > 0,(6)

where T = 2W0/(3n0) is interpreted as the electron temperature, ∂xj
= ∂/∂xj, ~Ωe is the

even part of the effective field (with respect to k), and τsf > 0 is the spin-flip relaxation time.
In this model, (n0,

3
2
n0T0) solves the semiclassical energy-transport equations, and the spin-

vector density ~n solves a drift-diffusion-type equation, which is coupled to the equations
for (n0,

3
2
n0T0) via T only. Our numerical experiments indicate that this coupling is rather

weak.
Motivated from [17], we may include a polarization matrix P in the definition of the

collision operator Q(F ). We choose Q(F ) = P 1/2(M [F ] − F )P 1/2, where the direction of

P = σ0+p~Ω ·~σ in spin space is the local magnetization ~Ω and p ∈ [0, 1) represents the spin
polarization of the scattering rates. This operator conserves spin, mass, and (in contrast to
the operators in [17]) energy. The corresponding spin energy-transport model (still under
the assumption ~c = 0) becomes (see Remark 3)

∂tn0 + divJn = 0, Jn = η−2
(

Jn − p~Ω · ~Jn
)

,(7)
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3

2
∂t(n0T ) + divJW + Jn · ∇V = 0, JW = η−2

(

JW − p~Ω · ~JW
)

,(8)

∂t~n+ div ~J + ~Ωe × ~n = − ~n

τsf
, x ∈ R

3, t > 0,(9)

where η =
√

1− p2, Jn, JW are as above, and

~Jn = −
(

∇(~nT ) + ~n∇V
)

, ~JW = −5

2

(

∇(~nT 2) + ~n∇V
)

,

~J = η−2
(

(1− η)( ~Jn · ~Ω)~Ω + η ~Jn − p~ΩJn
)

.

Note that we recover the model (4)-(6) if p = 0. We compare both models numerically in
Section 7. It turns out that the polarization matrix P leads to a stronger mixing of the spin
density components, and the heat flux effects causes a smoothing of these components.

Second model: ~a = 0. The Lagrange multiplier A may be related to the particle density.
Supposing that the spin effects are rather encoded in ~c, one may assume that ~a = 0. This
condition gives as above three constraints and leads to equations for five moments. One
may choose, for instance, the variables (n0, ~n, T ) or (n0, T, ~W ). In the former case, we
arrive at the system of coupled equations

∂tn0 + div Jn = 0, Jn = −
(

∇(n0T ) + n0∇V
)

,(10)

3

2
∂t(n0T ) + div JW + Jn · ∇V = 0, JW = −5

2

(

∇(D(n+, n−)n0T
2) + n0T∇V

)

,(11)

∂t~n−
3

∑

j=1

∂xj

(

∂xj

(

p(n+, n−)n0T
~n

|~n|

)

+ ~n∂xj
V

)

+ ~Ωe × ~n = − ~n

τsf
,(12)

and D(n+, n−), p(n+, n−), defined in (50), depend on the spin-up/spin-down densities
n± := n0 ± |~n| (see Section 4.2). Compared to the first model, these coefficients realize a
coupling between the charge and spin-vector densities. A similar model can be derived in
the variables (n0, T, ~W ). This coupling is still rather weak since the function D(n+, n−)
only takes values in the interval [1, 1.1]; see Remark 5.

Third model: ~a = λ~c. Generalizing the above approaches, we suppose that the vectors ~a
and ~c are aligned such that ~a = λ~c for some function λ = λ(x, t) 6= 0. The first model
is recovered for λ → ∞, the second one for λ = 0. This condition provides only two
constraints such that we obtain a system for six moments. A possible choice is (n±,W±, ~s),

where n± = n0 ± |~n|, W± = W0 ± | ~W |, and ~s = ~n/|~n|, which gives the equations

∂tn± + div Jn,± = ∓n+ − n−

2τsf
∓ 1

2
(n+T+ − n−T−)|∇~s|2,(13)

3

2
∂t(n±T±) + div JW,± + Jn,± · ∇V = ∓ 3

4τsf
(n+T+ − n−T−)(14)

∓ 5

4
(n+T

2
+ − n−T

2
−)|∇~s|2,
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∂t~s−
n+T+ − n−T−

n+ − n−

~s× (∆~s× ~s) =

(

2
∇(n+T+ − n−T−)

n+ − n−

+∇V

)

· ∇~s− ~Ωe × ~s,(15)

with the spin-up/spin-down particle and heat fluxes

(16) Jn,± = −
(

∇(n±T±) + n±∇V
)

, JW,± = −5

2

(

∇(n±T
2
±) + n±T±∇V

)

,

and the spin-up/spin-down energy densities W± = 3
2
n±T±. The evolution equations for

the spin-up/spin-down densities are similar in structure as the first and second model. For
constant “temperature” T+ = T− = 1, we recover the two-component spin drift-diffusion
equations analyzed in [11]. The coupling is realized through the spin-accumulation density
~s. The equation for ~s preserves the relation |~s| = 1, and the second-order term ~s× (∆~s×~s)
also appears in the Landau-Lifshitz equation [15]; see Remark 9.

2.2. Entropy inequalities. We prove that there exists an entropy (or free energy) which
is nonincreasing in time along solutions to the corresponding equations.1 To simplify the
computations, we neglect electric effects, i.e., the potential V is assumed to be constant
(also see Remark 11 for the general situation).
The kinetic entropy of the general spin model (2) is given by

(17) H =

∫

R3

∫

R3

tr(M logM)dkdx,

where the Maxwellian is defined by (3) and “tr” denotes the trace of a matrix. It was
shown in [3, Theorem 2.2] that the entropy is nonincreasing along solutions to (2). Our
aim is to quantify the entropy production −dH/dt which provides gradient estimates. To
this end, we insert the simplifying Maxwellians in (17) and compute explicit expressions
for the entropies. Denoting by Hj the entropy of the jth model presented above, we obtain

H1 =

∫

R3

(

n+ log(n+T
−3/2
+ ) + n− log(n−T

−3/2
− )

)

dx,(18)

H2 =
5

2

∫

R3

n0 log
n0

W
3/5
+ +W

3/5
−

dx, where W± =
3

2
n0T ± | ~W |2,(19)

H3 = H1,(20)

and the corresponding entropy inequalities read as (see Propositions 10-13)

dH1

dt
+ 4

∫

R3

(

|∇
√

n+T |2 + |∇
√

n−T |2 + 5n0|∇
√
T |2

)

dx ≤ 0,

dH2

dt
+ c

∫

R3

(

|∇
√

W+|2 + |∇
√

W−|2 + T |∇√
n0|2

)

dx ≤ 0,(21)

dH3

dt
+ c

∫

R3

∑

s=±

(

Ts|∇
√
ns|2 + ns|∇

√

Ts|2
)

dx ≤ 0,

1In contrast to the physical notation, the mathematical entropy is defined here as the negative physical
entropy.
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where c > 0 is some number and the results hold for smooth solutions.

2.3. Existence analysis for the second model. The second analytical result concerns
the existence analysis for the second model (~a = 0) in the variables (n0,W0, ~W ), where
W0 = 3

2
n0T . Because of the strong coupling, we are only able to prove the existence of

solutions to a time-discrete version without electric field in a bounded domain D ⊂ R
d:

1

h
(n0 − n0

0)−
2

3
∆W0 = 0,(22)

1

h
(W0 −W 0

0 )−
8

15
∆

(

1

n0

(W
3/5
+ +W

3/5
− )(W

7/5
+ +W

7/5
− )

)

= 0,(23)

1

h
( ~W − ~W 0)− 5

18
∆

(

1

n0

(W
3/5
+ +W

3/5
− )(W

7/5
+ −W

7/5
− )

~W

| ~W |

)

= −
~W

τsf
in D,(24)

where (n0,W0, ~W ) is the solution at the actual time, (n0
0,W

0
0 , ~W

0) is the solution at the
previous time instant, and h > 0 is the time step size; see Theorem 14. The boundary
conditions are given by

(25) n0 = nD
0 , W0 = WD

0 , ~W = ~WD on ∂D.

The main difficulty in the existence proof is the derivation of suitable a priori estimates.
The entropy-production inequality (21) provides estimates which are uniform in h, but
they are not sufficient to pass to the limit h → 0 since the gradient estimate (21) for ∇√

n0

becomes useless in regions where T is close to zero.
Our proof employs some ideas from [20]. The first idea is to formulate (22)-(24) as

n0(u, v0, ~v)− n0
0 = h∆u,

W0(u, v0, ~v)−W 0
0 = h∆v0,

~W (u, v0, ~v)− ~W 0 = h∆~v − (h/τsf) ~W in D,

where (u, v0, ~v) are some auxiliary variables. The second idea is to truncate the new vari-
ables by replacing u by [u/v0]εv0, where [·]ε is a truncation operator satisfying [u/v0]εv0 = u
for 0 < u/v0 ≤ 1/ε. The existence of weak solutions to the truncated problem is shown by
means of the Leray-Schauder fixed-point theorem. The compactness follows from standard
H1 elliptic estimates. Then, choosing special Stampacchia-type test functions, we prove
lower and upper bounds for the new variables, which allow us to remove the truncation.
In this step, we exploit the particular structure of the equations.
Unfortunately, our a priori estimates depend on the time step size which prevents the

limit h → 0. Even the analysis of the time-discrete equations is highly delicate since
the equations are elliptic in a non-standard sense. The existence of weak solutions to
the semiclassical energy-transport equations near equilibrium was proved in [4, 9, 12].
An existence analysis for general initial data was shown in [6] but for uniformly positive
definite diffusion matrices only. A semiclassical energy-transport system without electric
effects has been investigated in [20]. This system possesses similar difficulties as (22)-(24)
but its structure is easier. For details, we refer to Section 6.



8 ANSGAR JÜNGEL, POLINA SHPARTKO, AND NICOLA ZAMPONI

3. A general energy-transport model for spin transport

3.1. Derivation from the spinorial Boltzmann equation. We sketch briefly the deri-
vation of the general energy-transport model (2) from the spinorial Boltzmann transport
equation (1). Details are given in [3]. We consider the Boltzmann equation in the diffusion
scaling,

(26) ∂tFε +
1

ε

(

k · ∇xFε −∇xV · ∇kFε

)

=
1

ε2
Q(Fε) +

i

2
[~Ωε(x, k) · ~σ, Fε] +Qsf(Fε),

The parameter ε > 0 is the scaled mean free path and is supposed to be small. We have
assumed the parabolic-band approximation such that the mean velocity equals v(k) = k.
The last term in (26) represents the spin-flip interactions which are specified in (42)

below. The commutator [·, ·] on the right-hand side of (26) can be rigorously derived
from the Schrödinger equation with spin-orbit Hamiltonian in the semiclassical limit [7,
Chapter 1]. The term models a precession effect around the effective field [3].
The first term on the right-hand side of (26) models collisions that conserve mass and

energy. For simplicity, we employ the BGK-type operator (named after Bhatnagar, Gross,
and Krook) Q(F ) = M [F ]−F , where the Maxwellian M [F ] associated to F has the same
mass and energy as F ,

(27)

∫

R3

M [F ]dk =

∫

R3

Fdk,
1

2

∫

R3

M [F ]|k|2dk =
1

2

∫

R3

F |k|2dk.

The Maxwellian is constructed from entropy maximization under the constraints of given
mass and energy, which yields, in case of Maxwell-Boltzmann statistics, the existence of
Lagrange multipliers A(x, t) and C(x, t) such that [3]

M [F ](x, k, t) = exp

(

A(x, t) + C(x, t)
|k|2
2

)

,

where exp is the matrix exponential and A, C are Hermitian 2×2 matrices satisfying (27).
The space of Hermitian 2 × 2 matrices can be spanned by the unit matrix σ0 and the

Pauli matrices ~σ = (σ1, σ2, σ3),

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

Accordingly, we may write A = a0+~a·~σ and C = c0+~c·~σ, where a0, c0 ∈ R, ~a = (a1, a2, a3),
~c = (c1, c2, c3) ∈ R

3, and ~a · ~σ =
∑3

j=1 ajσj. The coefficients in the Pauli basis are

computed from a0 =
1
2
tr(A), ~a = 1

2
(~σA), and similarly for c0, ~c; see, e.g., [17]. The matrix

exponential can be also expanded in the Pauli matrix, giving M [F ] = M0σ0+ ~M ·~σ, where

(28) M0 = ea0+c0|k|2/2 cosh

∣

∣

∣

∣

~a+ ~c
|k|2
2

∣

∣

∣

∣

, ~M = ea0+c0|k|2/2
sinh |~a+ ~c|k|2/2|
|~a+ ~c|k|2/2|

(

~a+ ~c
|k|2
2

)

.

It is shown in [3, Theorem 3.1] that Fε converges formally to M := M [A,C] = exp(A+
C|k|2/2) as ε → 0, where (A,C) are solutions to the following spin energy-transport system
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for the electron density n(x, t) and energy density W (x, t), which are related to (A,C) via
the moment equations

n =

∫

R3

M [A,C]dk, W =
1

2

∫

R3

M [A,C]|k|2dk.

The general energy-transport equations read as [3, Theorem 3.1]

∂tn+ divx Jn =
i

2

∫

R3

∣

∣~ΩET · ~σ,M
]

dk − 1

4

∫

R3

[

~Ωo · ~σ, [~Ωo · ~σ,M ]
]

dk(29)

+

∫

R3

Qsf(M)dk,

∂tW + divx JW + Jn · ∇xV =
i

2

∫

R3

[

~Ωo · ~σ,M
] |k|2

2
dk(30)

− 1

4

∫

R3

[

~Ωo · ~σ, [~Ωo · ~σ,M ]
] |k|2

2
dk +

1

2

∫

R3

Qsf(M)|k|2dk,

where the effective field ~ΩET is defined by

(31) ~ΩET = (k · ∇x −∇xV · ∇k)~Ωo + ~Ωe,

and ~Ωo and ~Ωe are the odd and even parts of ~Ω (with respect to k), respectively. The
tensor-valued fluxes are defined by

(32)
Jn = − divxΠ− n∇xV +ΠΩo

,

JW = − divxQ− (Wσ0 +Π)∇xV +QΩo
,

and the tensors Π = (Πjℓ), Q = (Qjℓ) with Πjℓ, Qjℓ ∈ C
2×2 and ΠΩo

= (Πj
Ωo
), QΩo

= (Qj
Ωo
)

with Πj
Ωo
, Qj

Ωo
∈ C

2×2 are given by the moments

Πjℓ =

∫

R3

kjkℓMdk, Qjℓ =
1

2

∫

R3

kjkℓ|k|2Mdk,

Πj
Ωo

= i

∫

R3

[

~Ωo · ~σ,M
]

kjdk, Qj
Ωo

=
i

2

∫

R3

[

~Ωo · ~σ,M
]

kj|k|2dk,

where j, ℓ = 1, 2, 3. The first two terms on the right-hand sides of (29) and (30) are due to
spinor effects; they vanish in the classical energy-transport model. The last term on the
left-hand side of (30) is the Joule heating and it is also present in the classical model. The
last terms in (29)-(30) express the moments of the spin-flip interactions.

3.2. Formulation in the Pauli basis. In order to derive simplified spin energy-transport
models in explicit form, it is convenient to formulate (29)-(30) in the Pauli basis. Recall

that n = n0σ0 + ~n · ~σ and W = W0σ0 + ~W · ~σ. Furthermore, we expand

(33)

∫

R3

Qsf(M)dk = Qsf,n,0σ0 + ~Qsf,n · ~σ,
1

2

∫

R3

Qsf(M)|k|2dk = Qsf,W,0σ0 + ~Qsf,W · ~σ.
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Lemma 1 (Energy-transport model in Pauli components). Equations (29)-(30) can be

written in the Pauli components (n0, ~n) and (W0, ~W ) as

∂tn0 − divx

(

2

3
∇xW0 + n0∇xV

)

= Qsf,n,0,(34)

∂t~n−
3

∑

j=1

∂xj

(

2

3
∂xj

~W + ~n∂xj
V + 2

∫

R3

(~Ωo × ~M)kjdk

)

(35)

+
3

∑

j=1

∫

R3

∂xj
(~Ωo × ~M)kjdk +

3
∑

j=1

∂xj
V

∫

R3

∂kj(
~Ωo × ~M)dk +

∫

R3

~Ωe × ~Mdk

+

∫

R3

(

|~Ωo|2 − ~Ωo ⊗ ~Ωo

)

· ~Mdk = ~Qsf,n,

∂tW0 − divx

(

1

6

∫

R3

∇xM0|k|4dk +
5

3
W0∇xV

)

(36)

−
(

2

3
∇xW0 + n0∇xV

)

· ∇xV = Qsf,W,0,

∂t ~W −
3

∑

j=1

{

∂xj

(

1

6
∂xj

∫

R3

~M |k|4dk +
5

3
~W∂xj

V +

∫

R3

(~Ωo × ~M)kj|k|2dk
)

(37)

+

(

2

3
∂xj

~W + ~n∂xj
V + 2

∫

R3

(~Ωo × ~M)kjdk

)

∂xj
V

}

+
1

2

3
∑

j=1

∂xj

∫

R3

(~Ωo × ~M)kj|k|2dk +
1

2

3
∑

j=1

∂xj
V

∫

R3

∂kj(
~Ωo × ~M)|k|2dk

+
1

2

∫

R3

(~Ωe × ~M)|k|2dk +

∫

R3

(

|~Ωo|2 − ~Ωo ⊗ ~Ωo

)

· ~M |k|2dk = ~Qsf,W ,

where ∂xj
= ∂/∂xj, ∂kj = ∂/∂kj.

Proof. We reformulate (29)-(30) in terms of the Pauli coefficients. For this, set Jn =

(J j
n)j=1,2,3, JW = (J j

W )j=1,2,3 and J j
n = J j

n,0σ0 + ~Jn · ~σ, J j
W = J j

W,0σ0 + ~JW · ~σ. We obtain

∂tn0 +
3

∑

j=1

∂xj
J j
n,0 = Qsf,n,0,(38)

∂t~n+
3

∑

j=1

∂xj
~J j
n +

∫

R3

~ΩET × ~Mdk +

∫

R3

(

|~Ωo|2 − ~Ωo ⊗ ~Ωo

)

· ~Mdk = ~Qsf,n,(39)

∂tW0 +
3

∑

j=1

(

∂xj
J j
W,0 + J j

n,0∂xj
V
)

= Qsf,W,0,(40)
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∂t ~W +
3

∑

j=1

(

∂xj
~J j
W + ~J j

n∂xj
V
)

+

∫

R3

(~ΩET × ~M)|k|2dk(41)

+
1

2

∫

R3

(

|~Ωo|2 − ~Ωo ⊗ ~Ωo

)

· ~M |k|2dk = ~Qsf,W .

Let us expand the integrals involving ~ΩET and the fluxes. Let φ(k) = 1 or φ(k) = |k|2/2.
Then, recalling definition (31) for ~ΩET,

∫

R3

(~ΩET × ~M)φ(k)dk

=

∫

R3

(

k · ∇x −∇xV · ∇k

)

(~Ωo × ~M)φ(k)dk +

∫

R3

(~Ωe × ~M)φ(k)dk

=
3

∑

j=1

∂xj

∫

R3

(~Ωo × ~M)kjφ(k)dk −
3

∑

j=1

∂xj
V

∫

R3

(∂kj
~Ωo × ~M)φ(k)dk

+

∫

R3

(~Ωe × ~M)φ(k)dk.

Inserting these expressions into the evolution equations for ~n and ~W , we recover the three
integrals in the second line of (35) as well as the integrals in the third line, and the first
integral in the fourthline of (37).
It remains to compute the fluxes (32). First, we calculate

Πjℓ =
1

3

∫

R3

M |k|2dkδjℓ =
2

3
Wδjℓ, Qjℓ =

1

6

∫

R3

M |k|4dkδjℓ.

Furthermore, using the formula [~u · ~σ,~v · ~σ] = 2i(~u × ~v) · ~σ for ~u, ~v ∈ R
3, we find that

ΠΩo
= ΠΩo,0σ0 + ~ΠΩo

· ~σ with ΠΩo,0 = 0 and ~ΠΩo
= −2

∫

R3(~Ωo × ~M)kdk. Therefore,

J j
n,0 = −

3
∑

ℓ=1

∂xℓ
Πjℓ

0 − n0∂xj
V +Πj

Ω0,0
= −2

3
∂xj

W0 − n0∂xj
V,

~J j
n = −

3
∑

ℓ=1

∂xℓ
~Πjℓ − ~n∂xj

V + ~Πj
Ωo

= −2

3
∂xj

~W − ~n∂xj
V − 2

∫

R3

(~Ωo × ~M)kjdk.

Expanding QΩo
= QΩo,0σ0 + ~QΩo

· ~σ with QΩo,0 = 0 and ~QΩo
= −

∫

R3(~Ωo × ~M)k|k|2dk, it
follows that

J j
W,0 = −

3
∑

ℓ=1

(

∂xℓ
Qjℓ

0 + (W0δjℓ +Πjℓ
0 )∂xℓ

V
)

+Qj
Ωo,0

= −1

6
∂xj

∫

R3

M0|k|4dk − 5

3
W0∂xj

V,
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~J j
W = −

3
∑

ℓ=1

(

∂xℓ
~Qjℓ + ( ~Wδjℓ + ~Πjℓ)∂xℓ

V
)

+ ~Qj
Ωo

= −1

6
∂xj

∫

R3

~M |k|4dk − 5

3
~W∂xj

V −
∫

R3

(~Ωo × ~M)kj|k|2dk.

Inserting these expressions into (38)-(41) gives (34)-(37). �

4. Simplified spin energy-transport equations

In this section, we derive some explicit models. We assume for simplicity that the odd
part of the magnetization vanishes, ~Ωo = 0, and that the even part ~Ωe depends on x only.
Moreover, we suppose that the spin-flip interactions are modeled by the relaxation-time
operator

(42) Qsf(M) := − 1

τsf

(

M − 1

2
tr(M)σ0

)

= − 1

τsf
~M · ~σ,

where τsf > 0 is the average time between two subsequent spin-flip collisions, and we recall
that M = M0σ0 + ~M · ~σ. In particular, with the notation of (33),

Qsf,n,0 = 0, ~Qsf,n = − ~n

τsf
, Qsf,W,0 = 0, ~Qsf,W = −

~W

τsf
.

Then system (34)-(37) reduces to

∂tn0 − div

(

2

3
∇W0 + n0∇V

)

= 0,(43)

∂t~n−
3

∑

j=1

∂xj

(

2

3
∂xj

~W + ~n∂xj
V

)

+ ~Ωe × ~n = − ~n

τsf
,(44)

∂tW0 − div

(

1

6
∇
∫

R3

M0|k|2dk +
5

3
W0∇V

)

−
(

2

3
∇W0 + n0∇V

)

· ∇V = 0,(45)

∂t ~W −
3

∑

j=1

{

∂xj

(

1

6
∂xj

∫

R3

~M |k|4dk +
5

3
~W∂xj

V

)

+

(

2

3
∂xj

~W + ~n∂xj
V

)

∂xj
V

}

(46)

+ ~Ωe × ~W = −
~W

τsf
.

Given (n0, ~n,W0), we define the spin-up/spin-down densities n± and the temperature T by

(47) n± = n0 ± |~n|, W0 =
3

2
n0T.

We also introduce the Gaussian with standard deviation θ > 0,

(48) gθ(k) = (2πθ)−3/2 exp

(

− |k|2
2θ

)

,
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whose moments are given by

(49)

∫

R3

gθ(k)





1
|k|2/2
|k|4/6



 dk =





1
3θ/2
5θ2/2



 .

4.1. First model.

Theorem 2 (Spin energy-transport model with ~c = 0). For ~c = 0, system (43)-(46) can
be written in the variables (n0, T, ~n) as (4)-(6).

Proof. Under the assumption ~c = 0, the higher-order moments in (45)-(46) can be com-
puted explicitly. Indeed, the Pauli expansion of the Maxwellian (28) simplifies to

M0 = ea0+c0|k|2/2 cosh |~a|, ~M = ea0+c0|k|2/2 sinh |~a| ~a|~a| .

Observe that c0 < 0 is necessary to ensure the integrability of M0 and ~M . The above
expressions can be reformulated by introducing the new Lagrange multipliers

κ± :=

(

2π

−c0

)3/2

ea0±|~a|, θ := − 1

c0
, ~γ :=

~a

|~a| .

Then M0 = 1
2
(κ+ + κ−)gθ(k), ~M = 1

2
(κ+ − κ−)gθ(k)~γ, where gθ is defined in (48). As a

consequence, we have

n0 =

∫

R3

M0dk =
1

2
(κ+ + κ−), ~n =

∫

R3

~Mdk =
1

2
(κ+ − κ−)~γ,

W0 =
1

2

∫

R3

M0|k|2dk =
3

4
θ(κ+ + κ−),

and we infer from (47) that κ± = n±, ~γ = ~n/|~n|, and θ = T . Then the Pauli coefficients

become M0 = n0gT (k), ~M = ~ngT (k) and

~W =
1

2

∫

R3

~M |k|2dk =
3

2
~nT,

1

6

∫

R3

M0|k|4dk =
5

2
n0T

2.

Inserting these expressions into (43)-(46) shows the result. �

Remark 3. The derivation of model (7)-(9) is similar to that one in [3], therefore we
sketch it only. The Maxwellian is here given by

M [F ](k) = (2πθ[F ])−3/2e−|k|2/(2θ[F ])

∫

R3

F (k′)dk′,

where θ[F ] =
1

3

∫

R3 tr(PF (k))|k|2dk
∫

R3 tr(PF (k))dk
.

The formal limit ε → 0 in (26) gives Q(F 0) = 0, where F 0 = limε→0 Fε, showing that
F 0 = M [F 0]. Next, we perform a Hilbert expansion Fε = M [F ] + εF 1 + O(ε2) and
assume that F 1 is odd with respect to k. Since 1, |k|2/2 are even functions, F 1 does not
contribute to the moments n =

∫

R3 Fdk,W = 1
2

∫

R3 F |k|2dk. It holds thatW = 3
2
nT , where



14 ANSGAR JÜNGEL, POLINA SHPARTKO, AND NICOLA ZAMPONI

T := θ[F 0]. After a computation which is similar to the derivation of the semiclassical
energy-transport equations, we obtain the moment equations

∂tn+ divGn + i[n, ~Ω · ~σ] = 1

2
tr(n)− n, Gn = −P−1/2

(

∇(nT ) + n∇V
)

P−1/2,

3

2
∂t(nT ) + divGW +Gn · ∇V = 0, GW = −5

3
P−1/2

(

∇(nT 2) + nT∇V
)

P−1/2.

In order to formulate these equations in the Pauli components, we observe that for any

2× 2 Hermitian matrix A = a0σ0 + ~a · ~σ, it holds that P 1/2AP 1/2 = b0σ0 +~b · ~σ, where
(

b0
~b

)

= η−2

(

1 −p~Ω⊤

−p~Ω (1− η)~Ω⊗ ~Ω + ησ0

)(

a0
~a

)

, η =
√

1− p2.

We omit the calulcation and only note that this leads to (7)-(9). �

4.2. Second model.

Theorem 4 (Spin energy-transport model with ~a = 0, version I). For ~a = 0, system (43)-
(46) can be written in the variables (n0, T, ~n) as (10)-(12), where the diffusion coefficient
D(n+, n−) and the polarization factor p(n+, n−) are defined by

(50) D(n+, n−) =
2n0(n

7/3
+ + n

7/3
− )

(n
5/3
+ + n

5/3
− )2

, p(n+, n−) =
n
5/3
+ − n

5/3
−

n
5/3
+ + n

5/3
−

,

and the spin-up/spin-down densities are given by n± = n0 ± |~n|.

Proof. For ~a = 0, the Pauli components of the Maxwellian take the form

(51) M0 = ea0+c0|k|2/2 cosh

(

|~c| |k|
2

2

)

, ~M = ea0+c0|k|2/2 sinh

(

|~c| |k|
2

2

)

~c

|~c| .

The integrability of M0 and ~M implies that c0 ± |~c| < 0. In the new Lagrange multiplier
variables

(52) K := (2π)3/2ea0 , θ± := − 1

c0 ± |~c| , ~γ :=
~c

|~c|
these components can be rewritten as

M0 =
K

2

(

θ
3/2
+ gθ+(k) + θ

3/2
− gθ−(k)

)

, ~M =
K

2

(

θ
3/2
+ gθ+(k)− θ

3/2
− gθ−(k)

)

~γ.

Taking into account (49), this shows that

n0 =

∫

R3

M0dk =
K

2

(

θ
3/2
+ + θ

3/2
−

)

, ~n =

∫

R3

~Mdk =
K

2

(

θ
3/2
+ − θ

3/2
−

)

~γ,

W0 =
1

2

∫

R3

M0|k|2dk =
3K

4

(

θ
5/2
+ + θ

5/2
−

)

,
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and consequently, n± := n0 ± |~n| = Kθ
3/2
± , ~γ = ~n/|~n|. This implies that W0 = 3

4
(n+θ+ +

n−θ−) and n−/n+ = (θ−/θ+)
3/2. Hence,

3

2
n0T = W0 =

3

4

θ+

n
2/3
+

(

n
5/3
+ +

(

n+

n−

)

θ+
θ−

n−

)

=
3θ+

4n
2/3
+

(

n
5/3
+ + n

5/3
−

)

=
3θ−

4n
2/3
−

(

n
5/3
+ + n

5/3
−

)

.

We obtain the following form for the Pauli components of M :

M0 =
1

2

(

n+gθ+(k) + n−gθ−(k)

)

, ~M =
1

2

(

n+gθ+(k) + n−gθ−(k)

)

~n

|~n| .

It remains to compute the higher-order moments:

~W =
1

2

∫

R3

~M |k|2dk =
3

4
(n+θ+ − n−θ−)

~n

|~n| =
3

2
n0T

n
5/3
+ − n

5/3
−

n
5/3
+ + n

5/3
−

~n

|~n| ,

1

6

∫

R3

M0|k|4dk =
5

4
(n+θ

2
+ + n−θ

2
−) = 5n2

0T
2 n

7/3
+ + n

7/3
−

(n
5/3
+ + n

5/3
− )2

.

Inserting these expressions into (43)-(45) concludes the proof. �

Remark 5. Equations (10)-(12) are fully coupled since the diffusion coefficient D(n+, n−)
depends on the spin vector density through |~n| = (n+ − n−)/2. However, it turns out that
1 ≤ D(n+, n−) ≤ 1.1 for |~n| ≤ n0, which means that the dependence of the energy 3

2
n0T

on the spin vector density ~n is in fact very weak. When the spin vector density vanishes,
~n = 0, it follows that n+ = n− = n0 and D(n+, n−) = 1, and we recover the classical
energy-transport model. �

The model in Theorem 2 can be equivalently formulated in the variables (n0,W0, ~W ),
and this formulation is used below in the existence analysis.

Theorem 6 (Spin energy-transport model with ~a = 0, version II). For ~a = 0, system

(43)-(46) can be written in the variables (n0, T, ~W ) as

∂tn0 − div
(

∇(n0T ) + n0∇V
)

= 0,(53)

3

2
∂t(n0T )− div

(

∇Z0 +
5

2
n0T∇V

)

−
(

∇(n0T ) + n0∇V
)

· ∇V = 0,(54)

∂t ~W −
3

∑

j=1

∂xj

(

∂xj
~Z +

5

3
~W∂xj

V

)

−
3

∑

j=1

(

2

3
∂xj

~W + ~n∇xj
V

)

∂xj
V(55)

+ ~Ωe × ~W = −
~W

τsf
,
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where the spin-vector density ~n and the auxiliary quantities Z0 and ~Z are given by

~n = n0
W

3/5
+ −W

3/5
−

W
3/5
+ +W

3/5
−

~W

| ~W |
,

Z0 =
5

18n0

(

W
3/5
+ +W

3/5
−

)(

W
7/5
+ +W

7/5
−

)

,(56)

~Z =
5

18n0

(

W
3/5
+ +W

3/5
−

)(

W
7/5
+ −W

7/5
−

)
~W

| ~W |
,(57)

and W± = W0 ± | ~W |, W0 =
3
2
n0T .

Proof. With the new Lagrange multipliers introduced in the proof of Theorem 2, we find
that

n0 =

∫

R3

M0dk =
K

2

(

θ
3/2
+ + θ

3/2
−

)

, W0 =
1

2

∫

R3

M0|k|2dk =
3K

4

(

θ
5/2
+ + θ

5/2
+

)

,(58)

~W =
1

2

∫

R3

~M |k|2dk =
3K

4

(

θ
5/2
+ − θ

5/2
−

)

~γ.(59)

As c0 < 0 is required to ensure integrability of the Maxwellian, it holds that θ+ ≥ θ−, such
that we deduce from (59) that

(60) ~γ =
~W

| ~W |
, | ~W | = 3K

4
(θ

5/2
+ − θ

5/2
− ).

Let W± = W0 ± | ~W |. Then

W± =
3K

4

(

θ
5/2
+ + θ

5/2
+

)

± 3K

4

(

θ
5/2
+ − θ

5/2
−

)

=
3K

2
θ
5/2
± ,

which is equivalent to θ± = (2W±/(3K))2/5. Inserting this expression into the first equation
of (58), we obtain

n0 =
K

2

((

2W+

3K

)3/5

+

(

2W−

3K

)3/5)

=
K2/5

22/533/5
(

W
3/5
+ +W

3/5
−

)

.

Thus, the constant K can be written as

(61) K = 2 · 33/2n5/2
0 (W

3/5
+ +W

3/5
− )−5/2,

and we can eliminate K in the formulation of θ±:

(62) θ± =

(

2W±

3K

)2/5

=
W

2/5
±

3n0

(

W
3/5
+ +W

3/5
−

)

.

The spin-vector density is then computed as follows:

~n =

∫

R3

~Mdk =
K

2

(

θ
3/2
+ − θ

3/2
−

)
~W

| ~W |
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=
33/2n

5/2
0

(W
3/5
+ +W

3/5
− )5/2

(

W
3/5
+ +W

3/5
−

3n0

)3/2
(

W
3/5
+ −W

3/5
−

)
~W

| ~W |

= n0
W

3/5
+ −W

3/5
−

W
3/5
+ +W

3/5
−

~W

| ~W |
.

It remains to compute the fourth-order moments. Using W± = 3
2
Kθ

5/2
± and (62), we

have

1

6

∫

R3

M0|k|4dk =
5K

4

(

θ
7/2
+ + θ

7/2
−

)

=
5

6
(θ+W+ + θ−W−)

=
5

18n0

(

W
3/5
+ +W

3/5
−

)(

W
7/5
+ +W

7/5
−

)

.

In an analogous way, we calculate

1

6

∫

R3

~M |k|4dk =
5

18n0

(

W
3/5
+ +W

3/5
−

)(

W
7/5
+ −W

7/5
−

)
~W

| ~W |
.

Inserting these expressions into (43)-(46), the result follows. �

Remark 7. If ~W = 0, it follows that W± = W0 = 3
2
n0T , ~n = 0, Z0 = 5

2
n0T

2, and we re-
cover the semiclassical energy-transport model. It is possible to see that 1 ≤ Z0/(

5
2
n0T

2) ≤
1.08, which shows that the coupling is rather weak. This is expected since the coupling in
system (10)-(12) is weak too. �

4.3. Third model.

Theorem 8 (Spin energy-transport model for ~a = λ~c). Under the assumption ~a = λ~c
for some λ = λ(x, t) ≥ 0, system (43)-(46) can be written in the variables (n±,W±, ~s) as

(13)-(16), where (n±, T±, ~s) are linked to (n0, ~n,W0, ~W ) via

(63) n± = n0 ± |~n|, 3

2
n±T± = W0 ± | ~W |, ~s =

~n

|~n| .

Proof. First, we compute the moments in order to make system (43)-(46) explicit. Under
the assumption that ~a = λ~c for some λ ≥ 0, the Pauli components of the Maxwellian
become

M0 =
1

2
exp

(

a0 + λ|~c|+ 1

2
(c0 + |~c|)|k|2

)

+
1

2
exp

(

a0 − λ|~c|+ 1

2
(c0 − |~c|)|k|2

)

,

~M =
1

2

{

exp

(

a0 + λ|~c|+ 1

2
(c0 + |~c|)|k|2

)

− exp

(

a0 − λ|~c|+ 1

2
(c0 − |~c|)|k|2

)}

~c

|~c| .

Introducing the new Lagrange multipliers

κ± := (2πθ±)
3/2ea0±λ|~c|, θ± := − 1

c0 ± |~c| , ~γ :=
~c

|~c| ,
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the Pauli components of M can be rewritten as

M0 =
1

2
(k+gθ+ + k−gθ−), ~M =

1

2
(k+gθ+ − k−gθ−)~γ,

where gθ± is defined in (48). Since the Maxwellian has to be integrable, we have c0+ |~c| < 0
and consequently, θ+ ≥ θ− > 0 and κ+ ≥ κ− > 0. It follows that

n0 =
1

2
(κ+ + κ−), ~n =

1

2
(κ+ − κ−)~γ,

W0 =
3

4
(κ+θ+ + κ−θ−), ~W =

3

4
(κ+θ+ − κ−θ−)~γ.

These expressions allow us to identify the new Lagrange multipliers with n± = n0 ± |~n|,
W± = W0 ± | ~W |, and ~s = ~n/|~n|:

n± = k±, W± =
3

2
k±θ±, ~s =

~n

|~n| =
~W

| ~W |
= ~γ.

The last expression represents a constraint of the spin part of the particle density and
energy. Moreover, the definition T± = 2W±/(3n±) implies that T± = θ±. Thus, the Pauli
components of the Maxwellian take the form

(64) M0 =
1

2
(n+gT+

+ n−gT−
), ~M =

1

2
(n+gT+

− n−gT−
)~s.

Computing the higher-order moments

1

6

∫

R3

M0|k|4dk =
1

12

∫

R3

(n+gθ+ + n−gθ−)|k|4dk =
5

4
(n+T

2
+ + n−T

2
−),

1

6

∫

R3

~M |k|4dk =
5

4
(n+T

2
+ − n−T

2
−)~s,

system (43)-(46) becomes

∂tn0 − div

(

2

3
∇W0 + n0∇V

)

= 0,(65)

∂t~n− div

(

2

3
∇ ~W + ~n∇V

)

+ ~Ωe × ~n = − ~n

τsf
,(66)

∂tW0 − div

(

5

9
∇
(

W 2
+

n+

+
W 2

−

n−

)

+
5

3
W0∇V

)

−
(

2

3
∇W0 + n0∇V

)

· ∇V = 0,(67)

∂t ~W − div

(

5

9
∇
((

W 2
+

n+

+
W 2

−

n−

)

~s

)

+
5

3
~W∇V

)

−
(

2

3
∇ ~W + ~n∇V

)

· ∇V(68)

+ ~Ωe × ~W = −
~W

τsf
.
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The next step is to reformulate this system in terms of (n±,W±, ~s). First, we derive

(13). For this, we take the scalar product of (66) and ~s = ~n/|~n| = ~W/| ~W |, leading to

(69) ∂t|~n| − div

(

2

3
∇| ~W |+ |~n|∇V

)

+∇~s ·
(

2

3
∇ ~W + ~n∇V

)

= −|~n|
τsf

.

Observing that |~s| = 1 implies that ∇~s · ~s = 0, we find that ∇~s · ∇ ~W = ∇~s · ∇(| ~W |~s) =
| ~W ||∇~s|2 and ∇~s · ~n = 0. Hence, (69) becomes

∂t|~n| − div

(

2

3
∇| ~W |+ |~n|∇V

)

+
2

3
| ~W ||∇~s|2 = −|~n|

τsf
.

Taking the sum and difference of equation (43) for n0 and the previous equation, we obtain

(13) using n± = n0 ± |~n| and | ~W | = 3
4
(n+T+ − n−T−).

Second, we derive (14). Multiplying (68) by ~s = ~W/| ~W | yields

∂t| ~W | − div

(

5

9
∇
(

W 2
+

n+

− W 2
−

n−

)

+
5

3
| ~W |∇V

)

+∇~s ·
(

5

9
∇
((

W 2
+

n+

− W 2
−

n−

)

~s

)

+
5

3
| ~W |∇V

)

− ~s ·
(

2

3
(∇V · ∇) ~W + ~n|∇V |2

)

= −| ~W |
τsf

,

and adding and subtracting this equation from (67) and employing ~s · ~n = |~n| shows that
3
2
n±T± = W± = W0 ± | ~W | solves (14).
Third, we derive (15). We take the product of P := (I− ~s⊗ ~s)/|~n| and (66) (here, I is

the unit matrix in R
3×3.) This matrix has the following properties: P~n = 0, P∂t~n = ∂t~s,

and P∇~n = ∇~s. A computation shows that

(70) ∂t~s− div

(

P

(

2

3
∇ ~W + ~n∇V

))

+∇P ·
(

2

3
∇ ~W + ~n∇V

)

+ ~Ωe × ~s = 0.

We reformulate the second and third term:

P

(

2

3
∇ ~W + ~n∇V

)

=
2

3

| ~W |
|~n|

1

| ~W |
(I− ~s⊗ ~s)∇ ~W =

2

3

| ~W |
|~n| ∇~s,

(∇P · ∇ ~W )i =
3

∑

j=1

∇Pij · ∇Wj

=
3

∑

j=1

(

1

|~n|2 (δij − sisj)∇|~n| − 1

|~n|(si∇sj + sj∇si)

)

· ∇Wj

= − 1

|~n|2 |
~W |∇|~n| · ∇si −

1

|~n| |
~W ||∇~s|2si −

1

|~n|∇| ~W |∇si
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= −| ~W |
|~n| ∇ log(|~n|| ~W |) · ∇si −

| ~W |
|~n| |∇~s|2si,

∇P · ~n∇V = (∇V · ∇)(P~n)− P (∇V · ∇)~n = −∇V · ∇~s.

Therefore, (70) becomes

∂t~s = div

(

2

3

| ~W |
|~n| ∇~s

)

+

(

2

3

| ~W |
|~n| ∇ log(|~n|| ~W |) +∇V

)

· ∇~s+
2

3

| ~W |
|~n| |∇~s|2~s− ~Ωe × ~s

=
2

3

| ~W |
|~n| (∆~s+ |∇~s|2~s) +

{

∇
(

2

3

| ~W |
|~n|

)

+
2

3

| ~W |
|~n| ∇ log(|~n|| ~W |) +∇V

}

· ∇~s− ~Ωe × ~s

=
2

3

| ~W |
|~n| ~s× (∆~s× ~s) +

(

4

3

∇| ~W |
|~n| +∇V

)

· ∇~s− ~Ωe × ~s

=
2

3

W+ −W−

n+ − n−

~s× (∆~s× ~s) +

(

4

3

∇(W+ −W−)

n+ − n−

+∇V

)

· ∇~s− ~Ωe × ~s.

Then, using W± = 3
2
n±T±, equation (15) follows. �

Remark 9. If the temperature is constant, T+ = T− = 1, equation (15) for the spin
accumulation vector becomes

∂t~s− ~s× (∆~s× ~s) = ∇(log |~n|2 + V ) · ∇~s− ~Ωe × ~s.

If ~Ωe = ∆~s, this resembles the Landau-Lifshitz equation with the exception of the first
term on the right-hand side, which provides an additional field contribution. Note that
this term does not vanish in termal equilibrium where V = − log n0. �

5. Entropy structure

In this section, we investigate the entropy structure of the spin energy-transport equa-
tions derived in the previous section. Recall that the entropy of the general model is given
by

H =

∫

R3

∫

R3

tr(M logM)dkdx,

where M = M0σ0 + ~M · ~σ is the Maxwellian. We introduce M± = M0 ± | ~M | and P± =
1
2
(σ0 ± ( ~M/| ~M |) · ~σ). Then (P+, P−) is a set of complete orthogonal projections since

P 2
± = P±, P+P− = 0, and P+ + P− = σ0. Therefore, for any function f : R → R,

f(M) = f(M+)P+ + f(M−)P−

=
1

2

(

f(M+) + f(M−)
)

σ0 +
1

2

(

f(M+)− f(M−)
)

~M

| ~M |
· ~σ.

In particular, since the Pauli matrices are traceless,

(71) H =
1

2

∫

R3

∫

R3

(M+ logM+ +M− logM−)dkdx.
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5.1. Entropy inequality for the first model. We wish to explore the entropy structure
of the first model (4)-(6) (~c = 0), neglecting the electric field:

(72) ∂tn0 = ∆(n0T ),
3

2
∂t(n0T ) =

5

2
∆(n0T

2), ∂t~n = ∆(~nT )− ~Ωe × ~n− ~n

τsf
,

where x ∈ R
3, t > 0. We claim that the entropy is given by (18). Indeed, since ~c = 0

by assumption, M = gT (k)(n0σ0 + ~n · ~σ), where gT (k) is defined in (48) (see the proof of
Theorem 2). Then M± = gT (k)n± and (71) shows that

H1 =
1

2

∫

R3

∫

R3

gT (k)
(

n+ log(n+gT (k)) + n− log(n−gT (k))
)

dxdk

=
1

2

∫

R3

(n+ log n+ + n− log n−)dx+

∫

R3

(n+ + n−)

∫

R3

gT (k) log gT (k)dkdx

=
1

2

∫

R3

(n+ log n+ + n− log n−)dx−
∫

R3

(n+ + n−)

(

3

2
+

3

2
log(2πT )

)

dx.

Thus, since
∫

R3(n+ + n−)dx is constant in time, we find that, up to a constant,

H1 =

∫

R3

(

n+ log(n+T
−3/2) + n− log(n−T

−3/2)
)

dx,

which is exactly (18). Recall that n± = n0 ± |~n|.
Proposition 10 (Entropy inequality for system (72)). The entropy (18), considered as a
function of time, is nonincreasing along (smooth) solutions (n0, T, ~n) to (72), and

dH1

dt
+ 4

∫

R3

(

|∇
√

n+T |2 + |∇
√

n−T |2
)

dx+ 20

∫

R3

n0|∇
√
T |2

)

dx(73)

+
1

2

∫

R3

(n+ − n−)(log n+ − log n−)

(

1

τsf
+ T

∣

∣

∣

∣

∇ ~n

|~n|

∣

∣

∣

∣

2)

dx = 0.

Proof. We compute

dH1

dt
=

∫

R3

∑

s=±

(

log(nsT
−3/2)∂tns −

3

2

1

T
∂t(nsT )

)

dx

=

∫

R3

(

log
(

(n0 + |~n|)T−3/2
)

∂t(n0 + |~n|)− 3

2

1

T
∂t(n0T + |~n|T )

+ log
(

(n0 − |~n|)T−3/2
)

∂t(n0 − |~n|)− 3

2

1

T
∂t(n0T − |~n|T )

)

dx

=

∫

R3

{

log

(

n2
0 − |~n|2
T 3

)

∂tn0 + log

(

n0 + |~n|
n0 − |~n|

)

~n

|~n| · ∂t~n− 2

T
∂t

(

3

2
n0T

)}

dx.(74)

Inserting (4) in the first term and integrating by parts, we find that
∫

R3

log

(

n2
0 − |~n|2
T 3

)

∂tn0dx = −
∫

R3

∇ log

(

n2
0 − |~n|2
T 3

)

· ∇(n0T )dx.
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Furthermore, using (6) in the second term on the right-hand side of (74) and integrating
by parts gives

∫

R3

log

(

n0 + |~n|
n0 − |~n|

)

~n

|~n| · ∂t~ndx = −
∫

R3

∇
(

log

(

n0 + |~n|
n0 − |~n|

))

~n

|~n| · ∇(~nT )dx

−
∫

R3

log

(

n0 + |~n|
n0 − |~n|

)

∇ ~n

|~n| · ∇(~nT )dx− 1

τsf

∫

R3

|~n| log
(

n0 + |~n|
n0 − |~n|

)

dx.

Since ∇~n · ~n = 0 and

∇ ~n

|~n| · ∇(~nT ) = ∇ ~n

|~n| · ∇
(

|~n|T ~n

|~n|

)

= |~n|T
∣

∣

∣

∣

∇ ~n

|~n|

∣

∣

∣

∣

2

,

~n

|~n| · ∇(~nT ) =
~n

|~n| · (T~n+ ~n∇T ) = T∇|~n|+ |~n|∇T = ∇(|~n|T ),

it follows that
∫

R3

log

(

n0 + |~n|
n0 − |~n|

)

~n

|~n| · ∂t~ndx = −
∫

R3

log

(

n0 + |~n|
n0 − |~n|

)

· ∇(|~n|T )dx

−
∫

R3

log

(

n0 + |~n|
n0 − |~n|

)

|~n|T
∣

∣

∣

∣

∇ ~n

|~n|

∣

∣

∣

∣

2

dx− 1

τsf

∫

R3

|~n| log
(

n0 + |~n|
n0 − |~n|

)

dx.

Finally, we employ (5) to reformulate the last term on the right-hand side of (74):

−
∫

R3

2

T
∂t

(

3

2
n0T

)

dx = 5

∫

R3

∇ 1

T
· ∇(n0T

2)dx

= −5

∫

R3

∇ log T · ∇(n0T )dx− 5

∫

R3

n0

T
|∇T |2dx.

Summarizing these expressions, we have

dH1

dt
= −

∫

R3

{

∇ log

(

n2
0 − |~n|2
T 3

)

· ∇(n0T )dx+∇ log

(

n0 + |~n|
n0 − |~n|

)

· ∇(|~n|T )

+ 5∇ log T · ∇(n0T ) + 5
n0

T
|∇T |2

}

dx

−
∫

R3

{

log

(

n0 + |~n|
n0 − |~n|

)

|~n|T
∣

∣

∣

∣

∇ ~n

|~n|

∣

∣

∣

∣

2

+
1

τsf
|~n| log

(

n0 + |~n|
n0 − |~n|

)}

dx

= I1 + I2.

The integrals in I2 correspond, up to the minus sign, the second and third integrals in (73).
It remains to show that I1 corresponds to the first integral in (73), up to the sign. Indeed,
since log(n2

0 − |~n|2) = log n+ + log n− and log((n0 + |~n|)/(n0 − |~n|)) = log n+ − log n−, we
have

I1 = −
∫

R3

∇ log(n2
0 − |~n|2) · ∇(n0T )dx
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−
∫

R3

∇ log

(

n0 + |~n|
n0 − |~n|

)

· ∇(|~n|T )dx− 2

∫

R3

∇ log T · ∇(n0T )dx

= −
∫

R3

(

∇ log n+ · ∇(n+T ) +∇ log n− · ∇(n−T ) +∇ log T · ∇(n+T + n−T )
)

dx

= −
∫

R3

(

∇ log(n+T ) · ∇(n+T ) +∇ log(n−T ) · ∇(n−T )
)

dx.

This ends the proof. �

Remark 11. When system (4)-(6) includes the electric field, a computation similar to the
proof of Proposition 10 shows that the entropy-production identity reads as

dH1

dt
+

∫

R3

( |∇(n+T ) + n+T∇V |2
n+T

+
|∇(n−T ) + n−T∇V |2

n−T

)

dx

+ 10

∫

R3

(n+ + n−)|∇
√
T |2

)

dx

+
1

2

∫

R3

(n+ − n−)(log n+ − log n−)

(

1

τsf
+ T

∣

∣

∣

∣

∇ ~n

|~n|

∣

∣

∣

∣

2)

dx = 0.

Thus, the presence of the electric field complicates the existence of a priori bounds. �

5.2. Entropy inequality for the second model. We show that there exists an entropy
for the second model (53)-(55) (~a = 0) for vanishing electric field,

(75) ∂tn0 = ∆(n0T ),
3

2
∂t(n0T ) = ∆Z0, ∂t ~W = ∆~Z − ~Ωe × ~W −

~W

τsf
,

where x ∈ R
3, t > 0, and (Z0, ~Z) are defined in (56)-(57), i.e.

Z0 =
5

18n0

(

W
3/5
+ +W

3/5
−

)(

W
7/5
+ +W

7/5
−

)

,

~Z =
5

18n0

(

W
3/5
+ +W

3/5
−

)(

W
7/5
+ −W

7/5
−

)
~W

| ~W |
.

We claim that the general entropy (17) becomes an entropy for the second model when

the MaxwellianM = M0σ0+ ~M ·~σ is given by (51), and this entropy equals, up to a constant,

(19). Note that if ~W = 0, we obtain W± = W0 = 3
2
n0T and H2 =

∫

Rd n0 log(n0T
−3/2)dx,

up to a constant. This function corresponds to the entropy of the semiclassical energy-
transport model [13, Chapter 6].
To show that (17) reduces to (19), we may employ (71) but we prefer to proceed in a

slightly different way. We observe that the Pauli matrices are traceless and we employ the
formula (~c · ~σ)( ~M · ~σ) = (~c · ~M)σ0 + i(~c× ~M) · ~σ (see [17, (7)]) to infer that

H2 =
1

2
tr

∫

R3

∫

R3

(M0 + ~M · ~σ)
(

a0σ0 + (c0σ0 + ~c · ~σ) |k|
2

2

)

dkdx
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=

∫

R3

∫

R3

(

a0M0 + c0M0
|k|2
2

+ ~c · ~M
|k|2
2

)

dkdx

=

∫

R3

(

a0n0 + c0W0 + ~c · ~W
)

dx.

The Lagrange multiplier a0 can be written in the following way, using the first equation in
(52) and (61):

a0 = log
K

(2π)3/2
=

5

2
log n0 −

5

2
log(W

3/5
+ +W

3/5
− ) + log(2 · 33/2(2π)−3/2).

Observing that
∫

R3 n0dx is constant in time, it holds that, up to a constant,
∫

R3

a0n0dx =
5

2

∫

R3

n0 log
n0

W
3/5
+ +W

3/5
−

dx.

By the second equation in (52), we have c0 ± |~c| = −1/θ±, which yields

c0 = −1

2

(

1

θ+
+

1

θ−

)

, |~c| = 1

2

(

1

θ+
− 1

θ−

)

.

Furthermore, employing the third equation in (52) and (60), we have ~c/|~c| = ~γ = ~W/| ~W |
which shows that ~c · ~W = |~c|| ~W |. Thus, replacing θ± by the expression in (62),

2(c0W0 + ~c · ~W ) = −
(

1

θ+
+

1

θ−

)

W0 +

(

1

θ+
− 1

θ−

)

| ~W |

= − 3n0W0

W
3/5
+ +W

3/5
−

(

1

W
2/5
+

+
1

W
2/5
−

)

+
3n0| ~W |

W
3/5
+ +W

3/5
−

(

1

W
2/5
+

− 1

W
2/5
−

)

= − 3n0

W
3/5
+ +W

3/5
−

(

W0 + | ~W |
W

2/5
+

+
W0 − | ~W |
W

2/5
−

)

= −3n0.

Neglecting this contribution as well as the constant in the expression for a0, this shows the
claim.
We show now that the entropy (19) is nonincreasing in time and that it provides some

gradient estimates.

Proposition 12 (Entropy inequality for system (75)). The entropy (19), considered as a

function of time, is nonincreasing along (smooth) solutions (n0, T, ~W ) to (75) in R
3, where

W± = W0 ± | ~W | and W0 =
3
2
n0T . Furthermore, it holds

(76)
dH2

dt
+ c

∫

R3

(

|∇
√

W+|2 + |∇
√

W−|2 + T |∇√
n0|2 +W−1

0 |(∇ ~W )⊤|2
)

dx ≤ 0,

where c > 0 is a constant and (∇ ~W )⊤ = (I− | ~W |−2 ~W ⊗ ~W )∇ ~W .
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Proof. First, we perform some auxiliary computations:

∂

∂n0

(

5

2
n0 log

n0

W
3/5
+ +W

3/5
−

)

=
5

2

(

log n0 − log(W
3/5
+ +W

3/5
− ) + 1

)

,

∂

∂W0

(

5

2
n0 log

n0

W
3/5
+ +W

3/5
−

)

= −3

2
n0

W
−2/5
+ +W

−2/5
−

W
3/5
+ +W

3/5
−

,

∂

∂ ~W

(

5

2
n0 log

n0

W
3/5
+ +W

3/5
−

)

= −3

2
n0

W
−2/5
+ −W

−2/5
−

W
3/5
+ +W

3/5
−

~W

| ~W |
.

Using these expressions and equations (75), it follows that

dH2

dt
=

∫

R3

{

5

2

(

log n0 − log(W
3/5
+ +W

3/5
− ) + 1

)

∂tn0

− 3

2
n0

W
−2/5
+ +W

−2/5
−

W
3/5
+ +W

3/5
−

∂tW0 −
3

2
n0

W
−2/5
+ −W

−2/5
−

W
3/5
+ +W

3/5
−

~W

| ~W |
· ∂t ~W

}

dx

= −5

3

∫

R3

∇ log
n0

W
3/5
+ +W

3/5
−

· ∇W0dx

+
5

12

∫

R3

∇n0(W
−2/5
+ +W

−2/5
− )

W
3/5
+ +W

3/5
−

· ∇
(

W
3/5
+ +W

3/5
−

n0

(W
7/5
+ +W

7/5
− )

)

dx

+
5

12

∫

R3

∇
(

n0(W
−2/5
+ −W

−2/5
− )

W
3/5
+ +W

3/5
−

~W

| ~W |

)

· ∇
(

W
3/5
+ +W

3/5
−

n0

(W
7/5
+ −W

7/5
− )

~W

| ~W |

)

dx

+
3

2τsf

∫

R3

n0(W
−2/5
+ −W

−2/5
− )

W
3/5
+ +W

3/5
−

| ~W |dx.

Setting λ := n0/(W
3/5
+ +W

3/5
− ), we can rewrite dH2/dt as follows:

dH2

dt
= −5

3

∫

R3

λ−1∇λ · ∇W0dx

+
5

12

∫

R3

∇
(

λ(W
−2/5
+ +W

−2/5
− )

)

· ∇
(

λ−1(W
7/5
+ +W

7/5
− )

)

dx

+
5

12

∫

R3

∇
(

λ(W
−2/5
+ −W

−2/5
− )

~W

| ~W |

)

· ∇
(

λ−1(W
7/5
+ −W

7/5
− )

~W

| ~W |

)

dx

+
3

2τsf

∫

R3

λ| ~W |(W−2/5
+ −W

−2/5
− )dx

= I1 + I2 + I3 + I4.
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Using W0 =
1
2
(W+ +W−), the first integral becomes

I1 = −5

6

∫

R3

∑

s=±

∇λ

λ
· ∇Wsdx.

By the product rule, the third integral I3 is computed as

I3 =
5

12

∫

R3

∇
(

λ(W
−2/5
+ −W

−2/5
− )

)

· ∇
(

λ−1(W
7/5
+ −W

7/5
− )

)

dx

+
5

12

∫

R3

(

λ(W
−2/5
+ −W

−2/5
− )

)(

λ−1(W
7/5
+ −W

7/5
− )

)

∣

∣

∣

∣

∇
~W

| ~W |

∣

∣

∣

∣

2

dx,

where the mixed terms vanish since ∇( ~W/| ~W |) · ( ~W/| ~W |) = 0 (which is a consequence of

∇| ~W/| ~W ||2 = 0). Expanding the products in the first integral on the right-hand side and
in I2, some terms cancel, and we end up with

I2 + I3 =
5

6

∫

R3

(

∇(λW
−2/5
+ ) · ∇(λ−1W

7/5
+ ) +∇(λW

−2/5
− ) · ∇(λ−1W

7/5
− )

)

dx

+
5

12

∫

R3

(W
−2/5
+ −W

−2/5
− )(W

7/5
+ −W

7/5
− )

∣

∣

∣

∣

∇
~W

| ~W |

∣

∣

∣

∣

2

dx

=
5

6

∫

R3

∑

s=±

(

− 14

25

|∇Ws|2
Ws

+
9

5

∇λ

λ
· ∇Ws −

Ws

λ2
|∇λ|2

)

dx

+
5

12

∫

R3

(W
−2/5
+ −W

−2/5
− )(W

7/5
+ −W

7/5
− )

∣

∣

∣

∣

∇
~W

| ~W |

∣

∣

∣

∣

2

dx.

Finally, the fourth integral is nonpositive since 0 ≤ W− ≤ W+, i.e. I4 ≤ 0. Combining
these results, we find that

dH2

dt
≤ −5

6

∫

R3

∑

s=±

(

14

25

∣

∣

∣

∣

∇Ws√
Ws

∣

∣

∣

∣

2

− 4

5

∇Ws√
Ws

·
√
Ws

λ
∇λ+

∣

∣

∣

∣

√
Ws

λ
∇λ

∣

∣

∣

∣

2)

dx

− 5

12

∫

R3

(W
−2/5
− −W

−2/5
+ )(W

7/5
+ −W

7/5
− )

∣

∣

∣

∣

∇
~W

| ~W |

∣

∣

∣

∣

2

dx

= J1 + J2.(77)

First, we consider the first integral J1. The quadratic form in J1 is positive definite and
the eigenvalues of the associated matrix are larger than 1/5, so

J1 ≤ −1

5

∫

R3

(

|∇
√

W+|2 + |∇
√

W−|2 + (W+ +W−)

∣

∣

∣

∣

∇λ

λ

∣

∣

∣

∣

2)

dx

≤ −1

5

∫

R3

(

|∇
√

W+|2 + |∇
√

W−|2 + 2εW0

∣

∣

∣

∣

∇λ

λ

∣

∣

∣

∣

2)

dx,(78)
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where we replaced W+ +W− by 2W0 and introduced some ε ∈ (0, 1). The last term can

be reformulated in terms of W0 = 1
2
(W+ + W−) and n0 = (W

3/5
+ + W

3/5
− )λ, using the

elementary inequalities (a− b)2 ≥ 1
2
a2 − b2 and −(a+ b)2 ≥ −2(a2 + b2):

W0

∣

∣

∣

∣

∇λ

λ

∣

∣

∣

∣

2

= W0

∣

∣

∣

∣

∇n0

n0

− 3

5

W
−2/5
+ ∇W+

W
3/5
+ +W

3/5
−

− 3

5

W
−2/5
− ∇W−

W
3/5
+ +W

3/5
−

∣

∣

∣

∣

2

≥ 1

2
W0

∣

∣

∣

∣

∇n0

n0

∣

∣

∣

∣

2

− 18

25
W0

(

W
−4/5
+ |∇W+|2

(W
3/5
+ +W

3/5
− )2

+
W

−4/5
− |∇W−|2

(W
3/5
+ +W

3/5
− )2

)

.

EmployingW
3/5
+ +W

3/5
− ≥ (W++W−)

3/5 = (2W0)
3/5 andW

1/5
± ≤ (2W0)

1/5, we can estimate
as follows:

W0

∣

∣

∣

∣

∇λ

λ

∣

∣

∣

∣

2

≥ 1

2
W0

∣

∣

∣

∣

∇n0

n0

∣

∣

∣

∣

2

− 18

25
W0

(

4W
1/5
+ |∇√

W+|2
(2W0)6/5

+
4W

1/5
− |∇W−|2
(2W0)6/5

)

=
1

2
W0

∣

∣

∣

∣

∇n0

n0

∣

∣

∣

∣

2

− 18

25

24/5

W
1/5
0

(

W
1/5
+ |∇

√

W+|2 +W
1/5
− |∇

√

W−|2
)

≥ 1

2
W0

∣

∣

∣

∣

∇n0

n0

∣

∣

∣

∣

2

− 36

25

(

|∇
√

W+|2 + |∇
√

W−|2
)

.

Then, with the relation W0 =
3
2
n0T ,

W0

∣

∣

∣

∣

∇λ

λ

∣

∣

∣

∣

2

≥ 3T |∇√
n0|2 −

36

25

(

|∇
√

W+|2 + |∇
√

W−|2
)

.

Inserting this expression into (78) and choosing ε > 0 sufficiently small, we arrive at

(79) J1 ≤ −c

∫

R3

(

|∇
√

W+|2 + |∇
√

W−|2 + T |∇√
n0|2

)

dx

for some number 0 < c < 1/5.
Next, we estimate the second integral J2 in (77). By the mean-value theorem, there

exist ξ, η ∈ [W−,W+] such that

(W
−2/5
− −W

−2/5
+ )(W

7/5
+ −W

7/5
− ) = (W+W−)

−2/5(W
2/5
+ −W

2/5
− )(W

7/5
+ −W

7/5
− )

=
14

25
(W+W−)

−2/5ξ−3/5η2/5(W+ −W−)
2 ≥ 14

25
W−1

+ (W+ −W−)
2 ≥ 28

25

| ~W |2
W0

,

where we used that W+ ≤ 2W0 and W+ −W− = 2| ~W |. Consequently,

J2 ≥
28

25

∫

R3

| ~W |2
W0

∣

∣

∣

∣

∇
~W

| ~W |

∣

∣

∣

∣

2

dx =
28

25

∫

R3

1

W0

∣

∣

∣

∣

(

I−
~W ⊗ ~W

| ~W |2

)

∇ ~W

∣

∣

∣

∣

2

dx.

Combining this inequality and (79) with (77), the result follows. �
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5.3. Entropy inequality for the third model. We show that there exists an entropy
for the third model (13)-(15) (~a = λ~c) for vanishing electric fields, i.e.

∂tn± −∆(n±T±) = ∓ 1

2τsf
(n+ − n−)∓

1

2
(n+T+ − n−T−)|∇~s|2,(80)

3

2
∂t(n±T±)−

5

2
∆(n±T

2
±) = ∓ 3

4τsf
(n+T+ − n−T−)∓

5

4
(n+T

2
+ − n−T

2
−)|∇~s|2,(81)

∂t~s−
n+T+ − n−T−

n+ − n−

~s× (∆~s× ~s) = 2
∇(n+T+ − n−T−)

n+ − n−

· ∇~s− ~Ωe × ~s,(82)

where x ∈ R
3, t > 0. As in Section 5.2, we make first explicit the entropy functional (17),

where the Maxwellian is given by its Pauli components (64). A computation shows that
M± = n±gT±

(k)σ0, so (71) yields immediately (20).

Proposition 13 (Entropy inequality for system (80)-(82)). The entropy (20), considered
as a function of time, is nonincreasing along (smooth) solutions (n±, T±, ~s) to (80)-(82) in
R

3, and there exists a number c > 0 such that

dH3

dt
+ c

∫

R3

∑

s=±

(

Ts|∇
√
ns|2 + ns|∇

√

Ts|2
)

dx ≤ 0.

Proof. Before computing the derivative dH3/dt, let us consider the semiclassical energy-
transport system

∂tn = ∆(nT ),
3

2
∂t(nT ) =

5

2
∆(nT 2) in R

3,

which is known to dissipate the entropy H0 =
∫

R3 n log(nT−3/2)dx. Indeed, a computation
shows that

dH0

dt
= −

∫

R3

(

∇(nT ) · ∇(nT−3/2)− 5

2
∇ 1

T
· ∇(nT 2)

)

dx

= −4

∫

R3

(

|
√
T∇

√
n|2 + 2

√
T∇

√
n ·

√
n∇

√
T +

7

2
|
√
n
√
T |2

)

dx.

The quadratic form in the variables
√
T∇√

n and
√
n∇

√
T is positive definite and the

eigenvalues of the associated matrix are larger than 1/2, so

dH0

dt
+ 2

∫

R3

(

|
√
T∇

√
n|2 + |

√
n∇

√
T |2

)

dx ≤ 0.

The similarity in structure between H3 and H0 as well as between the spin and semi-
classical energy-transport system allows us to deduce that, for some number c > 0,

dH3

dt
+ c

∫

R3

∑

s=±

(

Ts|∇
√
ns|2 + ns|∇Ts|2

)

dx

≤ − 1

2τsf

∫

R3

(

log
n+T

−3/2
+

n−T
−3/2
−

(n+ − n−) +
3

2

T+ − T−

T+T−

(n+T+ − n−T−)

)

dx
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− 1

2

∫

R3

(

log
n+T

−3/2
+

n−T
−3/2
−

(n+T+ − n−T−) +
5

2

T+ − T−

T+T−

(n+T
2
+ − n−T

2
−)

)

|~s|2dx

= I1 + I2.

We claim that I1 ≤ 0 and I2 ≤ 0 which concludes the proof.
First, we prove that I1 ≤ 0. It holds that

I1 = − 1

2τsf

∫

R3

(n+ − n−)(log n+ − log n−)dx

− 3

4τsf

∫

R3

(

− (n+ − n−) log
T+

T−

+
T+ − T−

T+T−

(n+T+ − n−T−)

)

dx

≤ − 3

4τsf

∫

R3

(

− (n+ − n−) log
T+

T−

+
T+ − T−

T+T−

(n+T+ − n−T−)

)

dx.

Because of T− ≤ T+ and n− ≥ 0, we have n+T+ − n−T− ≥ (n+ − n−)T+ which shows that

I1e−
3

4τsf

∫

R3

(

− (n+ − n−) log
T+

T−

+
1

T−

(n+ − n−)(T+ − T−)

)

dx

= − 3

4τsf

∫

R3

(n+ − n−)

(

T+

T−

− 1− log
T+

T−

)

dx ≤ 0.

In a similar way as above, we find that n+T
2
+ − n−T

2
− ≥ (n+T+ − n−T−)T+ and

I2 = −1

2

∫

R3

(n+T+ − n−T−)(log(n+T+)− log(n−T−))dx

− 5

4

∫

R3

(

− (n+T+ − n−T−) log
T+

T−

+
T+ − T−

T+T−

(n+T
2
+ − n−T

2
−)

)

|~s|2dx

≤ −5

4

∫

R3

(

− (n+T+ − n−T−) log
T+

T−

+
1

T−

(n+T+ − n−T−)(T+ − T−)

)

|~s|2dx

= −5

4

∫

R3

(n+T+ − n−T−)

(

T+

T−

− 1− log
T+

T−

)

dx ≤ 0.

This finishes the proof. �

6. Existence analysis of the second model

We show the existence of weak solutions to a time-discrete version of the second model
in the formulation (53)-(55) for vanishing electric field. Replacing W0 = 3

2
n0T and Z0,

~Z by (56), (57), respectively, we obtain system (22)-(24). We recall that h > 0 is the

time step size, (n0,W0, ~W ) are the unknowns, and (n0
0,W

0
0 , ~W

0) are the moments at the
previous time step (supposed to be given).

Theorem 14 (Existence for the time-discrete second model). Let D ⊂ R
d (d ≤ 3) be a

bounded domain and let n0
0, W

0
0 ∈ L2(D), nD

0 , W
D
0 ∈ H1(D)∩L∞(D), ~WD ∈ H1(D;R3)∩
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L∞(D;R3), ~W 0 ∈ L2(D;R3) satisfy sup∂D | ~WD|/WD
0 < 1 and

n0
0 > 0, W 0

0 > 0 in D, inf
D

W 0
0

n0
0

> 0, sup
D

| ~W 0|
W 0

0

< 1.

Then there exists a solution (n0,W0, ~W ) ∈ H1(D;R5) to (22)-(25) such that

n0 > 0, W0 > 0 in D, inf
D

W0

n0

> 0, sup
D

| ~W |
W0

< 1.

Proof. The proof is inspired by the techniques employed in [20]. The idea is to introduce
new variables to make the differential operator linear and to truncate the nonlinearities.
We proceed in several steps.
Step 1: new variables. Let W± = W0 ± | ~W |. We define

u :=
2

3
W0, v0 :=

5

18n0

(W
3/5
+ +W

3/5
− )(W

7/5
+ +W

7/5
− ),

~v :=
5

18n0

(W
3/5
+ +W

3/5
− )(W

7/5
+ −W

7/5
− )

~W

| ~W |
.

Observe that sup∂D | ~WD|/WD
0 < 1 implies that inf∂D W± > 0 and sup∂D |~v|/v0 < 1.

Furthermore,

|~v| = 5

18n0

(W
3/5
+ +W

3/5
− )(W

7/5
+ −W

7/5
− ),

~v

|~v| =
~W

| ~W |
,

v± := v0 ± |~v| = 5

9n0

(W
3/5
+ +W

3/5
− )W

7/5
± .

This shows that v+/v− = (W+/W−)
7/5 or equivalently, W+/W− = (v+/v−)

5/7. We rewrite
the variables in terms of v±, observing that v+ + v− = 2v0:

v0 =
5

18

W 2
−

n0

(

1 +

(

v+
v−

)3/7)(

1 +
v+
v−

)

=
5

18

W 2
+

n0

(

1 +

(

v−
v+

)3/7)(

1 +
v−
v+

)

,

W± =

(

18

5
n0v0

)1/2

v
5/7
± (v

3/7
+ + v

3/7
− )−1/2(v+ + v−)

−1/2(83)

=

(

9

5
n0

)1/2

v
5/7
± (v

3/7
+ + v

3/7
− )−1/2

u =
1

3
(W+ +W−) =

(

2

5
n0v0

)1/2

(v
5/7
+ + v

5/7
− )(v

3/7
+ + v

3/7
− )−1/2(v+ + v−)

1/2

=

(

n0

5

)1/2

(v
5/7
+ + v

5/7
− )(v

3/7
+ + v

3/7
− )−1/2.
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Solving the last expression for n0 yields

(84) n0 = 5u2 v
3/7
+ + v

3/7
−

(v
5/7
+ + v

5/7
− )2

,

and inserting this equation into (83) gives W± = 3uv
5/7
± /(v

5/7
+ + v

5/7
− ). Because of ~v/|~v| =

~W/| ~W |, it follows that

(85) W0 =
1

2
(W+ +W−) =

3

2
u, ~W =

3

2
u
v
5/7
+ − v

5/7
−

v
5/7
+ + v

5/7
−

~v

|~v| .

We infer that system (22)-(24) can be written as

n0(u, v0, ~v)− h∆u = n0
0,(86)

W0(u, v0, ~v)− h∆v0 = W 0
0 ,(87)

(

1 +
h

τsf

)

~W (u, v0, ~v)− h∆~v = ~W 0 in D,(88)

where n0(u, v0, ~v), W0(u, v0, ~v), and ~W (u, v0, ~v) are given by (84)-(85).
Step 2: truncation. We introduce for ε > 0 the truncation operator

[f ]ε :=







0 for f ≤ 0,
f for 0 < f ≤ 1/ε,
1/ε for f > 1/ε,

and the auxiliary functions

λ(ξ, v+, v−) :=
5

2
ξ
(v

3/7
+ + v

3/7
− )(v+ + v−)

(v
5/7
+ + v

5/7
− )2

,

µ(ξ, v+, v−) :=
3

2

(

1 +
h

τsf

)

ξ
v
5/7
+ − v

5/7
−

v
5/7
+ + v

5/7
−

.

These definitions imply that

n0(u, v0, ~v) = λ(u/v0, v+, v−)u, ~W (u, v0, ~v) = µ(u/v0, v+, v−)v0
~v

|~v| .

We claim that the following estimate holds for λ and µ:

(89)
5

2
ξ ≤ λ(ξ, v+, v−) ≤ 6ξ, 0 ≤ µ(ξ, v+, v−) ≤

3

2

(

1 +
h

τsf

)

ξ

for all ξ ≥ 0, v+ ≥ v− ≥ 0. Indeed, the bounds for µ are obvious. In order to prove the
upper bound for λ, we observe that

(v
3/7
+ + v

3/7
− )(v+ + v−) = v

10/7
+ + v

10/7
− + v

3/7
+ v− + v

3/7
− v+.

By Young’s inequality,

v
3/7
+ v− ≤ 3

10
v
10/7
+ +

7

10
v
10/7
− ≤ 7

10

(

v
10/7
+ + v

10/7
−

)

,
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and the same bound holds for v
3/7
− v+ such that

(v
3/7
+ + v

3/7
− )(v+ + v−) ≤

12

5

(

v
10/7
+ + v

10/7
−

)

≤ 12

5

(

v
5/7
+ + v

5/7
−

)2
.

Inserting this estimate into the definition of λ, the upper bound follows. The lower bound

is equivalent to (v
3/7
+ + v

3/7
− )(v+ + v−) ≥ (v

5/7
+ + v

5/7
− )2 which follows from

(

v
5/7
+ + v

5/7
−

)2 −
(

v
3/7
+ + v

3/7
−

)

(v+ + v−) = 2v
5/7
+ v

5/7
− − v

3/7
+ v− − v

3/7
− v+

= 2(v+v−)
5/7

(

1− 1

2

(

v−
v+

)2/7

− 1

2

(

v+
v−

)2/7)

≤ 0.

This completes the proof of (89).
With the above truncation, we wish to prove the existence of a weak solution to

λ
(

[u/v0]ε, v+, v−
)

u− h∆u = n0
0,(90)

3

2
[u/v0]εv0 − h∆v0 = W 0

0 ,(91)

µ
(

[u/v0]ε, v+, v−
)

v0
~v

|~v| − h∆~v = ~W 0 in D,(92)

where, slightly abusing the notation, v± is here defined by v± = max{0, v0±|~v|}. Since we
will prove below that v0 ± |~v| ≥ 0, this notation is consistent. The boundary conditions
are

(93) u = uD :=
2

3
WD

0 , v0 = vD0 , ~v = ~vD on ∂D,

where

vD0 :=
5

18nD
0

((WD
+ )3/5 + (WD

− )3/5)((WD
+ )7/5 + (WD

− )7/5),

~vD :=
5

18nD
0

((WD
+ )3/5 + (WD

− )3/5)((WD
+ )7/5 − (WD

− )7/5)
~WD

| ~WD|
,

and WD
± := WD

0 ± | ~WD|.
Step 3: existence of solutions to the truncated problem. The existence of a solution to

(90)-(92) is shown using the Leray-Schauder fixed-point theorem. For this, we define the
mapping F : L2(D;R5)× [0, 1] → L2(D;R5), F (ρ, ν0, ~ν; σ) = (u/v0, v0, ~v), auch that

σλ
(

[ρ]ε, ν+, ν−
)

u− h∆u = n0
0 in D, u = uD on ∂D,(94)

3

2
σ[ρ]εv0 − h∆v0 = W 0

0 in D, v0 = vD0 on ∂D,(95)

σµ
(

[ρ]ε, ν+, ν−
)

ν0
~ν

|~ν| − h∆~v = ~W 0 in D, ~v = ~vD on ∂D,(96)

where ν± := max{0, ν0 ± |~ν|}. We first show that F is well defined, i.e. u/v0 ∈ L2(D).
Standard eliptic regularity implies that u, v0 ∈ H2(D) ⊂ L∞(D) (here we use d ≤ 3). By
Stampacchia’s truncation technique, we infer that u and v0 are strictly positive (see, e.g.,
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Step 2 in [20, Section 2]). We deduce that u/v0 ∈ H1(D), and F is well defined. Since
~v ∈ H2(D;R3) by elliptic regularity again, the range of F lies in H1(D;R5). Employing
u, v0, ~v, respectively, as test functions in the weak formulation of (94)-(96) and using
the Poincaré inequality (note that (u, v0, ~v) are bounded functions), we obtain for some
constant C > 0,

‖F (ρ, ν0, ~ν; σ)‖H1(D;R5) ≤ C
(

‖(n0
0,W

0
0 ,

~W 0)‖L2(D;R5) + ‖(ρ, ν0, ~ν)‖L2(D;R5)

)

.

Standard arguments show that F is continuous. Then the Sobolev embedding H1(D) →֒
L2(D) implies that F is compact. Moreover, F (·; 0) is constant.
It remains to derive uniform a priori estimates for all fixed points of F (·; σ). Let

(ρ, ν0, ~ν) ∈ L2(D;R5) be such a fixed point. Then (ρ, ν0, ~ν) ∈ H1(D;R5) and u = ρν0.
Employing u− uD, v0 − vD0 as test functions in the weak formulation of (94)-(95), respec-
tively, and the Poincaré inequality, we find that

‖u‖H1(D) + ‖v0‖H1(D) ≤ ch−1/2
(

‖n0
0‖L2(D) + ‖W 0

0 ‖L2(D)

)

,

where here and in the following, c > 0 denotes a generic constant independent of the
solutions (and of ε). Similarly, with the test function ~v − ~vD in the weak formulation of
(96), using the nonnegativity of ν0 and µ,

‖~v‖H1(D) ≤ Ch−1/2‖ ~W 0‖L2(D).

These estimates provides the uniform bound in L2(D;R5) for all fixed points of F (·, σ).
By the Leray-Schauder fixed-point theorem, we infer the existence of a weak solution to
(90)-(92).
Step 4: removing the truncation. We prove that that there exists a positive lower bound

for u/v0 which is independent of ε. As a consequence, the truncation in (90)-(92) can be
removed for sufficiently small values of ε > 0, giving a solution to (22)-(24).
We choose ε := min{infD(W 0

0 /n
0
0), (supD(u

D/vD0 ))
−1}, which is positive by assumption,

and define φ(z) = max{0, z − 1/ε}. We use the (admissible) test functions v0φ(u/v0),
uφ(u/v0) in (90), (91), respectively, and take the difference of the resulting equations:

∫

D

(

λ
(

[u/v0]ε, v+, v−
)

− 3

2
[u/v0]ε

)

uv0φ(u/v0)dx

+ h

∫

D

(

∇(v0φ(u/v0)) · ∇u−∇(uφ(u/v0)) · ∇v0
)

dx(97)

=

∫

D

(v0n
0
0 − uW 0

0 )φ(u/v0)dx.

By (89), the first integral on the left-hand side can be estimated from below,
∫

D

(

λ
(

[u/v0]ε, v+, v−
)

− 3

2
[u/v0]ε

)

uv0φ(u/v0)dx ≥
∫

D

[u/v0]εuv0φ(u/v0)dx ≥ 0.

The second integral on the left-hand side of (97) is nonnegative since
∫

D

(

∇(v0φ(u/v0)) · ∇u−∇(uφ(u/v0)) · ∇v0
)

dx
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=

∫

D

(

v0∇φ(u/v0) · ∇u− u∇φ(u/v0) · ∇v0
)

dx

=

∫

D

(v0∇u− u∇v0) · ∇(u/v0)φ
′(u/v0)dx =

∫

D

v20|∇(u/v0)|2φ′(u/v0)dx ≥ 0.

Finally, because of φ(u/v0) = 0 if v0/u ≤ ε and ε ≤ W 0
0 /n

0
0, the integral on the right-hand

side of (97) becomes
∫

D

(v0n
0
0 − uW 0

0 )φ(u/v0)dx =

∫

D

un0
0

(

v0
u

− W 0
0

n0
0

)

φ(u/v0)dx

≤
∫

D

un0
0

(

ε− W 0
0

n0
0

)

φ(u/v0)dx ≤ 0.

Therefore, (97) implies that

0 ≤
∫

D

uv0φ(u/v0)dx ≤ 0,

from which we deduce that φ(u/v0) = 0 a.e. in D and consequently, u/v0 ≤ 1/ε a.e. in D.
Hence, [u/v0]ε = u/v0 and we can remove the truncation in (90)-(92).
Step 5: proof of v0 > |~v| in D. More precisely, we show that (1− δ)v0 − |~v| ≥ 0 for

0 < δ < min

{

1− sup
D

| ~W 0|
W 0

0

, 1− sup
D

|~vD|
vD0

,

(

1

6

)7/5}

.

Note that such a choice is possible because of our assumptions. To prove the claim, we use
w := min{0, (1 − δ)v0 − |~v|} and ~w := w~v/|~v| as test functions in the weak formulations
of (91) and (92), respectively. Note that, since v0 is strictly positive, ~w vanishes in a
neighborhood of ~v = 0, so ~w ∈ H1(D). By definition of δ, it holds that w = 0 on ∂D, so
w, ~w ∈ H1

0 (D). We find that

3

2

∫

D

uwdx+ h

∫

D

∇v0 · ∇wdx =

∫

D

W 0
0wdx,

3

2

(

1 +
h

τsf

)∫

D

v
5/7
+ − v

5/7
−

v
5/7
+ + v

5/7
−

uwdx+ h

∫

D

∇~v · ∇~wdx =

∫

D

~W 0 · ~wdx.

We take the difference between the first equation, multiplied by 1 − δ, and the second
equation:

∫

D

(

(1− δ)− 3

2

(

1 +
h

τsf

)

v
5/7
+ − v

5/7
−

v
5/7
+ + v

5/7
−

)

uwdx(98)

+ h

∫

D

(

(1− δ)∇v0 · ∇w −∇~v · ∇~w
)

dx =

∫

D

(

(1− δ)W 0
0 − ~v

|~v| ·
~W 0

)

wdx.

We deduce from the definition of δ that for any z ≥ 1− δ,

(1 + z)5/7 −max{0, 1− z}5/7
(1 + z)5/7 +max{0, 1− z}5/7 = 1− 2max{0, 1− z}5/7

(1 + z)5/7 +max{0, 1− z}5/7 ≥ 1− 2δ5/7 >
2

3
.
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Thus, since v± = max{0, v0 ± |~v|} and taking z = |~v|/v0 ≥ 1 − δ on {w ≤ 0}, the first
integral on the left-hand side of (98) is estimated as

∫

D

(

(1− δ)− 3

2

(

1 +
h

τsf

)

v
5/7
+ − v

5/7
−

v
5/7
+ + v

5/7
−

)

uwdx

≥
∫

D

(

1− 3

2

(1 + |~v|/v0)5/7 −max{0, 1− |~v|/v0}5/7
(1 + |~v|/v0)5/7 +max{0, 1− |~v|/v0}5/7

)

uwdx

≥ −cδ

∫

D

uwdx = −cδ

∫

D

umax{0, (1− δ)v0 − |~v|}dx,

where cδ =
3
2
(1− 2δ5/7)− 1 = 1

2
− 3δ5/7 > 0. The second integral on the left-hand side of

(98) equals
∫

D

(

(1− δ)∇v0 · w −∇~v · ∇
(

w
~v

|~v|

))

dx

=

∫

D

(

(1− δ)∇v0 · w −∇|~v| · ∇w − w∇~v · ∇ ~v

|~v|

)

dx

=

∫

D

(

|∇w|2 − |~v|w
∣

∣

∣

∣

∇ ~v

|~v|

∣

∣

∣

∣

2)

dx ≥ 0,

using the fact that w ≤ 0. Finally, by the definition of δ, the integral on the right-hand
side of (98) is nonpositive,

∫

D

(

(1− δ)W 0
0 − ~v

|~v| ·
~W 0

)

wdx ≤
∫

D

(

(1− δ)W 0
0 − | ~W 0|

)

wdx ≤ 0.

Summarizing these estimates, (98) implies that

−cδ

∫

D

umin{0, (1− δ)v0 − |~v|}dx = −cδ

∫

D

uwdx ≤ 0

and hence, (1− δ)v0 − |~v| ≥ 0 a.e. in D, which proves the claim. �

7. Numerical experiments

We perform some numerical simulations using the first model (7)-(9) with the spin
polarization matrix, We consider, as in [17], three- and five-layer structures that consist
of alternating nonmagnetic and ferromagnetic layers. Multilayer structures are promising
for applications in micro-sensor and high-frequency devices. In this paper, they serve to
illustrate the solution behavior rather than to model practical devices.

7.1. Numerical scheme. We solve equations (7)-(9) on the finite interval [0, 1] which
is divided in m equal subintervals K of length △x = 1/m. The finite-volume method
is employed and the generic unknown uK is an approximation of the integral

∫

K
udx.

The difference quotient DuK,σ/(△x) := (uK,σ − uK)/(△x) approximates the gradient of
u in the subinterval K, where uK,σ is the value in the neighboring element K ′ such that
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K ∩ K ′ = {σ}. Then the flux Ju = −(∇(uT ) + u∇V ) through the point σ can be
approximated by

(99) Ju,K,σ = − 1

△x

(

D(uT )K,σ +
1

2
(uK + uK,σ)DVK,σ

)

.

Special care has to be taken for the discretization of the Joule heating term Jn · ∇V . We
suggest to approximate it according to

∫

K

Jn · ∇V dx ≈ 1

2△x

∑

σ

△xJn,K,σDVK,σ,

where the sum is (here and in the following) over the two end points of the interval K.

The values CK , ~ΩK , pK are given by the integrals of C(x), ~Ω(x), p(x) over K, respectively,

and the values ~Ωσ, pσ are the arithmetic averages of ~Ω, p in the neighboring subintervals
of the intersecting point σ, respectively. Finally, we set ησ =

√

1− p2σ.
The stationary solution is computed as the limit tk = k△t → ∞ from the implicit

Euler finite-volume discretization of (7)-(9). We solve first the Poisson equation for the
electric potential V k with the charge density from the previous time step k − 1, solve
then the moment equations for (nk

0,W
k
0 , ~n

k), and update finally the temperature. Given
(nk−1

0,K , ~nk−1
K , T k−1

K ) and W k−1
0,K = 3

2
nk−1
0,K T k−1

K , the numerical scheme reads as

− λ2
D

△x

∑

σ

DV k
K,σ = △x(nk−1

0,K − CK),

△x

△t
(nk

0,K − nk−1
0,K ) +

∑

σ

J k
n,K,σ = 0,

△x

△t
(W k

0,K −W k−1
0,K ) +

∑

σ

J k
W,K,σ +

1

2△x

∑

σ

△xJ k
n,K,σDV

k
K,σ = 0,

△x

△t
(~nk

K − ~nk−1
K ) +

∑

σ

~J k
K,σ + γ△x(~ΩK × ~nk

K) = −△x

τsf
~nk
K ,

T k
K =

2

3

W k
0,K

nk
0,K

,

and the discrete fluxes are defined by

J k
n,K,σ = −D0η

−2
σ

(

Jk
n,K,σ − pσ~Ωσ · ~Jk

n,K,σ

)

,

J k
W,K,σ = −5

3
D0η

−2
σ

(

Jk
W,K,σ − p~Ωσ · ~JW,K,σ

)

,

~J k
K,σ = −D0η

−2
σ

(

− pσ~ΩσJ
k
n,K,σ + (1− ησ)~Ωσ ⊗ ~Ωσ · ~Jk

n,K,σ + ησ ~J
k
n,k,σ

)

,
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and the fluxes Jk
n,K,σ, J k

W,K,σ, and
~Jk
K,σ are discretized according to (99) with the exception

that the temperature and the densities in the drift term are explicit, i.e.

Jk
u,K,σ = − 1

△x

(

D(ukT k−1)K,σ +
1

2
(uk−1

K + uk−1
K,σ )DV

k
K,σ

)

.

Note that we have introduced the scaled diffusion coefficient D0 and the parameter γ,
which come from the scaling of the equations. The values are D0 ≈ 6.9 · 10−4 and γ = 4.
The scaled Debye length equals λD ≈ 1.2 · 10−4. We have chosen the (scaled) boundary
conditions n0 = 1, ~n = 0, and V = VD at x = 0, 1 with VD(0) = 0 and VD(1) = U/UT .
Here, UT = 0.026V is the thermal voltage at room temperature.
The discrete linear system is solved for each time step k until the maximum norm of

the difference between two consecutive solutions is smaller than a predefined threshold
(10−8 . . . 10−10). This solution is considered as a steady state. The numerical parameters
are △x = 0.003, △t = 5 · 10−4 . . . 10−3, and the (unscaled) physical parameters are D =
10−3 m2s−1 (diffusion coefficient), τsf = 10−12 s, and U = −1V (applied bias).

7.2. Three-layer structure. As the first numerical experiment, we consider a three-layer
structure which consists of a nonmagnetic layer sandwiched between two ferromagnetic
layers; see Figure 1. This structure may be regarded as a diode with ferromagnetic source
and drain regions. The length of the diode is L = 1.2µm, the ferromagnetic layers have
length ℓ = 0.2µm, and the doping concentrations are C = 1023m−3 in the highly doped
regions and C = 4 · 1020m−3 in the lowly doped region.

F, n+ F, n+N, n

L

ℓ ℓ

x

Figure 1. Geometry of the three-layer structure with ferromagnetic (F)
highly doped (n+) source and drain regions and nonmagnetic (N) lowly
doped (n) channel region.

The local magnetization in the side regions is aligned with the z-axis (orthogonal to the

diode), ~Ω(x) = (0, 0, 1)⊤ for x ∈ [0, ℓ] ∪ [L − ℓ, L] and ~Ω(x) = 0 else. The polarization in
the ferromagnetic regions equals p = 0.66.
Figure 2 shows the stationary charge density n0 (left panel) and the spin density ~n =

(0, 0, n3) (right panel), compared with the solution to the corresponding spinorial drift-
diffusion model (with constant temperature). As expected, the charge densities are similar
with some small differences close to the junction of the drain region. The spin component
n3 exhibits some peaks around the junctions which can be explained by the discontinuity
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of p(x) (and hence η(x)) at the junctions [17, Sec. 8.1]. The peaks are smaller in the
energy-transport model which may be due to thermal diffusion.
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Figure 2. Charge density n0 (left) and spin density n3 (right) in the three-
layer structure computed from the spin energy-transport model (T 6= const.)
and from the corresponding spin drift-diffusion model (T = 1).

The temperature for different values of the polarization p is illustrated in Figure 3. The
case p = 0 corresponds to a nonmagnetic diode. The temperature maximum increases with
p but the temperature decreases with p in the drain region. Possibly, higher values of p
lead to stronger heat fluxes increasing the temperature in the channel region.
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Figure 3. Temperature in the three-layer structure for various polarizations p.
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7.3. Five-layer structure. The five-lyer structure is composed of two ferromagnetic lay-
ers sandwiched between two nonmagnetic layers and separated by a thin nonmagnetic
layer in the middle of the structure; see Figure 4. The choice of the lengths L and ℓ and
of the doping concentrations is as in Subsection 7.2. The middle region has the thickness
d = L/21 ≈ 60 nm. Again we take p = 0.66. The local magnetization is different in the two

layers: ~Ω(x) = (0, 0, 1)⊤ for x ∈ [L/6, 10L/21], ~Ω(x) = (0, 1, 0)⊤ for x ∈ [11L/21, 5L/6],

and ~Ω(x) = 0 else.

N, n+ N, n+F1, n F2, nN

L

ℓ ℓd

x

Figure 4. Geometry of the five-layer structure with ferromagnetic (F1, F2)
lowly doped (n) regions and nonmagnetic (N) regions. The source and drain
regions are highly doped (n∗), while the middle region is lowly doped.

The effect of the temperature is now stronger than in the three-layer structure. The
charge density n0 and temperature T are presented in Figure 5. The interplay of the
charge and spin densities in the nonmagnetic middle region causes a small hump in n0

and a more significant increase before the drain junction, compared to Figure 2 (left).
The hump is larger when the electric potential is a linear function and the temperature
is constant; see Figure 3 in [17]. The temperature maximum decreases with p, opposite
to the situation in the three-layer structure. We observe that the polarization strongly
influences the temperature. When p = 0, we obtain the same curve as in Figure 3 since
this describes the same nonmagnetic diode.
In contrast to the three-layer structure, all components of the spin vector density are

nonzero. However, the component n1 is relatively small. We present the remaining compo-
nents n2 and n3 in Figure 6. The temperature causes a significant smoothing of the peaks
between the magnetic/nonmagnetic junctions.
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Figure 5. Charge density n0 (left) and temperature T (right) in the five-
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