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Abstract. The mean-field limit in a weakly interacting stochastic many-particle system
for multiple population species in the whole space is proved. The limiting system consists
of cross-diffusion equations, modeling the segregation of populations. The mean-field limit
is performed in two steps: First, the many-particle system leads in the large population
limit to an intermediate nonlocal diffusion system. The local cross-diffusion system is then
obtained from the nonlocal system when the interaction potentials approach the Dirac
delta distribution. The global existence of the limiting and the intermediate diffusion
systems is shown for small initial data, and an error estimate is given.

1. Introduction

Cross-diffusion models are systems of quasilinear parabolic equations with a nondiagonal
diffusion matrix. They arise in many applications in cell biology, multicomponent gas
dynamics, population dynamics, etc. [16]. To understand the range of validity of these
diffusion systems, it is important to derive them from first principles or from more general
models. In the literature, cross-diffusion systems were derived from random walks on lattice
models [29], the kinetic Boltzmann equation [2], reaction-diffusion systems [5, 14], or from
stochastic many-particle systems [28]. We derive in this paper rigorously the n-species
cross-diffusion system

(1)
∂tui − σi∆ui = div

( n∑

j=1

aijui∇uj
)

in R
d, t > 0,

ui(0) = u0i , i = 1, . . . , n,

where σi > 0 and aij are real numbers, starting from a stochastic many-particle system
for multiple species. System (1) describes the diffusive dynamics of populations subject to
segregation effects modeled by the term on the right-hand side [10].
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1.1. Setting of the problem. We consider n subpopulations of interacting individuals
moving in the whole space R

d with the particle numbers Ni ∈ N, i = 1, . . . , n. We
take Ni = N to simplify the notation. The individuals are represented by the stochastic
processes Xk,N

η,i (t) evolving according to

(2)
dXk,N

η,i (t) = −
n∑

j=1

1

N

N∑

ℓ=1

∇V η
ij

(
Xk,N

η,i (t)−Xℓ,N
η,j (t)

)
dt+

√
2σidW

k
i (t),

Xk,N
η,i (0) = ξki , i = 1, . . . , n, k = 1, . . . , N,

where (W k
i (t))t≥0 are d-dimensional Brownian motions, the initial data ξ1i , . . . , ξ

N
i are inde-

pendent and identically distributed random variables with the common probability density
function u0i , and the interaction potential V η

ij is given by

V η
ij(x) =

1

ηd
Vij

( |x|
η

)
, x ∈ R

d, i, j = 1, . . . , n.

Here, Vij is a given smooth function and η > 0 the scaling parameter. The scaling is
chosen in such a way that the L1 norm of V η

ij stays invariant and V η
ij → aijδ in the sense

of distributions as η → 0, where δ denotes the Dirac delta distribution.
The mean-field limit N → ∞, η → 0 has to be understood in the following sense. For

fixed η > 0, the many-particle model (2) is approximated for N → ∞ by the intermediate
stochastic system

(3)
dX̄k

η,i(t) = −
n∑

j=1

(∇V η
ij ∗ uη,j)(X̄k

η,i(t), t)dt+
√
2σidW

k
i (t),

X̄k
η,i(0) = ξki , i = 1, . . . , n, k = 1, . . . , N,

where uj,η is the probability density function of X̄k
j,η, satisfying the nonlocal diffusion

system

(4)
∂tuη,i = σi∆uη,i + div

( n∑

j=1

uη,i∇V η
ij ∗ uη,j

)
in R

d, t > 0,

uη,i(0) = u0i , i = 1, . . . , n.

Observe that the intermediate system depends on k only through the initial data. Then,
passing to the limit η → 0 in the intermediate system, the limit ∇V η

ij ∗ uη,j → aij∇uj in

L2 leads to the limiting stochastic system

(5)
dX̂k

i (t) = −
n∑

j=1

aij∇uj(X̂k
i (t), t)dt+

√
2σidW

k
i (t),

X̂k
i (0) = ξki , i = 1, . . . , n, k = 1, . . . , N,
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and the law of X̂k
i is a solution to the limiting cross-diffusion system (1). The main result

of this paper is the proof of the error estimate

E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̂k

i (s)
∣∣
)

≤ C(t)η,

if we choose η and N such that η−(2d+4) ≤ ε logN holds and ε > 0 can be any small
number.

1.2. State of the art. Mean-field limits were investigated intensively in the last decades
to derive, for instance, reaction-diffusion equations [8] or McKean-Vlasov equations [6, 11]
(also see the reviews [12, 15]). Oelschläger [21] considered in the 1980s a weakly interacting
particle system of N particles and proved that in the limit N → ∞, the stochastic system
converges to a deterministic nonlinear process. Later, he generalized his approach to
systems of reaction-diffusion equations [22].
The analysis of quasilinear diffusion systems started more recently. The chemotaxis sys-

tem was derived by Stevens [28] from a stochastic many-particle system with a limiting
procedure that is based on Oelschläger’s work. Reaction-diffusion systems with nonlocal
terms were derived in [17] as the mean-field limit of a master equation for a vanishing
reaction radius; also see [13]. The two-species Maxwell-Stefan equations were found to be
the hydrodynamic limit system of two-component Brownian motions with singular interac-
tions [26]. Nonlocal Lotka-Volterra systems with cross diffusion were obtained in the large
population limit of point measure-valued Markov processes by Fontbona and Méléard [9].
Moussa [20] then proved the limit from the nonlocal to the local diffusion system (but only
for triangular diffusion matrices), which gives the Shigesada-Kawasaki-Teramoto cross-
diffusion system. A derivation of a space discretized version of this system from a Markov
chain model was presented in [7]. Another nonlocal mean-field model was analyzed in [3].
Our system (1) is different from the aforementioned Shigesada-Kawasaki-Teramoto sys-

tem

∂tui = ∆

(
ui

n∑

j=1

aijuj

)
= div

( n∑

j=1

aijui∇uj
)
+ div

( n∑

j=1

aijuj∇ui
)

derived in [9, 20]. Our derivation produces the first term on the right-hand side. The
reason for the difference is that in [9], the diffusion coefficient σi in (2) is assumed to
depend on the convolutions Wij ∗ uj for some functions Wij – yielding the last term in the
previous equation –, while we have assumed a constant diffusion coefficient. It is still an
open problem to derive the general Shigesada-Kawasaki-Teramoto system; the approach
of Moussa [20] requires that aij = 0 for j < i.
System (1) was also investigated in the literature. A formal derivation from the inter-

mediate diffusion system (4) was performed by Galiano and Selgas [10], while probabilistic
representations of (1) were presented in [1]. A rigorous derivation from the stochastic
many-particle system (2) is still missing in the literature. In this paper, we fill this gap
by extending the technique of [4] to diffusion systems. Compared to [4], the argument to
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derive the uniform estimates is more involved and involves a nonlinear Gronwall argument
(see Lemma 17 in the appendix).
The global existence of solutions to (1) for general initial data and coefficients aij ≥ 0 is

an open problem. The reason is that we do not know any entropy structure of (1). For the
two-species system, Galiano and Selgas [10] proved the global existence of weak solutions
in a bounded domain with no-flux boundary conditions under the condition 4a11a22 >
(a12+a21)

2. The idea of the proof is to show that H(u) =
∫
ui(log ui− 1)dx is a Lyapunov

functional (entropy). The condition can be weakened to a11a22 > a12a21 using the modified
entropy H1(u) =

∫
(a21u1(log u1 − 1) + a12u2(log u2 − 1))dx, but this is still a weak cross-

diffusion condition.
We use the following notation throughout the paper. We write ‖ · ‖Lp and ‖ · ‖Hs for the

norms of Lp = Lp(Rd) and Hs = Hs(Rd), respectively. Furthermore, |u|2 =
∑n

i=1 u
2
i for

u = (u1, . . . , un) ∈ R
n and ‖u‖2Lp =

∑n
i=1 ‖ui‖2Lp for functions u = (u1, . . . , un). We use the

notation u(t) = u(·, t) for functions depending on x and t, and C > 0 is a generic constant
whose value may change from line to line.

1.3. Main results. The first two results are concerned with the solvability of the nonlocal
diffusion system (4) and the limiting cross-diffusion system (1). The existence results are
needed for our main result, Theorem 3 below.
We impose the following assumptions on the interaction potential. Let Vij ∈ C2

0(R
d) be

such that supp(Vij) ⊂ B1(0) for i, j = 1, . . . , n. Then V η
ij(x) = η−dVij(|x|/η) for η > 0

satisfies supp(V η
ij) ⊂ Bη(0) and

aij :=

∫

Rd

Vij(|x|)dx =

∫

Rd

V η
ij(x)dx, i, j = 1, . . . , n.

As the potential may be negative (and aij may be negative too), we introduce

Aij := ‖Vij‖L1 = ‖V η
ij‖L1 , i, j = 1, . . . , n.

Proposition 1 (Existence for the nonlocal diffusion system). Let u0 = (u01, . . . , u
0
n) ∈

Hs(Rd;Rn) with s > d/2 + 1 and u0i ≥ 0 in R
d and assume that

(6) ‖u0‖Hs ≤ σ

C∗ ∑n
i,j=1Aij

,

where σ = mini=1,...,n σi > 0 and C∗ > 0 is a constant only depending on s and d. Then

there exists a global solution uη = (uη,1, . . . , uη,n) to problem (4) such that uη,i(t) ≥ 0 in

R
d, t > 0, uη ∈ L∞(0,∞;Hs(Rd;Rn) ∩ L2(0,∞;Hs+1(Rd;Rn)), and

sup
t>0

‖uη(t)‖Hs ≤ ‖u0‖Hs .

Moreover, if for some 0 < γ < σ the slightly stronger condition

(7) ‖u0‖Hs ≤ σ − γ

C∗ ∑n
i,j=1Aij
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holds, then the solution is unique and

(8) sup
t>0

‖uη(t)‖2Hs + γ‖∇uη‖2L2(0,∞;Hs+1) ≤ ‖u0‖2Hs .

Since we do not use the structure of the equations, we can only expect the global existence
of solutions for sufficiently small initial data. The proof of this result is based on the
Banach fixed-point theorem and a priori estimates and is rather standard. We present it
for completeness.

Proposition 2 (Existence for the limiting cross-diffusion system). Let u0 ∈ Hs(Rd;Rn)
with s > d/2 + 1 such that u0i ≥ 0 in R

d and (7) holds. Then there exists a unique

global solution u = (u1, . . . , un) to problem (1) satisfying ui(t) ≥ 0 in R
d, t > 0, u ∈

L∞(0,∞;Hs(Rd;Rn)) ∩ L2(0,∞;Hs+1(Rd;Rn)), and

(9) sup
t>0

‖u(t)‖2Hs + γ‖u‖2L2(0,∞;Hs+1) ≤ ‖u0‖2Hs .

Moreover, let uη be the solution to problem (4). Then the following error estimate holds

for any T > 0:

(10) ‖uη − u‖L∞(0,T ;L2) + ‖∇(uη − u)‖L2(0,T ;L2) ≤ C(T )η

for some constant C(T ) > 0.

The proposition is proved by performing the limit η → 0 in (4) which is possible in view
of the uniform estimate (8). The error estimate (10) follows from the uniform bounds and
the smallness condition (6).
For our main result, we need to make precise the stochastic setting. Let (Ω,F , (Ft)t≥0,P)

be a filtered probability space and let (W k
i (t))t≥0 for i = 1, . . . , n, k = 1, . . . , N be d-

dimensional Ft-Brownian motions that are independent of the random variables ξki . We
assume that the Brownian motions are independent and that the initial data ξ1i , . . . , ξ

N
i

are independent and identically distributed random variables with the common probability
density function u0i .
We prove in Section 4 that if s > d/2+2 and the initial density u0 satisfies the smallness

condition (6), the stochastic differential systems (2), (3), and (5) have pathwise unique
strong solutions; also see Remark 11.

Theorem 3 (Error estimate for the stochastic system). Under the aforementioned as-

sumptions, let s > d/2 + 2 and let Xk,N
η,i and X̂k

i be solutions to the problems (2) and (5),
respectively. Furthermore, let 0 < ε < 1 be sufficiently small and choose N ∈ N such that

ε logN ≥ η−2d−4. Then, for any t > 0,

E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̂k

i (s)
∣∣
)

≤ C(t)η,

where the constant C(t) depends on t, n, ‖D2Vij‖L∞, and the initial datum u0.
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The idea of the proof is to derive error estimates for the differences Xk,N
η,i − X̄k

η,i and

X̄k
η,i − X̂k

i (where X̄k,N
η,i solves (3)) and to use

E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i − X̂k

i

∣∣
)

≤ E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i − X̄k

η,i

∣∣
)

+ E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣X̄k
η,i − X̂k

i

∣∣
)
.

The expectations on the right-hand side are estimated by taking the difference of the
solutions to the corresponding stochastic differential equations, exploiting the Lipschitz
continuity of ∇V η

ij , and observing that ‖V η
ij ∗ ∇uj − aij∇uj‖L2(0,t;L2) ≤ Cη.

The paper is organized as follows. Sections 2 and 3 are concerned with the proof of
Propositions 1 and 2, respectively. The existence of solutions to the stochastic systems is
shown in Section 4. The main result (Theorem 3) is then proved in Section 5. Finally, the
appendix recalls some auxiliary results needed in our analysis.

2. Existence for the nonlocal diffusion system (4)

We show Proposition 1 whose proof is split into several lemmas.

Lemma 4 (Local existence of solutions). Let u0 = (u01, . . . , u
0
n) ∈ Hs(Rd;Rn) with s >

d/2 + 1 and u0i ≥ 0 in R
d. Then there exists T ∗ > 0 such that (4) possesses the unique

solution uη = (uη,1, . . . , uη,n) ∈ L∞(0, T ∗;Hs(Rd;Rn)) ∩ L2(0, T ∗;Hs+1(Rd;Rn)) satisfying

uη,i(t) ≥ 0 in R
d for t > 0. The time T ∗ > 0 depends on ‖u0‖Hs such that T ∗ → 0 if

‖u0‖Hs → ∞.

Proof. The idea is to apply the Banach fixed-point theorem. For this, we introduce

Y =
{
v ∈ L∞(0, T ∗;Hs(Rd;Rn)) ∩ L2(0, T ∗;Hs+1(Rd;Rn)) :(11)

sup
0<t<T ∗

‖v(·, t)‖2Hs ≤M := 1 + ‖u0‖2Hs

}
,(12)

endowed with the metric dist(u, w) = sup0<t<T ∗ ‖(u − w)(t)‖L2 , where T ∗ > 0 will be
determined later. The fixed-point operator S : Y → Y is defined by Sv = u, where u is
the unique solution to the Cauchy problem

(13) ∂tui = σi∆ui + div

( n∑

j=1

u+i ∇V η
ij ∗ vj

)
, ui(0) = u0i in R

d,

and u+i = max{0, ui}. The existence of a unique solution u ∈ C0([0, T ];Hs(Rd)) ∩
L2(0, T ;Hs+1(Rd)) to this linear advection-diffusion problem follows from semigroup theory
since u0 ∈ Hs(Rd;Rn). Taking the test function u−i = min{0, ui} in the weak formulation
of (13) yields

1

2

d

dt

∫

Rd

(u−i )
2dx+ σi

∫

Rd

|∇u−i |2dx = −
∫

Rd

n∑

j=1

u+i (∇V η
ij ∗ vj) · ∇u−i dx.
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Since u+i ∇u−i = 0 in R
d, we infer that u−i = 0 in R

d, showing that ui(t) is nonnegative for
all t ∈ (0, T ∗).
We prove that sup0<t<T ∗ ‖u(·, t)‖2Hs ≤ M for sufficiently small values of T ∗ > 0. Then

u ∈ Y and S : Y → Y is well defined. We apply the differential operator Dα for an
arbitrary multi-index α ∈ N

d of order |α| ≤ s to (13), multiply the resulting equation by
Dαui, and integrate over Rd:

1

2

d

dt

∫

Rd

|Dαui|2dx+ σi

∫

Rd

|∇Dαui|2dx = −
∫

Rd

n∑

j=1

Dα(ui∇V η
ij ∗ vj) · ∇Dαuidx.

We sum these equations from i = 1, . . . , n, apply the Cauchy-Schwarz inequality to the
integral on the right-hand side, and the Moser-type calculus inequality (Lemma 15):

1

2

d

dt

∫

Rd

|Dαu|2dx+ σ

∫

Rd

|∇Dαu|2dx ≤
n∑

i,j=1

∥∥Dα(ui∇V η
ij ∗ vj)

∥∥
L2
‖∇Dαui‖L2

≤ C(ε)
n∑

i,j=1

∥∥Dα(ui∇V η
ij ∗ vj)

∥∥2

L2
+ εn‖∇Dαu‖2L2

≤ C(ε)
n∑

i,j=1

(
‖ui‖L∞

∥∥Ds(∇V η
ij ∗ vj)

∥∥
L2

+ ‖Dsui‖L2‖∇V η
ij ∗ vj‖L∞

)2

+ εn‖∇Dαu‖2L2 ,

where we recall that σ = mini=1,...,n σi > 0 and ε is any positive number. The last term on
the right-hand side can be absorbed by the second term on the left-hand side if ε ≤ σ/(2n).
Hence, summing over all multi-indices α of order |α| ≤ s, using Young’s convolution
inequality (Lemma 16), and the inequality ‖∇V η

ij‖L1 ≤ C(η), we find that

d

dt
‖u‖2Hs +

σ

2
‖∇u‖2Hs ≤ C

n∑

i,j=1

(
‖u‖L∞‖∇V η

ij‖L1‖Dsvj‖L2 + ‖Dsui‖L2‖∇V η
ij‖L1‖vj‖L∞

)2

≤ C(η)‖u‖2Hs‖v‖2Hs ,

where in the last step we have taken into account the continuous embedding Hs(Rd) →֒
L∞(Rd). As v ∈ Y and consequently ‖v(t)‖2Hs ≤M , we infer that

d

dt
‖u‖2Hs ≤ C(η)M‖u‖2Hs .

Gronwall’s inequality then yields

‖u(t)‖2Hs ≤ ‖u0‖2HseC(η)Mt = (M − 1)eC(η)MT ∗ ≤M, 0 < t < T ∗,

if we choose T ∗ > 0 so small that eC(η)MT ∗ ≤M/(M − 1). We conclude that u ∈ Y .
Note that the time T ∗ depends on M and hence on u0 in such a way that T ∗ becomes

smaller if ‖u0‖Hs is large but T ∗ > 0 is bounded from below if ‖u0‖Hs is small.
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It remains to show that the map S : Y → Y is a contraction, possibly for a smaller value
of T ∗ > 0. Let v, w ∈ Y and take the difference of the equations satisfied by Sv and Sw,
respectively:

∂t
(
(Sv)i − (Sw)i

)
− σi∆

(
(Sv)i − (Sw)i

)

= div

( n∑

j=1

(
(Sv)i − (Sw)i

)
∇V η

ij ∗ vj
)
+ div

( n∑

j=1

(Sw)i∇V η
ij ∗ (vj − wj)

)
.

Multiplying these equations by (Sv)i− (Sw)i, summing from i = 1, . . . , n, integrating over
R

d, and using the Cauchy-Schwarz inequality leads to

1

2

d

dt

∫

Rd

|Sv − Sw|2dx+ σ

∫

Rd

|∇(Sv − Sw)|2dx

≤
n∑

i,j=1

∥∥((Sv)i − (Sw)i)∇V η
ij ∗ vj

∥∥
L2
‖∇((Sv)i − (Sw)i)‖L2

+
n∑

i,j=1

∥∥(Sw)i∇V η
ij ∗ (vj − wj)

∥∥
L2
‖∇((Sv)i − (Sw)i)‖L2 .

We deduce from Young’s convolution inequality that

1

2

d

dt

∫

Rd

|Sv − Sw|2dx+ σ

2

∫

Rd

|∇(Sv − Sw)|2dx

≤ C(σ)
n∑

i,j=1

∥∥((Sv)i − (Sw)i)∇V η
ij ∗ vj

∥∥2

L2
+ C(σ)

n∑

i,j=1

∥∥(Sw)i∇V η
ij ∗ (vj − wj)

∥∥2

L2

≤ C(σ)
n∑

i,j=1

‖∇V η
ij ∗ vj‖2L∞‖(Sv)i − (Sw)i‖2L2

+ C(σ) max
i=1,...,n

‖(Sw)i‖2L∞

n∑

i,j=1

‖∇V η
ij ∗ (vj − wj)‖2L2

≤ C(σ)
n∑

i,j=1

‖∇V η
ij‖2L1‖vj‖2L∞‖Sv − Sw‖2L2

+ C(σ)‖Sw‖2L∞

n∑

i,j=1

‖∇V η
ij‖2L1‖vj − wj‖2L2 .

By definition of the metric on Y , we have shown that

d

dt
‖Sv − Sw‖2L2 ≤ C1(σ, η,M)‖Sv − Sw‖2L2 + C2(σ, η,M)‖v − w‖2L2 .

The constants C1 and C2 depend on M (and hence on u0) in such a way that they become
larger if ‖u0‖Hs is large but they stay bounded for small values of ‖u0‖Hs . Thus, because
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of v(0) = w(0), Gronwall’s inequality gives

‖Sv(t)− Sw(t)‖2L2 ≤ C2(σ, η,M)

∫ t

0

eC1(σ,η)(t−s)‖v(s)− w(s)‖2ds

≤ C2(σ, η,M)
(
eC1(σ,η)t − 1

)
sup
0<s<t

‖v(s)− w(s)‖2L2 ,

and the definition of the metric leads to

dist(Sv, Sw)2 ≤ C2(σ, η,M)
(
eC1(σ,η,M)T ∗ − 1

)
dist(v, w)2.

Then, choosing T ∗ > 0 such that C2(σ, η,M)(eC1(σ,η,M)T ∗ −1) ≤ 1/2 shows that S : Y → Y
is a contraction. Again, T ∗ depends on u0 but it is bounded from below for small values
of ‖u0‖Hs . Thus, we can apply the Banach fixed-point theorem, finishing the proof. �

Lemma 5 (A priori estimates). Let assumption (7) hold. For the local solution uη to

problem (4), the uniform estimate (8) holds. In particular, the solution uη can be extended

to a global one.

Proof. We proceed similarly as in the proof of Lemma 4. We choose α of order |α| ≤ s,
apply the operator Dα on both sides of (4), multiply the resulting equation by Dαuη,i, and
integrate over Rd. By the Cauchy-Schwarz inequality, the Moser-type calculus inequality,
and Young’s convolution inequality and writing ui instead of uη,i, we obtain

1

2

d

dt

∫

Rd

|Dαu|2dx+ σ

∫

Rd

|∇Dαu|2dx

≤
n∑

i,j=1

∥∥Dα(uiV
η
ij ∗ ∇uj)

∥∥
L2
‖∇Dαui‖L2

≤ CM

n∑

i,j=1

(
‖ui‖L∞‖Ds(V η

ij ∗ ∇uj)‖L2 + ‖Dsui‖L2‖V η
ij ∗ ∇uj‖L∞

)
‖∇Dαui‖L2

≤ CM

n∑

i,j=1

(
C‖u‖Hs‖V η

ij‖L1‖Ds∇u‖L2 + ‖Dsu‖L2‖V η
ij‖L1‖∇u‖L∞

)
‖∇Dαu‖L2

≤ C∗
n∑

i,j=1

Aij‖u‖Hs‖∇u‖Hs‖∇Dαu‖L2 ,

where CM is the constant from Lemma 15, C∗ > 0 depends on CM and the constant of the
embedding Hs(Rd) →֒ L∞(Rd), and we have used ‖V η

ij‖L1 = Aij. Summation of all |α| ≤ s
leads to

1

2

d

dt
‖u‖2Hs + σ‖∇u‖2Hs ≤ C∗

n∑

i,j=1

Aij‖u‖Hs‖∇u‖2Hs ,

which can be written as

(14)
d

dt
‖u‖2Hs + 2

(
σ − C∗

n∑

i,j=1

Aij‖u‖Hs

)
‖∇u‖2Hs ≤ 0.
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This inequality holds for all t ∈ [0, T ], where T < T ∗. By Lemma 17, applied to f(t) =
‖u(t)‖2Hs , g(t) = ‖∇u(t)‖Hs , a = σ, and b = C∗ ∑n

i,j=1Aij, we find that ‖u(t)‖2Hs ≤ (a/b)2

for t ∈ [0, T ]. Here, we use Assumption (6). We deduce that (d/dt)‖u‖2Hs ≤ 0 and
consequently ‖u(t)‖Hs ≤ ‖u0‖Hs for t ∈ [0, T ].
Now, we take u(T ) as the initial datum for problem (4). We deduce from Lemma 4 the

existence of a solution u to (4) defined on [T, T + T ∗). Here, T ∗ > 0 can be chosen as
the same end time as before since the norm of the initial datum ‖u(T )‖Hs is not larger
as ‖u0‖Hs . Note that T ∗ becomes smaller only when the initial datum is larger in the Hs

norm. Hence, u(t) exists for t ∈ [T, 2T ] and inequality (14) holds. As before, we conclude
from Lemma 17 that ‖u(t)‖Hs ≤ ‖u0‖Hs for t ∈ [T, 2T ]. This argument can be continued,
obtaining a global solution satisfying ‖u(t)‖Hs ≤ ‖u0‖Hs for all t > 0. Then, under the
stronger assumption (7),

d

dt
‖u‖2Hs ≤ −2

(
σ − C∗

n∑

i,j=1

Aij‖u0‖Hs

)
‖∇u‖2Hs ≤ −γ‖∇u‖2Hs ,

which leads to (8), finishing the proof. �

Lemma 6 (Uniqueness of solutions). Let assumption (7) hold. Then the solution to prob-

lem (4) is unique in the class of functions u ∈ L∞(0,∞;Hs(Rd;Rn)) ∩ L2(0,∞;Hs+1(Rd;
R

n)).

Proof. Let u and v be two solutions to (4) with the same initial data. We multiply the
difference of the equations satisfied by ui and vi by ui − vi, sum from i = 1, . . . , n, and
integrate over Rd. Then, for all 0 < t < T and some T > 0,

1

2

d

dt

∫

Rd

|u− v|2dx+ σ

∫

Rd

|∇(u− v)|2dx

≤
n∑

i,j=1

(
‖ui − vi‖L2‖V η

ij ∗ uj‖L∞ + ‖vi‖L∞‖V η
ij ∗ ∇(uj − vj)‖L2

)
‖∇(ui − vi)‖L2

≤
n∑

i,j=1

(
‖u− v‖L2‖V η

ij‖L1‖∇u‖L∞ + ‖v‖L∞‖V η
ij‖L1‖∇(u− v)‖L2

)
‖∇(u− v)‖L2

≤
n∑

i,j=1

Aij

(
‖u‖Hs+1‖u− v‖L2‖∇(u− v)‖L2 + ‖v‖Hs‖∇(u− v)‖2L2

)
.

By assumption,
∑n

i,j=1Aij‖v‖Hs ≤ σ − γ (since we supposed that C∗ ≥ 1). Thus, using
the Cauchy-Schwarz inequality, it follows that

1

2

d

dt

∫

Rd

|u− v|2dx+ σ

∫

Rd

|∇(u− v)|2dx

≤ C(ε)

( n∑

i,j=1

Aij‖u‖Hs+1

)2

‖u− v‖2L2 + εn2‖∇(u− v)‖2L2 + (σ − γ)‖∇(u− v)‖2L2
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≤ C(ε)‖u(t)‖2Hs+1‖u− v‖2L2 + σ‖∇(u− v)‖2L2 ,

if we choose ε ≤ γ/n2. Observe that the norm ‖u‖L2(0,∞;Hs+1) is bounded. This allows us
to apply the Gronwall inequality, and together with the fact that ‖(u − v)(0)‖L2 = 0, we
infer that ‖(u− v)(t)‖L2 = 0, concluding the proof. �

3. Existence for the cross-diffusion system (1)

We prove Proposition 2 whose proof is split into two lemmas.

Lemma 7 (Existence and uniqueness of solutions). Let the assumptions of Proposition 2

hold. Then there exists a unique solution to (1) satisfying (9).

Proof. Let uη be the solution to (4). We prove that a subsequence of (uη) converges to a
solution to problem (1). In view of the uniform estimate (8), there exists a subsequence of
(uη), which is not relabeled, such that, as η → 0,

(15) uη ⇀ u weakly in L2(0, T ;Hs+1(Rd)).

We show that u is a weak solution to problem (1). First, we claim that

V η
ij ∗ ∇uη,j ⇀ aij∇uj weakly in L2(0, T ;L2(Rd)).

To prove this statement, we observe that V η
ij ∗ ψ → aijψ strongly in L2(0, T ;L2(Rd)) for

any φ ∈ L2(0, T ;L2(Rd)) [25, Theorem 9.10] and ∇uη,j ⇀ ∇uj weakly in L2(0, T ;L2(Rd)).
Therefore, for all ψ ∈ C∞

0 (Rd × (0, T );Rn), as η → 0,
∣∣∣∣
∫ T

0

∫

Rd

(
V η
ij ∗ ∇uη,j − aij∇uj) · ψdxdt

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Rd

(∫

Rd

V η
ij(x− y)∇uη,j(y, t)dy

)
· ψ(x, t)dxdt

−
∫ T

0

∫

Rd

aij∇uj(y, t) · ψ(y, t)dydt
∣∣∣∣

≤
∣∣∣∣
∫ T

0

∫

Rd

(∫

Rd

V η
ij(x− y)ψ(x, t)dx− aijψ(y, t)

)
· ∇uη,j(y, t)dydt

∣∣∣∣

+ |aij|
∣∣∣∣
∫ T

0

∫

Rd

(∇uη,j −∇uj)(y, t) · ψ(y, t)dydt
∣∣∣∣

≤ ‖V η
ij ∗ ψ − aijψ‖L2(0,T ;L2(Rd))‖∇uη,j‖L2(0,T ;L2(Rd))

+ |aij|
∣∣∣∣
∫ T

0

∫

Rd

(∇uη,j −∇uj)(y, t) · ψ(y, t)dydt
∣∣∣∣ → 0,

which proves the claim. Estimate (8) and the embedding Hs(Rd) →֒ L∞(Rd) show that

(16)
∥∥uη,iV η

ij ∗ ∇uη,j
∥∥
L2(0,T ;L2)

≤ ‖uη,i‖L∞(0,T ;L∞)‖V η
ij‖L1‖∇uη,j‖L2(0,T ;L2) ≤ C
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and consequently, for any T > 0,

‖∂tuη,i‖L2(0,T ;H−1) ≤ σi‖∇uη,i‖L2(0,T ;L2) +
n∑

j=1

∥∥uη,iV η
ij ∗ ∇uη,j

∥∥
L2(0,T ;L2)

≤ C.

The weak formulation of (4) reads as

(17)

∫ T

0

〈∂tuη,i, φ〉ζ(t)dt =
∫ T

0

∫

Rd

(
σi∇uη,i +

n∑

j=1

uη,i∇V η
ij ∗ ∇uη,j

)
· ∇φdxζ(t)dt,

where φ ∈ C∞
0 (Rd) with supp(φ) ⊂ BR(0) and ζ ∈ C∞([0, T ]). Since the ball BR(0) is

bounded and the embedding H1(BR(0)) →֒ L2(BR(0)) is compact, the Aubin-Lions lemma
[27] gives the existence of a subsequence of (uη), which is not relabeled, such that uη → u
strongly in L2(0, T ;L2(BR(0))) as η → 0, and the limit coincides with the weak limit in
(15). We deduce that

uη,iV
η
ij ∗ ∇uη,j ⇀ aijui∇uj weakly in L1(0, T ;L1(BR(0))).

Estimate (16) shows that this convergence even holds in L2(0, T ;L2(BR(0))). We can
perform the limit in (17), which shows that the limit u is a solution to the cross-diffusion
problem (1). The uniform estimates (9) follow from (8) using the lower semicontinuity of
the norm.
Next, we show the uniqueness of solutions. Let u and v be two solutions to (1) with the

same initial data. Taking the difference of the equations satisfied by ui and vi, multiplying
the resulting equation by ui − vi, summing from i = 1, . . . , n, integrating over R

d, and
using the Cauchy-Schwarz inequality leads to

1

2

d

dt

∫

Rd

|u− v|2dx+ σ

∫

Rd

|∇(u− v)|2dx

≤
n∑

i,j=1

Aij‖u‖Hs+1‖u− v‖L2‖∇(u− v)‖L2 +
∑

i,j

Aij‖v‖Hs‖u− v‖2L2 .

In view of estimate (9), this becomes

1

2

d

dt

∫

Rd

|u− v|2dx+ σ

2

∫

Rd

|∇(u− v)|2dx ≤ C(t)‖u− v‖2L2 ,

and the constant C(t) > 0 is integrable (as it depends on ‖u(t)‖Hs+1). Gronwall’s inequality
then implies that (u− v)(t) = 0 for t > 0. �

Lemma 8 (Error estimate). Let the assumptions of Proposition 2 hold. Let u be the

solution to (1) and uη be the solution to (4). Then the error estimate (10) holds.

Proof. We take the difference of equations (4) and (1),

∂t(uη,i − ui)− σi∆(uη,i − ui) = div

( n∑

j=1

uη,iV
η
ij ∗ ∇uη,j −

n∑

i=1

aijui∇uj
)
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= div
n∑

j=1

(
(uη,i − ui)V

η
ij ∗ ∇uη,j + ui(V

η
ij ∗ ∇uη,j − aij∇uη,j) + aijui∇(uη,j − uj)

)
.

Multiplying this equation by uη,i − ui, summing from i = 1, . . . , n, integrating over R
d,

using the Cauchy-Schwarz inequality, and the estimate |aij| ≤ Aij, we find that

1

2

d

dt

∫

Rd

|uη − u|2dx+ σ

∫

Rd

|∇(uη − u)|2dx

≤
n∑

i,j=1

‖uη,i − ui‖L2‖V η
ij ∗ ∇uη,j‖L∞‖∇(uη,i − ui)‖L2

+
n∑

i,j=1

‖ui‖L∞‖V η
ij ∗ ∇uη,j − aij∇uη,j‖L2‖∇(uη,j − uj)‖L2

+
n∑

i,j=1

Aij‖ui‖L∞‖∇(uη,j − uj)‖L2‖∇(uη,i − ui)‖L2

= I1 + I2 + I3.

We estimate the right-hand side term by term. First, by the continuous embedding
Hs(Rd) →֒ L∞(Rd),

|I1| ≤
n∑

i,j=1

‖uη,i − ui‖L2‖V η
ij‖L1‖∇uη,j‖L∞‖∇(uη,i − ui)‖L2

≤ C(γ)

( n∑

i,j=1

Aij‖∇uη‖Hs

)2

‖uη − u‖2L2 +
γ

4
‖∇(uη − u)‖2L2 .

To estimate I2, let g ∈ L2(Rd;Rn). Since suppV η
ij ⊂ Bη(0), the mean-value theorem shows

that ∣∣∣∣
∫

Rd

(
V η
ij ∗ ∇uη,j − aij∇uη,j

)
(x) · g(x)dx

∣∣∣∣

=

∣∣∣∣
∫

Rd

∫

Bη(0)

V η
ij(y)

d∑

k=1

(
∂uη,j
∂xk

(x− y)− ∂uη,j
∂xk

(x)

)
gk(x)dydx

∣∣∣∣

=

∣∣∣∣
∫

Rd

∫

Bη(0)

V η
ij(y)

(∫ 1

0

d∑

k,ℓ=1

∂2uη,j
∂xk∂xℓ

(x− ry)yℓdr

)
gk(x)dydx

∣∣∣∣

≤ η

∫ 1

0

∫

Bη(0)

|V η
ij(y)|

∫

Rd

|D2uη,j(x− ry)| |g(x)|dxdydr

≤ η

∫ 1

0

∫

Bη(0)

|V η
ij(y)| ‖D2uη,j(· − ry)‖L2‖g‖L2dydr

≤ η‖V η
ij‖L1‖D2uη,j‖L2‖g‖L2 = ηAij‖D2uη,j‖L2‖g‖L2 .
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This shows that

(18) ‖V η
ij ∗ ∇uη,j − aij∇uη,j‖L2 ≤ ηC‖D2uη,j‖L2 ≤ ηC

and consequently,

|I2| ≤ C(γ)
n∑

i,j=1

‖V η
ij ∗ ∇uη,j − aij∇uη,j‖2L2 +

γ

4
‖∇(uη − u)‖2L2

≤ C(γ)η2 +
γ

4
‖∇(uη − u)‖2L2 .

Finally, by Assumption (7),

|I3| ≤
( n∑

i,j=1

Aij‖u‖Hs+1

)
‖∇(uη − u)‖2L2 ≤ (σ − γ)‖∇(uη − u)‖2L2 .

Therefore,

1

2

d

dt

∫

Rd

|uη − u|2dx+ γ

2

∫

Rd

|∇(uη − u)|2dx

≤ C(γ)

( n∑

i,j=1

Aij‖∇uη‖Hs

)2

‖uη − u‖2L2 + C(γ)η2

≤ C(γ)(σ − γ)2‖uη − u‖2L2 + C(γ)η2,

and Gronwall’s lemma gives the conclusion. �

4. Existence of solutions to the stochastic systems

We prove the solvability of the stochastic ordinary differential systems (2), (3), and (5).

Lemma 9 (Solvability of the stochastic many-particle system). For any fixed η > 0,

problem (2) has a pathwise unique strong solution Xk,N
η,i that is Ft-adapted.

Proof. By assumption, the gradient ∇V η
ij is bounded and Lipschitz continuous. Then [23,

Theorem 5.2.1] or [24, Theorem 3.1.1] show that there exists a (up to P-indistinguishability)
pathwise unique strong solution to (2). �

Lemma 10 (Solvability of the nonlocal stochastic system). Let uη be a solution to the

nonlocal diffusion system (4) satisfying |∇uη| ∈ L∞(0,∞;W 1,∞(Rd;Rn)). Then problem

(3) has a pathwise unique strong solution X̄k
η,i with probability density function uη,i.

Remark 11. We have shown in Proposition 2 that if u0 ∈ Hs(Rd;Rn) and the smallness
condition (6) holds, there exists a unique solution uη ∈ L∞(0,∞;Hs(Rd;Rn)). The regu-
larity for uη, required in Lemma 10, is fulfilled if s > d/2 + 2, thanks to the embedding
uη,i ∈ L∞(0,∞;Hs(Rd)) →֒ L∞(0,∞;W 2,∞(Rd)) for i = 1, . . . , n. �
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Proof of Lemma 10. We proceed as in the proof of Lemma 3.2 of [4]. Let v be a solution
to (4) satisfying v(0) = u0 in R

d, where u0i is the density of ξki . By assumption, ∇V η
ij ∗ vj =

V η
ij ∗ ∇vj is bounded and Lipschitz continuous. Therefore,

dX̄k
η,i = −

n∑

j=1

(∇V η
ij ∗ vj)(X̄η,i(t), t)dt+

√
2σidW

k
i (t), X̄k

η,i(0) = ξki ,

has a pathwise unique strong solution X̄k
η,i. Let uη,i be the probability density function of

X̄k
η,i and let φi be a smooth test function. Then Itô’s lemma implies that

φi(X̄
k
η,i(t), t)− φi(ξ

k
i , 0)

=

∫ t

0

∂sφi(X̄
k
η,i(s), s)ds−

n∑

j=1

∫ t

0

(V η
ij ∗ ∇vj)(X̄k

η,i(s), s) · ∇φi(X̄
k
η,i(s), s)ds

+ σi

∫ t

0

∆φi(X̄
k
η,i(s), s)ds+

√
2σi

∫ t

0

∇φi(X̄
k
η,i(s), s)dW

k
i (s).

Applying the expectation

E
(
φi(X̄

k
η,i(t), t)

)
=

∫

Rd

φi(x, t)uη,i(x, t)dx

to the previous expression yields
∫

Rd

φi(x, t)uη,i(x, t)dx =

∫

Rd

φi(x, 0)uη,i(x, 0)dx

+

∫ t

0

∫

Rd

(
∂sφi(x, s) + σi∆φi(x, s)

)
ui,η(x, s)dxds

−
n∑

j=1

∫ t

0

∫

Rd

∇φi(x, s) · (V η
ij ∗ ∇vj)(x, s)uη,i(x, s)dxds.

This is the weak formulation of

∂tuη,i − σi∆uη,i = div

( n∑

j=1

uη,iV
η
ij ∗ ∇vj

)
, uη,i(0) = u0.

The unique solvability of problem (4) implies that the solution is uη,i, and we obtain v = uη.
This finishes the proof. �

By the same technique, the solvability of the limiting stochastic system can be proved.

Lemma 12 (Solvability of the limiting stochastic system). Let u be the unique solution

to problem (1) satisfying |∇u| ∈ L∞(0,∞;W 1,∞(Rd;Rn)). Then there exists a pathwise

unique strong solution X̂k
i with probability density function ui.
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5. Proof of Theorem 3

First, we show an estimate for the difference Xk,N
η,i − X̄k

η,i.

Lemma 13. Let the assumptions of Theorem 3 hold. Then, for any t > 0,

E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̄k

η,i(s)
∣∣2
)

≤ C(t)

N1−C(t)ε
,

where the constant C(t) depends on t, n, ‖D2Vij‖L∞, and the initial datum u0.

Proof. We set

St =
n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̄k

η,i(s)
∣∣2.

The difference of equations (2) and (3), satisfied by Xk,N
η,i and X̄k

η,i, respectively, equals

Xk,N
η,i (t)− X̄k

η,i(t)

= −
∫ t

0

n∑

j=1

1

N

N∑

ℓ=1

(
∇V η

ij

(
Xk,N

η,i (s)−Xℓ,N
η,j (s)

)
− (∇V η

ij ∗ uη,j)(X̄k
η,i(s), s)

)
ds

and thus,
n∑

i=1

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̄ℓ

η,i(s)
∣∣2 ≤

n∑

i=1

(∫ t

0

1

N

n∑

j=1

sup
k=1,...,N

×
∣∣∣∣

N∑

ℓ=1

(
∇V η

ij

(
Xk,N

η,i (s)−Xℓ,N
η,j (s)

)
− (∇V η

ij ∗ uη,j)(X̄k
η,i(s), s)

)∣∣∣∣ds
)2

.

Taking the supremum in (0, t) and the expectation and using the Cauchy-Schwarz inequal-
ity with respect to t yields

E(St) ≤
n∑

i=1

t

N2

∫ t

0

E

( n∑

j=1

sup
k=1,...,N

×
∣∣∣∣

N∑

ℓ=1

(
∇V η

ij

(
Xk,N

η,i (s)−Xℓ,N
η,j (s)

)
− (∇V η

ij ∗ uη,j)(X̄k
η,i(s), s)

)∣∣∣∣ds
)2

≤
n∑

i=1

t

N2

∫ t

0

{
E

n∑

j=1

sup
k=1,...,N

×
∣∣∣∣

N∑

ℓ=1

(
∇V η

ij

(
Xk,N

η,i (s)−Xℓ,N
η,j (s)

)
−∇V η

ij

(
Xk,N

η,i (s)− X̄ℓ
η,j(s)

))∣∣∣∣
2

+ E

n∑

j=1

sup
k=1,...,N

∣∣∣∣
N∑

ℓ=1

(
∇V η

ij

(
Xk,N

η,i (s)− X̄ℓ
η,j(s)

)
−∇V η

ij

(
X̄k

η,i(s)− X̄ℓ
η,j(s)

))∣∣∣∣
2
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+ E

n∑

j=1

sup
k=1,...,N

∣∣∣∣
N∑

ℓ=1

(
∇V η

ij

(
X̄k

η,i(s)− X̄ℓ
η,j(s)

)
− (∇V η

ij ∗ uη,j)(X̄k
η,i(s), s)

)∣∣∣∣
2}
ds

=: J1 + J2 + J3.

We estimate the terms J1, J2, and J3 separately.
Let Lη

ij be the Lipschitz constant of ∇V η
ij . Because of V η

ij(z) = η−dVij(|z|/η), we obtain

Lη
ij = η−d−2‖D2Vij‖L∞ . Hence,

|J1| ≤
n∑

i=1

t

N2

∫ t

0

E

( n∑

j=1

(Lη
ij)

2

( N∑

ℓ=1

∣∣Xℓ,N
η,j (s)− X̄ℓ

η,j(s)
∣∣
)2)

ds

≤ t

n∑

i,j=1

(Lη
ij)

2

∫ t

0

E

(
sup

ℓ=1,...,N

∣∣Xℓ,N
η,j (s)− X̄ℓ

η,j(s)
∣∣2
)
ds

≤ tn

η2d+4
sup

i,j=1,...,n
‖D2Vij‖2L∞

∫ t

0

E(Ss)ds.

Furthermore, by similar arguments,

|J2| ≤
n∑

i=1

t

N2

∫ t

0

E

( n∑

j=1

(Lη
ij)

2 sup
k=1,...,N

( N∑

ℓ=1

∣∣Xk,N
η,i (s)− X̄k

η,j(s)
∣∣
)2)

ds

≤ t

n∑

i,j=1

(Lη
ij)

2

∫ t

0

E

(
sup

k=1,...,N

∣∣Xk,N
η,i (s)− X̄k

η,j(s)
∣∣2
)
ds

≤ tn

η2d+4
sup

i,j=1,...,n
‖D2Vij‖2L∞

∫ t

0

E(Ss)ds.

For the third term, we set

Zk,ℓ
i,j (s) := ∇V η

ij

(
X̄k

η,i(s)− X̄ℓ
η,j(s)

)
− (∇V η

ij ∗ uη,j)(X̄k
η,i(s), s),

write the square as a product of two sums, and use the independence of Zk,1
i,j , . . . , Z

k,N
i,j :

|J3| =
n∑

i=1

t

N2

∫ t

0

E

n∑

j=1

sup
k=1,...,N

∣∣∣∣
N∑

ℓ=1

Zk,ℓ
i,j (s)

∣∣∣∣
2

ds

=
n∑

i,j=1

t

N2

∫ t

0

E

(
sup

k=1,...,N

N∑

ℓ=1

Zk,ℓ
i,j (s) ·

N∑

m=1

Zk,m
i,j (s)

)
ds

≤
n∑

i,j=1

t

N2

N∑

ℓ,m=1

∫ t

0

sup
k=1,...,N

E

(
Zk,ℓ

i,j (s) · Zk,m
i,j (s)

)
ds

=
n∑

i,j=1

t

N2

N∑

ℓ=1

∫ t

0

sup
k=1,...,N

E
∣∣Zk,ℓ

i,j (s)
∣∣2ds
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+
n∑

i,j=1

t

N2

∑

ℓ6=m

∫ t

0

sup
k=1,...,N

E
(
Zk,ℓ

i,j (s)
)
E
(
Zk,m

i,j (s)
)
ds.

We claim that the expectation of Zk,ℓ
i,j vanishes. Indeed, since X̄k

η,i and X̄ℓ
η,j are inde-

pendent with distribution functions uη,i and uη,j , the joint distribution is uη,i ⊗ uη,j . This
gives

E
(
Zk,ℓ

ij (s)
)
=

∫

Rd

∫

Rd

(
∇V η

ij(ξ − x)− (∇V η
ij ∗ uη,j)(ξ, s)

)
uη,i(ξ, s)uη,j(x, s)dxdξ

=

∫

Rd

uη,i(ξ, s)

(∫

Rd

∇V η
ij(ξ − x)uη,j(x, s)dx− (∇V η

ij ∗ uη,j)(ξ, s)
)
dξ = 0.

Therefore, using the estimates |∇V η
ij | ≤ Cη−d−1, ‖∇V η

ij‖L2 ≤ Cη−1, and consequently

‖∇V η
ij ∗ uη,j‖L∞ ≤ ‖∇V η

ij‖L2‖uη,j‖L2 ≤ Cη−1,

we deduce that

|J3| =
n∑

i,j=1

t

N2

N∑

ℓ=1

∫ t

0

sup
k=1,...,N

E
∣∣Zk,ℓ

i,j (s)
∣∣2ds ≤ n2

N

Ct2

η2d+2
.

Summarizing these estimations, we conclude that

E(St) ≤
tn

η2d+4
sup

i,j=1,...,n
‖D2Vij‖2L∞

∫ t

0

E(Ss)ds+
n2

N

Ct2

η2d+2
,

and, by Gronwall’s inequality,

E(St) ≤
Ct2

Nη2d+2
exp

(
Ct

η2d+4

)
, t > 0.

For fixed ε ∈ (0, 1) and η ∈ (0, 1), we choose N ∈ N such that ε logN ≥ η−2d−4. Using
η−2d−2 ≤ η−2d−4 ≤ exp(Cη−2d−4) for C ≥ 1, we obtain

E(St) ≤
C

Nη2d+2
exp

(
Ct

η2d+4

)
≤ C

N
exp

(
C(1 + t)

η2d+4

)

≤ C

N
exp

(
Cε(1 + t) logN

)
≤ CN−1+Cε(1+t).

This proves the result. �

Next, we prove an estimate for the difference X̄k
η,i − X̂k

i .

Lemma 14. Let the assumptions of Theorem 3 hold and let s > d/2 + 2, t > 0. Then

E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣X̄k
η,i(s)− X̂k

i (s)
∣∣
)

≤ C(t)η.
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Proof. We use similar arguments as in the proof of Lemma 13. Taking the difference of

equations (3) and (5), satisfied by X̄k
η,i and X̂

k
i , respectively, and setting

Ut =
n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣X̄k
η,i(s)− X̂k

i (s)
∣∣,

if follows that

E(Ut) ≤
n∑

i=1

∫ t

0

E

( n∑

j=1

sup
k=1,...,N

∣∣∣aij∇uj(X̂k
i (s), s)− (V η

ij ∗ ∇uη,j)(X̄k
η,i(s), s)

∣∣∣
)
ds

≤
n∑

i=1

∫ t

0

E

( n∑

j=1

sup
k=1,...,N

∣∣∣aij∇uj(X̂k
i (s), s)− (V η

ij ∗ ∇uj)(X̂k
i (s), s)

∣∣∣
)
ds

+
n∑

i=1

∫ t

0

E

( n∑

j=1

sup
k=1,...,N

∣∣∣(V η
ij ∗ ∇uj)(X̂k

η,i(s), s)− (V η
ij ∗ ∇uη,j)(X̂k

i (s), s)
∣∣∣
)
ds

+
n∑

i=1

∫ t

0

E

( n∑

j=1

sup
k=1,...,N

∣∣∣(V η
ij ∗ ∇uη,j)(X̂k

i (s), s)− (V η
ij ∗ ∇uη,j)(X̄k

η,i(s), s)
∣∣∣
)
ds

=: K1 +K2 +K3.

Using (18), the first two terms on the right-hand side are estimated according to

K1 ≤
n∑

i,j=1

∫ t

0

∫

Rd

∣∣(aij∇uj(x, s)− (V η
ij ∗ ∇uj)(x, s)

)
ui(x, s)

∣∣dxds

≤ n2 max
i,j=1,...,n

∥∥aij∇uj − V η
ij ∗ ∇uj

∥∥
L2(0,t;L2)

‖ui‖L2(0,t;L2)

≤ C(n)η‖D2u‖L2(0,t;L2) ≤ Cη,

K2 ≤
n∑

i,j=1

∫ t

0

∫

Rd

∣∣V η
ij ∗ ∇(uj − uη,j)ui

∣∣dxds

≤ n2 max
i,j=1,...,n

‖V η
ij‖L1‖∇(uj − uη,j)‖L2(0,t;L2)‖ui‖L2(0,t;L2) ≤ Cη,

where we have used Lemma 16 (ii) and the error estimate from Lemma 13. Finally, the
term K3 can be controlled by

K3 ≤
n∑

i,j=1

‖∇(V η
ij, ∗ ∇uη,j)‖L∞

∫ t

0

E(Us)ds

≤ n2 max
i,j=1,...,n

‖V η
ij‖L1‖D2uη‖L∞

∫ t

0

E(Us)ds ≤ C

∫ t

0

E(Us)ds.
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We need the assumption s > d/2 + 2 for the continuous embedding Hs(Rd) →֒ W 2,∞(Rd),
which allows us to estimate D2uη in L∞(Rd). This shows that

E(Ut) ≤ Cη + C

∫ t

0

E(Us)ds,

and Gronwall’s inequality yields E(Ut) ≤ C(t)η for t > 0. The statement of the lemma
follows after taking the supremum over t > 0. �

Lemmas 13 and 14 imply Theorem 3. Indeed, it follows that

E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̂k

i (s)
∣∣
)

≤ E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣Xk,N
η,i (s)− X̄k

η,i(s)
∣∣
)
+ E

( n∑

i=1

sup
0<s<t

sup
k=1,...,N

∣∣X̄k
η,i(s)− X̂k

i (s)
∣∣
)

≤ CN (−1+C(t)ε)/2 + C(t)η ≤ C(t)η,

since the choice logN ≥ 1/(εη2d+4) is equivalent to

N (−1+C(t)ε)/2 ≤ exp

(
1

2ε
(−1 + C(t)ε)η−2d−4

)
,

and the right-hand side is smaller than η possibly times a constant C(t).

Appendix A. Some auxiliary results

We recall some auxiliary results.

Lemma 15 (Moser-type calculus inequality; Prop. 2.1 in [19]). Let f , g ∈ Hs(Rd) with

s > d/2 + 1 and let α ∈ N
d be a multi-index of order |α| ≤ s. Then, for some constant

CM > 0 only depending on s and d,

‖Dα(fg)‖L2 ≤ CM

(
‖f‖L∞‖Dsg‖L2 + ‖g‖L∞‖Dsf‖L2

)
.

Lemma 16 (Young’s convolution inequality; formula (7) on page 107 in [18]). (i) Let

1 ≤ p, q ≤ ∞ satisfying 1/p+ 1/q = 1/r + 1 and f ∈ Lp(Rd), g ∈ Lq(Rd). Then

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

(ii) Let p, q, r ≥ 1 satisfying 1/p + 1/q + 1/r = 2 and f ∈ Lp(Rd), g ∈ Lq(Rd),
h ∈ Lr(Rd). Then, for some constant C > 0 only depending on p, q, r, and d,

∣∣∣∣
∫

Rd

(f ∗ g)hdx
∣∣∣∣ ≤ C‖f‖Lp‖g‖Lq‖h‖Lr .

Lemma 17 (Gronwall-type inequality). Let a, b > 0, g ∈ C0([0, T ]) with g(t) ≥ 0 for

t ∈ [0, T ] and f : [0, T ] → [0,∞) be absolutely continuous such that

f ′(t) ≤ −g(t)
(
a− b

√
f(t)

)
for t > 0

and 0 < f(0) ≤ (a/b)2. Then f(t) ≤ (a/b)2 for all t ∈ [0, T ].
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We present a proof of this lemma since we could not find a reference in the literature.

Proof. First, let f(0) < (a/b)2. We claim that f(t) < (a/b)2 for t ∈ [0, T ]. Assume that
there exists t0 ∈ [0, T ] such that f(t0) ≥ (a/b)2. By continuity, there exists t1 ∈ [0, t0]
such that f(t1) < (a/b)2 and f ′(t1) > 0. This leads to the contradiction 0 < f ′(t1) ≤
−g(t1)(a− b

√
f(t1)) ≤ 0, proving the claim.

Since f(t) < (a/b)2 for t ∈ [0, T ], the differential inequality can be written as

(19)
f ′(t)

a− b
√
f(t)

≤ −g(t), t ∈ [0, T ].

Introduce

F (s) =

∫ s

0

dσ

a− b
√
σ
=

∫ √
s

0

2τdτ

a− bτ
= − 2

b2
(
b
√
s+ a log(a− b

√
s)− a ln a

)
.

Then integrating (19) over (0, t) leads to

F (f(t))− F (f(0)) ≤ −
∫ t

0

g(τ)dτ,

which, after a computation, is equivalent to

a− b
√
f(t) ≥

(
a− b

√
f(0)

)
exp

(
b

a

√
f(0)− b

a

√
f(t) +

b2

2a

∫ t

0

g(τ)dτ

)
.

Finally, we choose a sequence of initial data f δ
0 < (a/b)2 such that f δ

0 → f0 ≤ (a/b)2 as
δ → 0. To each f δ

0 , we associate a function f δ satisfying the differential inequality. The
proof shows that f δ(t) < (a/b)2. In the limit δ → 0, this reduces to f(t) ≤ (a/b)2, where
f(t) = limδ→0 f

δ(t) for t ∈ [0, T ]. �
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