Modeling of herding and wealth distribution in
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Abstract The dynamics of the number of participants in a large magkdescribed
by nonlinear partial differential equations of kinetic agiffusive type. The results
on the modeling, analysis, and numerical simulation ofehmearket models are
briefly reviewed. The interplay of the agents with exterr@lrses, herding phe-
nomena, and irrationality of the individuals as well as tkehenge of knowledge
and wealth is explored mathematically. The focus lies omtlathematical under-
standing of the differential equations rather than on theeling of real economic
situations, aiming at identifying models which are able toduce the desired ef-
fects.

0.1 Introduction

The modeling of markets with a large number of agents becamewital in recent
years with the aim to understand inefficient markets orioretl behavior of agents,
for instance. The dynamics of such markets may be descripadént-based mod-
els, kinetic equations, or diffusive systems. Agent-basedels specify the behav-
ior of individuals by using elements of game theory and Mdbélo simulation
techniques [31]. In kinetic modeling, the analogy with istatal mechanics is ex-
ploited: Interactions between market agents are intexgras collisions between
gas particles, and conservation laws for income and/orttveady hold [26, 28].
Diffusive systems are often derived from kinetic equationthe so-called grazing
collision limit, and they illustrate the behavior on a mawopic level [33]. In this
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section, we summarize the results of [6, 14, 25] on kinetit @diffusive equations
modeling socio-economic scenarios.

The first scenario is the herding in financial markets. Hey@rcharacterized by
a homogenization of the actions of the market participavitgch behave at a certain
time in the same way. Herding may lead to strong trends withvolatility of asset
prices, but eventually also to abrupt corrections, so itnwites the occurrence of
bubbles and crashes. Numerous socio-economic papers 38] &nd research in
biological sciences [1, 19] show that herding interactiplas a crucial role in social
scenarios. Herding behavior is often irrational becauspleeare not basing their
decision on objective criteria.

A full understanding of herding behavior needs the abititymderstand two lev-
els: the microscopic one, which considers each individ@i&he® crowd separately;
and the macroscopic level, which deals with the group ofviddils, i.e. the herd.
The first level usually represents the individual as a plartiand a microscopic
particle-type or mesoscopic kinetic description may bduls&he latter one may
be represented by a density function depending (continylpas space and time,
leading to diffusive equations. We consider a diffusivedireg model in Section 0.2
and a kinetic herding equation in Section 0.3.

The second scenario addressed in this review is the digtrbaf wealth. Most
of the models in the literature are agent-based models [@ymnfield games [18], or
kinetic equations [27]. In kinetic modeling, binary coidias are replaced by trades
between agents by defining rules which specify how wealtliégh@nged in trades.
The output of the model are the statistics of the wealthibigtion in the market. It
turns out that in many models, the stationary profile has anpmpulated tail (called
fat tail or Pareto tail), which is interpreted as the exist&ewf an upper class of
very wealthy people [27]. Pareto tails appear under var&sssimptions, assuming
wealth conservation in the mean or pointwise wealth corgienv [15].

Binary wealth exchange models go back to the work [3]. Ldte,relation to
statistical mechanics was highlighted [24], and strictipgervative exchange mod-
els were developed [10]. The strict conservation was relax§l2] to conservation
in the mean. Our contribution is to combine wealth and kndgéeof agents in a
society and to examine the interaction of these qualities;Section 0.4.

We stress the fact that the models that we are proposing algizarg are quite
simple. Certainly, the socio-economic behavior of realketagents is extremely
complex and includes psychologic and social phenomenkh. \&¢i believe that a
large number of agents may be described to some extent inesagmd sense — at
least in simplified situations. Our aim is to understand tla¢hmmatical phenomena
arising from the new terms in the models rather than devisindels that include
as many features as possible. Our analysis shows which fodsce the desired
effects and henceforth can be included in more realisticatso@ he hope is that this
analysis helps to identify irregularities in (financial) rikets or in societies and to
lead to improved market regulations and counter-actiomséod financial crashes.
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0.2 A cross-diffusion herding model

A very simple model for herding behavior is given by the crdggision system
(25]
du=div(Ou—g(u)0v), av=div(dOu+kOv)+ f(u)—av, (1)

whereu(x,t) represents the normalized density of individuals with infation vari-
ablex € Q attimet > 0 (Q ¢ RY being a bounded domain), antk,t) is an influ-
ence function which modifies the information state of theviiials. The influence
function acts through the cross-diffusion tegfu)Ov in the first equation in (1).
We assume that the influence becomes weak if the number ofdodis at a fixed
statex is very low or close to the maximal value= 1. Thus, we suppose that
9(0) =g(1) = 0. The influence function is modified by diffusive effectscathie to
the random behavior of the agents with paraméter0, by the nonnegative source
term f(u), time relaxation with ratex > 0, and diffusion with coefficienk > 0.
Our aim is to understand whether the above model exhibittifggphenomena, i.e.
regions in which the density of the agents is very low or closhe maximal value.
The equations are supplemented by no-flux boundary andlingnditions:

(Ou—g(u)v)-v=0, (d0u+kOv)-v=0 ondQ, 5
u(-,0)=up, Vv(-,0)=wv InQ,t>0, @
wherev denotes the exterior unit normal vectord@.
If & =0, system (1) correspond to a nonlinear chemotaxis Kekgrebmodel,
whereu represents the cell density amdhe concentration of the chemoattractant
[20]. While the original Keller-Segel model exhibits finitere blow-up of the so-
lutions, the nonlinear mobilitg(u) = u(1— u) prevents blow up [34]. Equations
(1) with 8 > 0 can be derived from stochastic partial differential etpret describ-
ing interacting particles, at least for constant mobilitpétionsg(u) [17]. The case
0 > 0 andg(u) = uwas analyzed in [23]. A typical example in the present situat
is g(u) = u(1—u) since this function satisfigg0) = g(1) = 0.
In the work [25], the following results have been obtained.

Existence of solutions. If f andg are smooth, bounded, nonnegative functions
such that there exista € (0,1) satisfying

m ds 1 ds
90 =g =0 [T == ©

andug, Vo € L*(Q), then there exists a global weak soluti@anv) to (1)-(2) satis-
fying0<u<1linQ,t >0, aslong a® > —k/y, wherey = maxyo 1 9(s). The
functiong(u) = u(1 — u) satisfies (3).

The restriction ond ensures that the real parts of the eigenvalues of the diffu-
sion matrix from (1) are positive, such that the system igipalic in the sense of
Petrovskii and local existence of solutions can be expd@jedhe challenge is to
prove the existence of global (weak) solutions. A key elenoérihe proof is the
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observation that equations (1) admit a Lyapunov functigealled an entropy),

H(u,v):/Q(h(u)JrZV;), whereh(u):/:/r:g;z:)da,

andd =9 if 6 >0, = k/yif d <0. A computation shows that far > —«/y,
there existgs > 0 such that

aH <|DU2 |Ovf?
dt " °Ja\gu) &2

wherecs > 0 also depends o®, f, andg. The gradient estimate is needed to
prove the compactness of the fixed-point operator needegyty dhe Leray-
Schauder fixed-point theorem [25]. The exponential decalyeo$olutions (in terms
of H(u,v)) to a constant steady state holds for sufficiently largeegbfd > 0. We
wish to understand what happengibecomes small positive or negative large. This
is done via a bifurcation analysis.

)dxgc,

Bifurcation analysis. Choosingd as a bifurcation parameter, we can apply bi-
furcation theory to show that the stationary solutions fioifite from the constant
steady statéu*,v*) for & # dy4 := —k/g(u*). For this result, we employed in [25]
the local bifurcation theory of Crandell and Rabinowitz ahé global bifurca-
tion theory for nonlinear Fredholm mappings from Shi and @§BR2]. The diffi-
culty here is tha{u*,v") is not an isolated bifurcation branch as a functiondof
since fixing any initial mass, there is a family of homogeresteady states with
u* = [p u(x)dx/meagQ). For the numerical bifurcation analysis, this degeneracy
is resolved by introducing a small relaxation tepfu — u*) in the first equation of
(1) with very smallp > 0 and by applying a homotopy continuation step to achieve
solutions forp = 0.

Numerically, there exist local bifurcation points on thatch of homogeneous
steady states b < Jq for sufficiently largea and if & > &y for sufficiently smalla.
The results have been obtained by using the software AUTIQidtails we refer to
[25]. Here, we only depict one stationary densitiyn Figure 1, showing that there is
indeed a region in which the number of individuals with a aerinformation state
is very small, which indicates some herding phenomenum.

0.3 A kinetic model with irrationality and herding

A second approach to model herding consists in using kiregfiations. We de-
scribe the evolution of the distribution functidiix, w,t) of the agents depending on
the rationalityx € R and the estimated asset value R := [0, ), assigned to the
asset by an individual. The agent behaves rational wiher® and irrational when
x < 0. The time evolution is given by the inhomogeneous kinafigation
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Fig. 1 Stationary density of individuals for the model (1) with paraensa =0.001,k =1,0 =9,
andQ = (0,50).

atf+(¢)(X7W)f)X:Q|(f)+QH(f>f)7 (X7W)ERXR+>t>O7 (4)
with the boundary and initial conditions
f(x,0,t) =0, f(x,w,0) = fo(x,w) for (x,w) e RxR ., t>0. (5)

The second term in (4) models the irrationality of the ageWien the asset price
w lies within a certain rangéwv —W| < R around a “fair” prizeW > 0 which is
determined by fundamentals, the agents are suppposed &vebetore irrational
because of psychological biases like overconfidence otdahattention [22]. This
is modeled by a negative drift fiel@(x,w). When the asset value is outside of
the “fair” prize region, it is believed to be driven by speativn. The agents will
recognize this fact at a certain point and are becoming nati@nal. Thus, the drift
field is positive. An example for such a function is

[ =0k ifw—W|<R
P(x,w) = { K if W—W|>R 6)

whered andk are some positive numbers.

The first term on the right-hand side of (4) describes anaatén that is solely
based on economic fundamentals, and the second term deEsbiitary interactions
of the agents modeling the exchange of information and plyssiading to herding.
The precise modeling is as follows.
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Public information and herding. Letw be the estimated asset value of an agent
before the interaction ang* the asset value after exchanging information with a
public source. Similarly as in [11], the interaction is givey

w' =w—aP(jlw—W|)(w—W)+ nd(w), (7)

whereP € [0, 1] measures the compromise propengity; 0 measures the strength
of this effect,n is a random variable with distribution with variances? and zero
mean taking values ifR, andd(w) € [0,1] models the modification of the asset
prize due to diffusion. For instance, we may choB§gv—W/|) as the characteristic
function 14, _wj<r} on {|w—W| < r} for somer > 0. The above interaction rule
means that if a market agent trusts an information soureghstwill update her/his
estimated value to bring it closer to the one suggested binfoemation source. A
rational investor is supposed to follow such a strategy.

The second interaction rule models herding effects by tpkito account the
interaction between an agent and other investors. We chsiosiéarly as in [33],

w* :W_BV(VDW)(W_V)_Fnld(W)? (8)
Vi =V = By(v,W)(V—W) + n2d(v).

Here,(w,v) and (w*,v*) denote the asset values of two arbitrary agents before and
after the interaction, respectively. The constfnt [0,1/2] measures the attitude
of the market participants to change their mind because afitng mechanisms,
N1, N2 are random variables with the same distribution with van'mﬁ and zero
mean, and the functiod is as above. The functiop € [0,1] describes a socio-
economic scenario where individuals are highly confiderih@asset. In [13], the
exampley(v,w) = 1y, V(W) is suggested, wherkis nonincreasingf (0) = 1,
and limy_,. f(w) = 0. The meaning of this choice is as follows: If an agent has an
asset valuev smaller tharv, the functiony will push the agent to assume a higher
valuew* than that one before the interaction. This means that thet agests other
agents that assign a higher valuewlfs larger tharv, the agent hesitates to lower
her/his asset value and nothing changes. For a discussiba nbnnegativity ofv*
andv*, we refer to [14, Section 2].

With the above interaction rules, we can define the intevaatperator€), and
Qu in the weak form. Letp(w) := @(x,w) be a regular test function and $t=
R xRy, z= (x,w). Then

Jahomdz= ([ [ (ow) - gtw) w1 (cwtydzw ).
@t ptmz== ([ (o)~ plw) txwm) f(x vjdatw ).

where(-) is the expectation value with respect to the random variglaledM (W) >
0is a fixed background satisfying , M(W)dw = 1.
We have obtained in [14] the following results.
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Grazing collision limit. The analysis of the Boltzmann equation (4) is quite in-
volved, and we expect that its main features are containéukifimiting equation
derived in the diffusion limit{ a, 3, aﬁ , 0,2) — 0. More precisely, we scale the vari-
ables according to— at andx+— ax. Performing a Taylor expansion in the colli-
sion integrals and passing to the linit, 3, 03, 07) — 0 such that, = ¢?/a and

A = 04/ a are fixed, the limiting equation for the functigiix, w,t) reads as

%9+ (P(x,W)g)x = (K[glg+H (W))w+ (D(W)G)ww, ©9)
where(x,w) € R x R, t > 0,D(W) = 3(A/Ti + Aup/tn)d(W)?, p = [, fdz,

Kid = [T (uwgwdv T ww) = Syuw)(v—w),
' (10)
H(w) = e P(lw—W/)(w—W)M(W)dW.

R R
The equation is supplemented by the boundary and initiaditions
9(x,0,t) =0, g(x,w,0) = go(x,w) for (xw) eRxR,, t>0.  (11)

Existence of weak solutions. Equation (9) is nonlinear , nonlocal, degenerate in
w, and anisotropic ix (incomplete diffusion) and hence, its analysis is chaliegg
Partial diffusion may lead to singularity formation [21jdaoften solutions have
very low regularity [16]. As the transport iis linear in (9), our situation is better
but still delicate. In particular, we need the hypothesa Bw) is strictly positive

to get rid of the degeneracy in. Assuming additionally that the functions in (10)
are smooth/” > 0 anddr /ow < 0, and the initial datung is nonnegative and
bounded, there exists a weak solut@to (9)-(11) such thag € L?(0,T;H(Q)),
dgeL?(0,T;HY(Q)") and 0< g(x,w;t) < ||gol|L=€ for (x,w) € Q,t > 0, for some

A > 0and for allT > 0.

The idea of the proof is to regularize equation (9) by addingeeond-order
derivative with respect t®, to truncate the nonlinearity, and to solve the equation
in the finite intervaw € (0, R). Then we pass to the deregularization limit. The key
step of the proof is the derivation bf* estimates uniform in the approximation pa-
rameters, which allow for the compactness argument. Thetsaaes are derived
by analyzing the differential equation satisfieddyyand by making crucial use of
the boundary conditions. For details, we refer to [14].

Numerical simulations. We illustrate the behavior of the solution to the kinetic
model (4) numerically by using an operator splitting ansaéz, we split (4) into

a drift part and the collisional pargf = Q (f)/7 anda; f = Qu(f,f)/T4. The
collisional parts are solved by using the interaction r(s(8), respectively, and a
slightly modified Bird scheme [5]. The transport pérf = (®(x,w) f)x is numer-
ically solved by a flux-limited Lax-Wendroff/upwind scheniehe parameters and
functions are chosen as followg; = 1, = 1 and

P(w-W[) =1, d(w)=4w(1-w), y(,W)=LuyV(1-wW),



8 Ansgar dingel and Lara Trussardi

@ is given by (6), and we choose the time-dependent backgM{hd= (sin(t/200) +
0.5xexp(t/500))/30. The time evolution of the first moment

m(f(t)):/Qf(x,w,t)d(x,W)

is shown in Figure 2. The mean asset value stays within trgefi(t) — R, W(t) +
R] if W(t) is increasing but it has the tendency to become larger tén + R if
W(t) is not varying much. Furthermore, df is “small”, m(f(t)) usually does not
leave the intervaW(t) — R W(t) + R] (see [14]). Large values af mean that the
compromise propensity is larger and thus, herding may berbeanore likely.

0.8

©c o o
o o N

mean asset value
[=} [=}
w »

0.02 0.06

Fig. 2 Mean asset valum(f(t)) versus time fok =1, a =0.3,3 =0.2, 0 = 1.5,R=0.05, and
n = +0.061.

0.4 A kinetic model with wealth and knowledge exchanges

The effect of wealth and knowledge exchange in a closed tgotiay be described
by kinetic equations. Lef(x,w,t) be the distribution function depending on the
knowledge variable € R, , the wealthv € R, and timet > 0. We assume that the
evolution of f is given by the homogeneous Boltzmann-type equation

atf:QK(faf)+QN(f7f)7 (X7W)€R+XR+at>07 (12)
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where the operatoi®k andQy model the interaction of the agents with respect to
knowledge and wealth, respectively. The exchange rulég)idg these operators,
are as follows.

Let (x,v) and (y,w) denote the knowledges and wealths of two agents, respec-
tively. The knowledges* andy* after the interaction are, similarly as in (8), given
by

X=X KW)(Y—X), Y =y+KV)(X-Y),
wherek is a nondecreasing function of the wealth variable, modelire confi-
dence, i.e., ageri,w) trusts agentx,v) more if the latter agent is wealthier than
the former one. The wealth valuesandw* after the interaction are defined by

Vi=(1—yWX))vHyWyw W =yP(xv+ (1-yP(y)w,

wherey € (0,1) is fixed and¥ : R — (0, 1] is a nonincreasing continuous function
of the knowledge variable. This rule is exactly that one usef29] without the
random risk parameter. The quantit’(x) can be understood as the saving/risk-
taking propensity of agerik, v). The monotonicity of¥ means that the higher is the
knowledge of an agent, the less risky is the wealth exchamdest/him. We observe
that the microscopic total wealth is conserved during tlehargey* +w* = v+ w.
With the above exchange rules, the interaction operatersi@fined in weak form,
for some smooth test functiap, as

/@W Q«(f, )@z = v /(ﬂw (@(x V) — @(xv)) F(x v.t) F(y,w,t)dz 0z,

. Qw(f, f)edz = vw/ (@, V") — p(x,V)) f (x, v, t) f (y,w,t)dz; dz,,
J(R1)? (R4)*

wherevg, Wy are some rate parameters atm = dxdv, dz, = dydw.

Existence of solutions. If ¥ is lower bounded by a positive constant and the ini-
tial datum fo € L1(R2) is nonnegative, there exists a nonnegative solufion
L*(0,T;LY(R2) to (12), f(x,v,0) = fo(x,V) for (x,v) € R2. This result is shown
similarly as in [7]. The idea is to solve (12) iterativelyuthdefining a sequencé,)
which is bounded and satisfiés, 1 > f,. The monotone convergence theorem then
ensures the existence of a limit function which solves (b2 distributional sense
in time and in a weak sense lih(R? ).

Numerical simulations. Equation (12) is numerically solved by a particle method
[5], approximating the distribution function by a sum of &rmasses,

N
FOCWE) & S S (t) wp(t) (X V)
p=1

whereN € N is the number of agents amg(t), w,(t) are the knowledge and wealth
of the pth agent at timé > 0O, respectively. The simulations are repeated 30 times
for N = 2000 agents with a fixed set of parameters, and the resulésaraged. The
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simulations are performed until we have approximatelymeddhe stationary state.
The functions are defined by(v) = 0.15 and¥(x) = (1+x)~#, and we have taken
the parameter8 = 1, y = 0.9, andvx = vy, = 1. Figure 3 shows the level sét= 1

of the stationary distribution function if only interactis for the knowledg€x (left
figure) or for the wealtl®Qy (right figure) are present, i.e., we have considered only
one type of collisions in each simulation series. The dolfigule for the knowl-
edge induces a concentration of the agents at the averagéddge, which equals
0.5, having no effect on the wealth distribution. If only thealtd collision rule is
applied, the agents aggregate again on a line, but they duanetthe same wealth.
The less informed agents are poorer, while the more inforaredmore wealthy.
Choosing other values f@ will not give a line but a curve, which allows for more
flexibility in the modeling. For instance, f¢g8 > 1, the wealth increases superlin-
early with the knowledge, i.e., even a small improvemenhefknowledge leads to
a significant increase of the wealth. Thus, Figure 3 (righglpnts a situation which
seems to be not unrealistic, giving rise to the hope that théatrmay be applicable
to more complex socio-economic scenarios.

15 1 15F

> 1 ] > 1r

05 | 051

0 1 1 1 Il 0 L 1 Il 1
0 02 04 06 08 1 0 02 04 0.6 08 1

X X

Fig. 3 Level sets for the stationary distribution functionfat 1 if only knowledge (left) or wealth
(right) is exchanged.
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