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Abstract The dynamics of the number of participants in a large market is described
by nonlinear partial differential equations of kinetic anddiffusive type. The results
on the modeling, analysis, and numerical simulation of three market models are
briefly reviewed. The interplay of the agents with external sources, herding phe-
nomena, and irrationality of the individuals as well as the exchange of knowledge
and wealth is explored mathematically. The focus lies on themathematical under-
standing of the differential equations rather than on the modeling of real economic
situations, aiming at identifying models which are able to produce the desired ef-
fects.

0.1 Introduction

The modeling of markets with a large number of agents became very vital in recent
years with the aim to understand inefficient markets or irrational behavior of agents,
for instance. The dynamics of such markets may be described by agent-based mod-
els, kinetic equations, or diffusive systems. Agent-basedmodels specify the behav-
ior of individuals by using elements of game theory and Monte-Carlo simulation
techniques [31]. In kinetic modeling, the analogy with statistical mechanics is ex-
ploited: Interactions between market agents are interpreted as collisions between
gas particles, and conservation laws for income and/or wealth may hold [26, 28].
Diffusive systems are often derived from kinetic equationsin the so-called grazing
collision limit, and they illustrate the behavior on a macroscopic level [33]. In this

Ansgar J̈ungel
Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Haupt-
str. 8-10, 1040 Wien, Austria, e-mail: juengel@tuwien.ac.at.

Lara Trussardi
Centre de Recherche Inria de Paris, REO project-team, 2 rue Simone IFF, 75012 Paris, France,
e-mail: lara.trussardi@inria.fr.

1



2 Ansgar J̈ungel and Lara Trussardi

section, we summarize the results of [6, 14, 25] on kinetic and diffusive equations
modeling socio-economic scenarios.

The first scenario is the herding in financial markets. Herding is characterized by
a homogenization of the actions of the market participants,which behave at a certain
time in the same way. Herding may lead to strong trends with low volatility of asset
prices, but eventually also to abrupt corrections, so it promotes the occurrence of
bubbles and crashes. Numerous socio-economic papers [4, 8,30] and research in
biological sciences [1, 19] show that herding interactionsplay a crucial role in social
scenarios. Herding behavior is often irrational because people are not basing their
decision on objective criteria.

A full understanding of herding behavior needs the ability to understand two lev-
els: the microscopic one, which considers each individual of the crowd separately;
and the macroscopic level, which deals with the group of individuals, i.e. the herd.
The first level usually represents the individual as a particle, and a microscopic
particle-type or mesoscopic kinetic description may be useful. The latter one may
be represented by a density function depending (continuously) on space and time,
leading to diffusive equations. We consider a diffusive herding model in Section 0.2
and a kinetic herding equation in Section 0.3.

The second scenario addressed in this review is the distribution of wealth. Most
of the models in the literature are agent-based models [9], mean-field games [18], or
kinetic equations [27]. In kinetic modeling, binary collisions are replaced by trades
between agents by defining rules which specify how wealth is exchanged in trades.
The output of the model are the statistics of the wealth distribution in the market. It
turns out that in many models, the stationary profile has an overpopulated tail (called
fat tail or Pareto tail), which is interpreted as the existence of an upper class of
very wealthy people [27]. Pareto tails appear under variousassumptions, assuming
wealth conservation in the mean or pointwise wealth conservation [15].

Binary wealth exchange models go back to the work [3]. Later,the relation to
statistical mechanics was highlighted [24], and strictly conservative exchange mod-
els were developed [10]. The strict conservation was relaxed in [12] to conservation
in the mean. Our contribution is to combine wealth and knowledge of agents in a
society and to examine the interaction of these qualities; see Section 0.4.

We stress the fact that the models that we are proposing and analyzing are quite
simple. Certainly, the socio-economic behavior of real market agents is extremely
complex and includes psychologic and social phenomena. Still, we believe that a
large number of agents may be described to some extent in an averaged sense – at
least in simplified situations. Our aim is to understand the mathematical phenomena
arising from the new terms in the models rather than devisingmodels that include
as many features as possible. Our analysis shows which termsproduce the desired
effects and henceforth can be included in more realistic models. The hope is that this
analysis helps to identify irregularities in (financial) markets or in societies and to
lead to improved market regulations and counter-actions toavoid financial crashes.
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0.2 A cross-diffusion herding model

A very simple model for herding behavior is given by the cross-diffusion system
[25]

∂tu = div(∇u−g(u)∇v), ∂tv = div(δ∇u+κ∇v)+ f (u)−αv, (1)

whereu(x, t) represents the normalized density of individuals with information vari-
ablex ∈ Ω at timet ≥ 0 (Ω ⊂ R

d being a bounded domain), andv(x, t) is an influ-
ence function which modifies the information state of the individuals. The influence
function acts through the cross-diffusion termg(u)∇v in the first equation in (1).
We assume that the influence becomes weak if the number of individuals at a fixed
statex is very low or close to the maximal valueu = 1. Thus, we suppose that
g(0) = g(1) = 0. The influence function is modified by diffusive effects also due to
the random behavior of the agents with parameterδ > 0, by the nonnegative source
term f (u), time relaxation with rateα > 0, and diffusion with coefficientκ > 0.
Our aim is to understand whether the above model exhibits herding phenomena, i.e.
regions in which the density of the agents is very low or closeto the maximal value.

The equations are supplemented by no-flux boundary and initial conditions:

(∇u−g(u)∇v) ·ν = 0, (δ∇u+κ∇v) ·ν = 0 on∂Ω ,

u(·,0) = u0, v(·,0) = v0 in Ω , t > 0,
(2)

whereν denotes the exterior unit normal vector to∂Ω .
If δ = 0, system (1) correspond to a nonlinear chemotaxis Keller-Segel model,

whereu represents the cell density andv the concentration of the chemoattractant
[20]. While the original Keller-Segel model exhibits finite-time blow-up of the so-
lutions, the nonlinear mobilityg(u) = u(1− u) prevents blow up [34]. Equations
(1) with δ > 0 can be derived from stochastic partial differential equations describ-
ing interacting particles, at least for constant mobility functionsg(u) [17]. The case
δ > 0 andg(u) = u was analyzed in [23]. A typical example in the present situation
is g(u) = u(1−u) since this function satisfiesg(0) = g(1) = 0.

In the work [25], the following results have been obtained.

Existence of solutions. If f and g are smooth, bounded, nonnegative functions
such that there existsm ∈ (0,1) satisfying

g(0) = g(1) = 0,
∫ m

0

ds
g(s)

=

∫ 1

m

ds
g(s)

= ∞, (3)

andu0, v0 ∈ L∞(Ω), then there exists a global weak solution(u,v) to (1)-(2) satis-
fying 0≤ u ≤ 1 in Ω , t > 0, as long asδ > −κ/γ, whereγ = maxs∈[0,1] g(s). The
functiong(u) = u(1−u) satisfies (3).

The restriction onδ ensures that the real parts of the eigenvalues of the diffu-
sion matrix from (1) are positive, such that the system is parabolic in the sense of
Petrovskii and local existence of solutions can be expected[2]. The challenge is to
prove the existence of global (weak) solutions. A key element of the proof is the
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observation that equations (1) admit a Lyapunov functional(called an entropy),

H(u,v) =
∫

Ω

(

h(u)+
v2

2δ0

)

, whereh(u) =
∫ s

m

∫ σ

m

dt
g(t)

dσ ,

andδ0 = δ if δ > 0, δ0 = κ/γ if δ < 0. A computation shows that forδ > −κ/γ,
there existscδ > 0 such that

dH
dt

+ cδ

∫

Ω

(

|∇u|2

g(u)
+

|∇v|2

δ 2
0

)

dx ≤ c,

wherecδ > 0 also depends onΩ , f , and g. The gradient estimate is needed to
prove the compactness of the fixed-point operator needed to apply the Leray-
Schauder fixed-point theorem [25]. The exponential decay ofthe solutions (in terms
of H(u,v)) to a constant steady state holds for sufficiently large values ofδ > 0. We
wish to understand what happens ifδ becomes small positive or negative large. This
is done via a bifurcation analysis.

Bifurcation analysis. Choosingδ as a bifurcation parameter, we can apply bi-
furcation theory to show that the stationary solutions bifurcate from the constant
steady state(u∗,v∗) for δ 6= δd := −κ/g(u∗). For this result, we employed in [25]
the local bifurcation theory of Crandell and Rabinowitz andthe global bifurca-
tion theory for nonlinear Fredholm mappings from Shi and Wang [32]. The diffi-
culty here is that(u∗,v∗) is not an isolated bifurcation branch as a function ofδ ,
since fixing any initial mass, there is a family of homogeneous steady states with
u∗ =

∫

Ω u(x)dx/meas(Ω). For the numerical bifurcation analysis, this degeneracy
is resolved by introducing a small relaxation termρ(u−u∗) in the first equation of
(1) with very smallρ > 0 and by applying a homotopy continuation step to achieve
solutions forρ = 0.

Numerically, there exist local bifurcation points on the branch of homogeneous
steady states ifδ < δd for sufficiently largeα and ifδ > δd for sufficiently smallα.
The results have been obtained by using the software AUTO; for details we refer to
[25]. Here, we only depict one stationary densityu in Figure 1, showing that there is
indeed a region in which the number of individuals with a certain information state
is very small, which indicates some herding phenomenum.

0.3 A kinetic model with irrationality and herding

A second approach to model herding consists in using kineticequations. We de-
scribe the evolution of the distribution functionf (x,w, t) of the agents depending on
the rationalityx ∈R and the estimated asset valuew ∈R+ := [0,∞), assigned to the
asset by an individual. The agent behaves rational whenx > 0 and irrational when
x < 0. The time evolution is given by the inhomogeneous kinetic equation



Modeling of herding and wealth distribution in large markets 5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

x

u

Fig. 1 Stationary density of individuals for the model (1) with parametersα = 0.001,κ = 1,δ = 9,
andΩ = (0,50).

∂t f +(Φ(x,w) f )x = QI( f )+QH( f , f ), (x,w) ∈ R×R+, t > 0, (4)

with the boundary and initial conditions

f (x,0, t) = 0, f (x,w,0) = f0(x,w) for (x,w) ∈ R×R+, t > 0. (5)

The second term in (4) models the irrationality of the agents. When the asset price
w lies within a certain range|w−W | < R around a “fair” prizeW > 0 which is
determined by fundamentals, the agents are suppposed to behave more irrational
because of psychological biases like overconfidence or limited attention [22]. This
is modeled by a negative drift fieldΦ(x,w). When the asset value is outside of
the “fair” prize region, it is believed to be driven by speculation. The agents will
recognize this fact at a certain point and are becoming more rational. Thus, the drift
field is positive. An example for such a function is

Φ(x,w) =

{

−δκ if |w−W |< R,
κ if |w−W | ≥ R,

(6)

whereδ andκ are some positive numbers.
The first term on the right-hand side of (4) describes an interaction that is solely

based on economic fundamentals, and the second term describes binary interactions
of the agents modeling the exchange of information and possibly leading to herding.
The precise modeling is as follows.
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Public information and herding. Let w be the estimated asset value of an agent
before the interaction andw∗ the asset value after exchanging information with a
public source. Similarly as in [11], the interaction is given by

w∗ = w−αP(|w−W |)(w−W )+ηd(w), (7)

whereP ∈ [0,1] measures the compromise propensity,α > 0 measures the strength
of this effect,η is a random variable with distributionµ with varianceσ2

I and zero
mean taking values inR, andd(w) ∈ [0,1] models the modification of the asset
prize due to diffusion. For instance, we may chooseP(|w−W |) as the characteristic
function 1{|w−W |<r} on {|w−W | < r} for somer > 0. The above interaction rule
means that if a market agent trusts an information source, she/he will update her/his
estimated value to bring it closer to the one suggested by theinformation source. A
rational investor is supposed to follow such a strategy.

The second interaction rule models herding effects by taking into account the
interaction between an agent and other investors. We choose, similarly as in [33],

w∗ = w−βγ(v,w)(w− v)+η1d(w),

v∗ = v−βγ(v,w)(v−w)+η2d(v).
(8)

Here,(w,v) and(w∗,v∗) denote the asset values of two arbitrary agents before and
after the interaction, respectively. The constantβ ∈ [0,1/2] measures the attitude
of the market participants to change their mind because of herding mechanisms,
η1, η2 are random variables with the same distribution with variance σ2

H and zero
mean, and the functiond is as above. The functionγ ∈ [0,1] describes a socio-
economic scenario where individuals are highly confident inthe asset. In [13], the
exampleγ(v,w) = 1{w<v}v f (w) is suggested, wheref is nonincreasing,f (0) = 1,
and limw→∞ f (w) = 0. The meaning of this choice is as follows: If an agent has an
asset valuew smaller thanv, the functionγ will push the agent to assume a higher
valuew∗ than that one before the interaction. This means that the agent trusts other
agents that assign a higher value. Ifw is larger thanv, the agent hesitates to lower
her/his asset value and nothing changes. For a discussion ofthe nonnegativity ofw∗

andv∗, we refer to [14, Section 2].
With the above interaction rules, we can define the interaction operatorsQI and

QH in the weak form. Letφ(w) := φ(x,w) be a regular test function and setΩ =
R×R+, z = (x,w). Then

∫

Ω
QI( f )φ(w)dz =

1
τH

〈

∫

R+

∫

Ω

(

φ(w∗)−φ(w)
)

M(W ) f (x,w, t)dzdW

〉

,

∫

Ω
QH( f , f )φ(w)dz =

1
τI

〈

∫

R+

∫

Ω

(

φ(w∗)−φ(w)
)

f (x,w, t) f (x,v, t)dzdW

〉

,

where〈·〉 is the expectation value with respect to the random variableη andM(W )≥
0 is a fixed background satisfying

∫

R+
M(W )dW = 1.

We have obtained in [14] the following results.
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Grazing collision limit. The analysis of the Boltzmann equation (4) is quite in-
volved, and we expect that its main features are contained inthe limiting equation
derived in the diffusion limit(α,β ,σ2

H ,σ2
I )→ 0. More precisely, we scale the vari-

ables according tot 7→ αt andx 7→ αx. Performing a Taylor expansion in the colli-
sion integrals and passing to the limit(α,β ,σ2

H ,σ2
I )→ 0 such thatλI = σ2

I /α and
λH = σ2

H/α are fixed, the limiting equation for the functiong(x,w, t) reads as

∂tg+(Φ(x,w)g)x = (K[g]g+H(w))w +(D(w)g)ww, (9)

where(x,w) ∈ R×R+, t > 0, D(w) = 1
2(λI/τI +λHρ/τH)d(w)2, ρ =

∫

Ω f dz,

K[g] =
∫ ∞

0
Γ (v,w)g(v)dv, Γ (v,w) =

k
τH

γ(v,w)(v−w),

H(w) =
1
τI

∫

R+

P(|w−W |)(w−W )M(W )dW.

(10)

The equation is supplemented by the boundary and initial conditions

g(x,0, t) = 0, g(x,w,0) = g0(x,w) for (x,w) ∈ R×R+, t > 0. (11)

Existence of weak solutions. Equation (9) is nonlinear , nonlocal, degenerate in
w, and anisotropic inx (incomplete diffusion) and hence, its analysis is challenging.
Partial diffusion may lead to singularity formation [21], and often solutions have
very low regularity [16]. As the transport inx is linear in (9), our situation is better
but still delicate. In particular, we need the hypothesis that D(w) is strictly positive
to get rid of the degeneracy inw. Assuming additionally that the functions in (10)
are smooth,Γ ≥ 0 and∂Γ /∂w ≤ 0, and the initial datumg0 is nonnegative and
bounded, there exists a weak solutiong to (9)-(11) such thatg ∈ L2(0,T ;H1(Ω)),
∂tg∈ L2(0,T ;H1(Ω)′) and 0≤ g(x,w, t)≤‖g0‖L∞ eλ t for (x,w)∈Ω , t > 0, for some
λ > 0 and for allT > 0.

The idea of the proof is to regularize equation (9) by adding asecond-order
derivative with respect tox, to truncate the nonlinearity, and to solve the equation
in the finite intervalw ∈ (0,R). Then we pass to the deregularization limit. The key
step of the proof is the derivation ofH1 estimates uniform in the approximation pa-
rameters, which allow for the compactness argument. These estimates are derived
by analyzing the differential equation satisfied bygx and by making crucial use of
the boundary conditions. For details, we refer to [14].

Numerical simulations. We illustrate the behavior of the solution to the kinetic
model (4) numerically by using an operator splitting ansatz, i.e., we split (4) into
a drift part and the collisional parts∂t f = QI( f )/τI and∂t f = QH( f , f )/τH . The
collisional parts are solved by using the interaction rules(7), (8), respectively, and a
slightly modified Bird scheme [5]. The transport part∂t f = (Φ(x,w) f )x is numer-
ically solved by a flux-limited Lax-Wendroff/upwind scheme. The parameters and
functions are chosen as follows:τH = τI = 1 and

P(|w−W |) = 1, d(w) = 4w(1−w), γ(v,w) = 1{w<v}v(1−w),
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Φ is given by (6), and we choose the time-dependent backgroundW (t)= (sin(t/200)+
0.5∗exp(t/500))/30. The time evolution of the first moment

m( f (t)) =
∫

Ω
f (x,w, t)d(x,w)

is shown in Figure 2. The mean asset value stays within the range[W (t)−R,W (t)+
R] if W (t) is increasing but it has the tendency to become larger thanW (t)+R if
W (t) is not varying much. Furthermore, ifα is “small”, m( f (t)) usually does not
leave the interval[W (t)−R,W (t)+R] (see [14]). Large values ofα mean that the
compromise propensity is larger and thus, herding may be become more likely.
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Fig. 2 Mean asset valuem( f (t)) versus time forκ = 1, α = 0.3, β = 0.2, δ = 1.5, R = 0.05, and
η =±0.061.

0.4 A kinetic model with wealth and knowledge exchanges

The effect of wealth and knowledge exchange in a closed society may be described
by kinetic equations. Letf (x,w, t) be the distribution function depending on the
knowledge variablex ∈ R+, the wealthv ∈ R+, and timet > 0. We assume that the
evolution of f is given by the homogeneous Boltzmann-type equation

∂t f = QK( f , f )+QW ( f , f ), (x,w) ∈ R+×R+, t > 0, (12)
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where the operatorsQK andQW model the interaction of the agents with respect to
knowledge and wealth, respectively. The exchange rules, defining these operators,
are as follows.

Let (x,v) and(y,w) denote the knowledges and wealths of two agents, respec-
tively. The knowledgesx∗ andy∗ after the interaction are, similarly as in (8), given
by

x∗ = x+κ(w)(y− x), y∗ = y+κ(v)(x− y),

whereκ is a nondecreasing function of the wealth variable, modeling the confi-
dence, i.e., agent(y,w) trusts agent(x,v) more if the latter agent is wealthier than
the former one. The wealth valuesv∗ andw∗ after the interaction are defined by

v∗ = (1− γΨ(x))v+ γΨ(y)w, w∗ = γΨ(x)v+(1− γΨ(y))w,

whereγ ∈ (0,1) is fixed andΨ : R+ → (0,1] is a nonincreasing continuous function
of the knowledge variable. This rule is exactly that one usedin [29] without the
random risk parameter. The quantityγΨ(x) can be understood as the saving/risk-
taking propensity of agent(x,v). The monotonicity ofΨ means that the higher is the
knowledge of an agent, the less risky is the wealth exchange for her/him. We observe
that the microscopic total wealth is conserved during the exchange,v∗+w∗ = v+w.
With the above exchange rules, the interaction operators are defined in weak form,
for some smooth test functionφ , as

∫

(R+)2
QK( f , f )φdz1 = νK

∫

(R+)4

(

φ(x∗,v)−φ(x,v)
)

f (x,v, t) f (y,w, t)dz1dz2,

∫

(R+)2
QW ( f , f )φdz2 = νW

∫

(R+)4

(

φ(x,v∗)−φ(x,v)
)

f (x,v, t) f (y,w, t)dz1dz2,

whereνK , νW are some rate parameters anddz1 = dxdv, dz2 = dydw.

Existence of solutions. If Ψ is lower bounded by a positive constant and the ini-
tial datum f0 ∈ L1(R2

+) is nonnegative, there exists a nonnegative solutionf ∈
L∞(0,T ;L1(R2

+) to (12), f (x,v,0) = f0(x,v) for (x,v) ∈ R
2
+. This result is shown

similarly as in [7]. The idea is to solve (12) iteratively, thus defining a sequence( fn)
which is bounded and satisfiesfn+1 ≥ fn. The monotone convergence theorem then
ensures the existence of a limit function which solves (12) in a distributional sense
in time and in a weak sense inL1(R2

+).

Numerical simulations. Equation (12) is numerically solved by a particle method
[5], approximating the distribution function by a sum of Dirac masses,

f (x,w, t)≈
N

∑
p=1

δ(xp(t),wp(t))(x,v),

whereN ∈N is the number of agents andxp(t), wp(t) are the knowledge and wealth
of the pth agent at timet > 0, respectively. The simulations are repeated 30 times
for N = 2000 agents with a fixed set of parameters, and the results areaveraged. The
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simulations are performed until we have approximately reached the stationary state.
The functions are defined byκ(v) = 0.15 andΨ(x) = (1+x)−β , and we have taken
the parametersβ = 1, γ = 0.9, andνk = νw = 1. Figure 3 shows the level setf = 1
of the stationary distribution function if only interactions for the knowledgeQK (left
figure) or for the wealthQW (right figure) are present, i.e., we have considered only
one type of collisions in each simulation series. The collision rule for the knowl-
edge induces a concentration of the agents at the average knowledge, which equals
0.5, having no effect on the wealth distribution. If only the wealth collision rule is
applied, the agents aggregate again on a line, but they do nothave the same wealth.
The less informed agents are poorer, while the more informedare more wealthy.
Choosing other values forβ will not give a line but a curve, which allows for more
flexibility in the modeling. For instance, forβ > 1, the wealth increases superlin-
early with the knowledge, i.e., even a small improvement of the knowledge leads to
a significant increase of the wealth. Thus, Figure 3 (right) presents a situation which
seems to be not unrealistic, giving rise to the hope that the model may be applicable
to more complex socio-economic scenarios.
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Fig. 3 Level sets for the stationary distribution function atf = 1 if only knowledge (left) or wealth
(right) is exchanged.
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