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Abstract. Structure-preserving finite-difference schemes for general nonlinear fourth-
order parabolic equations on the one-dimensional torus are derived. Examples include the
thin-film and the Derrida–Lebowitz–Speer–Spohn equations. The schemes conserve the
mass and dissipate the entropy. The scheme associated to the logarithmic entropy also
preserves the positivity. The idea of the derivation is to reformulate the equations in such a
way that the chain rule is avoided. A central finite-difference discretization is then applied
to the reformulation. In this way, the same dissipation rates as in the continuous case
are recovered. The strategy can be extended to a multi-dimensional thin-film equation.
Numerical examples in one and two space dimensions illustrate the dissipation properties.

1. Introduction

The design of numerical schemes that preserve the structure of the associated partial
differential equations is an important task in numerical mathematics. In this paper, we
develop new finite-difference approximations conserving the mass, preserving the positivity,
and dissipating the entropy of nonlinear fourth-order parabolic equations of the type

(1) ∂tu = −Jx, J = uβuxxx + auβ−1uxxux + buβ−2u3x in T,

where T = R/Z is the one-dimensional torus, a, b ∈ R, and β ≥ 0, together with the initial
condition u(0) = u0 in T. We also discuss briefly the discretization of multi-dimensional
equations; see Section 4.

A special case of (1) (with a = b = 0) is the thin-film equation

(2) ∂tu = −(uβuxxx)x,

which models the flow of a thin liquid along a solid surface with film height u(x, t) or the
thin neck of a Hele-Shaw flow in the lubrication approximation [1]. The multi-dimensional
version is given by ∂tu = − div(uβ∇∆u) and its discretization will be discussed in Section
4. Another example (with a = −2, b = 1, β = 0) is the Derrida–Lebowitz–Speer–Spohn

Date: January 10, 2020.
2000 Mathematics Subject Classification. 35K30, 35Q68, 65M06, 65M12.
Key words and phrases. Entropy, finite differences, thin-film equation, DLSS equation, discrete chain

rule, denoising.
The authors acknowledge partial support from the Austrian Science Fund (FWF), grants F65, P30000,

P33010, and W1245.
1



2 M. BRAUKHOFF AND A. JÜNGEL

(DLSS) equation

(3) ∂tu = −2

(
u

(
(
√
u)xx√
u

)
x

)
x

= −
(
uxxx − 2

uxxux
u

+
u3x
u2

)
x

,

which arises as a scaling limit of interface fluctuations in spin systems [7] and describes
the evolution of the electron density u(x, t) in a quantum semiconductor under simplifying
assumptions.

Equations (2) and (3) conserve the mass
∫
T u(x, t)dx and preserve the positivity of the

solution, even for the corresponding multi-dimensional versions [6, 14]. They also dissipate
the entropy1 in the sense that there exists a Lyapunov functional S(t) =

∫
T s(u(x, t))dx

with entropy density s(u) such that the entropy production −dS/dt provides gradient
estimates. For instance, (2) and (3) dissipate the entropy density s(u) = sα(u), where

sα(u) =
uα

α(α− 1)
for α > 0, α 6= 0, 1,

s0(u) = − log u for α = 0,(4)

s1(u) = u(log u− 1) for α = 1,

if 3
2
≤ α + β ≤ 3 (thin-film equation) and 0 ≤ α ≤ 3

2
(DLSS equation); see [15, Section

4]. These bounds are optimal. We call s1(u) the Shannon entropy (density), s0(u) the
logarithmic entropy, and sα(u) for α 6= 0, 1 a Rényi entropy. It holds that sα(u) → s0(u)
pointwise for α → 0 and sα(u) → u log u pointwise for α → 1. We prefer to define s1(u)
as in (4) to avoid the additional term in d(u log u)/du = log u+ 1 which would complicate
the subsequent computations.

The proof of the dissipation of the entropy is based on suitable integrations by parts
and the chain rule [15]. On the discrete level, we face the problem that the chain rule is
generally not available. We are aware of two general strategies.

The first strategy is to exploit the gradient-flow structure of the parabolic equation (if
it exists). It involves only one integration by parts, and the discrete chain rule can be
formulated by means of suitable mean functions. This idea was elaborated as the Discrete
Variational Derivative Method for finite-difference approximations [11]. The gradient-flow
formulation (with respect to the L2-Wasserstein metric) yields a natural semi-discretization
in time of the evolution using the minimizing movement scheme in finite-dimensional spaces
from finite-volume or finite-difference approximations. These techniques were used in
[8, 13, 19, 20] for the multi-dimensional DLSS equation. It allows for the proof of en-
tropy dissipation of the Shannon entropy and the Fisher information

∫
T(
√
u)2xdx, but not

for general Rényi entropies, since no Wasserstein gradient-flow formulation seems to be
available for these functionals. The thin-film equation with 0 < β < 1 is shown in [18]
to be a gradient flow with respect to a weighted Wasserstein metric. In the work [22], a
finite-difference scheme that dissipates the discrete H1 norm of the solution to the one-
dimensional thin-film equation was analyzed.

1Strictly speaking, equation (1) produces entropy and dissipates energy, but the notion entropy dissipa-
tion seems to be common in numerical schemes.
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The minimizing movement scheme is based on the implicit Euler method. We mention
that higher-order time discretizations were investigated too, in the framework of semi-
discrete problems; see [4] using the two-step BDF method and [17] using one-leg multistep
generalizations. A generic framework for Galerkin methods in space and discontinuous
Galerkin methods in time was presented in [9].

The second strategy uses time-continuous Markov chains on finite state spaces. Birth-
death processes that define the Markov chain can be interpreted as a finite-volume dis-
cretization of a one-dimensional Fokker–Planck equation, and the dissipation of the dis-
crete Shannon entropy can be proved. The nonlinear integrations by parts are reduced to
a discrete Bochner-type inequality [5, 10, 16], which is obtained by identifying the Radon–
Nikodym derivative of a measure involving the jump rates of the Markov chain [3, Section
2]. It seems that this idea is restricted to linear diffusion equations.

In this paper, we suggest a third strategy. The idea is to write the flux J as a combination
of derivatives of the function s′(u). This allows for integrations by parts that can be
extended to the discrete level and it avoids the application of the chain rule. More precisely,
we determine two functions A and B depending on v := s′(u) and its derivatives such that
J = Ax − vBx. The function s′(u) is known in thermodynamics as the chemical potential,
and the formulation of the flux in terms of the chemical potential seems to be natural from
a thermodynamic viewpoint. We apply this idea to fourth-order parabolic equations for
the first time. It turns out that for s = sα with α 6= 1, we can write

A =
uα+β

(α− 1)2v
(λ1ξ2 + λ2ξ

2
1), B =

uα+β

(α− 1)2v2
(λ3ξ2 + λ4ξ

2
1),

where ξ1 = vx/v, ξ2 = vxx/v, and the coefficients λi depend on a, b, α, and β; see (10) and
(11). Integrating by parts twice and using equation (1) gives for Sα =

∫
T sα(u)dx:

dSα
dt

=

∫
T
Jvxdx = −

∫
T

(
vxxA− (vvx)xB

)
dx.

The task is to show that the integrand, written as a polynomial in (ξ1, ξ2), is nonnegative
for all values of (ξ1, ξ2) ∈ R2. It follows from the product rule (vvx)x = vvxx + v2x that, for
α 6= 1,

dSα
dt

= −
∫
T
(ξ2vA− (ξ2 + ξ21)v2B)dx

= −
∫
T

uα+β

(α− 1)2
(
(λ1 − λ3)ξ22 + (λ2 − λ3 − λ4)ξ2ξ21 − λ4ξ41

)
dx.(5)

Under certain conditions on the parameters, we expect that the integrand is bounded from
below by uα+β(ξ22 + ξ41), up to a factor, which yields some gradient estimates.

On the discrete level, we imitate this idea: The flux J = Ax − vBx and the variables
ξ1, ξ2 of the polynomials A and B is discretized by central finite differences. For this, let
Th = T/(hZ) be a discrete torus with grid size h > 0 and define the scheme

(6) ∂tui = −1

h
(Ji+1/2 − Ji−1/2), Ji+1/2 =

1

h
(Ai+1 − Ai)−

1

2h
(vi+1 + vi)(Bi+1 −Bi),
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with the initial condition ui(0) = u0(i) for i ∈ Th, where ui = u(i), vi = s′(ui), and Ai
and Bi are the polynomials A and B, evaluated at i ∈ Th, respectively; see (19). We
show below that with the discrete entropy Shα = h

∑
i∈Th

sα(u), the discrete analog of (5)
becomes

dShα
dt

= −h
∑
i∈Th

(
ξ2,iviAi − (viξ2,i + ξ21,i)v

2
iBi

)
,

where ξ1,i, ξ2,i approximate vx(i)/v(i), vxx(i)/v(i), respectively. This yields exactly the
polynomial of the continuous case. Thus, we obtain the same conditions on the parameters
as for the continuous equation.

We still need a discrete analog of the product rule (vvx)x = vvxx + v2x to conclude. This
is done by carefully choosing ξ1,i and ξ2,i. Definition (20) ensures that v2i (ξ2,i + ξ21,i) =

(v2i+1 − 2vi + v2i−1)/(2h
2) which approximates 1

2
(v2)xx = vvxx + v2x. This choice is used in

the central scheme (6) for Ji+1/2. Noncentral schemes require different definitions of ξ1,i
and ξ2,i; see Remark 7.

A drawback of our technique is that scheme (6) depends on the entropy to be dissipated.
The scheme does not dissipate all admissible entropies. In applications, however, one
usually wants to dissipate only that entropy which is physically relevant.

Our main results can be sketched as follows:

• Lyapunov functional: Let α ≥ 0, α 6= 1 and assume that

(7) K(α, β) := −2α2 + (3a− 4β + 9)α− 2β2 + (3a+ 9)β − 9(a+ b+ 1) ≥ 0.

Then the continuous entropy Sα and the discrete entropy Shα are dissipated in the
sense that dSα/dt ≤ 0 and dShα/dt ≤ 0, i.e., Sα and Shα are Lyapunov functionals
for u(t) and ui(t), respectively; see Theorems 2 and 5. Condition (7) is optimal for
the thin-film and DLSS equations.
• Entropy dissipation: Let α ≥ 0, α 6= 1 and assume that K(α, β) > 0. Then there

exists a constant c(α, β) > 0 such that for all t > 0,

dSα
dt

+ c(α, β)

∫
T
uα+β(ξ22 + ξ41)dx ≤ 0,(8)

dShα
dt

+ c(α, β)h
∑
i∈Th

ūα+βi (ξ22,i + ξ41,i) ≤ 0,(9)

where ξ1 = vx/v, ξ2 = vxx/v, v = sα(u), ūi is an arbitrary average of (ui), and ξ1,i,
ξ2,i are defined in (20). This result is proved in Theorems 2 and 5.
• Case α = 1: For the case α = 1, we need the formulation J = Ax−wBx instead of
J = Ax − vBx, where w = s′0(u) = −u−1 and v = log u, since J generally does not
depend on the logarithm. For details, see Proposition 8.
• Case α = 0: We show that scheme (6) with α = 0 possesses global positive so-

lutions. This result is a consequence of the discrete entropy inequality and mass
conservation, which imply that h

∑
i∈Th

(ui(t) − log ui(t)) is bounded for all t > 0.
Consequently, ui(t) − log ui(t) is bounded for all i ∈ Th and t > 0, and since the
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function s 7→ s− log s tends to infinity if either s→ 0 or s→∞, this proves that
ui(t) is bounded from below and above. We refer to Proposition 6 for details.
• Multi-dimensional case: In principle, the multi-dimensional case can be treated us-

ing functions A and B with many variables. Practically, however, the computations
are becoming too involved and it may be unclear how to discretize mixed deriva-
tives. One idea to overcome this issue is to use scalar variables only, like ξ1 = |∇v|/v
and ξ2 = ∆v/v. This allows us to treat the multi-dimensional thin-film equation;
see Proposition 10.

The paper is organized as follows. We prove the continuous entropy inequality (8) in
Section 2 and the discrete entropy inequality (9) in Section 3. A scheme for the multi-
dimensional thin-film equation is proposed and analyzed in Section 4. Numerical simu-
lations for the thin-film and DLSS equations in one space dimension and for a thin-film
equation in two space dimensions are presented in Section 5.

2. General continuous equation

To prepare the discretization, we need to analyze the entropy dissipation properties
of the continuous equation (1). We show first that J can be written as Ax − vBx with
v = s′α(u) and functions A and B which depend on v, vx, and vxx.

Lemma 1. Let J be given as in (1) and sα as in (4) and let α ≥ 0 satisfy α 6= 1. Then
J = Ax − vBx, where

A = uα+β
(
λ1u

2−2α(s′α(u))xx + λ2(α− 1)u3−3α(s′α(u))2x
)

=
uα+β

(α− 1)2v

(
λ1
vxx
v

+ λ2

(
vx
v

)2)
,

B = uα+β
(
λ3(α− 1)u3−3α(s′α(u))xx + λ4(α− 1)2u4−4α(s′α(u))2x

)
=

uα+β

(α− 1)2v2

(
λ3
vxx
v

+ λ4

(
vx
v

)2)
and

λ1 =
−2α2 + (β + 5)α + aβ − β2 − a− 2b− 3

(α− 1)(β − 2α + 3)
+

2(α− 1)

β − 2α + 3
λ4,

λ2 =
2α2 − (a+ 7)α + 2a+ b+ 6

(α− 1)(β − 2α + 3)
+
β − 3α + 4

β − 2α + 3
λ4,(10)

λ3 =
(a+ 1)β − β2 − a− 2b

(1− α)(β − 2α + 3)
+

2(α− 1)

β − 2α + 3
λ4,

with λ4 ∈ R being a free parameter.

The lemma shows in particular that the formulation J = Ax − vBx is not unique. This
fact is used to optimize later the range of admissible parameters α, β, a, and b.
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Proof. Let α > 0 with α 6= 1. A direct computation yields

A = λ1u
βuxx +

(
(λ1 + λ2)α− 2λ1 − λ2

)
uβ−1u2x,

B = λ3(α− 1)uβ−α+1uxx +
(
(λ3 + λ4)α− 2λ3 − λ4

)
uβ−αu2x.

Inserting these expressions into Ax − vBx and simplifying leads to

Ax −
uα−1

α− 1
Bx = (λ1 − λ3)uβuxxx

+
(
(2λ1 + 2λ2 − λ3 − 2λ4)α + (λ1 − λ3)β − 4λ1 − 2λ2 + 3λ3 + 2λ4

)
uβ−1uxxux

+
(
(λ3 + λ4)α

2 + (λ1 + λ2 − λ3 − λ4)αβ − (λ1 + λ2 + 2λ3 + λ4)α

+ (−2λ1 − λ2 + 2λ3 + λ4)β + 2λ1 + λ2
)
uβ−2u3x.

We identify the coefficients with those in the expression (1) for J :

1 = λ1 − λ3,
a = (2λ1 + 2λ2 − λ3 − 2λ4)α + (λ1 − λ3)β − 4λ1 − 2λ2 + 3λ3 + 2λ4,

b = (λ3 + λ4)α
2 + (λ1 + λ2 − λ3 − λ4)αβ − (λ1 + λ2 + 2λ3 + λ4)α

+ (−2λ1 − λ2 + 2λ3 + λ4)β + 2λ1 + λ2.

The general solution of this linear system for (λ1, λ2, λ3, λ4), with free parameter λ4 ∈ R,
gives (10).

Next, let α = 0. The ansatz for A and B becomes

A = uβ
(
λ1u

2(−u−1)xx − λ2u3(−u−1)2x
)
,

B = uβ
(
− λ3u3(−u−1)xx + λ4u

4(−u−1)2x
)
.

Then

Ax − vBx = (λ1 − λ3)uβuxxx +
(
(λ1 − λ3)β − 4λ1 − 2λ2 + 3λ3 + 2λ4

)
uβ−1uxxux

+
(
(−2λ1 − λ2 + 2λ3 + λ4)β + 2λ1 + λ2

)
uβ−2u3x.

Identifying the coefficients with those in (1) again gives a linear system for the parameters
(λ1, λ2, λ3, λ4). The general solution reads as

λ1 =
β2 − aβ + a+ 2b+ 3

β + 3
− 2

β + 3
λ4,

λ2 = −2a+ b+ 6

β + 3
+
β + 4

β + 3
λ4,(11)

λ3 =
β2 − aβ − β + a+ 2b

β + 3
− 2

β + 3
λ4,

These expressions are the same as (10) with α = 0. �

For the following theorem, we recall definition (4) of sα and set Sα(u) =
∫
T sα(u)dx.
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Theorem 2. Let u be a smooth positive solution to (1) and let α ≥ 0. If K(α, β) ≥ 0
(see definition (7)), then Sα is a Lyapunov functional, i.e. dSα/dt ≤ 0 for all t > 0. If
K(α, β) > 0 then there exists c(α, β) > 0 such that for all t > 0,

dSα
dt

+ c(α, β)

∫
T
uα+β

(
u2(1−α)(uα−1)2xx + u4(1−α)(uα−1)4x

)
dx ≤ 0

and there exists another constant C(α, β) > 0 such that for all t > 0,

dSα
dt

+ C(α, β)

∫
T
uα+β

(
u−2u2xx + u−4u4x

)
dx ≤ 0.

Proof. Let first α ≥ 0 with α 6= 1. We calculate the time derivative of the entropy, using
integration by parts twice:

dSα
dt

=

∫
T
s′α(u)∂tudx = −

∫
T
vJxdx =

∫
T
Jvxdx

=

∫
T
(Ax − vBx)vxdx = −

∫
T

(
Avxx − (vvxx + v2x)B

)
dx

= −
∫
T

uα+β

(α− 1)2

[
(λ1 − λ3)

(
vxx
v

)2

+ (λ2 − λ3 − λ4)
vxx
v

(
vx
v

)2

− λ4
(
vx
v

)4]
dx,

= −
∫
T

uα+β

(α− 1)2
P

(
vx
v
,
vxx
v

)
dx,(12)

where

(13) P (ξ1, ξ2) = (λ1 − λ3)ξ22 + (λ2 − λ3 − λ4)ξ2ξ1 − λ4ξ41 .
The right-hand side of (12) is nonpositive if P (ξ1, ξ2) ≥ 0 for all (ξ1, ξ2) ∈ R2. Taking into
account that λ1 − λ3 = 1, this is the case if and only if

−4λ4 − (λ2 − λ3 − λ4)2 ≥ 0.

In view of definition (10) of λ2 and λ3, we may interpret λ4 as a free parameter und
λ2 = λ2(λ4) and λ3 = λ3(λ4) as affine functions in λ4. Therefore, we require that

(14) f(λ4) := −4λ4 −
(
λ2(λ4)− λ3(λ4)− λ4

)2 ≥ 0.

We choose the optimal value of λ4 by computing the critical value of f :

0 = f ′(λ4) =
2(−2α2 + (−3a+ 8β + 3)α− 3aβ + β2 + 9(a+ b)− 15β)

(β − 2α + 3)2

− 18(α− 1)2

(β − 2α + 3)2
λ4.

This yields

(15) λ4 =
−2α2 + (−3a+ 8β + 3)α− 3aβ + β2 + 9(a+ b)− 15β

9(α− 1)2
.
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Inserting λ4 in (14) leads to

0 ≤ f(λ4) =
4

9(α− 1)2
(
− 2α2 + (3a− 4β + 9)α− 2β2 + (3a+ 9)β − 9(a+ b+ 1)

)
,

which is equivalent to K(α, β) ≥ 0, see (7).
If K(α, β) > 0, there exists c0(α, β) > 0 such that for all (ξ1, ξ2) ∈ R2, P (ξ1, ξ2) ≥

c0(α, β)(ξ21 + ξ41). Inserting this information in (12), we infer that

dSα
dt
≤ −c0(α, β)

∫
T

uα+β

(α− 1)2

[(
vxx
v

)2

+

(
vx
v

)4]
dx

= −c0(α, β)

∫
T
uα+β−2

[(
uxx
u

)2

+ 2(α− 2)
uxx
u

(
ux
u

)2

+ (2α2 − 6α + 5)

(
ux
u

)4]
dx.

The discriminant equals

1 · (2α2 − 6α + 5)− (α− 2)2 = (α− 1)2,

and it is positive for all α 6= 1. Therefore, there exists k(α) > 0 such that

dSα
dt
≤ −c0(α, β)k(α)

∫
T
uα+β

((
uxx
u

)2

+

(
ux
u

)4)
dx,

and this gives the conclusion for c(α, β) = c0(α, β)/(α − 1)2 and C(α, β) = c0(α, β)k(α)
when α 6= 1.

It remains to analyze the case α = 1. Here, we cannot formulate the flux as J = Ax−vBx

with v = s′1(u) = log u, since J does not contain logarithmic terms. Our idea is to write
J = Ax − wBx with w = −u−1 and functions A and B that depend on w, wx, and wxx.
The time derivative of the entropy S1 can be written in terms of w and its derivatives only,
since the logarithmic term v = log u only appears with its derivatives.

The formulation J = Ax − wBx corresponds to the expression used for α = 0. In fact,
we have

A = uβ
(
λ1u

2(−u−1)xx − λ2u3(−u−1)2x
)

=
uβ

w

(
λ1
wxx
w

+ λ2

(
wx
w

)2)
,

B = uβ
(
− λ3u3(−u−1)xx + λ4u

4(−u−1)2x
)

=
uβ

w2

(
λ3
wxx
w

+ λ4

(
wx
w

)2)
,

where λ1, λ2, λ3 are given by (11) and λ4 is a free parameter. As before, the time derivative
becomes

dS1

dt
=

∫
T
∂tu log udx = −

∫
T
Jxvdx =

∫
T
Jvxdx = −

∫
T

(
Avxx −B(vxw)x

)
dx.

Set ξ1 = wx/w and ξ2 = wxx/w. Since vxx = −wxx/w+ (wx/w)2 = −ξ2 + ξ21 and (vxw)x =
−wxx = −wξ2, we obtain

dS1

dt
= −

∫
T

uβ

w

(
(λ1ξ2 + λ2ξ

2
1)(−ξ2 + ξ21) + (λ3ξ2 + λ4ξ

2
1)ξ2

)
dx
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= −
∫
T
uβ+1

(
− (λ1ξ2 + λ2ξ

2
1)(−ξ2 + ξ21)− (λ3ξ2 + λ4ξ

2
1)ξ2

)
dx

= −
∫
T
uβ+1P1(ξ1, ξ2)dx,

where

(16) P1(ξ1, ξ2) = (λ1 − λ3)ξ22 + (−λ1 + λ2 − λ4)ξ2ξ21 − λ2ξ41 .
Observe that λ1 − λ3 = 1. Thus, dS1/dt ≥ 0 if the polynomial P1 is nonnegative for all
(ξ1, ξ2) ∈ R2, which is the case if and only if

f1(λ4) := −4λ2(λ4)−
(
− λ1(λ4) + λ2(λ4)− λ4)2 ≥ 0.

We choose the optimal value λ4 from f ′1(λ4) = 0, i.e.

λ4 =
1

9

(
β2 − (3a+ 14)β + 9(a+ b) + 3

)
.

Then f(λ4) ≥ 0 is equivalent to K(1, β) ≥ 0.
Finally, if K(1, β) > 0, we have P1(ξ1, ξ2) ≥ c0(1, β)(ξ22 + ξ41) and consequently,

dS1

dt
≤ −c0(1, β)

∫
T
uβ+1

(
u2
(

1

u

)2

xx

+ u4
(

1

u

)4

x

)
dx

= −c0(1, β)

∫
T
uβ+1

(
u−2u2xx − 4u−3uxxu

2
x + 5u−4u4x

)
dx.

The discriminant is positive and there exists k(1) > 0 such that ξ22 − 4ξ2ξ
2
1 + 5ξ41 ≥

k(1)(ξ22 + ξ41). We infer that

dS1

dt
≤ −c0(1, β)k(1)

∫
T
uβ+1

(
u−2u2xx + u−4u4x

)
dx,

which concludes the proof with c(1, β) = c0(1, β) and C(1, β) = c0(1, β)k(1). �

Remark 3 (Examples). The DLSS equation corresponds to (1) if a = −2, b = 0, and β = 0.
Then condition (7) becomes 0 < α ≤ 3

2
, which is the optimal interval. Choosing a = b = 0,

we obtain the thin-film equation, and condition (7) is equivalent to 3
2
≤ α + β ≤ 3, which

again is the optimal parameter range. �

Remark 4 (Systematic integration by parts). The result of Theorem 2 can be also derived
by the method of systematic integration by parts of [15]. Our proof is taylored in such
a way that it can be directly “translated” to the discrete level. Indeed, the method of
[15] needs several chain rules that are not available on the discrete level and our technique
needs to be used.

Still, systematic integration by parts and our strategy are strongly related. System-
atic integration by parts means that we are adding so-called integration-by-parts formulas
whose derivatives vanishe. In this way, we can derive (12),

dSα
dt

=

∫
T
(Ax − vBx)vxdx+ c1

∫
T
(Avx −Bvvx)xdx = −

∫
T
(Avxx −B(vvx)x)dx,
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by choosing c1 = −1. In the method of systematic integration by parts, we are adding a
term of the type c2

∫
T(uα+β(vx/v)3)xdx and optimize c2. By contrast, the constant c1 is

fixed, but we optimize λ4 in the formulation of A and B. In both cases, just one parameter
needs to be optimized. �

3. General discretized equation

We “translate” the computations of the previous section to the discrete level. For this,
we use the discrete entropy

(17) Shα(u) = h
∑
i∈Th

sα(ui), where α ≥ 0, α 6= 1,

where ui = u(i) for i ∈ Th and sα is defined in (4). We recall scheme (6):

(18) ∂tui = −1

h
(Ji+1/2 − Ji−1/2), Ji+1/2 =

1

h
(Ai+1 − Ai)−

1

2h
(vi+1 + vi)(Bi+1 −Bi),

where the functions Ai and Bi are given by

(19) Ai =
ūα+βi

(α− 1)2vi
(λ1ξ2,i + λ2(α− 1)ξ21,i), Bi =

ūα+βi

(α− 1)2v2i
(λ3ξ2,i + λ4(α− 1)ξ21,i),

ūi is an arbitrary average of u around the point ih, and ξ2,i and ξ21,i are discrete analogs of

vxx/v and (vx/v)2:

(20) ξ2,i :=
1

vih2
(vi+1 − 2vi + vi−1), ξ21,i :=

1

2v2i h
2

(
(vi+1 − vi)2 + (vi − vi−1)2

)
.

The parameters λi for i = 1, 2, 3, 4 are given by (10) and (15). For later use, we note that

ξ21,i =
1

2v2i h
2

(
(v2i+1 − 2v2i + v2i−1)− 2vi(vi+1 − 2vi + vi−1)

)
=

1

2v2i h
2
(v2i+1 − 2v2i + v2i−1)− ξ2,i

implies that

(21)
1

2h2
(v2i+1 − 2v2i + v2i−1) = v2i (ξ2,i + ξ21,i),

1

h2
(vi+1 − 2vi + vi−1) = viξ2,i,

Recall definition (17) of Shα and condition (7) for K(α, β).

Theorem 5. Let (ui)i∈Th
be a positive solution to (18)–(20) and let α ≥ 0, α 6= 1. If

K(α, β) ≥ 0 then dShα/dt ≤ 0 for all t > 0. Moreover, if K(α, β) > 0,

dShα
dt

+ c(α, β)h
∑
i∈Th

ūα+βi

(
ξ22,i + ξ41,i

)
≤ 0

with the same constant c(α, β) > 0 as in the proof of Theorem 2.
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Proof. Let α > 0, α 6= 1. We compute the time derivative of the discrete entropy, using
summation by parts twice:

dShα
dt

= h
∑
i∈Th

s′α(u)∂tui = −
∑
i∈Th

vi(Ji+1/2 − Ji−1/2) =
∑
i∈Th

(vi+1 − vi)Ji+1/2

=
1

h

∑
i∈Th

(vi+1 − vi)
(

(Ai+1 − Ai)−
1

2
(vi+1 + vi)(Bi+1 −Bi)

)
=

1

h

∑
i∈Th

(
(vi+1 − vi)(Ai+1 − Ai)−

1

2
(v2i+1 − v2i )(Bi+1 −Bi)

)
= −1

h

∑
i∈Th

(
(vi+1 − 2vi + vi−1)Ai −

1

2
(v2i+1 − 2v2i + v2i−1)Bi

)
.

In the last step, we recognize the discrete analog of the chain rule (vxv)x = 1
2
(v2)xx.

Inserting (21), we find that

dShα
dt

= −h
∑
i∈Th

(
ξ2,iviAi − (ξ2,i + ξ21,i)v

2
iBi

)
= −h

∑
i∈Th

ūα+βi

(α− 1)2
(
(λ1 − λ3)ξ22,i + (λ2 − λ3 − λ4)ξ2,iξ21,i − λ4ξ41,i

)
= −h

∑
i∈Th

ūα+βi

(α− 1)2
P (ξ1,i, ξ2,i),

where P is the same polynomial as in (13). The proof of Theorem 2 shows that P (ξ1,i, ξ2,i) ≥
0 if K(α, β) ≥ 0. Moreover, if the strict inequality K(α, β) > 0 holds, P (ξ1,i, ξ2,i) ≥
c0(α, β)(ξ22,i + ξ41,i) with the same constant as in Theorem 2, which translates into the
inequality

dSα
dt
≤ −c0(α, β)

∑
i∈Th

ūα+βi

(α− 1)2
(
ξ22,i + ξ41,i

)
,

finishing the proof. �

In Theorem 2, the existence of positive solutions is assumed. We show that such solutions
exist globally, at least in case α = 0.

Proposition 6. Let α = 0 and u0i > 0 for i ∈ Th. Then there exists a global solution
(ui)i∈Th

to scheme (18)–(20) and ui(0) = u0i for i ∈ Th and constants κ1 ≥ κ0 > 0 such
that

0 < κ0 ≤ ui(t) ≤ κ1 for all i ∈ Th, t > 0.

Proof. Scheme (18) is a system of ordinary differential equations. According to the Picard–
Lindelöf theorem, there exists a unique local positive differentiable solution (ui)i∈Th

on the
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maximal time interval [0, T ) for some T > 0. This solution can be extended to [0,∞) if
the functions ui(t) are uniformly positive and bounded. By Theorem 5,

h
∑
i∈Th

(− log ui(t)) ≤ h
∑
i∈Th

(− log u0i ),

Moreover, scheme (18) conserves the mass, h
∑

i∈Th
ui(t) = h

∑
i∈Th

u0i . This shows that

h
∑
i∈Th

(ui(t)− log ui(t)) ≤ h
∑
i∈Th

(u0i − log u0i ).

Since s 7→ s− log s diverges for s→ 0 and s→∞, there exist constants κ0 > 0 and κ1 > 0
such that κ0 ≤ ui(t) ≤ κ1 for all i ∈ Th and t > 0. Therefore, we can extend the solution
globally. �

Remark 7 (Noncentral scheme for Ji+1/2). A more direct discrete analog of vxx/v and
vx/v is given by

ξ2,i =
1

vih2
(vi+1 − 2vi + vi−1), ξ21,i =

1

v2i h
2
(vi − vi−1)2.

In this situation, the scheme for J needs to be noncentral,

Ji+1/2 =
1

h
(Ai+1 − Ai)−

1

h
vi(Bi+1 −Bi),

where Ai and Bi are as before. Indeed, it follows from summation by parts for α ≥ 0,
α 6= 1 that

dSα
dt

=
1

h

∑
i∈Th

(vi+1 − vi)
(
(Ai+1 − Ai)− vi(Bi+1 −Bi)

)
= −1

h

∑
i∈Th

[
(vi+1 − 2vi + vi−1)Ai −

(
(vi+1 − vi)vi − (vi − vi−1)vi−1

)
Bi

]
= −1

h

∑
i∈Th

[
(vi+1 − 2vi + vi−1)Ai −

(
vi(vi+1 − 2vi + vi−1) + (vi − vi−1)2

)
Bi

]
= −h

∑
i∈Th

(
ξ2,iviAi − (ξ2,i + ξ21,i)v

2
iBi

)
= −h

∑
i∈Th

ūα+βi P (ξ1,i, ξ2,i),

and we can conclude as before. �

The case α = 1 has to be treated in a slightly different way. Since limα→1(α − 1)vi =
limα→1 u

α−1
i = 1, we consider scheme

(22) ∂tui = −1

h
(Ji+1/2 − Ji−1/2), Ji+1/2 =

1

h
(Ai+1 − Ai)−

1

2h
(wi+1 + wi)(Bi+1 −Bi),

with Ai and Bi defined via

(23) Ai = −ūβ+1
i (λ1ξ2,i − λ2ξ21,i), Bi = ūβ+1

i (λ3ξ2,i − λ4ξ21,i),
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and

ξ2,i =
1

2h2
(
(vi+1 − vi)(wi+1 + wi)− (vi − vi−1)(wi + wi−1)

)
,

ξ21,i = ξ2,i +
1

h2
(vi+1 − 2vi + vi−1),(24)

where vi = log ui and wi = −u−1i . The parameters λ1, . . . , λ4 are given by (10) and (15).

Proposition 8. Let α = 1 and let (ui)i∈Th
be a positive solution to (22), (23), and (24).

If K(1, β) ≥ 0 then dSh1 /dt ≤ 0 for all t > 0. Moreover, if K(1, β) > 0,

dSh1
dt

+ c(1, β)h
∑
i∈Th

ūβ+1
i

(
ξ22,i + ξ41,i

)
≤ 0,

with the same constant c(1, β) > 0 as in the proof of Theorem 2.

Proof. We have with vi = log ui and wi = −u−1i :

dSh1
dt

=
∑
i∈Th

(vi+1 − vi)Ji+1/2

= h−1
∑
i∈Th

(vi+1 − vi)
(

(Ai+1 − Ai)−
1

2
(wi+1 + wi)(Bi+1 −Bi)

)
= −h−1

∑
i∈Th

(
(vi+1 − 2vi + vi−1)Ai

− 1

2

(
(vi+1 − vi)(wi+1 + wi)− (vi − vi−1)(wi + wi−1)

)
Bi

)
.

By definition of ξ1,i and ξ2,i,

1

h2
(vi+1 − 2vi + vi−1) = −ξ2,i + ξ21,i,

− 1

2h2
(
(vi+1 − vi)(wi+1 + wi)− (vi − vi−1)(wi + wi−1)

)
= −ξ2,i.

Therefore,

dSh1
dt

= −h
∑
i∈Th

ūβ+1
i

(
(λ1ξ2,i − λ2ξ21,i)(−ξ2,i + ξ21,i) + (λ3ξ2,i − λ4ξ1,i)ξ2,i

)
= −h

∑
i∈Th

ūβ+1
i P1(ξ1,i, ξ2,i),

where P1 is the same polynomial as in (16). It is nonnegative if and only if K(1, β) ≥ 0
holds. �
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4. Discretized multi-dimensional thin-film equation

The ideas of the previous section cannot be adapted in a straightforward way to the
multi-dimensional setting, since there are many possibilities to choose the finite differences
and the discrete variables. One idea is to employ only scalar variables like ∆u, |∇u|2, etc.,
similarly as for the method of systematic integration by parts of [15]. Still, there does not
exist a general approach to define the scalar discrete variables, but we show in this section
that the multi-dimensional case can be treated at least in principle. As an example, we
consider the thin-film equation

∂tu = − div J, J = uβ∇∆u in Td,
where Td is the multi-dimensional torus and β > 0, and the logarithmic entropy

S0(u) =

∫
Td

(− log u)dx.

We show first that we can write J = ∇A− v∇B, where v = −u−1 and A, B are functions
depending on ∆v/v and |∇v|2/v2.
Lemma 9. It holds that J = ∇A− v∇B, where

A = uβ
(
λ1u

2∆(−u−1)− λ2u3|∇(−u−1)|2
)

=
uβ

v

(
λ1

∆v

v
+ λ2

∣∣∣∣∇vv
∣∣∣∣2),

B = uβ
(
− λ3u3∆(−u−1) + λ4u

4|∇(−u−1)|2
)

=
uβ

v2

(
λ3

∆v

v
+ λ4

∣∣∣∣∇vv
∣∣∣∣2)

and the parameters λi are defined by

(25) λ1 = β + 1, λ2 = −2(β + 1), λ3 = β, λ4 = −2β.

Proof. We compute

∇A+ u−1∇B = (λ1 − λ3)uβ∇∆u+
(
βλ1 − (β + 1)λ3

)
uβ−1∆u∇u

+ 2
(
− (2λ1 + λ2) + 2λ3 + λ4

)
uβ−1∇2u∇u

+
(
(1− β)(2λ1 + λ2) + β(2λ3 + λ4)

)
|∇u|2∇u.

Here, ∇2u denotes the Hessian matrix of u. Identifying the coefficients of ∇A + u−1∇B
and J = uβ∇∆u gives the linear system

λ1 − λ3 = 1, βλ1 − (β + 1)λ3 = 0,

−(2λ1 + λ2) + 2λ3 + λ4 = 0, (1− β)(2λ1 + λ2) + β(2λ3 + λ4) = 0.

The unique solution is given by (25). �

Proposition 10. Let β = 2. Then dS0/dt ≤ 0 for all t > 0.

Proof. The time derivative of S0 becomes

dS0

dt
=

∫
Td

J · ∇vdx =

∫
Td

(∇A− v∇B) · ∇vdx
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= −
∫
Td

(
∆vA− (v∆v + |∇v|2)B

)
dx

= −
∫
Td

uβ
(

(λ1 − λ3)
(

∆v

v

)2

+ (λ2 − λ3 − λ4)
∆v

v

∣∣∣∣∇vv
∣∣∣∣2 − λ4∣∣∣∣∇vv

∣∣∣∣4)dx.
The polynomial

(26) P0(ξ1, ξ2) = (λ1 − λ3)ξ22 + (λ2 − λ3 − λ4)ξ2ξ21 − λ4ξ41
is nonnegative in R2 if and only if −4λ4 − (λ2 − λ3 − λ4)2 = −(β − 2)2 ≥ 0. Hence, we
need to assume that β = 2. �

Remark 11 (Discussion). The restriction β = 2 in the previous lemma comes from the fact
that we do not have a free parameter to optimize the inequalities. One may overcome this
issue by allowing A and B to depend on more variables or by assuming that A and B are
matrix-valued with variables like ∇2u and ∇u⊗∇u and to formulate J = divA− v divB.
However, this leads to several parameters that need to be determined and eventually to
complicated numerical schemes which seem to be less interesting in practice.

Another way to understand the restriction β = 2 is from systematic integration by parts.
Indeed, computing

dS0

dt
=

∫
Td

uβ∇∆u · ∇(−u−1)dx−
∫
Td

div(uβ−2∆u∇u)dx

= −
∫
Td

uβ−2(∆u)2dx− (β − 2)

∫
Td

uβ−3∆u|∇u|2dx,

we see that S0 is a Lyapunov functional if the last term vanishes, which is the case if β = 2.
This computation suggests the following generalization: Let β ∈ (0, 2) and consider the
Rényi entropy Sα. Then

dSα
dt

= −
∫
Td

uα+β−2(∆u)2dx− (α + β − 2)

∫
Td

uα+β−3∆u|∇u|2dx,

and the last term vanishes if α = 2 − β > 0. As for the case β = 2 and α = 0, which
is discussed below, we expect that the generalization β ∈ (0, 2) and α = 2 − β can be
“translated” to the discrete case, but we leave the details to the interested reader. �

We turn to the discrete setting. Let Tdh be the discrete multi-dimensional torus, u :
Tdh → R be a function, and eµ be the µ-th unit vector of Rd. We write ui = u(i) for i ∈ Tdh
and we introduce the finite differences

∂+µ ui =
1

h
(u(i+ heµ)− u(i)), ∂−µ ui =

1

h
(u(i)− u(i− heµ)),

where i ∈ Tdh and µ = 1, . . . , d. The discrete divergence of F = (F1, . . . , Fd) : Tdh → Rd and
the discrete gradient and Laplacian of u : Tdh → R are defined by, respectively,

div+
h F =

d∑
µ=1

∂+µ Fµ, (∇±h u)µ = ∂±µ u, ∆hu = div+
h ∇−h u.
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where µ = 1, . . . , d. The discrete analogs of vxx/v and (vx/v)2 are

ξ2,i =
∆hvi
vi

, ξ21,i =

∣∣∣∣∇+
h vi
vi

∣∣∣∣2,
where vi = −u−1i . The numerical scheme reads as

∂tui = − div+
h Ji, Ji = ∇−hAi − vi∇−hBi,

Ai =
ūβi
vi

(λ1ξ2,i + λ2ξ
2
1,i), Bi =

ūβi
v2i

(λ3ξ2,i + λ4ξ
2
1,i),(27)

and the coefficients are as in (25).

Lemma 12. Let β = 2 and u0i > 0 for i ∈ Tdh. Then there exists a positive solution (ui)i∈Td
h

to (25) and (27), and it holds that dSh0 /dt ≤ 0 for all t > 0.

Proof. By the Picard–Lindelöf theorem, there exists a local smooth positive solution (ui)i∈Td
h
.

We use the summation-by-parts formula∑
i∈Td

h

vi div+
h Fi = −

∑
i∈Td

h

(∇−h vi) · Fi

to compute the time derivative of the entropy:

dSh0
dt

= h
∑
i∈Td

h

∂tuivi = −h
∑
i∈Td

h

div+
h Jivi = h

∑
i∈Td

h

Ji · ∇−h vi

= h
∑
i∈Td

h

(∇−hAi − vi∇−hBi) · ∇−h vi = −h
∑
i∈Td

h

(
∆hviAi − div+

h (vi∇−h vi)Bi

)
.

The product rule reads as

div+
h (vi∇−h vi) =

d∑
µ=1

∂+µ (vi∂
−
µ vi) =

1

h

d∑
µ=1

∂+µ
(
v(i)(v(i)− v(i− heµ))

)
=

1

h2

d∑
µ=1

[
v(i+ heµ)

(
v(i+ heµ)− v(i)

)
− v(i)

(
v(i)− v(i− heµ)

)]
=

1

h2

d∑
µ=1

[
v(i)

(
v(i+ heµ)− 2v(i) + v(i− heµ)

)
+
(
v(i+ heµ)− v(i)

)2]
= vi∆hvi + |∇+

h vi|2.
Therefore,

dSh0
dt

= −h
∑
i∈Td

h

(
∆hviAi − (vi∆hvi + |∇+

h vi|2)Bi

)
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= −h
∑
i∈Td

h

(
ξ2,iviAi − (ξ2,i + ξ21,i)v

2
iBi

)
= −h

∑
i∈Td

h

(
(λ1 − λ3)ξ22,i + (λ2 − λ3 − λ4)ξ2,iξ21,i − λ4ξ41,i

)
= −h

∑
i∈Td

h

(
ξ22,i − (β + 2)ξ2,iξ

2
1,i + 2βξ41,i

)
.

This gives the polynomial (26) which is nonnegative in R2 if and only if β = 2. Then
Sh0 (t) = Sh0 (0) for all t > 0, and we conclude as in the proof of Proposition 6 that 0 <
c0 ≤ ui(t) ≤ c1 for all i ∈ Tdh and t > 0, where c1 ≥ c0 > 0 are some constants. Thus, the
solution ui(t) can be extended to a global one. �

5. Numerical tests

We apply our scheme to the thin-film and DLSS equations on the torus in one and two
space dimensions. The system of ordinary differential equations is solved by the command

scipy.integrate.solve_ivp

from the SciPy library, which uses the Backward Differentiation Formula (BDF) method
of variable order or the implicit Runge–Kutta method of the Radau IIA family of order 5.
We used the default values atol= 1e-3 for the absolute tolerance and rtol= 1e-6 for the
relative tolerance. The local erroris computed according to atol+ rtol * abs(u).

5.1. DLSS equation. The DLSS equation is solved by scheme (18) using the logarithmic
entropy:

∂tui = −1

h
(Ji+1/2 − Ji−1/2), Ji+1/2 =

1

h
(Ai+1 − Ai) +

1

2h
(u−1i+1 + u−1i )(Bi+1 −Bi),

Ai = ūi

(
5

3
ξ2,i −

7

3
ξ21,i

)
, Bi = ūiui

(
− 2

3
ξ2,i + ξ21,i

)
,

ξ21,i =
ū2i
2h2
(
(u−1i+1 − u−1i )2 + (u−1i − u−1i−1)2

)
, ξ2,i =

ū2i
uih2

(u−1i+1 − 2u−1i + u−1i−1),

where i ∈ Th. Figure 1 shows the solution to the DLSS equation at various time steps
using the initial datum u0(x) = max{10−10, cos(πx)16} and the space grid size h = 1/100.
We see that the solution is not monotone, since it possesses at x = 0.5 and t = 10−8 a local
maximum. After some time, it approaches the constant steady state given by

∫ 1

0
u0(x)dx.

The entropy decay for α = 0 is illustrated in Figure 2 (left). We used the initial datum
u0(x) = 2 − 10−6 for x ∈ (0, 0.5) and u0(x) = 10−6 for x ∈ (0.5, 1). We observe in the
semi-logarithmic plot that the decay is exponential, as expected. The rate degrades for
larger times when the `2 error dominates, i.e., when the grid is rather coarse.

The `2 error (in space and time) at time t = 0.001 is shown in Figure 2 (right), using the
initial datum u0(x) = 1 + 0.5 sin(2πx) for x ∈ (0, 1). As an explicit solution is not known,
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Figure 1. Evolution of the DLSS equation in a semi-logarithmic scale, using
the initial datum u0(x) = max{10−10, cos(πx)16}.

we use a numerical solution with h = 1/2048 as the reference solution. As expected, the
convergence rate is roughly of second order.

0 2 4 6
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200
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ℓ2
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r

numerical

0.47 · h1.79

Figure 2. Left: Decay of the logarithmic entropy s0(u(t)) for two different
space grid sizes h = 1/20 and h = 1/200. Right: Convergence of the `2

error. The dots are the values from the numerical solution, the solid line is
the regression curve.

5.2. Thin-film equation. The thin-film equation is solved by scheme (18) using the log-
arithmic entropy:

∂tui = −1

h
(Ji+1/2 − Ji−1/2), Ji+1/2 =

1

h
(Ai+1 − Ai) +

1

2h
(u−1i+1 + u−1i )(Bi+1 −Bi),

Ai = uβ+1
i

(
7β + 9

9
ξ2,i +

β2 − 14β − 18

9
ξ21,i

)
,

Bi = uβ+2
i

(
− 7β

9
ξ2,i +

15β − β2

9
ξ21,i

)
,
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ξ21,i =
u2i
2h2
(
(u−1i+1 − u−1i )2 + (u−1i − u−1i−1)2

)
, ξ2,i =

ui
h2

(u−1i+1 − 2u−1i + u−1i−1),

where i ∈ Th. The solutions at different times, emanating from the initial datum u0(x) =
1 + 0.5 sin(2πx), are shown in Figure 3, where we have chosen β = 2. Again, the solutions
converge to the constant steady state. The decay of the logarithmic entropy is illustrated in
Figure 4, using β = 2 and the initial datum u0(x) = 1 + (1− 10−16) sin(2πx) for x ∈ (0, 1).
The decay rate is exponential over a large time interval.
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Figure 3. Evolution of the solution to the thin-film equation at times t = 0
(densely dotted), t = 2 ·10−4 (dotted), t = 5 ·10−4 (dash-dotted), t = 1 ·10−3

(dashed), t = 2 ·10−3 (densely dashed), and t = 5 ·10−3 (solid) and grid sizes
h = 1/10 (left), h = 1/200 (right).
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Figure 4. Decay of the logarithmic entropy S0(u(t)) for various space grid sizes.

Finally, we present a numerical example in two space dimensions. As the initial datum,
we choose a lantern picture with 77× 100 pixels in gray scale; see Figure 5 (top left). The
evolution of the discrete solution is shown in the remaining panels of Figure 5 for various
times. The values u = 0 and u = 1 correspond to black and white, respectively. Because
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of the periodic boundary conditions, we observe a small gray band at the lower right
boundary. Interestingly, the solution shows a denoising effect, especially for t = 3 · 10−8.
For larger times, the diffusion drives the solution to the constant steady state. These
results are not surprising, as fourth-order parabolic equations have been suggested in the
literature for image denoising. For instance, Bertozzi and Greer [2] analyzed

∂tu = − div
(
g((∆u)2)∇∆u

)
,

where g is a diffusivity function, while Wei [21] considered

∂tu = − div
(
g(|∇u|2)∇∆u

)
.

This model was generalized to fractional derivatives; see, e.g., [12]. An example is the
equation

∂tu = − div
(
g(−(∆)1−εu)∇∆u

)
, ε > 0,

which formally reduces to a general thin-film equation in the limiting case ε = 1. We
do not claim that the thin-film equation is a good image denoising model; our numerical
example is just a nice illustration.

Finally, we show the entropy decay of the two-dimensional example in Figure 6. The
decay rate is exponential until approximately t = 10−2. For later times, the numerical
error dominates. Observe, however, that we obtain denoising for very small times, like
t = 10−9 . . . 10−8, where the decay rate is still exponential.
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