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Abstract. We present a new time discretization scheme adapted to the struc-
ture of GENERIC systems. The scheme is variational in nature and is based

on a conditional incremental minimization. The GENERIC structure of the

scheme provides stability and convergence of the scheme. We prove that the
scheme can be rigorously implemented in the case of the damped harmonic

oscillator. Numerical evidence is collected, illustrating the performance of the

method.

1. Introduction

The aim of this note is to discuss a new variational time-discretization scheme
adapted to the structure of General Equations for Non-Equilibrium Reversible-
Irreversible Coupling (GENERIC). Introduced by Grmela & Öttinger, this formu-
lation provides a unified frame for describing the time evolution of physical systems
out of equilibrium in presence of reversible and irreversible dynamics [36].

Let y denote the state of a closed, nonequilibrium physical system and let E(y)
and S(y) be the corresponding total energy and total entropy, respectively. The
GENERIC formulation of the time evolution of the system reads

y′ = L(y) DE(y) +K(y) DS(y). (1.1)

Here, y′ denotes the time derivative, L is the antisymmetric Poisson operator, and
K is the symmetric and positive definite Onsager operator (details in Section 2).

The gist of the GENERIC system (1.1) is that conservative and dissipative dy-
namics are clearly separated. Under a specific compatibility condition, see (2.4)
below, this entails that a solution t 7→ y(t) to (1.1) conserves energy and accumu-
lates entropy in a quantifiable way, namely

d

dt
E(y) = 0 and

d

dt
S(y) = 〈DS(y),K(y)DS〉 ≥ 0.

The conservation of energy and the quantified dissipative character are the distin-
guishing traits of the GENERIC system (1.1). To replicate these properties at the
discrete level leads to so-called structure-preserving approximations. These have
drawn interest in the last years, giving rise to different numerical solutions adapted
to different applicative contexts.

Date: May 28, 2020.

2010 Mathematics Subject Classification. 80M30, 65L20.
Key words and phrases. Damped harmonic oscillator, structure-preserving time discretization,

GENERIC system.

1
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In the last years, GENERIC has attracted increasing attention and has been ap-
plied to a number of situations ranging from complex fluids [18], to dissipative quan-
tum mechanics [32], to thermomechanics [5,21–23,31], to electromagnetism [24], to
shape-memory alloys [3], to the Vlasov-Fokker-Planck [13,14,20] and the Boltzmann
equation [35], and to large-deviation limits of reversible stochastic processes [26,27].

Numerical schemes conserving energy can be found for instance in [16,40,42–44,
47]; see [8] for a review and [49] for a contribution explicitly focusing on GENERIC
formulations. These schemes are often discrete-gradient methods, where gradients
of functionals are specifically modified in order to fulfill a discrete chain rule and
exactly replicate conservation [16, 17, 19, 30]. In the thermomechanical context,
structure-preserving discretizations either in terms of the absolute temperature [9,
10, 15, 38] or of the internal energy or the entropy [5, 6] have been obtained. The
reader is referred to [28] for an approach to open systems.

GENERIC integrators able to conserve energy and accurately describe entropy
accumulation have been proposed in [37], where however some limitations are also
mentioned. In particular, energy and Onsager operators have to be suitably mod-
ified in a time-step dependent manner in order energy conservation to hold. Inte-
grators are actually constructed in case of single dissipation mechanism only (were
K be a matrix, it would have to have rank one) and no convergence theory is pro-
vided. The discretization of the damped harmonic oscillator is addressed in [37],
where nonetheless the temperature is given by a prescribed heat bath. In this case,
explicit solutions have to be used in order to specify the GENERIC integrator.

To the best of our knowledge, all available numerical schemes directly target
GENERIC systems in their differential form (1.1). Our focus is here on a time-
discretization of variational nature instead, fitting into the general scheme of so-
called minimizing movements [1, 2]. In particular, at all discrete steps we aim
at solving a specific minimization problem. We start by defining the entropy-
production potential Ψ(y, ξ) = 〈ξ,K(y)ξ〉/2 and denoting by Ψ∗(y, ·) its conjugate
in the second variable. Then, the GENERIC relation (1.1) in [0, T ] can be equiva-
lently rewritten in terms of the scalar equation

−S(y(t)) +

∫ t

0

Ψ∗(y, y′−L(y) DE(y)) +

∫ t

0

Ψ(y,DS(y)) + S(y(0)) = 0 (1.2)

for all t ∈ [0, T ]. The reformulation of dissipative systems in terms of scalar
equations as (1.2) is usually referred to as De Giorgi’s Energy-Dissipation Prin-
ciple [12, 29, 33]. This principle has already been applied in a variety of different
contexts, including generalized gradient flows [4, 46], curves of maximal slope in
metric spaces [2, 11], rate-independent systems [34, 41], and optimal control [39].
For GENERIC systems, the reformulation of (1.1) in terms of such variational
principle has been already presented in [14].

Our new minimizing-movements approach to (1.1) consists in tackling a discrete
version of relation (1.2). Assume to be given a time partition 0 = t0 < t1 < · · · <
tN = T with steps τi = ti−ti−1, and an initial state y0. We define the time-discrete
trajectory {yi}Ni=0 by letting y0 = y0 and subsequently perform the minimization

min
y

{
−S(y) + τiΨ

∗
(
y,
y − yi−1

τi
− L(y) DE(y)

)
+ τiΨ(y,DS(y)) + S(yi−1)

}
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for i = 1, . . . , N . The latter is nothing but a localized and discretized version of
the De Giorgi’s Energy-Dissipation Principle (1.2).

The minimizing-movements scheme above has been introduced in [25]. The
theory in [25] is however restricted to the case of state-independent operators L and
K, which severely limits the applicability to real GENERIC systems. In addition,
the convergence analysis in [25] relies on a suitable set of a priori assumptions,
leaving open the discussion whether these can be met in practice.

The aim of this note is then threefold. First, we extend the reach of the numerical
method to include the case of state dependent operators L(y) and K(y), hence
covering the full extent of the GENERIC theory (Section 2). Our main result is the
conditional convergence of Theorem 2.1. Second, we provide the detailed analysis
of a specific case, the damped harmonic oscillator, in which the above-mentioned
convergence assumptions can actually be proved to hold (Section 3). Eventually,
we present numerical experiments assessing the performance of the minimizing-
movements scheme and compare it to the classical implicit Euler scheme (Subsection
3.5).

2. The minimizing-movements scheme for GENERIC systems

In this section, we recall the structure of a GENERIC system [36] by specifying
the assumptions on functionals and operators that will be used throughout. More-
over, we formulate our minimizing-movements scheme and present a conditional
convergence result, namely Theorem 2.1.

The GENERIC system

y′ = L(y) DE(y) +K(y) ∂S(y) a.e. in [0, T ] (2.1)

is defined by specifying the quintuple (Y,E, S, L,K). In the following, the state
space Y is assumed to be a reflexive Banach space. The functionals E and S
represent the total energy and the total entropy of the system, respectively. We
assume E to be Fréchet differentiable, with strongly-weakly continuous differential
DE, and −S : Y → (−∞,∞] to be proper and lower semicontinuous with single-
valued and strongly-weakly continuous Fréchet subdifferential ∂(−S). Recall that
one has ξ ∈ ∂(−S)(y) iff S(y) > −∞ and

lim inf
x→y

S(y)− S(x)− 〈ξ, x− y〉
‖x− y‖Y

≥ 0.

In the following, we also make use of the obvious notation −∂S = ∂(−S).

The operators L and K define a Poisson and an Onsager geometric structure
on Y , respectively. In particular, for all states y ∈ Y we assume that L(y) and
K(y) are linear and continuous from Y ∗ to Y . Moreover, L(y) is required to be
antisymmetric, L∗(y) = −L(y), and to fulfill the Jacobi identity {{g1, g2}, g3} +
{{g2, g3}, g1} + {{g3, g1}, g2} = 0. Here, gi denotes any differentiable function on
Y and the Poisson bracket is defined as {g, g̃}(y) = 〈Dg(y), L(y)Dg̃(y)〉, where 〈·, ·〉
denotes the duality pairing between Y ∗ (dual) and Y . Moreover, we assume the
strong-weak continuity

yn
Y→ y and ξn

Y ∗
⇀ ξ ⇒ L(yn)ξn

Y
⇀ L(y)ξ. (2.2)
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The mapping K(y) is asked to be symmetric and positive definite, namely
K(y) = K∗(y) ≥ 0. We associate to K the so-called entropy-production potential
Ψ : Y ×Y ∗ → [0,∞) given by Ψ(y, ξ) = 〈ξ,K(y)ξ〉/2 and let Ψ∗ be its conjugate in
the second variable, namely Ψ∗(y, η) = supξ(〈ξ, η〉 −Ψ(y, ξ)). We also assume the
lower semicontinuity of the sum of the entropy-production potential and its dual,
that is

yn
Y→ y, ηn

Y
⇀ η, and ξn

Y ∗
⇀ ξ

⇒ lim inf
n→∞

(Ψ∗(yn, ηn) + Ψ(yn, ξn)) ≥ Ψ∗(y, η) + Ψ(y, ξ). (2.3)

In addition, functionals and operators are asked to satisfy the crucial noninter-
action condition

L∗(y) ∂S(y) = K∗(y) DE(y) = 0 ∀y ∈ Y. (2.4)

This condition ensures that the system of dissipative actions K(y) ∂S(y) does not
spoil energy conservation and the system of conservative actions L(y) DE(y) does
not contribute to dissipation. Indeed, by assuming sufficient smoothness one checks
that

d

dt
E(y) = 〈DE(y), y′〉 (2.1)= 〈DE(y), L(y)DE(y)〉+ 〈DE(y),K(y)∂S(y)〉

= 0 + 〈∂S(y),K∗(y)DE(y)〉 (2.4)= 0,

d

dt
S(y) = 〈∂S(y), y′〉 (2.1)= 〈∂S(y), L(y)DE(y)〉+ 〈∂S(y),K(y)∂S(y)〉

= 〈DE(y), L∗(y)∂S(y)〉+ 〈∂S(y),K(y)∂S(y)〉
(2.4)
= 〈∂S(y),K(y)∂S(y)〉 ≥ 0. (2.5)

The noninteraction condition (2.4) hence implies that trajectories y solving (2.1)
have constant total energy and entropy rate 〈∂S(y),K(y)∂S(y)〉. In particular, the
entropy is nondecreasing and entropy production results solely from irreversible
processes. In computing (2.5) we have used the chain rule (d/dt)S(y) = 〈∂S(y), y′〉
almost everywhere. This is classical in case −S is (a regular perturbation of) a
convex functional [7, Prop. 3.3, p. 73]. The reader is referred to [45] for a general
discussion out of the convex case.

Before moving on, let us remark that the structure of GENERIC is geometric
in nature. Indeed, it is invariant by coordinate changes. Let y = φ(ỹ) for ỹ ∈ Ỹ
and define Ẽ(ỹ) = E(φ(ỹ)), −S̃(ỹ) = −S(φ(ỹ)), L̃(ỹ) = Dφ(ỹ)−1L(φ(ỹ))Dφ(ỹ)−∗,

and K̃(ỹ) = Dφ(ỹ)−1K(φ(ỹ))Dφ(ỹ)−∗, where Dφ(ỹ)−∗ : Ỹ ∗ → Y ∗ is the adjoint

of the inverse of Dφ(ỹ) : Ỹ → Y . Then, the quintuple (Ỹ , Ẽ, S̃, L̃, K̃) satisfies the
above structural assumptions and the GENERIC structure (2.1) can be rewritten

as ỹ′ = L̃(ỹ) DẼ(ỹ) + K̃(ỹ) ∂S̃(ỹ).

We now reconsider the discussion leading to (1.2) and specify it further by re-
marking that relation (2.1) is actually equivalent to the inequality

− S(y(t)) +

∫ t

0

Ψ∗
(
y, y′−L(y) DE(y)

)
+

∫ t

0

Ψ
(
y, ∂S(y)

)
+ S(y(0)) ≤ 0 (2.6)
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for all t ∈ [0, T ]. The equivalence between (2.1) and (2.6) follows from Fenchel’s
relations. Applied to the entropy-production potential Ψ, these relations read

Ψ∗(y, η) + Ψ(y, ξ) ≥ 〈ξ, η〉 ∀y, η ∈ Y, ξ ∈ Y ∗, (2.7)

Ψ∗(y, η) + Ψ(y, ξ) = 〈ξ, η〉 ⇔ ξ ∈ ∂Ψ(y, η), (2.8)

where the subdifferential is taken in the second variable only. By noting that
∂Ψ(y, ∂S(y)) = K(y) ∂S(y) and using (2.7)-(2.8), one can prove the equivalences

(2.1) ⇔ y′ − L(y) DE(y) = ∂Ψ(y, ∂S(y)) a.e.

(2.8)⇔ Ψ∗(y, y′−L(y) DE(y)) + Ψ(y, ∂S(y))− 〈y′−L(y) DE(y), ∂S(y)〉 ≤ 0 a.e.

(2.4)⇔ Ψ∗(y, y′−L(y) DE(y)) + Ψ(y, ∂S(y))− d

dt
S(y) ≤ 0 a.e.

(2.7)⇔ (2.6).

In particular, the last left-to-right implication follows by integration while the right-
to-left counterpart from the nonnegativity of the integrand, given (2.4) and (2.7).

The minimizing-movements scheme corresponds to a discretization of inequality
(2.6). To each time partition 0 = t0 < t1 < · · · < tN = T , we associate the time
steps τi = ti− ti−1 and the diameter τ = max τi. Given the vector {yi}Ni=0 ∈ Y N+1,
we introduce the backward piecewise constant and piecewise linear interpolations
y : [0, T ]→ Y and ŷ : [0, T ]→ Y ,

y(0) = ŷ(0), y(t) = yi, ŷ(t) =
t− ti−t
τi

yi−1 +
ti − t
τi

yi,

∀t ∈ (ti−1, ti], i = 1, . . . , N.

We define the incremental functional by G : (0,∞)× Y × Y → (−∞,∞] as

G(τ, η; y) = −S(y) + τΨ∗
(
y,
y − η
τ
− L(y) DE(y)

)
+ τΨ(y, ∂S(y)) + S(η).

By letting y0 = y0 we find the discrete solution {yi}Ni=0 by subsequently solving the
minimization problem

min
y
G(τi, yi−1; y) for i = 1, . . . , N. (2.9)

Note that, for all τ > 0 and yi−1 ∈ Y with S(yi−1) > −∞, the map y 7→
G(τi, yi−1; y) is strongly lower semicontinuous because of the lower semicontinuity
of −S, the lower semicontinuity (2.3) of Ψ∗+ Ψ, the weak-strong continuity of DE
and ∂S, and the continuity (2.2) of L. In order to solve problem (2.9) one has
hence to check that y 7→ G(τi, yi−1; y) is strongly coercive.

The main result of this section is the following conditional convergence result.

Theorem 2.1 (Conditional convergence). Under the above assumptions, let a se-
quence of partitions 0 = tn0 < · · · < tnNn = T be given with τn → 0 as n→∞, and
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let {yni }N
n

i=1 be such that yn0 = y0. Assume that

Nn∑
i=1

(
G(τni , y

n
i−1; yni )

)+ → 0 as n→∞, (2.10)

{ŷn} is bounded in H1(0, T ;Y ) and takes values in K ⊂⊂ Y, (2.11)

{L(yn) DE(yn)} is bounded in L2(0, T ;Y ), (2.12)

{∂S(yn)} is bounded in L2(0, T ;Y ∗). (2.13)

Then, up to a subsequence, ŷn ⇀ y in H1(0, T ;H), where y is a solution of the
GENERIC system (2.1) in the sense of inequality (2.6).

Proof of Theorem 2.1. We infer from the Aubin-Lions lemma [48, Cor. 7], upon
extracting not relabeled subsequences, that

ŷn ⇀ y in H1(0, T ;Y ),

yn, ŷn → y in C([0, T ];Y ),

L(yn) DE(yn) ⇀ ` in L2(0, T ;Y ), (2.14)

∂S(yn) ⇀ s in L2(0, T ;Y ∗). (2.15)

As ∂S is strongly-weakly closed, we have that s = ∂S(y) almost everywhere. On
the other hand, the strong-weak continuity of DE and the continuity (2.2) of L
imply that L(yn) DE(yn)→ L(y) DE(y) pointwise in time, so that ` = L(y) DE(y)
almost everywhere.

Fix any t ∈ (0, T ] and let tnm be such that t ∈ (tnm−1, t
n
m]. The discrete sequence

of solutions {yni }N
n

i=0 fulfills

− S(yn(t)) +

∫ tnm

0

Ψ∗
(
yn, (ŷn)′ − L(yn) DE(yn)

)
+

∫ tnm

0

Ψ
(
yn, ∂S(yn)

)
+ S(y0)

=

m∑
i=1

G(τni , y
n
i−1; yni ). (2.16)

As Ψ(y, ·) ≥ Ψ(y, 0) = 0, we conclude that Ψ∗ ≥ 0 as well. By restricting integrals
to the interval [0, t] ⊂ [0, tnm] equation (2.16) implies that

− S(yn(t)) +

∫ t

0

Ψ∗(yn, (ŷn)′ − L(yn) DE(yn)) +

∫ t

0

Ψ(yn, ∂S(yn)) + S(y0)

≤
Nn∑
i=1

(
G(τni , y

n
i−1; yni )

)+
. (2.17)

We now pass to the limit inferior as n→∞ in relation (2.17). By using convergence
(2.10), the lower semicontinuity of −S, convergences (2.14)-(2.15), and the lower
semicontinuity (2.3), we readily obtain that the limit y fulfills inequality (2.6). �

The conditional convergence result of Theorem 2.1 relies on the possibility of
solving the inequality G(τni , y

n
i−1; yni ) ≤ 0 up to a small, controllable error, and

establishing some a priori bounds on the discrete solution. The validity of these
conditions has to be checked on the specific problem at hand. In the coming
Section 3 we give an example of a situation where (2.10)-(2.13) actually hold.
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In case −S is convex, an example of {yni }N
n

i=0 fulfilling (2.10) are the solutions of
the implicit Euler scheme

yni − yni
τni

= L(yni ) DE(yni ) +K(yni ) ∂S(yni ) (2.18)

whenever available. Indeed, such {yni }N
n

i=0 fulfills

G(τni , y
n
i−1; yni ) ≤ τni Ψ∗

(
yni ,

yni − yni
τni

− L(yni ) DE(yni )

)
+ τni Ψ(yni , ∂S(yni ))

− 〈∂S(yni ), yni − yni−1〉 = 0, (2.19)

where the last equality follows from (2.8) and (2.18).

Note that the incremental minimization problem (2.9) may have no solutions,
even if the Euler scheme is solvable. In the purely dissipative case L = 0, the
existence of a solution to (2.9) is ensured as soon as τ∗ > 0 exists, so that, for all
τ ∈ (0, τ∗) and yi−1 ∈ Y with S(yi−1) > −∞, the function y 7→ −S(y)+ τΨ(y, (y−
yi−1)/τ) is strongly coercive. The latter follows whenever −S has strongly compact
sublevels and would imply in particular that the Euler scheme is also solvable. We
anticipate however that the example discussed in Section 3 is not purely dissipative
and −S, albeit convex, does not have strongly compact sublevels.

Let us mention that, in specific applications, the bounds (2.11)-(2.13) may follow
from (2.10). For instance, this would be the case if the coercivity

Ψ∗(y, η) + Ψ(y, ξ) ≥ c‖η‖2Y + c‖ξ‖2Y ∗ −
1

c
(2.20)

holds for some c > 0 and all y, η ∈ Y and ξ ∈ Y ∗, namely in case K(y) is positive
definite and bounded, uniformly with respect to y. This however does not apply
to the example of the damped harmonic oscillator from Section 3, for K is singular
there.

The quadratic nature of the entropy-production potential could be generalized
to the case of p-growth with p > 1 without any specific intricacy. In particular, one
could consider the polynomial case ∂Ψ(y, ξ) = K(y)‖ξ‖p−2Y ∗ ξ and coercivity (2.20)
would then read

Ψ∗(y, η) + Ψ(y, ξ) ≥ c‖η‖p
′

Y + c‖ξ‖pY ∗ −
1

c

for 1/p + 1/p′ = 1. This setting would correspond to the case of doubly-nonlinear
GENERIC dynamics, namely

y′ = L(y) DE(y) +K(y)‖∂S(y)‖p−2Y ∗ ∂S(y).

Again, under the noninteraction condition (2.4), suitably regular solutions conserve

energy, since 〈DE(y), ∂Ψ(y, ∂S(y))〉 = ‖∂S(y)‖p−2Y ∗ 〈∂S(y),K∗(y) DE(y)〉 = 0, and

have entropy rate (d/dt)(S(y)) = ‖∂S(y)‖p−2Y ∗ 〈∂S(y),K(y) DS(y)〉 ≥ 0.

Let us further remark that the conditional convergence result of Theorem 2.1 can
serve as an a-posteriori tool to check the convergence of time-discrete approxima-
tions {yni }, regardless of the method used to generate them. In particular, relation
(2.10) can be seen as a sort of a-posteriori error estimator.

We conclude this section by pointing out that the statement of Theorem 2.1
would hold also for other minimizing-movements schemes, where nonlinearities are
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possibly evaluated explicitly. In particular, instead of G one could consider the
functional G̃ : (0,∞)× Y × Y → (−∞,∞] defined by

G̃(τ, η; y) = −S(y) + τΨ∗
(
y1,

y − η
τ
− L(y2) DE(y3)

)
+ τΨ(y1, ∂S(y)) + S(η),

where yj , j = 1, 2, 3, are independently chosen to be either yi or yi−1 (or else, for
instance (yi+yi−1)/2). Under conditions (2.10)-(2.13), convergence would again
follow as in Theorem 2.1.

3. The minimizing-movements scheme for the damped harmonic
oscillator

In this section, we analyze the simplest GENERIC system fulfilling conditions
(2.10)-(2.13). We consider the case of the damped harmonic oscillator, namely

mq′′ + νq′ + κq + λθ = 0, (3.1)

cθ′ = ν(q′)2 + λq′θ. (3.2)

Here, q ∈ R represents the position of the harmonic oscillator and θ > 0 is its
absolute temperature. Note that the case of θ being the given, constant temperature
of a surrounding heat bath is considered in [37] instead. The positive constants m,
ν, κ, λ and c are the mass of the oscillator, the viscosity of the medium, the elastic
modulus, the thermal-exchange coefficient, and the heat capacity, respectively.

By letting p ∈ R be the momentum of the harmonic oscillator, we rewrite (3.1)-
(3.2) as the first-order system

q′ =
p

m
, (3.3)

p′ = −νp
m
− κq − λθ, (3.4)

θ′ =
νp2

m2c
+
λpθ

mc
. (3.5)

System (3.3)-(3.5) can be written in the GENERIC form (2.1) by letting y =
(q, p, θ) ∈ Y = R2 × (0,∞) represent the state of the harmonic oscillator and by
defining the total energy and the total entropy as

E(q, p, θ) =
p2

2m
+ cθ +

κq2

2
and S(q, p, θ) = −λq + c+ c ln θ.

These definitions comply with the classical Helmholtz relations under the choice for
the free energy

Φ(q, p, θ) =
κq2

2
+ λqθ − cθ ln θ.

In particular, S = −∂θΦ and E = p2/(2m) + Φ + θS. Note that both E and S are
smooth, −S is convex, and S(y) > −∞ iff θ > 0.

The operators L, K : R3 → R3×3 are given by

L(x) =

 0 1 0
−1 0 −λθ/c
0 λθ/c 0

 and K(x) = νθ

0 0 0
0 1 −p/(mc)
0 −p/(mc) p2/(mc)2

 .
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One readily checks that L is antisymmetric and a tedious computation shows that
the Jacobi identity holds. On the other hand, K is symmetric and positive semi-
definite, while not being invertible. Note that K(y) has rank two for all p 6= 0, so
that the construction in [37] does not apply here.

By computing the gradients

DE(y) = (κq, p/m, c), DS(y) = (−λ, 0, c/θ),
one can easily check that the noninteraction condition (2.4) holds.

Letting ξ = (ξq, ξp, ξθ) ∈ R3 and η = (ηq, ηp, ηθ) ∈ R3, the entropy-production
potential and its dual read

Ψ(y, ξ) =
1

2
ξ ·K(y)ξ =

νθ

2

(
ξp −

p

mc
ξθ

)2
,

Ψ∗(y, η) =

 1

2

η2p
νθ

if ηq = 0 and pηp +mcηθ = 0,

∞ otherwise.

With the definitions above, the incremental functional G : (0,∞) × R3 × R3 →
(−∞,∞] for y = (q, p, θ) and η = (ηq, ηp, ηθ) takes the form

G(τ, η; y) = λq − c ln θ +
τ

2

1

νθ

(p− ηp
τ

+ κq + λθ
)2

+
τ

2
νθ
( p

mθ

)2
−ληq + c ln ηθ

if θ > 0,
q − ηq
τ

=
p

m
, and c

θ − ηθ
τ

= − p

m

p− ηp
τ
− κpq

m
,

G(τ, η; y) =∞ otherwise.

Assume to be given the time partition 0 = t0 < · · · < tN = T with τi =
ti−ti−1 for i = 1, . . . , N . By letting η = (qi−1, pi−1, θi−1) and defining (q0, p0, θ0) =
(q0, p0, θ0) for some given initial state (q0, p0, θ0) ∈ R2 × (0,∞), the incremental
minimization problem (2.9) becomes

min
(qi,pi,θi)

{
λqi − c ln θi +

τi
2νθi

(pi − pi−1
τi

+ κqi + λθi

)2
+
τiνp

2
i

2mθi

− λqi−1 + c ln θi−1

}
(3.6)

under the constraints

θi > 0, (3.7)

qi − qi−1
τi

=
pi
m
, (3.8)

c
θi − θi−1

τi
= −κqipi

m
− pi
m

pi − pi−1
τi

, (3.9)

for i = 1, . . . , N.

We devote the remainder of this section to prove that the convergence result
of Theorem 2.1 applies to the scheme (3.6)-(3.9), namely that conditions (2.10)-
(2.13) are fulfilled. In particular, we check that the minimization problem admits
a solution {yi}Ni=0 = {(qi, pi, θi)}Ni=0 (Subsection 3.1), that such solution is unique
if time steps are small enough (Subsection 3.2), that each such solutions fulfills
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condition (2.10) in the stronger sense G(τi, yi−1; yi) ≤ 0 (Subsection 3.3), and
that the bounds (2.11)-(2.13) can be established, independently of the partition
(Subsection 3.4). Eventually, numerical simulations are presented in Subsection
3.5.

3.1. Existence of minimizers. Assume to be given η = (qi−1, pi−1, θi−1) ∈ R2 ×
(0,∞). As y 7→ G(τi, η; y) is smooth on its domain, in order to prove that the
scheme (3.6)-(3.9) admits a solution, we just need to check coercivity, namely that
sublevels of y 7→ G(τi, η; y) are bounded.

By using the constraints (3.8)-(3.9), we can express qi and θi in terms of pi and
the values (qi−1, pi−1, θi−1) in the form

qi = τi
pi
m

+ qi−1 and θi = f(pi), (3.10)

where the function f is defined by

f(pi) = θi−1 −
τ2i κ

m2c
p2i −

τiκ

mc
piqi−1 −

1

mc
p2i +

1

mc
pipi−1.

By substituting the two expressions in the minimum problem (3.6)-(3.9), we can
reduce it to a minimization in the variable pi only. Indeed, problem (3.6)-(3.9) is
equivalent to

min
pi

F (pi) under the constraint f(pi) > 0, (3.11)

where we have defined

F (pi) :=
τiλpi
m
− c ln f(pi) +

τi
2νf(pi)

(pi − pi−1
τi

+
τiκ

m
pi + κqi−1 + λf(pi)

)2
+

τiνp
2
i

2mf(pi)
+ c ln θi−1.

Again, as F is smooth on its domain, in order to solve the minimization problem
(3.11) we just need to prove that F has bounded sublevels. This follows from the
fact that F (pi)→∞ if f(pi)→ 0+ and that f(pi) > 0 iff pi belongs to a bounded
interval, depending on (qi−1, pi−1, θi−1). In fact, as f is quadratic and θi−1 > 0, it
follows that f(pi) > 0 if and only if |pi − p̂| < r̂ with

p̂ =
pi−1 − τiκqi−1
2 + 2τ2i κ/m

and r̂ =

(
(pi−1−τiκqi−1)2 + 4(1+τ2i κ/m)mcθi−1

)1/2
2 + 2τ2i κ/m

.

Hence, for all given (qi−1, pi−1, θi−1) ∈ R2 × (0,∞), we can find a solution pi of
(3.11). We conclude from (3.10) that (qi, pi, θi) solves (3.6)-(3.9). In particular, we
have that θi > 0.

3.2. Uniqueness of minimizers. Let us remark that the minimizers (qi, pi, θi) of
(3.6)-(3.9) need not be unique in general. Still, the function F is strictly convex
for τi small enough, depending on the values (qi−1, pi−1, θi−1) and on material
parameters.
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Let us start by rewriting F as

F (pi) = −c ln f(pi) +
(1 + τ2i κ/m)2

2τiν

(pi + hi)
2

f(pi)

+
τiν

2m

p2i
f(pi)

+
τiλ

2f(pi)

2ν
+ ri(pi), (3.12)

where hi = (−pi−1 + τiκqi−1)/(1 + τ2i κ/m) and ri is the affine function

ri(pi) =
τiλpi
m

+
λ(1 + τ2i κ/m)

ν
(pi + hi) + c ln θi−1.

Using the following facts(
(pi + hi)

2

f(pi)

)′′
=

((
2f3(pi)

)1/2 − (2f(pi)
)1/2

(pi + hi)f
′(pi)

)2
f4(pi)

− (pi + hi)
2f2(pi)f

′′(pi)

f4(pi)
> 0,(

p2i
f(pi)

)′′
=

((
2f3(pi)

)1/2 − (2f(pi)
)1/2

pif
′(pi)

)2
f4(pi)

− p2i f
2(pi)f

′′(pi)

f4(pi)
> 0,

and differentiating F in (3.12) twice, we obtain

F ′′(pi) > −c(ln f(pi))
′′ +

τiλ
2

2ν
f ′′(pi) =

c(f ′(pi))
2

f2(pi)
+ f ′′(pi)

(
− c

f(pi)
+
τiλ

2

2ν

)
≥ f ′′(pi)

(
− c

f(pi)
+
τiλ

2

2ν

)
=: g(pi).

As f ′′(pi) = −2(1 + τ2i κ/m)/(mc) < 0, the function g is nonnegative as long as
f(pi) ≤ 2νc/(τiλ

2). It hence suffices to choose τi so small that

max f ≤ 2νc

τiλ2
. (3.13)

This condition depends on the size of the time-step and on material parameters
and implies that F is strictly convex, thus admitting a unique minimizer pi. Con-
sequently, problem (3.6)-(3.9) has a unique minimizer (qi, pi, θi).

We can make the time-step dependent bound (3.13) on τi more explicit by di-
rectly computing the maximum of f :

max f =

(
−τiκqi−1

mc
+
pi−1
mc

)2

+ 4

(
τ2i κ

m2c
+

1

mc

)
θi−1

4

(
τ2i κ

m2c
+

1

mc

)
=

(−τiκqi−1 + pi−1)2

4(τ2i κc+mc)
+ θi−1 ≤

p2i−1
2mc

+
τ2i κ

2q2i−1
2mc

+ θi−1.

In Subsection 3.4 we will check that above right-hand side can be bounded by
a positive constant c0 in terms of the initial data and of material parameters only,
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uniformly with respect to i, see (3.22). Condition (3.13) can hence be strengthened
by asking the partition to be such that

c0 ≤ min
i

2νc

τiλ2
. (3.14)

This stronger condition ensures the unique solvability of the minimization problem
(3.6)-(3.9) for all i = 1, . . . , N .

3.3. Minimizers fulfill condition (2.10). Following the discussion of Section 2,
the convexity of −S ensures that condition (2.10) holds as soon as one can prove
that the implicit Euler scheme (2.18) is solvable. In the current setting, the implicit
Euler scheme reads

qi − qi−1
τi

=
pi
m
, (3.15)

pi − pi−1
τi

= −νpi
m
− κqi − λθi, (3.16)

θi − θi−1
τi

=
νp2i
m2c

+
λpiθi
mc

(3.17)

for i = 1, . . . , N .

Let the initial data (q0, p0, θ0) ∈ R2× (0,∞) be given and assume to have solved
(3.15)-(3.17) up to level i − 1. In particular, let (qi−1, pi−1, θi−1) ∈ R2 × (0,∞).
Relation (3.15) can be written as

qi =
τipi
m

+ qi−1

and we can substitute it into (3.16) obtaining

pi =
−τimλ

m+ τiν + τ2i κ
θi +

−τimκqi−1 +mpi−1
m+ τiν + τ2i κ

=: αiθi + βi (3.18)

where αi and βi depend just on material parameters, τi, and on qi−1 and pi−1.

We may hence rewrite equation (3.17) as

θi = θi−1 +
τiνp

2
i

m2c
+
τiλpiθi
mc

= θi−1 +
τiν

m2c

(
α2
i θ

2
i + 2αiβiθi + β2

i

)
+
τiλ

mc

(
αiθ

2
i + βiθi

)
,

which gives the expression

0 =
(τiνα2

i

m2c
+
τiλαi
mc

)
θ2i +

(2τiναiβi
m2c

+
τiλβi
mc

− 1
)
θi +

(
θi−1 +

τiνβ
2
i

m2c

)
=: γiθ

2
i + δiθi + εi, (3.19)

with γi, δi, and εi depending on αi, βi, θi−1, and data. Note that

γi =
τi
mc

(
ναi
m

+ λ

)
αi = −τ

2
i λ

2

c

m+ τ2i κ

(m+ τiν + τ2i κ)2
< 0.

We infer from θi−1 > 0 that εi > 0. Hence, the second-order equation (3.19) has
a unique solution θi > 0. This uniquely defines pi and qi via (3.18) and (3.15),
respectively. In particular, the implicit Euler scheme (3.15)-(3.17) has a unique
solution yei = (qi, pi, θi).
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Let now yi be a solution to the incremental minimization problem (3.6). Owing
to (2.19), we conclude that

G(τi, yi−1; yi) = min
y
G(τi, yi−1; y) ≤ G(τi, yi−1; yei )

(2.19)
= 0,

where we have also used the fact that yei fulfills the constraints (3.7)-(3.9). In
particular, condition (2.10) holds in the even stronger form

G(τi, yi−1; yi) ≤ 0 for i = 1, . . . , N. (3.20)

3.4. A priori bounds. We now prove that condition (2.11)-(2.13) of Theorem 2.1
hold. This will follow by checking a priori bounds on minimizers {yi}Ni=0 of (3.6),
independently from the time partition.

Let us start by remarking that the energy is nonincreasing. By (3.8), one can
equivalently rewrite the constraint (3.9) as

cθi − cθi−1 = −κq
2
i

2
+
κq2i−1

2
− κ

2
|qi − qi−1|2 −

p2i
2m

+
p2i−1
2m
− 1

2m
|pi − pi−1|2.

A rearrangement of the terms leads to

E(yi) +
κ

2
|qi − qi−1|2 +

1

2m
|pi − pi−1|2 = E(yi−1).

Hence, E(yi) is nonincreasing and E(yi) = E(yi−1) iff qi = qi−1 and pi = pi−1. By
taking the sum for i = 1, . . . , j for j ≤ N , we find that

E(yj) +Dq
j +Dp

j = E(y0) ∀j = 1, . . . , N, (3.21)

where we have set

Dq
j =

j∑
i=1

κ

2
|qi − qi−1|2 and Dp

j =

j∑
i=1

1

2m
|pi − pi−1|2.

The nonnegative terms Dq
j and Dp

j exactly quantify the energy dissipativity of the

scheme. Owing to (3.21), we obtain the uniform bound

|pi|+ |θi|+ |qi| ≤ C ∀i = 1, . . . , N, (3.22)

where, here and in the following, the symbol C denotes a generic positive constant
depending on the initial data y0 and on material parameters, but not on the time
partition. Bound (3.22) and constraint (3.8) imply that∣∣∣∣qi − qi−1τi

∣∣∣∣ ≤ C ∀i = 1, . . . , N. (3.23)

Moreover, we readily check that

|L(yi) DE(yi)| = |(pi/m,−kqi − λθi, λpiθi/m)|
(3.22)

≤ C ∀i = 1, . . . , N. (3.24)

Let us take the sum for i = 1, . . . , j for j ≤ N in (3.20) getting

−S(yj) + ψ∗j + ψj ≤ −S(y0),

where

ψ∗j =

j∑
i=1

τi
2νθi

(pi − pi−1
τi

+ κqi + λθi

)2
and ψj =

j∑
i=1

τiνp
2
i

2mθi
.
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As ψ∗j and ψj are nonnegative, we infer that S(yi) is nondecreasing. In particular,

−c ln θj ≤ −S(y0)− λqj + c
(3.22)

≤ C ∀j = 1, . . . , N.

and consequently,

θi ≥ θmin > 0 ∀i = 1, . . . , N, (3.25)

for some given θmin depending just on y0 and the material parameters. This ensures
that

|DS(yi)| = |(−λ, 0, c/θi)| ≤ C ∀i = 1, . . . , N. (3.26)

It follows from the bound (3.22) on qi and θi that S(yi) = −λqi + c+ c ln θi ≤ C
for all i = 1, . . . , N . We conclude that ψN ≤ −S(y0) + S(yN ) ≤ C and

N∑
i=1

τi
2νθi

∣∣∣∣pi − pi−1τi

∣∣∣∣2

= ψ∗N −
N∑
i=1

τi
2νθi

(κqi + λθi)
2 − 2

N∑
i=1

τi
2νθi

(
pi − pi−1

τi

)
(κqi + λθi)

≤ ψ∗N +

N∑
i=1

τi
2νθi

(κqi + λθi)
2

+

N∑
i=1

τi
4νθi

∣∣∣∣pi − pi−1τi

∣∣∣∣2
(3.22)

≤ C +

N∑
i=1

τi
4νθi

∣∣∣∣pi − pi−1τi

∣∣∣∣2 . (3.27)

Using the fact that θi is uniformly bounded by (3.22), we can hence bound

N∑
i=1

τi

∣∣∣∣pi − pi−1τi

∣∣∣∣2 ≤ 4ν (max
i
θi)

N∑
i=1

τi
4νθi

∣∣∣∣pi − pi−1τi

∣∣∣∣2 (3.22)+(3.27)

≤ C. (3.28)

Eventually, we infer from constraint (3.9) that

N∑
i=1

τi

∣∣∣∣θi − θi−1τi

∣∣∣∣2 ≤ 2

N∑
i=1

τi

(
κ2q2i p

2
i

m2c2
+

p2i
m2c2

∣∣∣∣pi − pi−1τi

∣∣∣∣2
)
≤ C. (3.29)

Bounds (3.22)-(3.23) and (3.28)-(3.29) imply condition (2.11) from Theorem 2.1.
On the other hand, bounds (3.24) and (3.26) imply conditions (2.12) and (2.13),
respectively. Hence, the convergence statement of Theorem 2.1 holds. In particular,
given initial values (q0, p0, θ0) ∈ R3 with θ0 > 0, a sequence of partitions 0 = tn0 <
· · · < tnNn = T with τn = maxi(t

n
i − tni−1) → 0, and corresponding minimizers

{(qni , pni , θni )}Ni=0 of (3.6), it follows that

(q̂n, p̂n, θ̂n) ⇀ (q, p, θ) in H1(0, T ;R3), (3.30)

where (q, p, θ) solves the damped harmonic oscillator system (3.3)-(3.5) with initial
value (q(0), p(0), θ(0)) = (q0, p0, θ0). Note that solutions of (3.3)-(3.5) are unique.
Hence, convergence (3.30) holds for the whole sequence of discrete solutions, not
just for a subsequence.

As E and S are smooth, yn is bounded, and θi ≥ θmin > 0, we find that
E(y(·)) → E(y(·)) ≡ E(y0) and S(y(·)) → S(y(·)) uniformly, together with their
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time derivatives of all orders. More precisely, upon remarking that

Dq
N ≤ τ

n
N∑
i=1

τiκ

2

∣∣∣∣qi − qi−1τi

∣∣∣∣2 (3.23)

≤ Cτn,

Dp
N ≤ τ

n
N∑
i=1

τi
2m

∣∣∣∣pi − pi−1τi

∣∣∣∣2 (3.28)

≤ Cτn,

we may use (3.21) and check that

−Cτn + E(yn(t)) ≤ E0 ∀t ∈ [0, T ].

In particular, we control the energy dissipation as follows:

max
t∈[0,T ]

‖E(yn(t))− E(y0)‖L∞(0,T ) ≤ Cτn. (3.31)

3.5. Numerical tests. We record here some numerical evidence on the perfor-
mance of the minimizing-movements scheme (3.6)-(3.9). All computations are per-
formed in Matlab. In the following, we choose

m = ν = κ = λ = c = 1, y0 = (q0, p0, θ0) = (1, 1, 1), T = 15. (3.32)

Given a uniform time-partition with time step τ = T/N , we find a solution {yi}Ni=0

of the minimizing-movements scheme (3.6)-(3.9) via Newton’s method. Note that,
by choosing (3.32) and recalling the bound (3.21), one has that the constant c0 in
(3.14) can be bounded from above by E(y0) = 2, for all τ ≤ 1. In particular, con-
dition (3.14) is fulfilled by all τ ≤ 1 and the solution of the minimizing-movements
scheme is unique.

The unique solution {yei }Ni=0 of the implicit Euler scheme (3.15)-(3.17) is obtained
directly from (3.18)-(3.19). Eventually, the numerical reference solution t 7→ y(t)
is calculated by means of the Matlab solver ode45 choosing 10−4 for the maximal
time step and 10−8 for the absolute tolerance.

Figures 1-3 illustrate the numerical reference solution and the time-discrete solu-
tions for τ = 1/4. Both the minimizing-movements and the Euler scheme dissipate
energy, see Figure 3 left. This is of course an undesired effect, which is however at-
tenuated as τ → 0, see (3.31). Energy dissipation seems to be more pronounced for
the Euler scheme. On the other hand, entropy is nondecreasing for the minimizing-
movements scheme whereas the Euler scheme shows a nonmonotone entropy, which
is nonphysical, see Figure 3 right.

A second set of experiments is illustrated in Figure 4. For the same choices in
(3.32) and different time steps

τn = 2−n for n = −1, 0, . . . , 11, (3.33)

we compute the uniform errors of the temperature component of the solution and
of the energy with respect to the numerical reference solution.

As τ converges to 0, our computations confirm that both the minimizing-move-
ments and the Euler scheme are of order τ , see also (3.31). Let us mention that
a proof of first-order convergence for the minimizing-movements scheme in the
nondissipative regime (L = 0, K independent of the state) is given in [25, Prop.
4.3]. Both schemes do not conserve energy. Still, the minimizing-movements scheme
is more accurate than the Euler scheme when the time steps are large.
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Figure 1. Position q (left) and momentum p (right) with re-
spect to time for the numerical reference solution (red, dotted),
the minimizing-movements scheme (solid), and the Euler scheme
(blue, dash-dotted).
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Figure 2. Temperature with respect to time for the numerical
reference solution (red, dotted), the minimizing-movements scheme
(solid), and the Euler scheme (blue, dash-dotted).
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Figure 3. Energy (left) and entropy (right) as function of time
for the numerical reference solution (red dotted), the minimizing-
movements scheme (solid), and the Euler scheme (blue, dash-
dotted).
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right). The (green) dotted lines indicate the order of convergence

1. Left: maxt∈[0,T ] |θ(t) − θ̂(t)| (solid), maxt∈[0,T ] |θ(t) − θ̂ e(t)|
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[28] M. Krüger, M. Groß, P. Betsch. An energyentropy-consistent time stepping scheme for non-

linear thermo-viscoelastic continua. ZAMM Z. Angew. Math. Mech. 96 (2016), 141–178.

[29] M. Liero, A. Mielke, M. A. Peletier, D. R. M. Renger. On microscopic origins of generalized
gradient structures. Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 1–35.

[30] R. McLachlan, G. Quispel, N. Robidoux. Geometric integration using discrete gradients. Phil.

Trans. R. Soc. Lond. A, 357 (1999), 1021–1045.
[31] A. Mielke. Formulation of thermoelastic dissipative material behavior using GENERIC. Con-

tin. Mech. Thermodyn. 23 (2011), 233–256.

[32] A. Mielke. Dissipative quantum mechanics using GENERIC, Proc. of the conference on Recent
Trends in Dynamical Systems, vol. 35 of Proceedings in Mathematics & Statistics, Springer,

2013, pp. 555–585.

[33] A. Mielke, A. Montefusco, M. Peletier. Exploring families of energy-dissipation landscapes
via tilting – three types of EDP convergence. arXiv:2001.01455, 2020.
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