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Abstract. A random-batch method for multi-species interacting particle systems is pro-
posed, extending the method of S. Jin, L. Li, and J.-G. Liu [J. Comput. Phys. 400 (2020),
108877]. The idea of the algorithmus is to randomly divide, at each time step, the en-
semble of particles into small batches and then to evolve the interaction of each particle
within the batches until the next time step. This reduces the computational cost by one
order of magnitude, while keeping a certain accuracy. It is proved that the L2 error of
the error process behaves like the square root of the time step size, uniformly in time,
thus providing the convergence of the scheme. The numerical efficiency is tested for some
examples, and numerical simulations of the opinion dynamics in a hierarchical company,
consisting of workers, managers, and CEOs, are presented.

1. Introduction

The collective behavior of particles or agents of multiple species can be described by
interacting particle systems, which are an important tool for modeling complex real-world
phenomena with applications in physics, biology, and social sciences. The binary interac-
tion between all particles makes numerical simulations very demanding when many agents
need to be modeled, which explains the need for efficient algorithms. Averaged results
can be obtained from the associated mean-field equations, while the individual dynamics
is captured by direct simulations, using fast summation algorithms, like fast multipole
methods [11], wavelet transforms [3], or variants of Monte–Carlo methods [5]. Recently,
motivated by mini-batch gradient descent in machine learning (see, e.g., [23]), the authors
of [16] suggested to use small random batches in interacting particle systems, which results
in the reduction of the computational cost per time step from O(N2) to O(N) (N being
the number of particles or agents). Compared to other efficient sampling methods, like the
Ewald summation or the fast multipole method, the random-batch method is easier to im-
plement and more flexible to apply in complex systems. The results of [16] are valid in the
single-species case. In this paper, we generalize their approach to multi-species systems.
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In particular, we work out the dependence of the L2 error with respect to the batch sizes
of the different species and discuss the case of multiplicative noise.

1.1. Setting. The dynamics of the multi-species system is described by

dXk
i = −∇Vi(Xk

i )dt+
n∑
j=1

αij

Nj∑
`=1

(i,k)6=(j,`)

Kij(X
k
i −X`

j )dt+ σidB
k
i (t),(1)

Xk
i (0) = Xk

0,i for i = 1, . . . , n, k = 1, . . . , Ni,(2)

where

(3) αij =
1

Nj − δij
, i, j = 1, . . . , n.

The stochastic process Xk
i (t) ∈ Rd (d ≥ 1) represents the position of the kth particle (or the

features of the kth agent) of species i in a system of N =
∑n

i=1Ni particles. The function
∇Vi describes some (given) external force, Kii and Kij are the interaction kernels between
particles of the same and of different species, respectively, σi > 0 are diffusion coefficients,
and Bk

i are N independent standard Brownian motions. The initial data X1
0,i, . . . , X

Ni
0,i are

assumed to be independent and identically distributed.
Equations (1) can be used to model the information flow through social networks [2],

the dynamics of opinions [8], the herding of sheep by dogs [26], or the segregation behavior
of populations [6]. Stochastic gradient descent can be interpreted as the evolution of
interacting particle systems governed by a potential related to the objective function used
to train neural networks [25].

1.2. Random-batch method. The random-batch method is defined as follows. Let the
number of particles Ni ∈ N of the ith species be an even number, where i = 1, . . . , n. We
introduce the time steps tm = mτ with the time step size τ > 0 and m = 1, . . . ,M :=
dT/τe, and T > 0 is the end time. For a given m ∈ {1, . . . ,M}, we divide the set
{1, . . . , Ni} randomly into bi batches Ci,1, . . . , Ci,bi of size pi. This means that we choose
pi ≥ 2 and bi ≥ 1 such that Ni = bipi, and we consider not all interactions but only those
in the same batch. Furthermore, we introduce the super-batches Cr = {(i, k) : k ∈ Ci,r}
for 1 ≤ r ≤ max{b1, . . . , bn} (see Figure 1). For any particle Xk

i , there exists exactly one
super-batch such that (i, k) ∈ Cr for some r ≥ 0.

We solve the particle system in the time interval (tm−1, tm] with initial datum X̃k
i (tm−1).

The random-batch process X̃k
i is defined for tm−1 < t ≤ tm as the solution to

(4) dX̃k
i = −∇Vi(X̃k

i )dt+
n∑
j=1

βij
∑
`∈Cj,r

(i,k)6=(j,`)

Kij(X̃
k
i − X̃`

j )dt+ σidB
k
i ,

where

(5) βij =
bi

(pj − δij) min{bi, bj}
, i, j = 1, . . . , n.
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C 1,1 C 1,2 C 1,3 C 1,4

C 2,1 C 2,2 C 2,3 C 2,4 C 2,5

p  = 3
1

p  = 2
2

Figure 1. Batches Ci,r for a two-species system with N = 22 particles, four
batches of size p1 = 3, and five batches of size p2 = 2. The particles in the
super-batch C1 are marked in grey color.

Instead of summing over all interactions, the sum in (4) only accounts for the interactions
in each small batch. Observe that we use the same Brownian motions as in (1). The sum
over all ` ∈ Cj,r means that we sum over all (j, `) which are in the same super-batch as
(i, k). The factor bi/min{bi, bj} in (5) does not appear in [16]; it is necessary to achieve
consistency and convergence of the scheme. The scaling results from the different number
of nontrivial batches Ci,r of the different species. Indeed, let bj < bi. From the viewpoint
of the particles of the ith species, they interact with the particles of the jth species only
with the share bj/bi, since Ci,r is empty for r > bj. This yields the factor bi/bj. The
random-batch algorithm is summarized in Algorithm 1.2.

Algorithm 1 (Pseudo-code for the multi-species random-batch algorithm)

1: for k = m, . . . ,M do
2: for i = 1, . . . , n do
3: Divide {1, . . . , Ni} randomly into bi batches Ci,1, . . . , Ci,bi with size pi each.
4: for r = 1, . . . , bi do

5: For every (i, k) ∈ Cr, update X̃k
i by solving (4) in the interval (tm−1, tm] with

initial datum X̃k
i (tm−1).

6: end for
7: end for
8: end for

When we allow for pairwise interactions between all particles, the computational cost at
each time step is of order O(N2). Since we have M time steps, the total cost of this naive
algorithm is O(MN2). In the random-batch method, each particle ends up in exactly
one super-batch Cr for some r ≥ 1 and is chosen only once (i.e. without replacement).
Then the total computatinal cost becomes O(pMN), where p =

∑n
i=1 pi. As p is typically

a small number (often pi = 2), the total cost has been reduced by approximately one
order of magnitude. We show in this paper that, under suitable conditions on the external

potentials and the kernel functions, the L2 error of the error process X̃k
i (t)−Xk

i (t) converges
to zero as τ → 0 uniformly in time, and the convergence is, as expected, of order O(

√
τ).

The idea of the method is the fact that in time average, the random force is consistent
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with the full interaction (see Proposition 2), and the convergence is like in the law of large
numbers, but in time.

1.3. Main result. We start with some definitions and notation. Let (Ω,F ,F,P) be a
filtered probability space, let ξm−1,i denote the random division of batches of species i at
tm−1, and set ξm−1 = (ξm−1,1, . . . , ξm−1,n). We define the filtrations (Fm)m≥0 and (Gm)m≥0
by

Fm−1 = σ
(
Xk

0,i, B
k
i (t), ξj,i : t ≤ tm−1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

)
,

Gm−1 = σ
(
Xk

0,i, B
k
i (t), ξj,i : t ≤ tm−1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 2

)
.

The set Fm−1 contains the information how the batches are constructed for t ∈ [tk−1, tk).
Denoting by σ(ξm−1,i) the σ-algebra generated by ξm−1,i, it holds that Fm−1 = σ(Gm−1 ∪
σ(ξm−1,1) ∪ · · · ∪ σ(ξm−1,n)). We write ‖ · ‖p = (E| · |p)1/p to denote the Lp(Ω) norm for
1 ≤ p <∞ and set ‖·‖ = ‖·‖2. In the whole paper, C > 0, Ci > 0 denote generic constants

whose values change from line to line. We set X = (Xk
i )k=1,...,Ni

i=1,...,n and X̃ = (X̃k
i )k=1,...,Ni

i=1,...,n .
We impose the following assumptions:

(A1) Kernel functions: Kij ∈ C2(Rd) is bounded, Lipschitz continuous with Lipschitz
constant Lij > 0, and has a bounded second derivative.

(A2) Potential functions: Vi ∈ C2(Rd), and there exist CV > 0, qi > 0 such that for all
x ∈ Rd,

|∇Vi(x)|+ |D2Vi(x)| ≤ CV (1 + |x|qi), i = 1, . . . , n.

(A3) Strong convexity: The function x 7→ Vi(x)− ri|x|2/2 is convex, where ri > 2
∑n

j=1

max{Lij, Lji} and i = 1, . . . , n.

(A4) Synchronous coupling: Xk
i (0) = X̃k

i (0) = Xk
0,i for i = 1, . . . , n, k = 1, . . . , Ni, where

X1
0,i, . . . , X

Ni
0,i are independent and identically distributed, and Xk

0,i is F0-measurable

with E|Xk
0,i|2max{1,qi} <∞.

Under these assumptions (in particular, the Lipschitz continuity), standard results for
stochastic differential equations [19] guarantee that (1) and (4) have (up to P-distinguisha-
bility) unique strong solutions. The polynomial growth conditions on ∇Vi and D2Vi are
needed to prove the stability; see Lemma 4. The smallness condition on the Lipschitz
constants of the kernel functions ensures that the evolution group of the deterministic part
of (1) is a contraction, thus yielding error bounds uniformly in time.

Our main result reads as follows.

Theorem 1 (Error estimate). Let Assumptions (A1)–(A4) hold. Then there exists a
constant C > 0, which is independent of (bi, pi)i=1,...,n, m, and T , such that

sup
0<t<T

n∑
i=1

‖(Xk
i − X̃k

i )(t)‖ ≤ C
√
τ

( n∑
i=1

Γi

)1/2

+ Cτ(1 + θγ), t > 0,
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where

θ =
maxj=1,...,n bj
minj=1,...,n bj

, γ = 3
(

max{1, q1, . . . , qn}+ 1
)
,(6)

Γi =
n∑

j,j′=1
j,j′ 6=i, j 6=j′

(
max{bi, bj, bj′}

max{bj, bj′}
− 1

)
+

n∑
j=1
j 6=i

(
bi −min{bi, bj}

min{bi, bj}
− 2−max{bi, bj}

Nj

(7)

+
bi

pj min{bi, bj}

)
+

(
1

pi − 1
− 1

Ni − 1

)
≥ 0. i = 1, . . . , n,

and qi is introduced in Assumption (A2).

The theorem generalizes [16, Theorem 3.1] to the multi-species case. Indeed, if n =
1, Γ1 reduces to 1/(p1 − 1) − 1/(N1 − 1) and θ = 1. Then the error bound becomes

C
√
τ/(p1 − 1) + Cτ , which corresponds to (3.9) in [16]. Compared to the result in [16],

Theorem 1 shows the influence of the different batch sizes bi of the species. Indeed, if the
batch sizes are very different, θ is much larger than one, which increases the constant in
the error estimate. This behavior is also observed in the numerical simulations; see Section
6.3.

The proof of Theorem 1 is based on estimates for the error process Zk
i := X̃k

i − Xk
i .

Since the noise terms are the same, Zk
i solves

dZk
i (t) = −(∇Vi(X̃k

i )−∇Vi(Xk
i ))dt+

n∑
j=1

αij
∑
`=1

(j,k) 6=(j,`)

∆K`
ijdt+ χki (X̃)dt

for tm−1 < t ≤ tm, where ∆K`
ij := Kij(X̃

k
i − X̃`

j )−Kij(X
k
i −X`

j ) and χki (X̃) is a remainder
term (defined in (9) below). An important ingredient of the proof is the computation of
the variance of χki , which is more involved than in [16], since the multi-species case requires
to distinguish several cases in the choice of indices (i, k) and (j, `).

A straightforward computation, detailed in Section 4, shows that the error process sat-
isfies

1

2

d

dt
E|Zk

i (t)|2 ≤ −
(
ri − 2

n∑
j=1

max{Lij, Lji}
)
E|Zk

j (t)|2 + E
(
χki (X̃(t)) · Zk

i (t)
)
.

The main difficulty is the estimate of the last term. The idea is to write it in terms of

differences Zk
i (t) − Zk

i (tm−1), χ
k
i (X̃(t)) − χki (X̃(tm−1)), and χki (X̃(t)) − χki (X(t)). These

differences are estimated from the integral formulations of the differential equations satis-
fied by the corresponding processes, using Assumptions (A1)–(A4) and the stability results

for Xk
i , X̃k

i , and Zk
i . After some computations, we arrive at the differential inequality

du

dt
≤ − min

i=1,...,n

(
ri − 2

n∑
j=1

max{Lij, Lji}
)
u+ C ′(θ)τ(u1/2 + τ) + C ′′τ

n∑
i=1

Γi,
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where u =
∑n

i=1 ‖Zk
i ‖2 and the constants C ′(θ) > 0 and C ′′ > 0 do not depend on

(bi, pi)i=1,...,n, m, or T . In view of Assumption (A2), the first term on the right-hand side is
nonpositive. The dependence of C ′(θ) on θ arises from the terms involving bi/min{bi, bj};
see (5). It follows that u(t) is bounded from above by C(θ)τ+C

√
τ
∑n

i=1 Γi for some other
constants C(θ) > 0 and C > 0.

1.4. Link to related problems. The random-batch scheme can be interpreted as a
Monte–Carlo method to solve the mean-field equations associated to (1). In the mean-
field limit N →∞, system (1) converges to

dX i = −∇Vi(X i)dt+
n∑
j=1

(Kij ∗ uj)(X i)dt+ σidBi, i = 1, . . . , n,

where ui is the probability density of X i and solves the mean-field system

∂tui = div(ui∇Vi(x))− div

( n∑
j=1

ui(Kij ∗ uj)
)

+
σ2
i

2
∆ui in Rd, i = 1, . . . , n;

see, e.g., the review [13]. If Kij = ∇kij, it holds that Kij ∗ uj = kij ∗ ∇uj, and the density
ui solves a nonlocal cross-diffusion system. Moreover, if kij = kηij approximates the delta
distribution δ according to kηij → aijδ in D′ as η → 0 for some numbers aij ≥ 0, it was
shown in [6] that the limit N → ∞ and η → 0 (in a certain sense) leads to the local
cross-diffusion system

∂tui = div(ui∇Vi(x))− div

( n∑
j=1

aijui∇uj
)

in Rd, i = 1, . . . , n.

The mean-field limit of the random-batch method was investigated in [14]. The authors
showed that the (single-species) N -particle system is reduced to a p-particle system. This
mean-field limit does not depend on the law of large numbers, and it is different from
the standard mean-field limit, since the chaos is imposed at every time step, while in the
standard limit, the chaos is propagated to later times.

The idea of choosing particles in a random way has been exploited in kinetic theory. For
instance, subsampling was used in Monte–Carlo simulations [12] and for the symmetric
Nabu algorithm, which relates to the random-batch method for pi = 2 [1].

Random-batch methods can also be applied to second-order particle systems [18], many-
particle Schrödinger equations [10], and kinetic equations [22]. They have been used to
sample complicated or unknown probability distributions [21, 27], and they have been
combined with model predictive control strategies to control the guiding problem for a
herd of evaders [20]. In molecular dynamics, the interaction kernel is generally singular
and given by, e.g., the Coulomb or Lennard–Jones potential. This situation is excluded
in this paper because of Assumption (A1). However, one may split the kernel function
into (singular) short-range and (smooth) long-range parts and apply the random-batch
method only to the long-range part. This yields similar convergence results as above but
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with constants depending on the end time [18]. We refer to the review [15] for further
applications and references.

Theorem 1 provides the strong convergence with rate O(
√
τ) of the error process. In

[17], the weak convergence with rate O(τ) is proved for the single-species case. The proof
makes use of the backward Kolmogorov equation and the contraction of the associated
semigroup in L∞(Rd). In the multi-species situation, we obtain a system of equations for
which contraction properties can be expected under Assumption (A2), but possibly in a
weaker topology. A possible wayout is to use estimates in the space Hs(Rd) ⊂ L∞(Rd) for
s > d/2, derived for the mean-field limit [6]. We leave the details to future work.

Theorem 1 can be generalized to particle systems with multiplicative noise when the
diffusion coefficients are Lipschitz continuous. We can only prove stability for particle
systems with interacting diffusion coefficients like in [7], which lead in a mean-field-type
limit to the Shigesada–Kawasaki–Teramoto population model. For details, we refer to
Section 5.

The paper is organized as follows. The consistency of the scheme and stability of the

stochastic processes Xk
i and X̃k

i are proved in Section 2. Section 3 is concerned with the

control of the error process Zk
i = X̃k

i −Xk
i and corresponding uniform estimates. Theorem

1 is proved in Section 4. We comment on the error estimate for particle systems with
multiplicative noise in Section 5. Some numerical simulations, illustrating the convergence
behavior and the influence of the batch sizes, are presented in Section 6. Finally, we collect
some known results about the conditional expectation used in this paper in Appendix A.

2. Consistency and stability

We assume that Assumptions (A1)–(A4) hold. Let i ∈ {1, . . . , n}, k ∈ {1, . . . , Ni} and

let X̃k
i with k ∈ Ci,r be a solution to (4). Then X̃k

i solves

(8) dX̃k
i = −∇Vi(X̃k

i )dt+
n∑
j=1

αij

Nj∑
`=1

(i,k)6=(j,`)

Kij(X̃
k
i − X̃`

j )dt+ σidB
k
i + χki (X̃)dt,

where the remainder χki is defined for x = (x11, . . . , x
Nn
n ) ∈ RdN1×···×dNn by

χki (x) =
n∑
j=1

βij
∑
`∈Cj,r

(i,k)6=(j,`)

Kij(x
k
i − x`j)−

n∑
j=1

αij

Nj∑
`=1

(i,k) 6=(j,`)

Kij(x
k
i − x`j)(9)

=: fki (x)− gki (x).

The following proposition shows that the scheme is consistent.

Proposition 2 (Consistency). Let pi ≥ 2 for i = 1, . . . , n and x = (x11, . . . , x
Nn
n ) ∈

RdN1×···×dNn. Then the expectation and variance of χki , defined in (9), are E(χki (x)) = 0
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and

Var(χki (x)) =
n∑

j,j′=1
j,j′ 6=i, j 6=j′

(
max{bi, bj, bj′}

max{bi, bj′}
− 1

)
Ajj

′

i (x)

+
n∑
j=1
j 6=i

(
bi −min{bi, bj}

min{bi, bj}
− 1

Nj

+
bi

pj min{bi, bj}

)
Aji (x) +

max{bi, bj} − 1

Nj

Aji,1(x)(10)

+

(
1

pi − 1
− 1

Ni − 1

)
Ai(x),

where i = 1, . . . , n, k = 1, . . . , Ni, and

Ajj
′

i (x) =
1

NjNj′

Nj∑
`=1

Nj′∑
`′=1

Kij(x
k
i − x`j)Kij′(x

k
i − x`

′

j′),

Aji (x) =
1

Nj(Nj − 1)

Nj∑
`,`′=1, ` 6=`′

Kij(x
k
i − x`j)Kij(x

k
i − x`

′

j ),

Aji,1(x) =
1

Nj

Nj∑
`=1

Kij(x
k
i − x`j)2,

Ai(x) =
1

Ni − 2

Ni∑
`=1, ` 6=k

(
Kii(x

k
i − x`i)−

1

Ni − 1

Ni∑
`′=1, `′ 6=k

Kii(x
k
i − x`

′

i )

)2

.

Using definition (7), we can estimate the variance of χki (x) from above according to

Var(χki (x)) ≤ 8 max
i,j=1,...,n

‖Kij‖2∞
n∑
k=1

Γk.

As expected, for larger batch sizes pi, the variance is smaller and the noise level is lower.
In the single-species case, we recover [16, Lemma 3.1] since

Var(χki (x)) =

(
1

pi − 1
− 1

Ni − 1

)
Ai(x).

If the species numbers and batch sizes are the same, i.e. Ni = N and bi = b for all
i = 1, . . . , n, it follows that

Var(χki (x)) =

(
1

p
− 1

N

) n∑
j=1, j 6=i

(
Aji (x) + Aji,1(x)

)
+

(
1

p− 1
− 1

N − 1

)
Ai(x).

We observe that the first term on the right-hand side of (10) vanishes. This means that, in
case of different species numbers or batch sizes, the noise level is larger than in the uniform
case.
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Proof. The proof is similar to [16, Lemma 3.1], but since we have multiple species, the
computations are more involved. Let i ∈ {1, . . . , n} and k ∈ {1, . . . , Ni} be arbitrary but
fixed. We write Iki (j, `) = 1 if (i, k) and (j, `) are in the same batch, i.e., if there exists
r ≥ 1 such that (i, k), (j, `) ∈ Cr. Otherwise, we set Iki (j, `) = 0. With this notation, we
can write fki = fki (x), defined in (9), as

fki =
n∑
j=1

βij

Nj∑
`=1

Kij(x
k
i − x`j)Iki (j, `).

Step 1: Computation of the expection. We claim that

(11) EIki (j, `) =

{
pi−1
Ni−1 if i = j,
min{bi,bj}

bibj
if i 6= j.

The case i = j is proved in [16, Lemma 3.1]. For i 6= j, we define a(i, k) as the index of the
super-batch Cr that contains (i, k), i.e. a(i, k) = r if and only if (i, k) ∈ Cr or, equivalently,
k ∈ Ci,r. We have

P(Iki (j, `) = 1) = P((j, `) ∈ Ca(i,k)) =

min{bi,bj}∑
r=1

P((j, `) ∈ Cr|a(i, k) = r)P(a(i, k) = r)

=

min{bi,bj}∑
r=1

P((j, `) ∈ Cr)P(a(i, k) = r).

The distribution of a particle of a certain species is uniform with respect to the species’
batch in which it ends up, i.e. P(` ∈ Cj,r) = P(` ∈ Cj,s) for all r, s = 1, . . . , bj. Consequently,
we have P(` ∈ Cj,r) = 1/bj for all r = 1, . . . , bj and P(` ∈ Cj,r) = 0 otherwise, since Cj,r = ∅
if r > bj. This leads for i 6= j to

EIki (j, `) = 1 · P(Iki (j, `) = 1) = min{bi, bj}
1

bj

1

bi
.

We infer from the definitions of αij and βij in (3) and (5), respectively, and from (11) that

E(fki ) =
n∑
j=1

βij

Nj∑
`=1

Kij(x
k
i − x`j)EIki (j, `)

=
1

Ni − 1

Ni∑
`=1, ` 6=k

Kii(x
k
i − x`i) +

n∑
j=1, j 6=i

1

Nj

Nj∑
`=1

Kij(x
k
i − x`j)

=
n∑
j=1

αij
∑
`=1

(i,k)6=(j,`)

Kij(x
k
i − x`j) = E(gki ).

This shows that E(χki (x)) = E(fki )− E(gki ) = 0.
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Step 2: Preparation for the computation of the variance. We introduce the notation
G`
j := Kij(x

k
i − x`j)Iki (j, `) if (i, k) 6= (j, `) and G`

j = 0 if (i, k) = (j, `). Then

E(fki )2 =
n∑

j,j′=1

βijβij′

Nj∑
`=1

Nj′∑
`′=1

E(G`
jG

`′

j′).

The expectation of G`
jG

`′

j′ can be written as

E(G`
jG

`′

j′) = Kij(x
k
i − x`j)Kij′(x

k
i − x`

′

j′)E(Iki (j, `)Iki (j′, `′))

= Kij(x
k
i − x`j)Kij′(x

k
i − x`

′

j′)P(Iki (j, `)Iki (j′, `′) = 1).

Thus, we need to calculate P(Iki (j, `)Iki (j′, `′) = 1). For this, we distinguish several cases.
Case 1: j, j′ 6= i and j 6= j′. We compute, using the definition of the super-batches,

{Iki (j, `)Iki (j′, `′) = 1} =
{

(j, `) ∈ Ca(i,k), (j′, `′) ∈ Ca(i,k)
}

=
{
` ∈ Cj,a(i,k), `′ ∈ Cj′,a(i,k)

}
=
⋃
r∈N

{
` ∈ Cj,a(i,k), `′ ∈ Cj′,a(i,k), r = a(i, k)

}
.

The random division ξm.1 of the batch Ci,r at time tm−1 is independent of the random
devision of the batches Cj,r and Cj′,r. Thus, we can write

P(Iki (j, `)Iki (j′, `′) = 1) =

min{bi,bj ,bj′}∑
r=1

P(k ∈ Ci,r)P(` ∈ Cj,r)P(`′ ∈ Cj′,r)

= min{bi, bj, bj′}
1

bi

1

bj

1

bj′
.

Case 2: j, j′ 6= i, j = j′ and ` 6= `′. In this case, both ` and `′ are in the same batch
such that

{Iki (j, `)Iki (j, `′) = 1} =
⋃
r∈N

{
`, `′ ∈ Cj,r, r = a(i, k)

}
(12)

=
⋃
r∈N

{Ikj (j, `′) = 1} ∩ {` ∈ Cj,r} ∩ {k ∈ Ci,r}.

Because of the uniformity of the random devision (as in Case 1), we have

P(I`j (j, `
′) = 1, ` ∈ Cj,r) = P(I`j (j, `

′) = 1, ` ∈ Cj,s) for all 1 ≤ r, s ≤ bj.

Since, by (11), P(I`j (j, `
′) = 1) = (pj − 1)/(Nj − 1), we deduce from (12) that

P(Iki (j, `)Iki (j′, `′) = 1) =

min{bi,bj}∑
r=1

P(I`j (j, `
′) = 1, ` ∈ Cj,r)P(k ∈ Ci,r)

=
1

bibj

min{bi,bj}∑
r=1

P(I`j (j, `
′) = 1) =

min{bi, bj}(pj − 1)

bibj(Nj − 1)
.
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Case 3: j 6= i, j′ = i. If ` = k, it follows from the definition of G`
j that G`′

i = Gk
i = 0. If

` 6= k, the definition of G`
j gives

E(G`
jG

`′

j′) = Kij(x
k
i − x`j)Kii(x

k
i − x`

′

i )E(Iki (j, `)Iki (i, `′)),

and it remains the compute the expectation on the right-hand side. Proceeding as in the
previous cases, we find that

P(Iki (j, `)Iki (i, `′) = 1) =

min{bi,bj}∑
r=1

P(Iki (i, `′) = 1, k ∈ Ci,r)P(` ∈ Cj,r)

=
1

bibj

min{bi,bj}∑
r=1

P(Iki (i, `′) = 1) =
min{bi, bj}(pi − 1)

bibj(Ni − 1)
.

Case 4: j, j′ = i, ` 6= `′ 6= k. We need to compute the probability of Iki (i, `)Iki (i, `′) = 1.
This case happens exactly when the indices `, `′, and k are in the same batch Ci,a(i,k).
Similar arguments as for P(Iki (i, `) = 1) in the proof of Lemma 3.1 in [16] yield

P(Iki (i, `)Iki (i, `′) = 1) =
(pi − 1)(pi − 2)

(Ni − 1)(Ni − 2)
.

Case 5: j, j′ = i, ` = `′, ` 6= k. We only need E(Iki (i, `)), which we already computed:

P(Iki (i, `) = 1) =
pi − 1

Ni − 1
.

Summarizing these five cases, we obtain E(fki )2 = J1 + · · · + J5, where the term Jj
corresponds to case j and

J1 =
n∑

j,j′=1
j,j′ 6=i, j 6=j′

min{bi, bj, bj′}bi
NjNj′ min{bi, bj}min{bi, bj′}

Nj ,Nj′∑
`,`′=1

Kij(x
k
i − x`j)Kij′(x

k
i − x`

′

j′),

J2 =
n∑
j=1
j 6=i

(pj − 1)bi
(Nj − 1)Nj min{bi, bj}pj

Nj∑
`,`′=1, ` 6=`′

Kij(x
k
i − x`j)Kij(x

k
i − x`

′

j ),

J ′2 =
n∑
j=1
j 6=i

bi
Nj min{bi, bj}pj

Nj∑
`=1

Kij(x
k
i − x`j)2,

J3 = 2
n∑
j=1
j 6=i

1

(Ni − 1)Nj

Nj ,Ni∑
`,`′=1
`′ 6=k

Kij(x
k
i − x`j)Kii(x

k
i − x`

′

i ),
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J4 =
pi − 2

(pi − 1)(Ni − 1)(Ni − 2)

Ni∑
`,`′=1
`6=`′

Kii(x
k
i − x`i)Kii(x

k
i − x`

′

i ),

J5 =
1

(pi − 1)(Ni − 1)

Ni∑
`=1

Kii(x
k
i − x`i)2.

For the term (E(fki ))2 = (E(gki ))2, we expand the square:

(E(fki ))2 =

( n∑
j=1

αij
∑
`=1

(i,k)6=(j,`)

Kij(x
k
i − x`j)

n∑
j′=1

αij′
∑
`′=1

(i,k)6=(j′,`′)

Kij′(x
k
i − x`

′

j′)

)2

= Ĵ1 + · · ·+ Ĵ5, where

Ĵ1 =
n∑

j,j′=1
j,j′ 6=i, j 6=j′

1

NjNj′

Nj ,Nj′∑
`,`′=1

Kij(x
k
i − x`j)Kij′(x

k
i − x`

′

j′),

Ĵ2 =
n∑

j=1, j 6=i

1

N2
j

Nj∑
`,`′=1

Kij(x
k
i − x`j)Kij(x

k
i − x`

′

j ),

Ĵ3 = 2
n∑

j=1, j 6=i

1

(Ni − 1)Nj

Nj∑
`=1

Ni∑
`′=1
`′ 6=k

Kij(x
k
i − x`j)Kii(x

k
i − x`

′

i ),

Ĵ4 =
1

(Ni − 1)2)

Ni∑
`,`′=1
6̀=`′

Ki,i(x
k
i − x`i)Kii(x

k
i − x`

′

i ),

Ĵ5 =
1

(Ni − 1)2

Ni∑
`=1

Kii(x
k
i − x`i)2.

The variance of fki is the difference (J1 + · · · + J5) − (Ĵ1 + · · · + Ĵ5). We observe that

J3 − Ĵ3 = 0 and that

min{bi, bj, bj′}bi
min{bi, bj}min{bi, bj′}

=
max{bi, bj, bj′}

max{bj, bj′}
,

A tedious but straightforward computation yields for the other terms:

Var(fki ) = E(fki )2 − (Efki )2 = (J1 − Ĵ1) + (J2 + J ′2 − Ĵ2) + (J4 + J5 − Ĵ4 − Ĵ5)

=
n∑

j,j′=1
j,j′ 6=i, j 6=j′

(
max{bi, bj, bj′}

max{bj, bj′}
− 1

)
1

NjNj′

Nj∑
`=1

Nj′∑
`′=1

Kij(x
k
i − x`j)Kij′(x

k
i − x`

′

j′)
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+
n∑

j=1, j 6=i

(
bi −min{bi, bj}

min{bi, bj}
− 1

Nj

+
bi

min{bi, bj}pj

)
1

Nj(Nj − 1)

×
Nj∑

`,`′=1, ` 6=`′
Kij(x

k
i − x`j)Kij(x

k
i − x`

′

j )

+
n∑

j=1, j 6=i

(
max{bi, bj} − 1

Nj

)
1

Nj

Nj∑
`=1

Kij(x
k
i − x`j)2

+

(
1

pi − 1
− 1

Ni − 1

)
1

Ni − 2

Ni∑
`=1
k 6=`

(
Kii(x

k
i − x`j)−

1

Ni − 1

Ni∑
`′=1
`′ 6=k

Kii(x
k
i − x`

′

j )

)2

.

The right-hand side equals (10), which finishes the proof. �

For later use, we prove the following auxiliary result, which generalizes Lemma 3.2 in
[16] to the multi-species case.

Lemma 3. Let i ∈ {1, . . . , n}, k ∈ {1, . . . , Ni}, and (i, k) ∈ Ci,r for some r = a(i, k) ≤ bi.
Let S`j ∈ Rd with j, ` ∈ N be random variables which are independent of the partitioning
random variable ξm. Then it holds∥∥∥∥ 1

pj

∑
`∈Cj,r

S`j

∥∥∥∥ = max
`=1,...,Nj

‖S`j‖ if i 6= j,∥∥∥∥ 1

pj − 1

∑
`∈Ci,r, ` 6=k

S`i

∥∥∥∥ = max
`=1,...,Ni

‖S`i‖ if i = j,

recalling that ‖ · ‖ = (E(·)2)1/2.

Proof. The proof is similar to that one of [16, Lemma 3.2]. We present it for completeness.
Let i 6= j and set Iki (j, `) = 1 if (i, k) and (j, `) are in same batch and Iki (j, `) = 0 otherwise.
Due to the independency of S`j and ξm, we have

∥∥∥∥ 1

pj

∑
`∈Cj,r

S`j

∥∥∥∥2 =
1

p2j
E
( Nj∑

`=1

Iki (j, `)S`j

)2

=
1

p2j

Nj∑
`,`′=1

E
(
Iki (j, `)Iki (j, `′)S`jS

`′

j

)
=

1

p2j

Nj∑
`,`′=1

E(Iki (j, `)Iki (j, `′))E(S`jS
`′

j ).

We know from (11) that E(Iki (j, `)Iki (j, `′)) ≤ 1/bj in the case of ` = `′ and from Case 2 of
Proposition 2 that E(Iki (j, `)Iki (j, `′)) ≤ (pj − 1)/(bj(Nj − 1)), if ` 6= `′. Therefore, using
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the Cauchy–Schwarz inequality and the fact that Nj = bjpj,∥∥∥∥ 1

pj

∑
`∈Cj,r

S`j

∥∥∥∥2 ≤ 1

p2j

( Nj∑
`,`′=1, ` 6=`′

pj − 1

bj(Nj − 1)
‖S`j‖ ‖S`

′

j ‖+

Nj∑
`=1

1

bj
‖S`j‖2

)

≤ max
`=1,...,Nj

‖S`j‖2
(

(pj − 1)(Nj − 1)Nj

pjNj(Nj − 1)
+

1

pj

)
≤ max

`=1,...,Nj

‖S`j‖2.

The case i = j is shown in a similar way. �

The next result is concerned with the stability of Xk
i and X̃k

i .

Lemma 4 (Stability). Let q ≥ 2, and Xk
0,i ∈ Lq(Ω), where i ∈ {1, . . . , n} and k ∈

{1, . . . , Ni}. Then there exist constants C(q), C1 > 0, independent of (pi, bi)i=1,...,n, m, and
T , such that

sup
t>0

E|Xk
i (t)|q ≤ C(q), sup

t>0
E|X̃k

i (t)|q ≤ C(q)(1 + θq),(13)

sup
tm−1<t<tm

E
(
|X̃k

i (t)|q
∣∣Fm−1) ≤ |X̃k

i (tm−1)|q + C(q)(1 + θq),(14)

where θ is defined in (6). Furthermore, it holds that

(15)
∣∣E(X̃k

i (t)− X̃k
i (tm−1)

∣∣Fm−1)∣∣ ≤ CV τ |X̃k
i (tm−1)|q̃i + C1τ(1 + θq̃i),

where q̃i = max{2, qi} and CV > 0 is introduced in Assumption (A2).

Proof. Let i ∈ {1, . . . , n} and k ∈ {1, . . . , Ni} be arbitrary but fixed. The proof is similar
to [16, Lemma 3.3] with the exception that we work out the dependence on the number of
batches bi in terms of the quotient θ.

Step 1: Stability for Xk
i (t). Let d ≥ 2. We use Itô’s calculus for the process |Xk

i |q and
apply the expectation as in [16, Lemma 3.3], which yields

d

dt
E|Xk

i (t)|q = −qE
(
|Xk

i (t)|q−2Xk
i (t) · ∇Vi(Xk

i (t))
)

+
q

Ni − 1
E
(
|Xk

i (t)|q−2Xk
i (t) ·

Ni∑
`=1, ` 6=k

Kii(X
k
i (s)−X`

i (s))

)

+
n∑

j=1, j 6=i

q

Nj

E
(
|Xk

i (t)|q−2Xk
i (t) ·

Nj∑
`=1

Kij(X
k
i (s)−X`

j (s))

)
+
σ2
i

2
q(q + d− 2)E|Xk

i (t)|q−2.

The mean-value theorem with intermediate value ζ ∈ Rd and the convexity of x 7→ Vi(x)−
ri|x|2/2 (Assumption (A2)) imply that for all x ∈ Rd,

x · ∇Vi(x) = xTD2Vi(ζ)x+ x · ∇Vi(0) ≥ ri|x|2 + x · ∇Vi(0).
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Together with Fubini’s theorem, the boundedness of the kernels Kij (Assumption (A1)),
and Young’s inequality, it follows that

d

dt
E|Xk

i (t)|q ≤ −qriE|Xk
i (t)|q + q

(
|∇Vi(0)|

n∑
j=1

‖Kij‖∞
)
E|Xk

i (t)|q−1

+
σ2
i

2
q(q + d− 2)E|Xk

i (t)|q−2 ≤ −qri
2
E|Xk

i (t)|q + C2,

where C2 > 0 depends on ∇Vi, Kij, σi, d, and q. Gronwall’s lemma implies that E|Xk
i (t)|q

is bounded by a constant depending on q (and not depending on T ).

Step 2: Stability for X̃k
i . Let t ∈ (tm−1, tm] and let (i, k) ∈ Cr for some r ∈ N. Similarly

as in the previous step, we use Itô’s calculus and apply the conditional expectation with

respect to Fm−1, observing that |X̃k
i (tm−1)|q is Fm−1-measurable. Then, applying Lemmas

9 and 10 in the appendix,

d

dt
E
(
|X̃k

i (t)|q
∣∣Fm−1) = −qE

(
|X̃k

i (t)|q−2X̃k
i · ∇Vi(X̃k

i (t))
∣∣Fm−1)

+
q

pi − 1

∑
`∈Ci,r, ` 6=k

E
(
|X̃k

i (t)|q−2X̃k
i (t) ·Kii(X̃

k
i − X̃`

i )
∣∣Fm−1)

+
n∑

j=1, j 6=i

qbi
pj min{bi, bj}

∑
`∈Cj,r

E
(
|X̃k

i (t)|q−2X̃k
i (t) ·Kij(X̃

k
i (t)− X̃`

j (t))
∣∣Fm−1)

+
σ2
i

2
q(q + d− 2)E

(
|X̃k

i (t)|q−2
∣∣Fm−1).

Proceeding as in the previous step and using bi/min{bi, bj} ≤ θ, we infer that

d

dt
E
(
|X̃k

i (t)|q
∣∣Fm−1) ≤ −qri

2
E
(
|X̃k

i (t)|q
∣∣Fm−1)+ C3(1 + θ)q,

and Gronwall’s lemma on (tm−1, tm] implies (14). Finally, the second estimate in (13) is
proved in a similar way, using the Gronwall lemma on [0, t] and taking into account that
E|Xk

0,i|q is bounded by assumption.
Step 3: Proof of estimate (15). We apply Itô’s lemma, take the conditional expectation

of X̃k
i (t)−X̃k

i (tm−1), and use the polynomial growth condition for ∇Vi in Assumption (A2)
as well as the boundedness of Kij:

E
(
X̃k
i (t)− X̃k

i (tm−1)
∣∣Fm−1) = −

∫ t

tm−1

E
(
∇Vi(X̃k

i (s))
∣∣Fm−1)ds

+
1

pi − 1

∫ t

tm−1

E
( ∑
`∈Ci,r, ` 6=k

Kii(X̃
k
i (s)− X̃`

i (s))
∣∣Fm−1)ds

+
∑

j=1, j 6=i

bi
pj min{bi, bj}

∫ t

tm−1

E
( ∑
`∈Cj,r

Kij(X̃
k
i (s)− X̃`

j (s))
∣∣Fm−1)ds
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≤ CV τ + CV

∫ t

tm−1

E
(
|X̃k

i (s)|qi
∣∣Fm−1)ds+ τ

n∑
j=1

‖Kij‖∞bi
min{bi, bj}

.

It follows from (14) with q = q̃i := max{2, qi} that

E
(
X̃k
i (t)− X̃k

i (tm−1)
∣∣Fm−1)

≤ CV τ |X̃k
i (tm−1)|q̃i + τ

(
CV + CVC(q̃i)(1 + θq̃i) +

n∑
j=1

‖Kij‖∞bi
min{bi, bj}

)
≤ CV τ |X̃k

i (tm−1)|q̃i + C4(q̃i)(1 + θq̃i).

This completes the proof. �

3. Control of the error process

We prove first a bound for the difference X̃k
i (t)− X̃k

i (tm−1).

Lemma 5. Let t ∈ (tm−1, tm], let X̃ be the stochastic process defined in (4), and let
i ∈ {1, . . . , n}. Set q′i = 2 max{1, qi}, where qi is defined in Assumption (A2). Then, for
any (i, k) ∈ Cr for some r ≤ bi such that Xk

0,i ∈ Lq
′
i(Ω), there exists a constant C > 0,

independent of (pi, bi)i=1,...,n, and ξm, such that

E
(
|X̃k

i (t)− X̃k
i (tm−1)|2

∣∣Fm−1) ≤ Cτ(1 + θq
′
i/2+1)

(
1 + |X̃k

i (tm−1)|q
′
i/2+1

)
.

Proof. Again, the proof is similar to [16, Lemma 3.3] and based on Itô’s calculus. Let
t ∈ (tm−1, tm] and (i, k) ∈ Cr for some r ≤ bi, satisfying the assumptions of the lemma. Set

S(t) := X̃k
i (t)−X̃k

i (tm−1). We apply Itô’s lemma to |S(t)|2 and the conditional expectation
and use Lemmas 9 and 10:

E(|S(t)|2|Fm−1) ≤ 2

∫ t

tm−1

∣∣E(S(s) · ∇Vi(X̃k
i (s))

∣∣Fm−1)∣∣ds+ d

∫ t

tm−1

σ2
i ds(16)

+
2

pi − 1

∫ t

tm−1

∣∣∣∣E( ∑
`∈Ci,r, ` 6=k

Kii(X̃
k
i (s)− X̃`

i (t)) · S(s)

∣∣∣∣Fm−1)∣∣∣∣ds
+

∑
j=1, j 6=i

2bi
pj min{bi, bj}

∫ t

tm−1

∣∣∣∣E( ∑
`∈Ci,r, ` 6=k

Kij(X̃
k
i (s)− X̃`

j (t)) · S(s)

∣∣∣∣Fm−1)∣∣∣∣ds
=: J6 + · · ·+ J9.

By the Cauchy–Schwarz inequality, the polynomial growth condition on ∇Vi (Assumption
(A2)), and stability estimate (13) with q = q′i, we have

J6 ≤ 2C
1/2
V

∫ t

tm−1

(
E(|S(s)|2

∣∣Fm−1))1/2(E(1 + |X̃k
i (s)|2qi

∣∣Fm−1))1/2ds
≤ 2C

1/2
V

(
1 + C(q)(1 + θq) + |X̃k

i (tm−1)|q
)1/2 ∫ t

tm−1

(
E(|S(s)|2

∣∣Fm−1))1/2ds.
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Next, using the boundedness of Kii, Lemma 8, and Hölder’s inequality,

J8 ≤ C‖Kii‖∞
∫ t

tm−1

(
E(|S(s)|2

∣∣Fm−1))1/2ds,
J9 ≤ C

n∑
j=1, j 6=i

bi
min{bi, bj}

‖Kii‖∞
∫ t

tm−1

(
E(|S(s)|2

∣∣Fm−1))1/2ds
≤ Cθ

∫ t

tm−1

(
E(|S(s)|2

∣∣Fm−1))1/2ds.
Hence, we infer from (16) that

(17) E(|S(t)|2|Fm−1) ≤ C5

∫ t

tm−1

(
E(|S(s)|2|Fm−1)

)1/2
ds+ dσ2

i (t− tm−1),

where C5 := 2C
1/2
V (1 +C(q)(1 + θq) + |X̃k

i (tm−1)|q)1/2 +Cθ. We deduce from estimate (13)
that the integrand on the right-hand side can be estimated according to

E(|S(s)|2|Fm−1) ≤
1

2
E
(
|X̃k

i (s)|2
∣∣Fm−1)+

1

2
|X̃k

i (tm−1)|2

≤ C(2)

2
(1 + θ2) +

1

2
|X̃k

i (tm−1)|2.

Inserting this estimate into (17), we conclude that

E(|S(t)|2|Fm−1) ≤ C6τ(1 + θq/2+1)
(
1 + |X̃k

i (tm−1)|q/2+1
)
,

where C6 > 0 does not depend on bi, pi, or ξm. �

We define the error process Zk
i (t) := X̃k

i (t)−Xk
i (t) and prove some estimates for Zk

i (t),
generalizing [16, Lemma 3.4].

Lemma 6 (Control of the error process). Let i ∈ {1, . . . , n}, k ∈ {1, . . . , Ni}, and Xk
0,i ∈

Lq
′
i(Ω), where q′i = 2 max{1, qi} and qi is introduced in Assumption (A2). Then there

exists a constant C > 0, which is independent of (bi, pi)i=1,...,n, and m such that for all
t ∈ (tm−1, tm],

‖Zk
i (t)− Zk

i (tm−1)‖ ≤ Cτ(1 + θq
′
i/2), |Zk

i (t)| ≤ Cτθ + |Zk
i (tm−1)|,(18) ∣∣E((Zk

i (t)− Zk
i (tm−1))χ

k
i (X̃(tm−1))

)∣∣(19)

≤ Cτ

(
(1 + θ3q

′
i/2)τ + (1 + θq

′
i)‖Zk

i (t)‖+
n∑
j=1

‖Z1
j (t)‖

)
+ 8τ max

j=1,...,n
‖Kij‖2∞Γi,

where Γi and χki are defined in (7) and (9), respectively.
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Proof. Since the Brownian motions are the same for Xk
i and X̃k

i , the process Zk
i (t) solves

for t ∈ (tm−1, tm] the deterministic equation

dZk
i (t) = −

(
∇Vi(X̃k

i (t))−∇Vi(Xk
i (t))

)
dt+

n∑
j=1

βij
∑

`∈Cj,r, (i,k)6=(j,`)

Kij(X̃
k
i − X̃`

j )dt(20)

−
n∑
j=1

αij

Nj∑
`=1, (i,k) 6=(j,`)

Kij(X
k
i −X`

j )dt.

Step 1: Proof of (18). Let (i, k) ∈ Ci,r for some r ≤ bi. We take the expectation of the
difference of the equations (20) solved by Zk

i (t) and Zk
i (tm−1), respectively, and distinguish

the cases j = i and j 6= i, leading to

‖Zk
i (t)− Zk

i (tm−1)‖ ≤ J10 + · · ·+ J14, where(21)

J10 =

∥∥∥∥∫ t

tm−1

(
∇Vi(X̃k

i (s))−∇Vi(Xk
i (s))

)
ds

∥∥∥∥,
J11 =

1

pi − 1

∥∥∥∥∫ t

tm−1

∑
`∈Cj,r, (i,k)6=(j,`)

Kii(X̃
k
i (s)− X̃`

i (s))ds

∥∥∥∥,
J12 =

n∑
j=1, j 6=i

bi
pj min{bi, bj}

∥∥∥∥∫ t

tm−1

∑
`∈Cj,r

Kij(X̃
k
i (s)− X̃`

j (s))ds

∥∥∥∥,
J13 =

1

Ni − 1

Nj∑
`=1, ` 6=k

∥∥∥∥∫ t

tm−1

Kii(X
k
i (s)−X`

i (s))ds

∥∥∥∥,
J14 =

n∑
j=1, j 6=i

1

Nj

Nj∑
`=1

∥∥∥∥∫ t

tm−1

Kij(X
k
i (s)−X`

j (s))ds

∥∥∥∥.
For the first term, we use the Cauchy–Schwarz inequality, the growth condition of ∇Vi,
and stability estimate (13) with q = q′i:

J10 ≤
√
τ

(
E
∫ t

tm−1

∣∣∇Vi(X̃k
i (s))−∇Vi(Xk

i (s))
∣∣2ds)1/2

≤ CV
√
τ

(
E
∫ t

tm−1

(
1 + E|X̃k

i (s)|q + E|Xk
i (s)|q

)
ds

)1/2

≤ Cτ(1 + θq/2).

For the remaining terms, we exploit the boundedness of Kij, yielding

J11 + · · ·+ J14 ≤ Cτ
n∑
j=1

(
1 +

bi
min{bi, bj}

)
‖Kij‖∞ ≤ Cτ(1 + θ).

Thus, we deduce from (21) that

‖Zk
i (t)− Zk

i (tm−1)‖ ≤ Cτ(1 + θ + θq/2),
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which proves the first inequality in (18).
We estimate similarly as in the proof of Lemma 4, using the strong convexity of Vi and

the boundedness of Kij:

d

dt
|Zk

i (t)|2 ≤ −ri|Zk
i (t)|2 +

n∑
j=1

bi‖Kij‖∞
min{bi, bj}

|Zk
i (t)| ≤ Cθ|Zk

i (t)|.

This implies after integration with respect to time that |Zk
i (t)| ≤ Cθτ+|Zk

i (tm−1)|, showing
the second inequality in (18).

Step 2: Proof of (19). Set ∆K`
ij := Kij(X̃

k
i −X̃`

j )−Kij(X
k
i −X`

j ). Using the formulation

(8) for X̃k
i , we find that∣∣E((Zk

i (t)− Zk
i (tm−1))χ

k
i (X(t))

)∣∣ ≤ J15 + · · ·+ J18, where(22)

J15 = E
(∫ t

tm−1

∣∣∇Vi(X̃k
i (s))−∇Vi(Xk

i (s))
∣∣ds|χki (X(t))|

)
,

J16 = E
(

1

pi − 1

∫ t

tm−1

∑
`∈Ci,r, ` 6=k

|∆K`
ii(s)|ds|χki (X(t))|

)
,

J17 = E
( n∑
j=1, j 6=i

bi
pj min{bi, bj}

∫ t

tm−1

∑
`∈Cj,r

|∆K`
ij(s)|ds|χki (X(t))|

)
,

J18 = E
∣∣∣∣ ∫ t

tm−1

χki (X(s))ds · χki (X(t))

∣∣∣∣.
For the term J15, we use the mean-value theorem and the growth condition for D2Vi
(Assumption (A2)):∣∣∇Vi(X̃k

i −∇Vi(Xk
i )
∣∣ ≤ |X̃k

i −Xk
i |
∫ 1

0

|D2Vi(X̃
k
i − η(X̃k

i −Xk
i ))|dη

≤ CV |Zk
i |
∫ 1

0

(
1 + |X̃k

i − η(X̃k
i −Xk

i )|qi
)
dη ≤ C|Zk

i |(1 + |X̃k
i |qi + |Xk

i |qi).

Since |χki | ≤ 2
∑n

j=1 ‖Kij‖∞, the Cauchy–Schwarz inequality and stability estimate (13)
lead to

J15 ≤ C
n∑
j=1

‖Kij‖∞
∫ t

tm−1

E
(
|Zk

i (s)|(1 + |X̃k
i (s)|qi + |Xk

i (s)|qi)
)
ds

≤ C

n∑
j=1

‖Kij‖∞
∫ t

tm−1

‖Zk
i (s)‖‖1 + |X̃k

i (s)|qi + |Xk
i (s)|qi‖ds

≤ C(q)τ(1 + θqi)
(
τ(1 + θqi/2) + ‖Zk

i (t)‖
)
.

The last inequality follows from

‖Zk
i (s)‖ ≤ ‖Zk

i (s)− Zk
i (tm−1)‖+ ‖Zk

i (tm−1)− Zk
i (t)‖+ ‖Zk

i (t)‖(23)



20 E. S. DAUS, M. FELLNER, AND A. JÜNGEL

≤ 2Cτ(1 + θqi/2) + ‖Zk
i (t)‖,

which in turn is a consequence of estimate (18). We conclude that

J15 ≤ Cτ 2(1 + θ3qi/2) + Cτ(1 + θqi)‖Zk
i (t)‖.

We use the Lipschitz continuity of Kij (Assumption (A1)) to obtain

J16 ≤
2

pi − 1

n∑
j=1

‖Kij‖∞
∫ t

tm−1

E
∑

`∈Ci,r, ` 6=k

|∆K`
ij(s)|ds

≤ CLii
pi − 1

∫ t

tm−1

E
∑

`∈Ci,r, ` 6=k

(
|X̃k

i (s)−Xk
i (s)|+ |X`

i (s)− X̃`
i (s)|

)
ds

≤ CLii
pi − 1

∫ t

tm−1

(∥∥∥∥ ∑
`∈Ci,r, ` 6=k

Zk
i (s)

∥∥∥∥+

∥∥∥∥ ∑
`∈Ci,r, ` 6=k

Z`
i (s)

∥∥∥∥)ds.

It follows from the second estimate in (18), i.e. |Zk
i (t)| ≤ Cτθ + |Zk

i (tm−1)|, that

J16 ≤
CLii
pi − 1

∫ t

tm−1

(
(pi − 1)Cτθ + (pi − 1)‖Zk

i (s)‖+

∥∥∥∥ ∑
`∈Ci,r, ` 6=k

Z`
i (tm−1)

∥∥∥∥)ds.

The variable Z`
i (s) is Gm−1-measurable for all tm−1 < s < t and hence it is independent of

ξm−1. Therefore, we can apply Lemma 3 to the last term of the integrand to find that

(24) J16 ≤ CLii

∫ t

tm−1

(
Cτθ + ‖Zk

i (s)‖+ ‖Zk
i (tm−1)‖

)
ds.

Here, we have taken into account the fact that ‖Zk
i (t)‖ = ‖Z`

i (t)‖ for every k, ` = 1, . . . , Ni.
The last two terms of the integrand can be estimated, by estimate (18), according to (23)
and

‖Zk
i (tm−1)‖ ≤ ‖Zk

i (tm−1)− Zk
i (t)‖+ ‖Zk

i (t)‖ ≤ Cτ(1 + θqi/2) + ‖Zk
i (t)‖.

Hence, we conclude from (24) that

J16 ≤ Cτ
(
τ(1 + θq/2) + ‖Zk

i (t)‖
)
,

where C > 0 does not depend on bi, pi, or m and recalling that we have chosen q =
2 max{1, qi}. Similar arguments lead to

J17 ≤ 2τ
n∑

j=1, j 6=i

‖Kij‖∞
(
τ(1 + θq/2) + ‖Zk

i (t)‖+ ‖Z1
j (t)‖

)
≤ Cτ

(
τ(1 + θq/2) + ‖Zk

i (t)‖+
n∑

j=1, j 6=i

‖Z1
j (t)‖

)
.

Finally, we estimate the remaining term. By the Cauchy–Schwarz inequality,

(25) J18 =

∫ t

tm−1

E
∣∣χki (X(s)) · χki (X(t))

∣∣ds ≤ ∫ t

tm−1

‖χki (X(s))‖ ‖χki (X(t))‖ds.
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By Lemma 8 in the appendix,

‖χki (X(s))‖2 = E|χki (X(s))|2 = E
[
E
(
|χki (X(s))|2

∣∣σ(X(s))
)]
,

where σ(X(s)) is the σ-algebra generated by X(s). Proposition 2 states that Eχki (X(s)) =
0 and Var(χki (X(s))) ≤ 8 maxj=1,...,n ‖Kij‖2∞Γi. Therefore,

‖χki (X(s))‖2 = Varσ(X(s))(χ
k
i (X(s))) ≤ 8 max

j=1,...,n
‖Kij‖2∞Γi.

Inserting this estimate into (25) leads to

J18 ≤ 8τ max
j=1,...,n

‖Kij‖2∞Γi.

Summarizing, we obtain from (22)∣∣E((Zk
i (t)− Zk

i (tm−1))χ
k
i (X(t))

)∣∣
≤ C(q)τ

(
τ(1 + θ3q/2) + (1 + θq)‖Zk

i (t)‖+
n∑
j=1

‖Z1
j (t)‖

)
+ 8 max

j=1,...,n
‖Kij‖2∞Γi,

which finishes the proof. �

4. Proof of Theorem 1

Let i ∈ {1, . . . , n} and k ∈ {1, . . . , Ni} be such that (i, k) ∈ Ci,r for some r ≤ bi. As in

the last section, we set ∆K`
ij := Kij(X̃

k
i − X̃`

j )−Kij(X
k
i −X`

j ). The process Zk
i satisfies

dZk
i (t) = −(∇Vi(X̃k

i (t))−∇Vi(Xk
i (t)))dt+

1

Ni − 1

Ni∑
`=1, ` 6=k

∆K`
ii(t)dt

+
n∑

j=1, j 6=i

1

Nj

Nj∑
`=1

∆K`
ij(t)dt+ χki (X̃(t))dt.

In particular, Zk
i is pathwise a.e. differentiable in time.

Step 1: Differential inequality for |Zk
i |2. Together with the strong convexity of Vi (As-

sumption (A2)) and the Lipschitz continuity of Kij (Assumption (A1)), we find that

1

2

d

dt
|Zk

i |2 = −(∇Vi(X̃k
i )−∇Vi(Xk

i )) · Zk
i +

1

Ni − 1

Ni∑
`=1, ` 6=k

∆K`
ii · Zk

i

+
n∑

j=1, j 6=i

1

Nj

Nj∑
`=1

∆K`
ij · Zk

i + χki (X̃) · Zk
i

≤ −ri|Zk
i |2 +

Lii
Ni − 1

Ni∑
`=1, ` 6=k

(|Zk
i |+ |Z`

i |)|Zk
i |
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+
n∑

j=1, j 6=i

Lij
Nj

Nj∑
`=1

(|Zk
i |+ |Z`

j |)|Zk
i |+ χki (X̃) · Zk

i .

By taking the expectation and using Young’s inequality, it follows after a standard com-
putation that

1

2

d

dt
E|Zk

i |2 ≤ −riE|Zk
i |2 +

3

2

n∑
j=1

LijE|Zk
i |2 +

1

2

n∑
j=1

Lij|Zk
j |2 + E(χki (X̃) · Zk

i ).

Without loss of generality, we may take k = 1 (since the distributions coincide). A sum-
mation over i = 1, . . . , n and exchanging the summation indices in the third term of the
right-hand side leads to

1

2

d

dt

n∑
i=1

E|Z1
i |2 ≤ −

n∑
i=1

riE|Z1
i |2 +

3

2

n∑
i,j=1

LijE|Z1
i |2 +

1

2

n∑
i,j=1

LjiE|Z1
i |2(26)

+
n∑
i=1

E(χ1
i (X̃) · Z1

i )

≤ − min
i=1,...,n

(
ri − 2

n∑
j=1

max{Lij, Lji}
) n∑

i=1

‖Z1
i ‖2 + E(χ1

i (X̃) · Z1
i ).

It remains to estimate the last term E(χ(X̃) · Z1
i ). To this end, we write

E(χ(X̃(t)) · Z1
i (t)) = J19 + · · ·+ J22, where(27)

J19 = E
(
Z1
i (tm−1) · χ1

i (X̃(tm−1))
)
,

J20 = E
(
(Z1

i (t)− Z1
i (tm−1)) · χ1

i (X(t))
)
,

J21 = E
(
Z1
i (tm−1) · (χ1

i (X̃(t))− χ1
i (X̃(tm−1)))

)
,

J22 = E
(
(Z1

i (t)− Z1
i (tm−1)) · (χ1

i (X̃(t))− χ1
i (X(t)))

)
.

Step 2: Estimate of J19 and J20. Since ξm,i is independent of Gm−1 and Z1
i (tm−1) is

Gm−1-measurable, we obtain from Lemma 8 in the appendix that

E
(
Z1
i (tm−1)

∣∣Gm−1) = Z1
i (tm−1),

E
(
Z1
i (tm−1) · χ(X̃(tm−1))

∣∣Gm−1) = Z1
i (tm−1) · E

(
χ(X̃(tm−1))

∣∣Gm−1).
This shows that, using Proposition 2,

J19 = E
[
E
(
Z1
i (tm−1) · χ(X̃(tm−1))

∣∣Gm−1)] = E
[
Z1
i (tm−1) · E

(
χ(X̃(tm−1))

∣∣Gm−1)] = 0.

The term J20 can be directly estimated from (19):

J20 ≤ Cτ

(
(1 + θ3q

′
i/2)τ + (1 + θq

′
i)‖Z1

i (t)‖+
n∑
j=1

‖Z1
j (t)‖

)
+ 8τ max

j=1,...,n
‖Kij‖2∞Γi.
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Step 3: Estimate of J21. We observe that Z1
i (tm−1) is Fm−1-measurable. By the law of

total expectation (Lemma 8) and the Cauchy–Schwarz inequality,

J21 = E
[
Z1
i (tm−1)E

(
χ1
i (X̃

1
i (t))− χ1

i (X̃(tm−1))
∣∣Fm−1)](28)

≤ ‖Z1
i (tm−1)‖

∥∥E(χ1
i (X̃

1
i (t))− χ1

i (X̃(tm−1))
∣∣Fm−1)∥∥.

We deduce from (23) that the first factor on the right-hand side is bounded from above by

(29) ‖Z1
i (tm−1)‖ ≤ Cτ(1 + θq

′
i/2) + ‖Zk

i (t)‖.
For the second factor, we introduce the notation

∆K̃`
ij := Kij(X̃

1
i (t)− X̃`

j (t))−Kij(X̃
1
i (tm−1)− X̃`

j (tm−1)),

∆X̃`
ij := (X̃1

i (t)− X̃`
j (t))− (X̃1

i (tm−1)− X̃`
j (tm−1)).

Since ξm is Fm−1-measurable, we can write the second factor on the right-hand side of (28)
as follows:

E
(
χ1
i (X̃(t))− χ1

i (X̃(tm−1))
∣∣Fm−1)(30)

=
1

pi − 1

∑
`∈Ci,r, ` 6=1

E(∆K̃`
ii|Fm−1)−

1

Ni − 1

Ni∑
`=1, ` 6=i

E(∆K̃`
ii|Fm−1)

+
n∑

j=1, j 6=i

bi
pj min{bi, bj}

∑
`∈Cj,r

E(∆K̃`
ij|Fm−1)−

∑
j=1, j 6=i

1

Nj

Nj∑
`=1

E(∆K̃`
ij|Fm−1).

We perform a Taylor expansion of Kij at X̃1
i (tm−1) − X̃`

j (tm−1) and use the fact that Kij

is Lipschitz continuous with constant Lij, such that DKij can be bounded from above by
Lij: ∣∣E(∆K̃`

ii|Fm−1)
∣∣ ≤ Lij

∣∣E(∆X̃`
ij|Fm−1)

∣∣+
d

2
‖D2Kij‖∞E

(
|∆X̃`

ij|2
∣∣Fm−1).

Inserting

∆X̃`
ij =

(
X̃1
i (t)− X̃1

i (tm−1)
)

+
(
X̃`
j (t)− X̃`

j (tm−1)
)

into the previous estimate and taking into account the stability estimates of Lemmas 4
and 5, we infer that∥∥E(∆K̃`

ii|Fm−1)
∥∥ ≤ CτLij

(
1 + θq̃i + θq̃j

)
+ Cτ‖D2Kij‖∞(1 + θq

′
i/2+1)

(
1 + ‖|X̃1

i (tm−1)|q
′
i/2+1‖

)
≤ Cτ

(
1 + θq

′
i+2),

where the constant C > 0 does not depend on bi, pi, or m. We use this estimate in (30)
and observe that bi/min{bi, bj} ≤ θ, yielding

(31)
∥∥E(χ1

i (X̃
1
i (t))− χ1

i (X̃(tm−1))
∣∣Fm−1)∥∥ ≤ Cτ

(
1 + θq

′
i+3).

Finally, we combine estimates (29) and (31) to conclude from (28) that

J21 ≤ Cτ(1 + θq
′
i+3)‖Z1

i (t)‖+ Cτ 2(1 + θ3q
′
i/2+3).
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Step 4: Estimate of J22. Set ∆K`
ij := Kij(X̃

1
i (t)− X̃`

j (t))−Kij(X
1
i (t)−X`

j (t)). We use
the Cauchy–Schwarz inequality and (18) to obtain

J22 ≤ ‖Z1
i (t)− Z1

i (tm−1)‖ ‖χ1
i (X̃(t))− χ1

i (X(t))‖(32)

≤ Cτ(1 + θq
′
i/2)‖χ1

i (X̃(t))− χ1
i (X(t))‖

≤ Cτ(1 + θq
′
i/2)

(
1

pi − 1

∥∥∥∥ ∑
`∈Ci,r, ` 6=k

∆K`
ii

∥∥∥∥+
1

Ni − 1

Ni∑
`=1, ` 6=k

‖∆K`
ii‖

+
n∑

j=1, j 6=i

bi
pj min{bi, bj}

∥∥∥∥ ∑
`∈Cj,r

∆K`
ij

∥∥∥∥+
n∑

j=1, j 6=i

1

Nj

Nj∑
`=1

‖∆K`
ij‖
)
.

The difference ∆K`
ij can be estimated according to (see the second inequality in (18))

|∆K`
ij| ≤ Lij

(
|Z1

i (t)|+ |Z`
j (t)|

)
≤ C

(
τθ + |Z1

i (tm−1)|+ |Z`
j (tm−1)|

)
.

Then, with the help of the auxiliary Lemma 3,

1

pi − 1

∥∥∥∥ ∑
`∈Ci,r, ` 6=k

∆K`
ii

∥∥∥∥ ≤ C

pi − 1

∥∥∥∥ ∑
`∈Ci,r, ` 6=k

(
τθ + |Z1

i (tm−1)|+ |Z`
i (tm−1)|

)∥∥∥∥
≤ Cτθ + C‖Z1

i (tm−1)‖ ≤ Cτ(1 + θq
′
i/2) + C‖Z1

i (t)‖,
1

pj

∥∥∥∥ ∑
`∈Cj,r, ` 6=k

∆K`
ij

∥∥∥∥ ≤ Cτ(1 + θγ/2) + C‖Z1
i (t)‖+ C‖Z1

j (t)‖,

where γ = maxj=1,...,n q
′
j. Therefore, because of bi/min{bi, bj} ≤ θ, (32) becomes

J22 ≤ Cτ(1 + θq
′
i/2)(1 + θ)

(
τ(1 + θγ/2) +

n∑
j=1

‖Z1
j (t)‖

)
.

We deduce from (27) and the previous estimates for J19, . . . , J22 that
n∑
i=1

E
(
χ1
i (X̃(t)) · Z1

i

)
≤ Cτ 2(1 + θ3γ/2+3) + Cτ(1 + θγ+3)

n∑
i=1

‖Z1
i (t)‖+ Cτ

n∑
i=1

Γi(33)

≤ C7(θ)τ
2 + C8(θ)τ

( n∑
i=1

‖Z1
i (t)‖2

)1/2

+ C9τ

n∑
i=1

Γi.

Step 5: End of the proof. Let

u(t) =
n∑
i=1

‖Z1
i (t)‖2, r = min

i=1,...,n

(
ri − 2

n∑
j=1

max{Lij, Lji}
)
> 0.

We infer from (26) and (33) that

du

dt
≤ −ru+ C7τ

2 + C8τu
1/2 + C9τ

n∑
i=1

Γi.
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The positive solution z+ of the quadratic equation −rz2 +C7τ
2 +C8τz +C9τ

∑n
i=1 Γi = 0

gives us an upper bound for u(t)1/2, since du/dt ≤ 0 otherwise. Consequently,

u(t)1/2 ≤ z+ =
C9

2r
τ +

√
τ

2r

(
C2

8τ + 4C7rτ + 4C9r
n∑
i=1

Γi

)1/2

≤ Cτ(1 + θ3γ/2+3) + C
√
τ

( n∑
i=1

Γi

)1/2

.

This ends the proof of Theorem 1.

5. Particle systems with multiplicative noise

The technique of the proof of Theorem 1 can be applied to particle systems with multi-
plicative noise,

dXk
i = −∇Vi(Xk

i )dt+
n∑
j=1

αij

Nj∑
`=1

(i,k)6=(j,`)

Kij(X
k
i −X`

j )dt+ σi(X
k
i )dBk

i (t),

with initial conditions (2), and αij = 1/(Nj − δij), i, j = 1, . . . , n, k = 1, . . . , Ni. The

random-batch process X̃k
i is defined as in (4) but with σi(X̃

k
i ) instead of σi. In addition

to Assumptions (A1)–(A4), we suppose the following conditions:

(B1) Diffusion: σi ∈ C0(Rd) is bounded and Lipschitz continuous with Lipschitz constant
Li > 0.

(B2) Strong convexity: The function x 7→ Vi(x)− ri|x|2/2 is convex, where ri > 2
∑n

j=1

max{Lij, Lji}+ L2
i d and ri > 2L2

i (2 max{1, qi}+ d− 2), i = 1, . . . , n.

Theorem 7. Let Assumptions (A1)–(A2), (A4), (B1)–(B2) hold. Then there exists a
constant C > 0, which is independent of (bi, pi)i=1,...,n, m, and T , such that

sup
0<t<T

n∑
i=1

‖(Xk
i − X̃k

i )(t)‖ ≤ C
√
τ

(
1 +

n∑
i=1

Γi

)1/2

+ Cτ(1 + θγ),

and θ, γ, Γi are defined in (6)–(7).

Sketch of the proof. The proof is similar to that one for Theorem 1 except for some ad-
ditional estimates for the multiplicative noise term. In particular, Proposition 2 keeps
unchanged since it is concerned with the shuffling process only. For the stability (Lemma
4), we need the condition 2 ≤ q ≤ q′i = 2 max{1, qi}. The proof is essentially the same,
except for the estimate of the term 1

2
q(q + d− 2)E(σ2

i |Xk
i |q−2). Here, we use the Lipschitz

continuity of σi and the stricter condition on ri in Assumption (B2). In the estimate for

X̃k
i (t) − X̃k

i (tm−1) (Lemma 5), the diffusion σi is controlled by the Lipschitz continuity,

σi(X̃
k
i )2 ≤ 2L2

i |X̃k
i |2 + 2σi(0)2, and Lemma 4. Finally, for the control of the error process

(Lemma 6), estimates (18)–(19) need to be changed to

‖Zk
i (t)− Zk

i (tm−1)‖ ≤ Cτ(1 + θq
′
i/2) + C

√
θ,(34)
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i (t)− Zk

i (tm−1))χ
k
i (X̃(tm−1))

)∣∣ ≤ Cτ 2(1 + θ3q
′
i/2) + 8τ max

j=1,...,n
‖Kij‖2∞Γi(35)

+
√
τ

(
(1 +

√
τ)(1 + θq

′
i)‖Zk

i (t)‖+
√
τ(1 +

√
τ)

n∑
j=1

‖Z1
j (t)‖

)
.

For the proof of estimate (34), the right-hand side of (21) contains the additional term

J̃14 =

∥∥∥∥∫ t

tm−1

(σi(X̃
k
i )− σi(Xk

i ))dBk
i

∥∥∥∥.
The square of J̃14 is estimated by using the Itô isometry and the Lipschitz continuity of
σi. Integrating and taking the square root then leads to the additional C

√
τ term.

The proof of (35) is very similar to (19), except that we need the inequality∥∥∥∥ 1

pi − 1

∑
`∈Ci,r, ` 6=k

|Zk
i |
∥∥∥∥ ≤ Cθ(τ + ‖Z1

i (tm−1)‖).

The square of the left-hand side is formulated as∥∥∥∥ 1

pi − 1

∑
`∈Ci,r, ` 6=k

|Zk
i |
∥∥∥∥2 = E

{
E
[( ∑

`∈Ci,r, ` 6=k

|Zk
i |
)2

|Fm−1
]}

.

Since ξm−1 is Fm−1 measurable, the inner expectation becomes

E
[( ∑

`∈Ci,r, ` 6=k

|Zk
i |
)2

|Fm−1
]

=
∑

`,`′∈Ci,r, `,`′ 6=k

E
(
|Z`

i | |Z`′

i |
∣∣Fm−1)

≤
∑

`,`′∈Ci,r, `,`′ 6=k

√
E(|Z`

i |2|Fm−1)
√
E(|Z`′

i |2|Fm−1),

using the Cauchy–Schwarz inequality for the conditional expectation. A straightforward
computation leads to

E(|Z`
i |2|Fm−1) ≤ Cθ2(τ + |Zk

i (tm−1)|)2,
from which we infer that

E
[( ∑

`∈Ci,r, ` 6=k

|Zk
i |
)2

|Fm−1
]
≤ Cθ2

( ∑
`∈Ci,r, ` 6=k

(τ + |Zk
i (tm−1)|)

)2

.

As Z`
i (tm−1) is independent of ξm−1, the proof finishes after applying Lemma 3. �

A more complicated particle system with multiplicative noise was considered in [7], which
leads in a mean-field-type limit to the Shigesada–Kawasaki–Teramoto population model:

dXk
i = −∇Vi(Xk

i )dt+

(
σ2
i +

n∑
j=1

f

(
αij

Nj∑
`=1

(i,k)6=(j,`)

Kij(X
k
i −X`

j )

))1/2

dBk
i (t),
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with initial conditions (2), i = 1, . . . , n, k = 1, . . . , Ni, and the function f is globally

Lipschitz continuous. Again, the random-batch process X̃k
i is similar to (4). For this

system, we have been not able to prove an error estimate of order
√
τ , but only a stability

estimate of the form
n∑
i=1

‖(Xk
i − X̃k

i )(t)‖ ≤ C(t)
√
t

(√
τh(t, τ, θ) +

n∑
i=1

Γi

)
, t > 0,

where h(t, τ, θ) is a smooth function. Compared to the error estimates of Theorems 1
and 7, the bound

∑n
i=1 Γi for the variance of the remainder (9) is not multiplied by

√
τ .

Numerical simulations (not shown) reveal a saturation effect when τ becomes very small,
indicating that the previous estimate cannot be improved.

6. Numerical simulations

We present numerical results for a test example, a population system, and an opinion-
formation model. The algorithm is implemented in Matlab. The random shuffling is real-
ized using the command randperm, and the stochastic differential equations are discretized
by the standard Euler–Maruyama scheme.

6.1. Discrete L2 error for a test example. We generalize the test example of [16,
Section 4.1]. For this, we consider system (1) with n = 3 species in d = 2 dimensions and
specify the functions

∇Vi(x) = ri(x−m(i)), Kij(x) =
QiQjx

1 + |x|2
, x ∈ R2, i, j = 1, 2, 3,

where the model parameters are (Q1, Q2, Q3) = (−1, 2,−2), (r1, r2, r3) = (1, 4, 2), and
m(1) = (1, 0)T , m(2) = −(1, 1)T , m(3) = (1, 1)T . This choice incorporates different repul-
sive and attracting effects. The initial data are centered Gaussian distributions with the
variances (v1, v2, v3) = (2, 2, 1), where the index signifies the number of the species.

For the first experiment, we choose the diffusion coefficients σi = 0.5 for i = 1, 2, 3 and the
time step sizes τ = 2−2, . . . , 2−6. The end time is T = 1, the batch sizes are pi = 2 for i =
1, 2, 3, and the numbers Ni of particles of the ith species are (N1, N2, N3) = (100, 100, 200),
(1000, 1000, 2000), or (2500, 2500, 5000). Thus the total number of particles is N = 400,
4000, or 10000. We compare the random-batch solution with a reference solution, obtained
by solving the fully coupled system using the time step size 2−4, . . . , 2−8. Figure 2 (left)
shows the discrete L2(Ω) error for the different time step sizes, defined by

E =

( n∑
i=1

1

Ni

Ni∑
k=1

|X̃k
i (T )−Xk

i (T )|2
)1/2

.

The reference line has the slope 1/2. The results clearly show that the convergence rate is
of order O(

√
τ) as predicted by Theorem 1.

Figure 2 (right) illustrates the L2(Ω) error as a function of the computational time,
represented by the number of FLOPs (floating-point operations). We choose σi = 0 for
all i = 1, . . . , n to allow for the comparison of the random-batch solution with a reference
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Figure 2. Left: Discrete L2(Ω) error E versus time step size τ for various
total particle numbers N . Right: Discrete L2(Ω) error versus number of
FLOPs for various random-batch simulations (RBM) and the corresponding
reference solutions (ref).

solution that is calculated beforehand. The parameters for the random-batch algorithm
are T = 1, n = 2, d = 2, (p1, p2) = (2, 2), τ = 2−3, . . . , 2−7, and (N1, N2) = (1250, 1250)
(RBM1, full 1), (2500, 2500) (RBM2, full 2), or (5000, 5000) (RBM3, full 3). The reference
solution is calculated from an explicit Euler scheme with the time step size τ = 2−1, . . . , 2−5.
The number of FLOPs needed for the Matlab-internal functions are determined by the
lightspeed toolbox of Tom Minka (https://github.com/tminka/lightspeed). The total num-
bers of FLOPs are then calculated by adding all needed operations manually.

Figure 2 (right) shows that the random-batch algorithm needs almost three orders of
magnitude less FLOPs than the reference algorithm. As expected, the discrete L2(Ω) error
of the random-batch scheme is larger than that one of the reference scheme for a given time
step. However, for a given error, the number of FLOPs of the random-batch algorithm
is still much smaller compared to the reference algorithm, namely by about two orders of
magnitude.

6.2. A population system. We consider the population system derived in [6] without
external potentials using the following parameters: n = 3, d = 1, T = 2, Ni = 5000 for
i = 1, 2, 3, and (σ1, σ2, σ3) = (1, 2, 3). The interaction kernels are given by Kij = ∇Bη

ij,

where Bη
ij(x) = η−1Bij(x/η), Bij(x) = Dij exp(1− 1/(1−|x|2))1{|x|<1}(x) for x ∈ R, η = 2,

and

(Dij) =

 0 355 355
25 0 25
355 0 0

 .

The initial data are Gaussian normal distributions with means (m1,m2,m3) = (−1, 2, 3)
and variances (v1, v2, v3) = (2, 2, 2).
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Figure 3 (left) illustrates the approximate probability densities at time T = 2 obtained
by simulating the particle system 1000 times with the batch sizes pi = 20 for i = 1, 2, 3
and the time step size τ = 10−2. We observe that the species segregate and avoid each
other. Each of the simulation requires about 2 · 1010 FLOPs, which needs to be compared
to about 5 · 1012 FLOPs required when using full interactions. This is a reduction of the
numerical effort of more than two orders of magnitude.

Clearly, the reduction of computational cost comes at the price of an increased error.
Figure 3 (right) presents the discrete L2(Ω) error versus the number of FLOPs for various
configurations of the batch sizes and various time step sizes. The end time is T = 1, and
we used batch sizes pi = 2, 10, 100, 1000 and time step sizes τ = 2−1, . . . , 2−7. The different
points per line correspond to different values of τ . The reference solution is computed from
the Euler–Maruyama scheme with the step size τ = 2−9; this simulation needed about 1013

FLOPs. We see that the error decreases with the time step size and larger batch sizes.
The red dot in the figure indicates the number of FLOPs needed to compute a numerical
solution with full interactions and step size τ = 10−2, to give a more practical point
of reference. This simulation required about 2.5 · 1012 FLOPs, while the random-batch
algorithm with τ = 2−7 was about four times faster.

Figure 3. Left: Histogram of the population model derived in [6] for three
species at time T = 2. Right: Discrete L2(Ω) error versus number of FLOPs
for various batch sizes p and time step sizes τ .

6.3. Opinion dynamics model. We model a company whose internal hierarchy regulates
the communication between three different types of agents: workers (species 1), managers
(species 2), and CEOs (species 3). The agents obey the following rules:

• CEOs can be only influenced by other CEOs. They influence managers (but not
vice versa) and they do not interact with workers.
• Managers can influence workers but not other managers or CEOs.
• Workers can only influence each other.
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The dynamics of opinions is described by the system

dXk
i (t) =

3∑
j=1

1

Ni − δij

Nj∑
`=1, (i,k) 6=(j,`)

Kij(X
k
i (t)−X`

j (t))dt+ σdt,

Xk
i (0) = Xk

0,i, i, j = 1, 2, 3, k = 1, . . . , Ni, 0 < t ≤ T,

which is a generalization of a model discussed in [24]. The interaction is modeled by
Kij(x) = −Dijφ(x/Rj)x for x ∈ R, where φ(x) = exp(1− 1/(1− |x|10))1(−1,1) is a smooth
approximation of the characteristic function 1(−1,1). The value Dij is a measure of the
influence that an agent of species j has over an agent of species i. According to the
above-mentioned interaction rules, the matrix D = (Dij) has the structure

D =

D11 D12 0
0 0 D23

0 0 D33

 .

As the only way for CEOs to communicate with the workers happens indirectly via the
managers, we wish to explore the influence of the managers to achieve a consensus. In
particular, we consider managers that are very submissive to authority (D23 � 1) or that
are less obedient (D23 ≤ 1). For the simulations, we use 5000 workers, 10 managers and
2 CEOs. The parameters are σ = 0.1, T = 5, τ = 10−5, and (p1, p2, p3) = (20, 2, 2).
The initial conditions are drawn from a uniform distribution on the interval [0, 10]. The
interaction radii are (R1, R2, R3) = (1, 2.5, 5).

In the first case (submissive managers), we choose the influence values

D11 = 5, D12 = 10, D23 = 25, D33 = 0.1.

Figure 4 (left) shows one simulation of the particle system. We observe that the managers
are very eager to find a compromise between the opinions of the two CEOs. This change of
the opinion occurs too fast for the workers with more extreme opinions, as they are not as
susceptible as the managers (since D12 < D23). Therefore, they leave quickly the range of
interaction of the managers and form their own clusters. Only those workers who have an
opinion already close to that one of the CEOs, agree with the company policy and change
their opinion accordingly.

In the second case (less obedient managers), we choose the same values of Dij as before
except D23 = 1. This means that the influence of the CEOs over the managers is rather
small. Figure 4 (right) shows that the managers change their opinion slowly enough for the
workers to adapt their opinion, as they stay within their range of interaction. Eventually,
this leads to a consensus of opinion.

The simulations suggest that small changes over time are more likely to lead in an
adjustment of the opinion and eventually to a consensus. In this picture, managers should
not impose their opinion too quickly, but they should introduce the changes sufficiently
slowly such that the workers can adjust in time.

Finally, we explore the influence of the batch size on the running time and the error.
We consider 10000 workers, 100 managers, and 10 CEOs and choose the parameters τ =
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Figure 4. Opinion versus time of the CEOs and managers in the case of
very submissive (left) or less obedient (right) managers.

2−3, . . . , 2−7, T = 4, and σ = 0.1. The batch sizes are (p1, p2, p3) = (2, 2, 2), (20, 5, 2),
(200, 20, 2), and (2000, 20, 2). Figure 5 shows that the discrete L2(Ω) error decreases with
larger batch sizes (since this involves more interactions), smaller time step sizes, or θ closer
to one, which is consistent with our error estimate. Clearly, the number of FLOPs increases
with larger batch sizes.

Figure 5. L2(Ω) error versus number of FLOPs for different batch sizes
and time step sizes τ = 2−3, . . . , 2−7.

Appendix A. Auxiliary results

We recall some results involving the conditional expectation; see [9, Chapter 5]. Let
(Ω,F ,P) be a probability space.
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Lemma 8. Let H be a sub-σ-algebra of F and let X, Y : Ω → Rd be random variables
such that X is H-measurable. Then

E(X|H) = X, E(XY |H) = XE(Y |H).

In particular, the law of total expectation holds: E[E(X|H)] = E(X).

Lemma 9. Let G ⊂ F be a σ-algebra, and (X(t))t≥0 be an integrable stochastic process.
Then, for any t > 0,

E
(∫ t

0

X(s)ds

∣∣∣∣G) =

∫ t

0

E(X(s)|G)ds.

The lemma is a consequence of Fubini’s theorem [4, Lemma 2.3].

Lemma 10. Let T > 0, (B(t))t≥0 be a d-dimensional Brownian motion, and Ft = σ(B(s),
s ≤ t) for t ≤ T . Furthermore, let X(t) ∈ Rd be a square integrable, progressively measur-
able process with respect to Ft. Then, for any 0 ≤ s1 ≤ s2 ≤ T ,

E
(∫ s2

s1

X(t)dB(t)

∣∣∣∣Fs1) = 0.

This lemma follows from the fact that S(t) :=
∫ t
0
X(s)dB(s) is a martingale and conse-

quently, E(S(s1)− S(s2)) = 0 a.s. for 0 ≤ s1 ≤ s2 ≤ T .
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