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Abstract. We correct the proof of Proposition 2.1 in the paper [1]. This proposition is
used to prove the existence of global weak solutions to a Keller-Segel model with additional
cross-diffusion.

In [1], the following result has been stated.

Proposition 1 (Proposition 2.1 in [1]). Let Ω ⊂ R
d (d ≥ 2) be a bounded domain with

∂Ω ∈ C0,1, T > 0, and s ≥ 0. Furthermore, let (uε) be a sequence of nonnegative functions
satisfying

‖√uε‖L2(0,T ;H1(Ω)) + ‖uε log uε‖L∞(0,T ;L1(Ω)) + ‖∂tuε‖L1(0,T ;(Hs(Ω))∗) ≤ C0

for some C > 0 independent of ε. Then, up to a subsequence, as ε → 0,

uε → u strongly in L2(0, T ;Ld/(d−1)(Ω)).

The proof in [1] consists in showing first that uε → u strongly in L∞(0, T ;L1(Ω)) as
ε → 0. However, this is generally wrong as the counter-example uε(x, t) = max{0, 1− t/ε}
shows.1 In the following, we give a corrected proof for Proposition 2.1.

Proof. The uniform estimate for uε implies that ∇uε = 2
√
uε∇

√
uε is uniformly bounded

in L2(0, T ;L1(Ω)). Thus, (uε) is bounded in L2(0, T ;W 1,1(Ω)). We observe that the
embedding W 1,1(Ω) →֒ Lp(Ω) is compact for all 1 < p < d/(d − 1). Moreover, if
s ≥ d/2, the embedding Hs(Ω) →֒ Lp∗(Ω), where p∗ = p/(p − 1), and hence Lp(Ω) →֒
(Hs(Ω))∗ is continuous. Thus, we can apply the Aubin-Lions lemma with the spaces
W 1,1(Ω) →֒ Lp(Ω) →֒ (Hs(Ω))∗. If 0 ≤ s < d/2, we have (Hs(Ω))∗ →֒ (Hd/2(Ω))∗ and
‖∂tuε‖L1(0,T ;(Hd/2(Ω))∗) ≤ C‖∂tuε‖L1(0,T ;(Hs(Ω))∗) ≤ CC0, and the Aubin-Lions lemma can be

applied with the spaces W 1,1(Ω) →֒ Lp(Ω) →֒ (Hd/2(Ω))∗. In both cases, there exists a
subsequence of (uε), which is not relabeled, such that uε → u strongly in L2(0, T ;L1(Ω))
and also a.e. in Ω× (0, T ).
Let L > e be given, and set vLε = min{uε, L} and wL

ε = max{uε − L, 0}. Then uε =
vLε +wL

ε . It holds that v
L
ε → vL = min{u, L} a.e. and wL

ε → wL = max{u−L, 0} a.e. with
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u = vL + wL. Then

‖uε − u‖L2(0,T ;Ld/(d−1)(Ω)) ≤ ‖vLε − vL‖L2(0,T ;Ld/(d−1)(Ω)) + ‖wL
ε ‖L2(0,T ;Ld/(d−1)(Ω))

+ ‖wL‖L2(0,T ;Ld/(d−1)(Ω))

=: I1 + I2 + I3.(1)

We first estimate the terms I2 and I3. By the Hölder’s inequality, we find that

‖∇wL
ε ‖2L2(0,T ;L1(Ω)) =

∫ T

0

(
∫

{uε>L}

|∇uε|dx
)2

dt

= 4

∫ T

0

(
∫

{uε>L}

|√uε||∇
√
uε|dx

)2

dt

≤ 4‖√uε‖2L2(0,T ;H1(Ω))

∥

∥

∥

∥

∫

{uε>L}

uεdx

∥

∥

∥

∥

L∞(0,T )

≤ 4C2
0

∥

∥

∥

∥

∫

{uε>L}

uε
log uε

logL
dx

∥

∥

∥

∥

L∞(0,T )

≤ 4C3
0

logL

and

‖wL
ε ‖2L2(0,T ;L1(Ω)) =

∫ T

0

(
∫

{uε>L}

(uε − L)dx

)2

dt ≤
∫ T

0

(
∫

{uε>L}

uεdx

)2

dt

≤ T

∥

∥

∥

∥

∫

{uε>L}

uε
log uε

logL
dx

∥

∥

∥

∥

2

L∞(0,T )

≤ TC2
0

log2 L
≤ TC2

0

logL
.

Therefore,

‖wL
ε ‖L2(0,T ;W 1,1(Ω)) ≤

2C
3/2
0 + T 1/2C0

(logL)1/2
.

A similar way, it follows that

‖wL‖L2(0,T ;W 1,1(Ω)) ≤
2C

3/2
0 + T 1/2C0

(logL)1/2
.

We conclude from the Sobolev imbeddingW 1,1(Ω) →֒ Ld/(d−1)(Ω) (d ≥ 2) with the constant
Cd > 0 that

I2 + I3 ≤ Cd‖wL
ε ‖L2(0,T ;W 1,1(Ω)) + Cd‖wL‖L2(0,T ;W 1,1(Ω)) ≤

2Cd(2C
3/2
0 + T 1/2C0)

(logL)1/2
.

For the estimate of I1, we observe that, since |vLε (x, t) − vL(x, t)|d/(d−1) ≤ (2L)d/(d−1)

and |vLε (x, t) − vL(x, t)|d/(d−1) → 0 a.e. in Ω × (0, T ), the dominated convergence theo-
rem implies that

∫

Ω
|vLε (x, t) − vL(x, t)|d/(d−1)dx → 0 a.e. in (0, T ) and hence ‖vLε (·, t) −

vL(·, t)‖Ld/(d−1)(Ω) → 0 a.e. in (0, T ). Moreover,
∥

∥

∥

∥

‖vLε (·, t)− vL(·, t)‖Ld/(d−1)(Ω)

∥

∥

∥

∥

L3(0,T )

≤ 2L|Ω|(d−1)/dT 1/3 =: C(L).
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We claim that for any L > e, there exists ε0 > 0 such that for all 0 < ε < ε0, it holds that
I1 < 1/ logL. Indeed, set fL

ε (t) := ‖vLε (·, t) − vL(·, t)‖Ld/(d−1)(Ω). Recall that fL
ε (t) → 0

a.e. in (0, T ) and ‖fL
ε ‖L3(0,T ) ≤ C(L). For given δ > 0, there exists η > 0 such that

C(L)2η1/3 ≤ δ. We deduce for any E ⊂ (0, T ) such that |E| ≤ η and Hölder’s inequality
that

∫

E

|fL
ε (t)|2dt ≤

(
∫

E

|fL
ε (t)|3dt

)2/3

|E|1/3 ≤ C(L)2η1/3 ≤ δ,

which shows that (fL
ε ) is uniformly integrable. As convergence a.e. in (0, T ) implies con-

vergence in measure in (0, T ), we can apply the Vitali convergence theorem to infer that
fL
ε → 0 strongly in L2(0, T ) as ε → 0. Thus, there exists ε0 > 0 such that for all 0 < ε < ε0,
we have I1 = ‖fL

ε ‖L2(0,T ) ≤ 1/ logL. Therefore, for any L > e, there exists ε0(L) > 0 such
that for all 0 < ε < ε0(L), we infer from (1) that

‖uε − u‖L2(0,T ;Ld/(d−1)(Ω)) ≤
1 + 2Cd(2C

3/2
0 + T 1/2C0)

(logL)1/2
.

Since L > e is arbitrary, this ends the proof. �
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