THE SHIGESADA-KAWASAKI-TERAMOTO
CROSS-DIFFUSION SYSTEM BEYOND DETAILED BALANCE

XIUQING CHEN, ANSGAR JUNGEL, AND LEI WANG

ABSTRACT. The existence of global weak solutions to the cross-diffusion model of Shige-
sada, Kawasaki, and Teramoto for an arbitrary number of species is proved. The model
consists of strongly coupled parabolic equations for the population densities in a bounded
domain with no-flux boundary conditions, and it describes the dynamics of the segregation
of the population species. The diffusion matrix is neither symmetric nor positive semidef-
inite. A new logarithmic entropy allows for an improved condition on the coefficients of
heavily nonsymmetric diffusion matrices, without imposing the detailed-balance condition
that is often assumed in the literature. Furthermore, the large-time convergence of the
solutions to the constant steady state is proved by using the relative entropy associated
to the logarithmic entropy.

1. INTRODUCTION

The Shigesada—Kawasaki-Teramoto (SKT) system was introduced in [19] to describe
the dynamics of two competing population species. In this model, the diffusion rate of
each species depends on the gradients of the densities of both species, expressed by cross-
diffusion terms. They give rise to a repulsive effect leading to spatial segregation. The
stationary model has been extended to three species in [17], while the time-dependent
system for an arbitrary number of species was investigated in [20]. The existence of global
weak solutions to the transient model has been proved only under detailed balance or
imposing bounds on the self-diffusion coefficients [7]; see below for details. In this paper,
we suggest a new condition on the self-diffusion coefficients, which is significantly weaker
than that one in [7] in the case of heavily nonsymmetric diffusion matrices.
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The SKT model consists of the following cross-diffusion equations for the population
densities u;:

(1) (9tul = div (Z AU Vuj) Ai]’ (U) = 51']'@1'0 -+ 5ij Z ;UL + Q45 Uy,
k=1

7j=1

in a bounded domain Q C R? (d < 3) for ¢ > 0, where 4,5 = 1,...,n, and §;; is the
Kronecker symbol, supplemented by the initial and no-flux boundary conditions

(2) u;(0) = u) in Q, ZA” w)Vu; - v=0 ondQ, t>0,i=1,...,n

The diffusion coefficients a;; are nonnegative numbers. We call a;; the self-diffusion coeffi-
cients and a;; for ¢ # j the cross-diffusion coefficients. The original model for n = 2 species
in [19] also contains a drift term involving the environmental potential and Lotka—Volterra
reaction terms. We have neglected these terms to simplify the presentation. Our technique
is able to treat these terms; see, e.g., [5, 6].

While the global existence analysis in the two-species model is quite well understood
[5, 6, 10], the global existence of weak solutions to the n-species system has been proven
only in the so-called detailed-balance case (see below) [7] and in the case of large self-
diffusion coefficients; see, e.g., [8, 9, 16]. Another approach was suggested by Amann [1],
who proved that a priori estimates in the W1P(Q) norm with p > d are sufficient for the
solutions to general quasilinear parabolic systems to exist globally in time, and he applied
his result to the triangular case, where a;; = 0 for i > j. However, W'?(Q2) estimates with
p > d for solutions to (1) under general conditions seem to be out of reach.

The main difficulty in the analysis of (1)—(2) is the fact that the diffusion matrix is
generally neither symmetric nor positive semidefinite. This issue was overcome in [7] by
exploiting the entropy structure of (1). This means that there exists a so-called entropy
density h : [0,00) — R such that (1) can be written in terms of the entropy variables
w; = Oh/0u; as

Oyu;(w) = div (ZBU Vw]> i1=1,...,n,

where u; is interpreted as a function of w and B(w) = A(u(w))h” (u(w))™! with B(w) =
(Bij(w)) € R*™ is a positive semidefinite matrix, called the mobility matrix. Here, w =
(wq,...,wy,) and u = (uy,...,u,) are vector-valued functions. For instance, we introduce
the entropy density

= Zmui(log u; — 1)dx,
i=1

where 7; > 0 for ¢ = 1,...,n are assumed to satisfy ma;; = mja;; for all ¢,7 = 1,...,n.
These equations constitute the detailed-balance condition for the Markov chain associated
to (a;;), and (my,...,m,) is the corresponding invariant measure. Under this assumption,
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a formal computation shows that, along solutions to (1)—(2),

d . n n

L i=1 & i=1 L
which provides suitable gradient estimates. It was shown in [7] that the detailed-balance
condition is not necessary for a global existence analysis. If self-diffusion dominates cross-
diffusion in the sense

(3) dai > Y (Vag —az)" foralli=1,...n,
j=1

then the global existence of weak solutions follows. If a; > 0, this condition is satisfied if
the matrix (a;;) is nearly symmetric.

The goal of this paper is to prove the global existence of weak solutions without imposing
detailed balance under a condition that is weaker than (3) for (heavily) nonsymmetric
matrices (a;;). The key idea of our analysis is the observation that the entropy density

(4) h(u) = Z mi(u; — log u;)

formally satisfies the inequality
(5)

d n n
(The computation is made rigorous for approximate solutions in (13) below.) Thus, we
obtain a gradient estimate for /u; if

(6) K= z:rnl,ln,n (871'1@“' — Z ’/Tjaji) >0

=1, j#i
is satisfied (we allow for a;p > 0). If (a;;) is almost symmetric, condition (3) outperforms
(6). However, condition (6) is generally weaker than (3) if a;; and aj; differ significantly.

We underline this statement by the following example. Let n = 3, a13 = a1 = a3y = 1,
and ajp = ags = az = 0. Since |a;; — aj;| = 1 for i # j, the matrix (a;;) is nonsymmetric.
Condition (3) from [7] is equivalent to a; > 1/2 for ¢ = 1,2,3, while condition (6) is
equivalent to ajjasaszz; > 872 (see Lemma 15 in the Appendix). This is significantly
weaker than ajjageass > 871 (which follows from ay; > 1/2) and, moreover, we only need
one self-diffusion coefficient to be sufficiently large.

In the literature, the functional (4) has been identified as an entropy (i.e. a Lypunov
functional) mainly for higher-order parabolic equations via the method of systematic inte-
gration by parts [14]. A similar functional was used to prove the convergence of solutions
to the two-species SKT model to a steady state under quite particular conditions on the
coefficients a;; [15]. Up to our knowledge, the use of (4) in the global existence analysis of
cross-diffusion systems is new.
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We impose the following assumptions:

(A1) Domain: © C R? is a bounded domain with 9Q € C? d < 3, and T > 0.

(A2) Initial datum u’ = (u?,... ul) e LY(Q; R”) sabisfios u; > 01in Q for i = 1,.
Jo h(u®)de < oo if d < 3, andmoreoveer N2dr < 0 if d = 2,3.

(A3) Coefﬁments a;; > 0, a;o > 0 for all 4,5 = 1,...,n, and there exist my,...,m, >0

such that (6) holds.

The boundary regularity in Assumption (A1) is needed to apply an H?(Q) elliptic regu-
larity result for the duality method (see the proof of Lemma 6 below). The restriction to
at most three space dimensions comes from the continuous embedding H*(2) < L5(),
which is needed to conclude the weak convergence of (uf)® in L2(€2), where u! are some
approximate solutions see Section 3, step 2. In view of the entropy inequality (5), we need
the regularity [, h( dx for the 1n1t1al datum in Assumption (A2). In two and three space
dimensions, we need more integrability to deal with the quadratic nonlinearity. As already
mentioned, Assumption (A3) is a relaxed “self-diffusion > cross-diffusion” condition. Note
that the diffusion coeflicients a,;q are allowed to vanish.

7

Notation. A vector-valued function v : 2 — R™ has the components vy,...,v,. We
denote the entries of a matrix A € R™*" by A;;. We set Qr = Q2 x (0,7") for the space-time
cylinder. Furthermore, we need the space of test functions

W2r(Q) = {¢ € W*(Q): Vo v =000 00}, p>2,
and we set H2(Q2) = W22(Q).
Qur first main result is as follows.

Theorem 1 (Global existence). Let Assumptions (A1)-(A8) hold. Then there exists a
weak solution u = (uy,...,u,) to (1)~(2) satisfying u;(t) > 0 a.e. in Q, [, h(u(t))dz < 0o
for 0 <t < T, the reqularity

u; € LOO(()?Tu Ll(Q)) ﬂLS(QT)a \/u_iE L2<07T7 Hl(Q))a

Orui € L0, T, W3H(Q)'),
u satisfies the initial conditions in the sense of W24(Q), and it holds for all ¢ € L*(0,T;
W24Q;R™)) and i = 1,...,n that

T T n
(7) / (Opus, @) dt = / / wipi(u)Agidxdt,  p;(u) = ao + Z ik Uk,
0 0o Ja —

where (-,-) denotes the duality pairing of W2*(Q)" and W24(2).

Observe that the weak formulation is weaker than the traditional one. We can change
it, after an integration by parts, to the usual weak formulation

/OT<8tuZ,¢z dt = / / Pi() Vit + 4 V() - Vot

for all ¢; € L>(0,T; Wh>°(Q)), since u;Vur = uj/urVy/ur € LY(Qr). The regularity is
generally lower compared to the results in [7], where u; € L?(0,T; H'(2)) has been proven.
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The reason is that the logarithmic entropy (4) can be interpreted to be of “zero order”
with respect to u;, while the Boltzmann entropy h(u), which was used in [7], is of “order
one” in u;.

Theorem 1 is shown by using the entropy method; see, e.g., [13]. Since the entropy
variable w; = (0Oh/0u;)(u) = m;(1 — 1/u;) is not invertible for every w; € R, we regularize
the entropy density by h.(u) = h(u) +eh®(u) for € > 0, where h%(u) = > | u;(logu; — 1).
Then hZ' : R — (0,00) is well-defined. However, this generally destroys the entropy
structure in the sense that A(u)h”(u)™! or, equivalently, h”(u)A(u) may be not positive
semidefinite. Therefore, we also regularize A(u) by A.(u) = A(u) +eA%(u), where A%(u) is
a diagonal matrix with entries (p;/m;)u? and sufficiently large numbers y; > 0. Lemma 4
below shows that h!(u)A.(u) is positive definite, which yields some L*(Q) gradient bounds.
Note that our regularization is simpler than that one used in [7].

The estimates from the entropy inequality (5) are not sufficient to define u;p;(u) from (7)
in L'(Q7) in the three-dimensional case, since the Gagliardo—Nirenberg inequality yields
u; € LY*?/4(Qr) only (see (19)). To obtain better regularity, we exploit the fact that the
SKT model can be written as dyu; = A(u;p;(u)), which allows us to use the duality method.
Basically, we use (—A) lu; as a test function, which leads to an estimate for u?p;(u) in
L'(Qr) and, because of a;; > 0 due to (6), an estimate for u; in L3(Qr).

Theorem 2 (Large-time behavior). Let Assumptions (A1)-(A8) hold and suppose that
d=1and ap >0 foralli=1,...,n. Let u be the weak solution to (1)~(2) constructed in
Theorem 1 and let u; = meas(Q)~" [, widx fori=1,....n. Then

t—o0

Since u; conserves the mass, u; is independent of time. The proof of this result is
surprisingly delicate in spite of our restriction to one space dimension. It is needed to
guarantee the continuous embedding H'(Q2) — L*>°(Q); see the proof of Lemma 13. The
usual idea is to show that the relative entropy, associated to the entropy density (4),
satisfies an inequality similar to (5) and to estimate the entropy production term (the
gradient bounds) in terms of the relative entropy. Unfortunately, we have not been able
to prove this entropy inequality, since the deregularization limit in the logarithmic term
log u; is difficult and the low integrability of dyu; and u; does not allow us to use Oh(u)/u;
as a test function in equation (7) to derive an entropy inequality. We circumvent this issue
by regularizing the relative entropy:

H(u|a) = Zm/(log(ﬂi +n) —log(u; +n))dz, n>0.
i=1 Q
The difficult part is to estimate the matrix product h”(u + n)A.(u). We are able to show

that this matrix is positive definite up to a term of order O(,/), which vanishes when
¢ — 0. This shows that in the limit ¢ — 0, for 0 < s < t,

Ho(u(t)|u) + C’Z/ /Q Vv, + 1’ dede < Hy(u(s)|a), 0<s<t.
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The entropy production can be estimated as (see Lemma 14)
| Ve - Vit <o [ [ 1vyapds < o)
0 0o Jao

Note that the Poincaré~Wirtinger inequality would only yield the difference \/u;(t) — ﬁ
The previous inequality implies the existence of a sequence ¢, — oo as k — oo such that
| \v/wi(tk) = V5| 20) — 0. We will show that this implies the convergence H, (u(ty)|u) — 0
as k — oo, and smce the relative entropy is bounded and nonincreasing, thls convergence
holds for any sequence t — oo. Finally, the Csiszar—Kullback inequality (Proposition 16
in the Appendix) concludes the proof.

The paper is organized as follows. We prove the positive definiteness of h”(u)A(u) and
hY(u)A-(u) in Section 2. Theorem 1 is proved in Section 3, while Section 4 is devoted to
the proof of Theorem 2. Some auxiliary results are collected in Appendix A.

2. POSITIVE DEFINITENESS OF MOBILITY MATRICES

We introduce the Hessian matrix of h(u), defined in (4), by H(u) = h”(u) with entries
Hij(u) = dymu; ? fori,j=1,.

Lemma 3. It holds for any z € R™ and u € (0,00)" that

T z; 1 %
H(uwA > E Tiig—% _§ 87 — § may | 2L
2t H(u)A(u)z 2 @ip ?+ 2 ( a ]a]) 4

J=1,5#i ’

Proof. The elements of the matrix H (u)A(u) equal

(A = 628+ 6, man % + 22
v k=1

%

Q40 % U [
= (51]71'@ + 51] <27Tz J + Z Wzazkﬁ) + (1 — (52J>7TZU—J

Uil i i
This gives for all z € R™:
(8) 2T H(u)Au)z = Z Wiaz‘ou—; +2 Z maiiu_i-
2%
+ Z Z T 2 —i— Z Titij—
i=1 k=1, k#i i,7=1,1i#£j Wi

We use Young’s inequality to estimate the last term:

n

n
> > ) Y2y L%
T Q45 = — T Q5 Z
" Nuz™ " 4y

ij=1,i#j ’ U.ﬂ i#j

Uj o 1 z
E Q45— Qz 1 E Wjajiu—

i,j=1,1#] i,j=1,1#]
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The first term on the right-hand side cancels with the third term on the right-hand side of
(8). Therefore,

n 2 n n 2
. 2z 1 Zi
2" H(u)A(u)z > Zﬂiaz‘o—Q + Z (27Ti6lu‘ v Z Wjaji) o
i=1 i i=1 4 1,j=1,i#j i

which finishes the proof. [l

For € > 0, we define the approximate entropy density

n

(9) he(u) = h(u) + eh®(u), where h(u) = > ui(logu; — 1).

i=1
We set H%(u) = (h°)"(u) with entries H?j(u) = 5Z~jui—1’ i,j=1,...,n, and
H.(u) = H(u) +cH’(u), where H_ ;;(u) = 6y (l; + i)

U

i W

We also need to approximate the diffusion matrix:

A(u) = A(u) +eA%wu), where Agj(u) = §ij/;—:u?,
imposing that p; > >_.;(aij + aj;)/2. The latter condition is necessary to prove that the
product H.(u)A:(u) is also positive definite.

Lemma 4. It holds for any z € R™ and u € (0,00)" that

H (u)A(u)z > 2V H(u)A(u)z + 2 Z ayz: + € &uizf.
i=1 i—1
Proof. We decompose the product H.(u)A.(u) as
H.(u)Ac(u) = H(u)A(u) + s(HO(u)A(u) + H(u)AO(u)) + &2 HO(u) A (u).

We compute first the terms of order &:

. uk
— ik— + 2a; 1 — dij)ai;,
4—|—E aku-+ a>+( i)ai

3

2T (H(u)A(u) + H(w)A%(u))z = Z (@ + Z aik% + 2a;; + ui) 27

i=1 b kA ‘
n n
+ E E aijZiZj
i=1 j=1,j#i

n

=1

i=1 j=1,ji
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The last term is estimated by using Young’s inequality z;z; > — (22 + zjz)/ 2:

Z Z aij2i%5 2> —%Z Z (aijZE +aijZ]2)

i=1 j=1,j7#i i=1 j=1, j#i
n n n n
53> w3y Y
= —= Q2] — = Qii2;
2L L UV QL L TV
i=1 j=1,j#i J=1li=1,i#j

which, because of the choice of p;, shows that

n

2T (H(w)A(u) + H(w)A(u))z > 2 Zaiiz? + Z (m - % Z (aij + aji))ziz

=1, j#i
n
> 2 E aii2?~
i=1

The e2-term becomes 27 HO(u) A% (u)z = >0, (pi/mi)uiz?. Collecting these terms, the proof
follows. g

3. PROOF OF THEOREM 1
Let T >0, N e N 7=T/N>0,6 >0, and € > 0. Let u? = (u? ul )

e,lr: " Yen
be a componentwise bounded sequence of functions with positive lower bounds satisfying
h(u?) — h(u®) strongly in L'(Q) and u? — u° strongly in L?(Q) as e — 0.

Step 1: Solution of an approximated problem. We introduce the entropy variables w; =
(Ohs/0u;)(u) = m(1 — 1/w;) + elogu;, i = 1,...,n. Since the range of AL is R", the
transformation u : R"® — (0,00)", u(w) = (h.)"!(w), is well defined. Furthermore, we
introduce the mobility matrix B.(w) = A.(u(w))H.(u(w))™'. By construction of u?, we
can define w® = h.(u?), and this is an element of L>(Q; R"). Then u(w’) = u?. Let m =1
if d=1and m = 2if d = 2,3. Given k € N and w*! € L®(Q;R"), we wish to find
wk € H™($; R™) solving

(10) - [l —uwt ) gdo + [ Vo1 Bulw)Vutda
+5/Q <;mpawk : Da¢+wk-¢>d:¢ =0

for all ¢ € H™(;R™), where a = (v, ..., aq) € N& is a multiindex and D* equals the
partial derivative 9l* /9x§" - - - 9x5e.

We claim that the existence of a weak solution w* follows from [12, Lemma 5]. The
construction of h. ensures that Hypothesis H1 of [12] is satisfied. Lemma 4 shows that
Hypothesis H2 holds as well. Also Hypothesis H3 is fulfilled since (1) does not contain
any source terms. We deduce from [12, Lemma 5] that there exists a weak solution w* €
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H™(Q;R™) to (10), satisfying the discrete entropy inequality

(11) /he(u(wk))dx + 7'/ Vuw® : B.(w*)Vw"dx
Q Q
+57‘/ ( > |Dw k2+|wk|2>dm </h( (w*1))dz.
Q
laj=m
We derive some estimates for w* and u* := u(w*). According to Lemma 4, the second

term in (11) can be estimated as follows:

(12) /Vw Vwkd:c—/Vu H_(uF) A (u*)VuPda

77777

recalling definition (6) of k. Therefore, since a; > 0 by Assumption (A3), summing (11)
over k=1,...,7,

(13) / (u”) d:v+CTZZ/ IV (uh) 22 + | Vub?) da

k=1 i=1
+5¢Z/(Z |D%w “+|wk|2)d:v</h( Ndx < C,
o=

where C' > 0 denotes here and in the following a constant which is independent of 9, ¢,
and 7 with values changing from line to line.

To derive bounds in H'(Q2), we apply the Poincaré-Wirtinger inequality for which we
need a uniform estimate for u/. We take the test function ¢ = (J1,...,d;) in (10) and
sum the resulting equation over k = 1,...,j. Then, taking into account (13),

J
(14) Og/ugdx:/u?dx—(STZ/wfda:
/ udz + TZ/ 1)dz < C(u’, T, Q).

We infer that
(15) ¥l @) < Cle,7),  Vo|w"|mm@) < C(7).

Step 2: Limit 6 — 0. Let w® := w* and v’ := u*. Before we pass to the limit § — 0, we
derive a very weak formulation for «’. It holds that

(Bo(w)Vu'); = (Ac(u) V') = (A (1) Vi )i + V(ugp(u”))
= SV )+ V(ulp(u)).

(2
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Therefore, in view of (10), (u®, w?) solves for all ¢ € H2(Q;R"),

(16) %/Qm ok ¢dx—Z/ (5’“ 3 4 ulpy(u ))Ad)ida:
+5/Q< > Dawé-D%er‘*-gb)dx:o.

|a]=m

In view of the uniform bounds (15) and using the compact embedding H'(Q2) — L*(Q) (if
d < 3), there exist subsequences of (u’) and (w®), which are not relabeled, such that, as
0 —0,
u’ — u strongly in L*(Q), 6w’ — 0 strongly in H™(Q).

It follows from the linearity of p; that ulp;(u®) — wu;p;(u) strongly in L2(Q). Moreover, up to
a subsequence u’ — u a.e. in 2 and, because of the continuous embedding H*(Q2) < L5()
for d < 3, (u?)® — u? weakly in LQ(Q). Thus, passing to the limit § — 0 in (16), we find
that, for all ¢ € HQ(Q R™),

(17) %/Q(u e ¢dx—2/ (;‘; 3 4 ubpy(u ))Aqﬁidx,

where we have set u* := w.

Step 3: Bounds uniform in (¢, 7). We introduce piecewise in time constant functions and
formulate some bounds uniform in (¢, 7). Let u™(2,t) = u(z) for x € Q, t € ((k—1)7, k7].
At time t = 0, we set u(™(-,0) = u?. Furthermore, let ™ = (u{”, ..., u{"). We define the
backward shift operator (o,u™)(z,t) = u*~*(z) for € Q, t € ((k — 1)1, k7]. In view of
(17), u(™) solves

(18) / / — o,u™) - pdudt

_Z/ /(gi N3 4 w7 (ul ))Agbidxdt

for piecewise constant functions ¢ : (0,7) — H?(Q;R"). By a density argument, this
equation also holds for all ¢ € L?(0,T; H2(2;R™)) [18, Prop. 1.36].

We conclude from the summarized discrete entropy inequality (13), the L'(Q) estimate
(14), and the Poincaré-Wirtinger inequality the following (e, 7)-independent bounds.

Lemma 5. There exists a constant C > 0, which is independent of € and T, such that for
allt=1,...,n,

UiT Lo°(0,T;L1 (9 ! L2(0,T;H1(Q)) € UiT L2(0,T;H1(Q)) = L.
(s y A+ ™2 +Velul”) <C

The Gagliardo—Nirenberg inequality for p = 1+ 2/d and 6 = d/(2 + d) gives

T T
T T T 0 (r 2p(1-6
(19) WNMWT—AH<>WMpﬁscAHMBWW )22 0qy
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T
(r 1-60 T
< Oy [ 1) it < €,
0

% (0,T;L1(Q)

since 2pf = 2. As we need at least a uniform estimate for ugT) in L*™(Qr) for n > 0 to
pass to the limit in (18), the above LP(Qr) bound is not sufficient except for d = 1. We
need an additional estimate, which is provided by the following lemma.

Lemma 6. There exists a constant C' > 0, which is independent of € and 7, such that
I lze@m + e lnon < €. i=1,.0n
Proof. We use the duality method. For this, let ¢f € {¢ € H2(Q) : [,¥dx = 0} be the

unique solution to
(20) —AYF = uk — ][ ufder in Q, V¢F-v=0 ondQ,
Q

where f ufdx = meas(Q)™" [, ufdz. This problem is well-posed since uf € L*(Q2) and
00 € C?. We use 1F as a test function in the weak formulation (20):

/ |Vk[Pde = / ufyFdr — ][ ufdzx / YFde = / uFyFde
Q Q Q
< Nl 2@ 19f l20) < Cllugllz @) I VYF 220

where we applied the Poincaré-Wirtinger inequality in the last step. Thus, ||[V¥|| 2 <
C||uf| r2(q) and, by the Poincaré inequality again, ||[¢F]12@) < Cluf||12(q). Hence,
105 o) < Cllugllz2e)

Now, taking ¢; = ¢f and ¢; = 0 for j # i as a test function in the weak formulation of

(17) and using equation (20) for uf and the property [, ¢Fdz =0,
1 1 1
2 [t - aututde = 2 [ b - abetds - o (- ub e [ b
Q T Q Q

T Q T

= [ (5wl i) Avtas

:_/Q(ZZ( )2+ ulbpi(u )kdx—i-][ kdm/ <€M 3 4+ ubpi(u ))dx.

Summing this identity over £ = 1,..., N and observing that
1 1
—2 @t = st tde = - [ (VR - Vot Vel
Q

T

1 _
> o [ (VLR = [Vl e
T Ja

we obtain

(1) / (VO — [Vy0P)do < — / / (“" D) 1 ()2 >)dzdt

37;
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+/OT (]{lugﬂdx) /Q (giﬁ (D)3 4 s (u ))dmdt.

As uET) is bounded in L*°(0,T; L'(Q2)) by Lemma 5, we can estimate the last term on the
right-hand side by

/OT(][ Tdm)/ (2/;;( 1(7')) +u( ps(u (T)))dxdt
= / /(gi ) ))da:dt.

We deduce from Young’s inequality ab < (da)?/p+ (b/6)?/q for a, b > 0 and 1/p+1/g=1
for suitable 0 > 0 that

0yE Hi (3 o EHi ()
Cu’)3 W)’ < s w?) + O,
T 1 T
CuyuVpi(u™) < 5 (w7 Vi) + Copi(ul?).

The first terms on the right-hand sides can be absorbed by the first term on the right-hand
side of (21), leading to

5 v = wutar <= [ ] (G0 S0l ) s

+/0 /Q(CmLCgpi(u(T)))dﬂ?-

(") and this function is uniformly bounded in L>(0,T;

Since p;(u(™) depends linearly on u;
LY(9)), we conclude that

1
gt [ (G5 fmen)s

<5 [ IVlPdn+ Co) < Clul o) + Calal) < Cl).

Taking into account the inequality (u{™)2p;(u(™) > a;(u'”)3, this finishes the proof. [
Lemma 7. There exists a constant C' > 0, which is independent of € and 7, such that
HU HL3/2 orwia/za)) < C.
Proof. This estimate follows directly from Lemmas 5-6 and Hdélder’s inequality:
196 o2 = 201087) 29 o WQHW @

T)1/2
< 20V oo IV ()2 2y < €

as well as the bound for v\” in L3(Qr) and also in L3/2(Qr). O
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The improved integrability of u(”) provides a uniform bound for the discrete time deriv-
ative.

Lemma 8. There exists a constant C' > 0, which is independent of € and 7, such that
T—lHu(r) _ UTU(T)HL4/3(0,T;W3’4(Q)’) <C.
Proof. Lemma 6 shows that
7P lgsr2gry < Cy el Pllzassigr = el s, < €/C.
Let ¢ € L4(O,T; W24(Q;R™)). Then, using (18), we can estimate as follows:

u™ —ou ¢dxdt‘ ZHuz(T)pi<u(T))”L3/2(QT)||A¢i||L3(QT)
=1

M'L T
Z u Vs op 1AGi| aior) < C(L + VNIl ao,mmwa(a)-

This finishes the proof. U

Step 4: Limit (¢,7) — 0. Lemmas 7 and 8 allow us to apply the lemma of Aubin-
Lions in the version of [11], yielding the existence of a subsequence of (u(™), which is not
relabeled, such that, as (e,7) — 0,

u™ — u  strongly in L¥*(Qr) and a.e. in Qr.
It follows from Lemmas 5 and & that
(u,gT))l/2 — u1/2 weakly in L?(0,T; H*(Q)),

T—l(u(T) — oul ) — Qi weakly in L4/3(0 T; W24H(Q)).

The a.e. convergence of (ul™) implies that uET)pi(u(T)) — w;pi(u) ae. in Qp. Since
upi(u™) is bounded in L¥2(Qr), we infer that

U(T)pl( & )) — w;p;i(u) strongly in L4/3(QT)_
Furthermore, taking into account Lemma 6, as € — 0,
T T 3
el P N arsiar = £/ (€ I | aam)” < Ce* = 0.

Thus, performing the limit (g,7) — 0 in (18) shows that u solves (7). As u; € W4/3(0, T
W24Q)) < C°([0, T); W2%(Q)’), the initial condition is satisfied in the sense of W2>4(Q)’.

Remark 9 (One-dimensional case). The additional regularity from the duality method
is not needed in the one-dimensional case. In that case, the proof simplifies. First, we

may choose § = €. Second, the Gagliardo—Nirenberg inequality (19) shows that uET) is

uniformly bounded in L3(Qr). Furthermore, by estimate (12), \/EUET) is uniformly bounded
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in L*(0,T; H'(Q)). Hence, using the Gagliardo-Nirenberg inequality with § = 1/2 and the
uniform bounds in Lemma 5,

T
- T 7)114(1-6
el fnian < <C [ I sl IS e

T
< €O||UET)H%°°(O,T;L1(Q))/ ||U§T)||§{1(Q)dt <C.
0

This shows that '/ 4u57) is uniformly bounded in L*(Qr), and we obtain the same estimates

as in Lemma 6, which allow us to conclude. O

4. LARGE-TIME BEHAVIOR

In this section, we prove Theorem 2. First, we show an entropy inequality which gives
time-uniform estimates.

Lemma 10 (Entropy inequality I). It holds for all t > 0 that

/Qh(u(t))dquCé/ot/QW\/UiFdxg /Qh(uo)dx.

Proof. We find from (13) that

[ hg<u<f><t>>dx+ci§n; [ [y 2pa < [ nwo o,

where t € ((j — 1)7,j7]. Recalling that h.(u) = h(u) + eh®(u) and h°(u) > —n (see (9)),
it follows that

(22) /Q h(u(”(t))dmci /0 t /Q IV (u{7) V2 dy < /Q he(u®)dz + Ce.

Because of the a.e. convergence of (u(™), we have h(u'™(t)) — h(u(t)) in Q for ae. t €
(0,T), such that Fatou’s lemma implies that

/ h(u(t))dz < liminf / B () dx

T—0

for a.e. t > 0. Then, using the weak lower semicontinuity of the L?*(Q7) norm, we infer
from (22) in the limit (g,7) — 0 the conclusion. O

The following lemma is a consequence of Lemma 10. Both Lemma 10 and 11 are valid
in several space dimensions.

Lemma 11. There exists a constant C' > 0, only depending on u°, such that

|3 £oo (0,051 (02)) + 1108 Wil| Loo (0,00, (2)) F+ |V VUi || 20,0052 (02)) < C.
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Proof. The elementary inequalities z — logz > |logz| and z — logz > 2/2 for z > 0,
together with Lemma 10, imply that

1 2
| log ;| oo (0,00:L1(02)) < —/h(uo)d% el oo (0,00;21 (2)) < —/ h(u”)dz
T Ja i Ja
The bound on V,/u; is a consequence of Lemma 10. U

It is essential to use the entropy at time s = 0 in Lemma 10 because it is unclear how
to pass to limit (7,€) — 0 in the entropy at time s > 0, as w;(s) may vanish on a set of
zero measure. We overcome this issue by using the test function

1
mi| 1 — + elog(uf +
< ( U?‘i‘n) g( 77)>i:1 ..... n

for n > 0 in (10). This means that we need to estimate the matrix H.(u + n)A.(u), where
u+n= (uy+mn,...,u, +n), similarly as we estimated H.(u)A.(u) in Lemma 4. This is
done in the following lemma.

Lemma 12. There exists ng > 0 such that for all 0 < n < mng, u € (0,00)", and z € R, it

holds that
Z —— —neCy Z 2,

where Cy > 0 depends on (a;;), (uz) and Cy > 0 depends on (ul/m)

n
Y

2T H (u+n)Ac(u)z > 4

Proof. We decompose the matrix A (u) = A(u) +cA%(u) as follows:
Ac(u) = Aoy (u) —nA',  where A, (u) == A(u) + nA' +cA%(u + 1) — cA*(u),

Ay = MZ ik + %‘>a A% (u) = iympam;  (2u; + ).

k=1

Note that we have written the matrix A°(u) as A%(u) = A%(u + 1) — A%(u) and that we
have added and subtracted the matrix nA'. We wish to estimate

(23) H.(u+n)A-(u) = (Hu+n)+ecH(u+n)) ((Aw) + nd") + A% (u +n) — A% (u))
—n(Hu+n)+eH(u+n)A' = K'+... + K°,
where
K' = H(u+n)(A(u) +nA'),
K? = eH%(u+n)(A(u) +nAY) + e H (u + 1) A% (u +n),
K® = *H (u+n)A°(u + 1),
K*=—n(H(u+n)+ecH(u+n))A",
K° = —e(H(u+n)+eH (u+mn))A*(u).
In the following, let z € R™ be fixed.
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Step 1: Estimate of 2" K'z. Since H;;(u+ 1) = d;;m;(u; + 1)~ and

Aij(w) +nAly = Sijai + 8 au(ux +n) + ai;(w; +1d;;)
k=1

= 0;;@i0 + 0ij Z aik(ur +n) + 5z‘jaij(ui +1n) + aij(l - 5¢j)ui,
k=1

we obtain

;04 Uy, + Qs T QiU
K} =6 0 +5mzmazk E 5y (1 gy

7 (ui +n)? (ui+m)?  Yui+ Y7 (i 4 m)?

and

& T340 & U + n 2
24 TK'z = 2 gt T
(24) 2Kz Z(uﬁ—ngl—i_ Zu+ —i—AZ Wak(ui+77)221

i=1 i,k=1,1#k

+ Z mal]ulQ RiZj-

1,5=1 @#J

We estimate the last term by Young’s inequality:

n n
Wiaijui m-aij
Z (u; +m)2 "7~ Z ui+77|”|

i,j=1,i#j i,j=1,i#j
n
u; +1n .2 1 Tiij o
> Y mayitn e ] Z iy
— 2 ( . J
T (u; +m) 4 e +1n
n n
= Y may it 1 Ti%i o
- 1Wij ] 2“1 ] 7
i.j=1, i (i ) Sy

The first term on the right-hand side cancels with the third term on the right-hand side of
(24). Therefore,

n 2
7-‘-10/10 2 Z’L
> 8miai; — jGge |
1y g u+7721+ E (7TCL .g..ﬂja])ui+77
J=1,j#i
n 2
TG /<; %
> —
Z ’U,Z + 77 4 ; Uu; + 77’
where k is defined in (6).
Step 2: Estimate of 27 K?z. It follows from

,1 2 a;0 . U +1 iy U
K2 =0y +65) a; +0ijai + (1= 0, + 6
"ui+n J;akuwn s (1= 0y 2, + i
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that

EETONS S (u .

i=1

n a..u.
2a;; i)z 1—05)—"—2z.
+ a +u)zl+2( j)uﬂrnzzj

4,j=1

E azk

k=1, ki

Using Young’s inequality z;z; > —(27 + 2]2) /2 and taking into account our choice of p; in
Section 2, we find that

Zuzz +Z (1—246;) zZzJEZuZz ——Z Z awz +z

3,j=1 1=1 j=1,j7#i

>§:<M—-§:(%f+%0>ﬁzo.

J=1,5#i

This shows that
K2 > 2£Zaiizi2 > 0.

=1
Step 3: Computation of K3, K*, and K°. The definitions of the matrices yield

T 173 2 - Hi 2
K32 = B, 2 > ),
2 K7z EZW(U +n)z >
zTKA‘z:—nZ Zak—l—a Ty )22
i=1 Z " +77)2 u2+77 !
1+5w 1+5w
:_77 Q44 A5 s

5 - Lb; 2u; +1n 2ui+n 9
1 - _ E Ly ‘
2 K°z en Z(W(Z +e i z;

= 1 £
> -2 E ; — )22
=T N<Ui+n+7ri>zl

=1

Step 4: End of the proof. We insert the estimates for K, ..., K% into (23):

2
2T H (u+n)A. (u+?7,z>27rl(azo—nza” 1+§”)) 2;

_Zu +77_”6Z<Z% 1+5m)+2m>

=1

Choosing

—1
0<n<mn:= mln azo(zaw 1+(51])) J

Ln
7j=1
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the first term on the left-hand side is nonnegative, and we obtain
n n

2 n
T K Z; Z; 2 2
2 He(u+n)A(u)z = — —neCy Y —— —netCy Yy 27,
(u+n)Ae(u)z = 5 ;:1 w2y TG ;:1

where C7 = 2max;— (Z?:l a;; + pi) and Cy = 2max;—y__,(w;/m). This finishes the
proof. O

Lemma 13 (Entropy inequality II). Let d =1 and let 0 < n <y (see Lemma 12). Then
there exists C' > 0 independent of n such that for 0 < s <'t,

noopt
/ h(u(t) +n)dx + C’Z/ / Vi + nf*dedo < / h(u(s) + n)dz.
Q — Js Ja Q
Proof. We use v* = (vf,... vF) with

Oh,
k _
v = . S(uf +n) =m <1

k
i +77> + elog(u; +n)

as a test function in the weak formulation of the approximate equations (10):

1
—/(u — ) kdx—l—/Vv w*)Vuwkde
T Ja
+5/ (ZD“wk-Davk—i—wk-vk)dx:O.
Q
lal=1

Note that we have chosen § = ¢; see Remark 9. The convexity of h. implies that
(W =) - oh = (W ) = (@ ) - BLE ) 2> he (W ) — b (T ).
Furthermore, by the definition of v*

Dt - D = Vk - o = (T S i =) |V > 0.
|Z—:1 ’ Ve )V

Note that u¥ > 0, so quotients of the type m;/(u¥)? are well-defined. It follows from
Vor = H,(u* + n)Vu and Lemma 12 that

B.(w*)Vw* = Vu* : H.(u" + 1) A (u*) Vi
R | (uf + 1) - Vi 2 - k|2
— —neCy Yy ——— —ne“Cy Yy |Vui|”.
42 dra L Tk
Summarizing, this gives

/h( +n)d:c+mZqu +n)1/2\2dx</h( M 4on)de
Q

=1

—57/ kd:v+775¢012/ Nui +775 2rCy ZWU’“ 2.

=1
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We sum this inequality from k = j,...,¢ for 7 < ¢:

(25) /h(u + 1 da:+/<czz /|Vu + )22 da

i=1 k=j

¢
g/hs(ujl—i—n)dx—aZT/wk
Q = Jo

+ngclzz /' d:r+n520 Y [ 1vutiar

i=1 k= i=1 k=j

We know from Lemma 5 that
N

> T @) +e Z 7l i @)

k=0

19

Since |Vul|?/(uf + n) = 4uF|V (uF)/212 )/ (uF + ) < 4|V (uF)'/?|, the last two terms on the
right-hand side of (25) are bounded from above by neC'. Thus, it remains to estimate the

first term on the right-hand side of (25). We write

¢
—527/wk-vkd:v:[1—l—12, where
= Q
:—SZZ /m( n)wfdx,

i=1 k=j
n £

——82227 log(u¥ 4 n)wrda.

i=1 k=j &

Since estimate (13) shows that

n N
(26) e Y rlwkling <

i=1 k=1

we obtain

heeySor [n(1e )i < cyve

i=1 k=j

To estimate Iy, we first compute

[ Now(ut + mlde < | og(ul + ) = lognide + [ Jtogalds
Q Q Q

/ N /1 df
Q o Oui +n

1
da + log ] meas(£) < o] 1) + 1oz meas(5)
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By Lemma 5, ||uf]|1(q) is bounded uniformly in & (and (g, 7)). We conclude from (26) and
the continuous embedding H'(Q) < L>(£2) in one space dimension that

n l
L <& > 7llog(uf +m)lw@llwf =)

i=1 k=j

<EZCZ max || log(u; +n)| o \/_ZTHwkHHl < Cn, T)e*?.

.....

Summarizing these estimates, we infer from (25), using the notation from Section 3, that

(27) /h( 0+ dx+ﬁ2/ /\v ) 4 )2 Pdado
Q

< / he (™ (s — 7) + n)dz + nzC + C(n, T)WE(L + €,
Q

where s € ((j — 1)7,j7], t € ((¢ — 1)7,¢7]. Since

. Vu,” V" .
@ >+n>1/2|=' o —] | = V),
2(u” + )2 T 27y

it follows from estimate (13) that > | HV Ly 1/2||L2(QT C. We have already

proved that up to a subsequence, u”) — u; strongly in L¥2(Qr) as (e,7) — 0. We infer
that V( )4 )2 = V(u; + n)"/? weakly in L*(Qr). Therefore, u( '(t) = u;(t) strongly
in L3/2(Q) for a.e. t € (0,7T") and

/Qlog(ugﬂ (t) +n)dz — /Qlog(ui(t) +n)dz.

By the weak lower semicontinuity of the norm,

t
/ /\V\/ul n| d;vda<hm1nf/ V(™ + )22,
s JQ

The limit (7,¢) — 0 in (27) concludes the proof. O

Next, we introduce for 0 < n < 1y the relative entropy

H(ula) = / (h(u+n) — h@+n) — K@+n) - ((wtn) — @+n))de

—Zm —1)dx.

Because of mass conservation, we have [,,((u; +n)/(@; +n) — 1)dz = 0, implying that

(28) H,(ulu) = Zm/g (log(w; +n) — log(u; + n))dz.
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In view of Lemma 13, we can formulate the relative entropy inequality as
nooat

(20) M, (ult)la) + CZ/ / VT Pde < Hy(u(s)a), 0<s<t.
i=17s J9Q

We claim that the relative entropy decays to zero as t — co. To prove this, we need some
preparation.

Lemma 14. Let g € L>(0,00; L'(Q)) with g > 0 and V/g € L*(0,00; L*(2)) be such that
g = fo,9(x,t)dx is independent of t > 0 (i.e., g conserves the mass). Then there exists a
constant C' > 0 independent of g such that fort > 0,

1IVa(t) = V3l < ClIVV 90|20

Proof. The proof is similar to that one in [4, Lemma 7] but some arguments are different.
We argue by contradiction. Assume that there exists a sequence (t,),en such that

(30) nHva(tn)HLz(Q) < ”\/ g(tn) — \/§HL2(Q) for all n € N.
This implies that ||\/g(t,) — v/Gll2() > 0 and we can define

Uy, 1= /9(t) = V9 n € N.
Vet = Vil

It follows from (30) that

Vol = VIl 1
Vo) — Vil

such that Vv, — 0 strongly in L*(Q2) as n — oco. By definition, [|v,| 2@y = 1 for all
n € N, ie., (v,) is bounded in H*(Q2). Taking into account the compact embedding
H'(Q) < L*(Q), there exists a subsequence, which is not relabeled, such that v, — v
strongly in L*(Q)) and v, — v weakly in H*(Q2) as n — oo. We deduce from Vv, — 0
strongly in L*(Q2) that v is a constant and, because of ||v,||12(q) = 1, we have v # 0.

Now, we show that ||\/g(tn) — V3|l r2(0) = 0 as n — oo. Otherwise, by contradiction,

there exists a subsequence of (g(t,))nen (not relabeled) and ¢ > 0 such that ||\/g(t,) —
V|l2@) = ¢ for every n € N. Because of

(31) \V g(tn) - \/5
1V g(tn) — V3l L2

Egorov’s theorem [2, Theorem 4.29] shows that, for any ¢ > 0, there exists 2. C Q such
that meas(2\ ©.) < € and

V 9(tn) — \/E
1V g(tn) — V3l 2@

— v strongly in L?*(Q2) and a.e. in ,

— v strongly in L*(,).
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Since v is a nonzero constant, there exist ¢ > 0 and N, € N such that for all n > N,

V9(tn) > Vg + gv a.e. in Q. if v > 0,
V9(tn) < VG — g(—v) a.e. in Q. if v < 0.

Thus, there exist K, Ks > 0 independent of ¢ such that in Q., g(¢,) > g+ K; if v > 0 and
g(t,) < g— Ky if v < 0. As the integral is absolutely continuous and ¢ > 0 is arbitrary,
this contradicts the constraint f g(t,)dxr = g. We infer that

IvVg(tn) = Villr2 =0 asn— oo

and consequently,

g(t ) f — /9(tn) /G = 24/7 strongly in L*(9).

Then the previous result and convergence (31) imply that
g(tn)_g _ g(tn)_g V g(tn)_\/ﬁ —>2\/§’U
IV9(tn) = Vil Vo) = Vallvg(tn) = Vil

strongly in L'(Q). However, this gives

g(tn)—f] dx 2+/gudx # 0
o 1V/90tn) — Vil 2y %AV@ 70

which violates the conservation of mass and ends the proof. ]

The previous lemma and the entropy inequality in Lemma 10 imply that

| IV = Vil < 0 [ 19Vl < C00)
Consequently, there exists a sequence (t;) C [0, 00) satisfying ¢, — oo as k — oo such that
Jim IV i(tr) = Vil z2(@) = 0.
This shows that
Jim flug(tr) = will o) < lim ||\/WﬂL V|| 2o |V uste) = Vil o)
%) Jim | y/ui(t) = Vil o) = 0.

In particular, we obtain, for any fixed n > 0,

lim [ log(u;(tx) + n)dx = / log(a; + n)dz,
0

k—o0 Q
and in view of definition (28) of the relative entropy, this implies that

lim H, (u(t) ) = 0.
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Since ¢ — H,(u(t)|u) is bounded and nonincreasing by (29), the convergence holds for all
sequences t — 00:

lim H, (u(t)|a@) = 0.

t—o00

Finally, by the Csiszar-Kullback inequality (see Proposition 16 in the appendix),

im [Jui(t) — ][ 21 ) < Cllas + 122 tlir?o?{n(u(t)m)m —0

t—o0

for all 0 < n < ny, which ends the proof.

APPENDIX A. AUXILIARY RESULTS

Lemma 15. Let n = 3, a13 = a1 = azs = 1, and a3 = asz = az1 = 0. Then there exist
Ty, T, T3 > 0 satisfying k > 0 (see (6)) if and only if ajyassazs > 873.

Proof. The condition x > 0 is equivalent to 8mya;; > o, 8maase > w3, and 8mzaszs > 7.
Multiplying these inequalities immediately gives 8%ajjassass > 1. On the other hand, if
this inequality is satisfied, we set

1 1 1 1
_— 1 = — 8 _— = — 8 S .
sl , T2 2( ail + 82a22a33)’ 3 9 ( To022 + 8@33)

Then 8ma; > 7 is equivalent to 83aq1ag92a33 > 1, and both 8mease > 75 and Smyass > m
are equivalent to 82myagsass > 1, which, by definition of my, is equivalent to 83a;jas0as3 > 1
again. U

The following result is proved in [3, Section 4.3, page 71, example (c)].

Proposition 16 (Csiszar-Kullback inequality). Let Q C R? be a domain and u € L*(Q).
We set . = f,udz and H(u|u) = [,(log(d + 1) —log(u+n))dz. Then

lu — al| @) < V8llall ey H(ula) 2.
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