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Abstract. The global-in-time existence of weak nonnegative solutions to a sixth-order nonlinear
parabolic equation in one space dimension with periodic boundary conditions is proved. The equation
arises from an approximation of the quantum drift-diffusion model for semiconductors and describes
the evolution of the electron density in the semiconductor crystal. The existence result is based
on two techniques. First, the equation is reformulated in terms of exponential and power variables,
which allows for the proof of nonnegativity of solutions. The existence of solutions to an approximate
equation is shown by fixed-point arguments. Second, a priori bounds uniformly in the approximation
parameters are derived from the algorithmic entropy construction method which translates systematic
integration by parts into polynomial decision problems. The a priori estimates are employed to show
the exponential time decay of the solution to the constant steady state in the L1 norm with an
explicit decay rate. Furthermore, some numerical examples are presented.
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1. Introduction. We prove the global-in-time existence of weak nonnegative
solutions to the following initial-value problem on the one-dimensional torus T with
unit length:

nt = L[n] :=
[

n
( 1

n

(

n(log n)xx

)

xx
+

1

2
((log n)xx)2

)

x

]

x
, x ∈ T, t > 0, (1.1)

n(x, 0) = n0(x), x ∈ T. (1.2)

Equation (1.1) originates from a generalized quantum drift-diffusion model for semi-
conductors, derived from a Wigner-BGK model using a moment method [10]. It is
obtained from the O(δ6) approximation of the quantum drift-diffusion model, where
δ > 0 is the scaled Planck constant; see the appendix of [15]. The variable n(x, t) rep-
resents the electron density in the semiconductor crystal and should be a nonnegative
quantity. Expanding the derivatives, the above equation can be written as

nt =
(

n(v) − 3n−1n(iv)nx − 5n−1nxxxnxx + 8n−2nxxxn2
x − 18n−3nxxn3

x

+ 6n−4n5
x + 11n−2n2

xxnx

)

x
,

where n(iv) and n(v) denote the fourth- and fifth-order derivatives, respectively, and
na

x abbreviates (nx)a for a ∈ N, showing that (1.1) is of parabolic type.
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The original model of [15], without electric field, reads as

nt = nxx − δ2

2

(

n(log n)xx

)

xx
+

δ4

10
L[n].

We consider here only the main part of the model since the treatment of the second-
and fourth-order expressions is by now well understood and much easier than the
sixth-order term. For an existence proof of the fourth-order equation (without the
L[n] term), we refer to [18]. We recover (1.1) after neglecting the second- and fourth-
order terms and setting δ4 = 10.

It is possible to derive an O(δ2m) approximation of the above mentioned Wigner-
BGK model, leading to an evolution equation of order 2m. However, its nonlinear
structure is highly complicated and, moreover, a general formulation for all m seems
to be not available. Therefore, we analyze in this paper the case m = 3 only.

Since about fifteen years, there is an increasing interest in the mathematical lit-
erature in higher-order nonlinear parabolic equations, due to their interesting math-
ematical structure and surprising properties. Probably the most famous example is
the fourth-order thin-film equation

ut + (uβuxxx)x = 0, β > 0,

which describes the surface-tension-dominated motion of thin viscous films for the
film height u(x, t) and spreading droplets in the lubrication approximation [14] or, for
β = 1, the thin neck of fluid in a Hele-Shaw cell [8]. This equation was first analyzed
by Bernis and Friedman in [2]. An overview of some results can be found in [9].
Another interesting fourth-order equation arises in the context of spin systems [11].
Derrida et al. derived from a Toom model an equation which describes fluctuations
of the interface between the regions of predominantly positive and negative particle
spins, relative to the diagonal line:

nt +
(

n(log n)xx

)

xx
= 0, (1.3)

where n(x, t) is a suitable scaling limit of a random variable. Surprisingly, the same
equation arises from the O(δ4) approximation of the quantum drift-diffusion model
mentioned above. The so-called Derrida-Lebowitz-Speer-Spohn equation (1.3) was
first analzyed in [3] for local positive smooth solutions and then in [18] for global
nonnegative weak solutions. We refer to [17] for a review on known results for (1.3).

Sixth-order nonlinear parabolic equations appear in flow modeling, describing the
spreading of thin viscous droplets under different driving forces:

ut − (uβu(v))x = 0, β > 0.

The case β = 3, for instance, arises in a mathematical model of the oxidation of silicon
in semiconductor devices [19] or for a moving boundary given by a beam of negligible
mass on a surface of a thin film [24]. For a summary of mathematical results and
more references we refer to [13]. Another sixth-order equation, with a higher-order
p-Laplacian operator,

ut − (uβ |u(v)|γu(v))x = 0, β, γ > 0,

is obtained for power-law fluids spreading on a horizontal substrate [20]. Notice
that these sixth-order equations are of degenerate type, whereas (1.1) is uniformly
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parabolic. Other (linear and nonlinear) sixth-order parabolic equations appear in cel-
lular detonation formation dynamics [22], higher-order phase field models [5], and sur-
face diffusion processes in the presence of strong anisotropy and curvature-dependent
energy [4].

Most of the above mentioned higher-order models are physically positivity pre-
serving, i.e., the solutions are expected to be nonnegative if they do so initially. For
such equations, there is generally no maximum principle which makes the mathe-
matical analysis and in particular the proof of nonnegativity quite difficult. General
mathematical theories for these equations do not exist, and several principle questions
concerning global existence, uniqueness, and regularity of solutions, in full generality,
remain open. The mathematical difficulties for (1.1) come from the logarithmic terms,
which complicates the proof of local existence of nonnegative solutions, and from the
strong nonlinearities, which make it difficult to derive a priori estimates for global
existence results. To our knowledge, no rigorous results are known up to now for the
sixth-order equation (1.1).

In order to overcome the above mentioned problems, we employ two techniques.
The first technique is to write (1.1) in different variables, such as the exponential
variable n = exp y and the power variable n = u4, and to solve (an approximation
of) the resulting equation using fixed-point arguments. The advantage of both for-
mulations is that for given (regular) y or u, the original function n becomes positive
or nonnegative, respectively. More precisely, (1.1) is (for smooth positive solutions)
equivalent to

nt −
(

n(log n)xxx

)

xxx
− 2

(

n(log n)2xx

)

xx
= 0. (1.4)

This formulation provides a symmetric structure in the sixth-order differential oper-
ator for the variable y, which is needed to solve the linearization in the fixed-point
argument. Notice, however, that the fourth-order term may have a bad sign since the
main part equals −2(nxx/n)n(iv). This exponential variable transformation was also
employed in [16, 18] for the fourth-order equation (1.3). It is used here for the first
time for a sixth-order equation.

We will prove the existence of solutions to an approximation of (1.4), but we are
not able to prove the existence of solutions in the formulation (1.4) since there are
seemingly no a priori bounds for y = log n. We need to work with another formulation
which avoids quotients and logarithms, and thus, both formulations (1.1) and (1.4)
are not appropriate. It turns out that the right variable is u = 4

√
n, since (1.1) can be

written (again for smooth positive solutions) as

nt − 2
(√

n(
√

n)xxx − 16

3
4
√

n( 4
√

n)3x

)

xxx
+ 12

(√
n( 4

√
n)2x

)(iv)

− 8
(

(
√

n)2xx +
16

3
( 4
√

n)4x

)

xx
= 0. (1.5)

We have formulated the second- and third-order derivatives in terms of
√

n since the
a priori estimate presented below provides a uniform H3 bound for

√
n(·, t) and not

for 4
√

n(·, t). For 4
√

n(·, t), only bounds for its first spatial derivative are available.
Our second technique is concerned with the derivation of a priori estimates needed

in the existence analysis. From the physical application, we expect that the entropy
functional

E(n) =

∫

T

(

n(log n − 1) + 1
)

dx
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is nonincreasing along the solutions to (1.1). The entropy dissipation −dE/dt, which
is nonnegative, contains derivatives of the solution, thus providing gradient estimates.
Such estimations can be obtained in principle by using log n as a test function in the
weak formulation of (1.1) and by integrating by parts in a suitable way. For instance,
we obtain from the formulation (1.4) for such a test function formally

dE

dt
+

∫

T

(

n(log n)2xxx − 2n(log n)3xx

)

dx = 0, (1.6)

but it is not clear how to estimate the third-order term ((log n)xx)3. The idea is to use
systematic integration by parts, developed in [15] as the so-called algorithmic entropy
construction method. In fact, it is shown in [15] that smooth positive solutions to
(1.1) are satisfying the following estimate:

dE

dt
+ C

∫

T

(

(
√

n)2xxx + ( 6
√

n)6x
)

dx ≤ 0, (1.7)

where C > 0 is some constant independent of n. In this paper, we make this estimate
rigorous for weak nonnegative solutions and give an explicit value for the constant
C. This so-called entropy–entropy dissipation inequality also allows us to prove the
exponential decay of the solutions towards the steady state with an explicit rate
involving C, valid for all t > 0.

The entropy estimate (1.7) provides an H3 bound for
√

n(·, t) and a W 1,6 esti-
mate for 6

√
n(·, t) (and 4

√
n(·, t)). Hence, we can interpret the formulation (1.5) in the

sense of H−3(T). The existence proof for (1.5) is based on the solution of a certain
approximated problem with strictly positive solutions uε = 4

√
nε indexed by a param-

eter ε > 0. The difficulty is to perform the limit ε → 0 in the approximated version
of (1.5) and, in particular, to identify the weak limits. This is done by applying
convergence results for transport plans from [1] (see Proposition 6.1 in the appendix).

Our main results are as follows.
Theorem 1.1 (Existence of solutions). Let T > 0 and let n0 be a nonnega-

tive measurable function on T with finite entropy E(n0) < ∞. Then there exists a
nonnegative weak solution n to (1.2) and (1.5) satisfying

n ∈ W 1,5/4(0, T ;H−3(T)),
√

n ∈ L2(0, T ;H3(T)),
6
√

n ∈ L6(0, T ;W 1,6(T)), ( 4
√

n)2x ∈ L2(0, T ;H1(T)).

Equation (1.5) and the initial condition (1.2) are satisfied in the sense of L1(0, T ;
H−3(T)).

Theorem 1.2 (Exponential time decay). Let n0 be a nonnegative measurable
function on T with finite entropy E(n0) < ∞ and unit mass

∫

T
n0dx = 1. Let n be

the weak solution to (1.5) constructed in Theorem 1.1. Then, for all t > 0,

E(n(·, t)) ≤ exp
(

− 1
2 (2π)6κ2t

)

E(n0),

where κ2 = 2.73573 . . . is the unique real solution to the third-order equation

18κ3 − 199κ2 + 784κ − 1024 = 0. (1.8)

Clearly, if the solution to (1.5) is positive and smooth, it solves the original
formulation (1.1).
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By the Csiszár-Kullback inequality (see, e.g., [6]), we obtain the following decay
in the L1 norm:

‖n(·, t) − 1‖L1(T) ≤
√

2E(n(·, t)) ≤ exp
(

− 1
4 (2π)6κ2t

)
√

2E(n0).

It is shown in [12] that the entropy along the solutions to the fourth-order equation
(1.3) decay exponentially fast to the mean value with rate 2(2π)4. This rate seems to
be optimal in view of the numerical results of [7]. The decay rate of the entropy of
the sixth-order equation is larger than the rate for the fourth-order equation which is
a consequence of the stronger diffusion.

The paper is organized as follows. In the following section, we prove two bounds
from below for the integral in (1.6) providing some a priori estimates. The existence
result is proved in Section 3 and the long-time behavior of the solutions is shown in
Section 4. In section 5, we present some numerical examples, and the appendix is
devoted to the proof of an auxiliary proposition, which may be of interest by itself,
used to identify the weak limits.

2. Some auxiliary inequalities. In this section we show that the integral in
(1.6) can be bounded from below by some gradient terms.

Lemma 2.1. Let n ∈ H3(T) satisfy n > 0 in T. Then

∫

T

(

n(log n)2xxx − 2n(log n)3xx

)

dx ≥ κ1

∫

T

(

(
√

n)2xxx + ( 4
√

n)2x( 4
√

n)2xx + ( 6
√

n)6x
)

dx,

where κ1 = 2.72070 . . . equals the smallest root of the fourth-order polynomial

16379

16384
κ4 − 762195

2048
κ3 +

4153083

1024
κ2 − 254741

16
κ + 20736 = 0.

Recall that we employ the notation up
x = (ux)p, up

xx = (uxx)p etc. for functions u
and numbers p. Notice that the inequality of the above lemma can be deduced from
the results of [15] for some (non-explicit) constant κ1 > 0. Lemma 2.1 provides such
a constant, which may be useful to compute the explicit rate of decay to equilibrium
of the solutions.

Proof. The proof is based on the algorithmic technique of [15]. The main idea of
this method is to reformulate integration by parts as a decision problem for polyno-
mials. We wish to find κ > 0 such that the integral

J =

∫

T

(

n(log n)2xxx − 2n(log n)3xx − κ(
√

n)2xxx − κ( 4
√

n)2x( 4
√

n)2xx − κ( 6
√

n)6x
)

dx

is nonnegative. To this end, we set n = u4 and expand the derivatives:

J = 16

∫

T

u4
[(

12 − 4κ

729

)(ux

u

)6

− 36
(ux

u

)4 uxx

u
+ 4

(ux

u

)3 uxxx

u

+
(

33 − 37κ

16

)(ux

u

)2(uxx

u

)2

−
(

6 +
3κ

2

)ux

u

uxx

u

uxxx

u
− 8

(uxx

u

)3

+
(

1 − κ

4

)(uxxx

u

)2]

dx.
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In order to show the nonnegativity of the right-hand side, we employ the following
integration-by-parts formulas:

I1 =

∫

T

(

u4
(ux

u

)5)

x
dx =

∫

T

u4
(

−
(ux

u

)6

+ 5
(ux

u

)4 uxx

u

)

dx,

I2 =

∫

T

(

u4
(ux

u

)3 uxx

u

)

x
dx =

∫

T

u4
(

3
(ux

u

)2(uxx

u

)2

+
(ux

u

)3 uxx

u

)

dx,

I3 =

∫

T

(

u4 ux

u

(uxx

u

)2)

x
dx =

∫

T

u4
((ux

u

)2(uxx

u

)2

+
(uxx

u

)3

+ 2
ux

u

uxx

u

uxxx

u

)

dx.

Clearly, in view of the periodic boundary conditions, I1 = I2 = I3 = 0. There are
more integration-by-parts formulas, but they involve derivatives of fourth and fifth
order and are therefore not useful for the following analysis.

The idea of systematic integration by parts is to formulate the integrands of the
above integrals as polynomials by translating the derivatives to polynomial variables:

ξ1 =
ux

u
, ξ2 =

uxx

u
, ξ3 =

uxxx

u
.

Then the integrand of J , up to the factor u4, translates to

S0(ξ) =
(

12 − 4κ

729

)

ξ6
1 − 36ξ4

1ξ2 + 4ξ3
1ξ3 +

(

33 − 37κ

16

)

ξ2
1ξ2

2 −
(

6 +
3κ

2

)

ξ1ξ2ξ3

− 8ξ3
2 +

(

1 − κ

4

)

ξ2
3 ,

where ξ = (ξ1, ξ2, ξ3), and the integrands of Ij become

T1(ξ) = −ξ6
1 + 5ξ4

1ξ2, T2(ξ) = 3ξ2
1ξ2

2 + ξ3
1ξ3, T3(ξ) = ξ2

1ξ2
2 + ξ3

2 + 2ξ1ξ2ξ3.

These functions are called shift polynomials. Hence, the integral J is nonnegative if
there exist constants c1, c2, c3 ∈ R such that for all ξ ∈ R

3,

S(ξ) = (S0 + c1T1 + c2T2 + c3T3)(ξ) ≥ 0.

The polynomial S is indefinite in ξ2 since the largest exponent is three. Therefore,
we choose c3 = 8 such that the coefficient of ξ3

2 in S vanishes. Then

S(ξ) = a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ2

2 + a5ξ1ξ2ξ3 + a6ξ
2
3 ,

where

a1 = 12 − 4κ

729
− c1, a2 = −36 + 5c1, a3 = 4 + c2,

a4 = 41 − 37κ

16
+ 3c2, a5 = 10 − 3κ

2
, a6 = 1 − κ

4
.

The sign of the polynomial S can be determined under the following conditions.
Lemma 2.2 (Lemma 12 of [15]). Let the real polynomial

S(ξ) = a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ2

2 + a5ξ1ξ2ξ3 + a6ξ
2
3

for ξ = (ξ1, ξ2, ξ3) be given and let a6 > 0. Then the statement S(ξ) ≥ 0 for all ξ ∈ R
3

is equivalent to

either (i) 4a4a6 − a2
5 = 2a2a6 − a3a5 = 0 and 4a1a6 − a2

3 ≥ 0,

or (ii) 4a4a6 − a2
5 > 0 and 4a1a4a6 − a1a

2
5 − a2

2a6 − a2
3a4 + a2a3a5 ≥ 0.
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We remark that the condition a6 > 0 is equivalent to κ < 4. The equations
4a4a6 − a2

5 = 0 and 2a2a6 − a3a5 = 0 are a linear system in the variables c1 and c2,

3(4 − κ)c2 +
κ2

16
− 81

4
κ + 64 = 0,

(

10 − 5

2
κ
)

c1 −
(

10 − 3

2
κ
)

c2 + 24κ − 112 = 0.

Inserting the unique solution (c1, c2) of this system into the inequality of (i) yields
the following condition on κ:

16379

16384
κ4 − 762195

2048
κ3 +

4153083

1024
κ2 − 254741

16
κ + 20736 ≥ 0.

This inequality is satisfied if and only if κ is smaller than the smaller root κ∗

1 =
2.72070 . . . or larger than the larger root κ∗

2 = 361.16783 . . . In view of the condition
0 < κ < 4, we conclude that all κ ≤ κ∗

1 are admissible. We notice that condition (ii)
does not provide a better result.

The constant κ1 in Lemma 2.1 can be slightly improved if we take into account
the dissipation

∫

T
(
√

n)2xxxdx only. This result will be used for the computation of the
decay rate of Theorem 1.2.

Lemma 2.3. Let n ∈ H3(T) satisfy n > 0 in T. Then
∫

T

(

n(log n)2xxx − 2n(log n)3xx

)

dx ≥ κ2

∫

T

(
√

n)2xxxdx, (2.1)

where κ2 is defined in (1.8).
Proof. We wish to find κ > 0 such that

J =

∫

T

(

n(log n)2xxx − 2n(log n)3xx − κ(
√

n)2xxx

)

dx

= 16

∫

T

u4
[

12
(ux

u

)6

− 36
(ux

u

)4 uxx

u
+ 4

(ux

u

)3 uxxx

u

+
(

33 − 9

4
κ
)(ux

u

)2(uxx

u

)2

−
(

6 +
3

2
κ
)ux

u

uxx

u

uxxx

u
− 8

(uxx

u

)3

+
(

1 − κ

4

)(uxxx

u

)2]

dx ≥ 0.

With the notations of the previous proof, we associate to the integrand (up to the
factor u4) the polynomial

S0(ξ) = 12ξ6
1 − 36ξ4

1ξ2 + 4ξ3
1ξ3 +

(

33 − 9

4
κ
)

ξ2
1ξ2

2 −
(

6 +
3

2
κ
)

ξ1ξ2ξ3 − 8ξ3
2

+
(

1 − κ

4

)

ξ2
3 .

Employing the same shift polynomials Ti as in the previous proof, the integral J is
nonnegative if there are constants c1, c2, c3 ∈ R such that for all ξ ∈ R

3,

S(ξ) = (S0 + c1T1 + c2T2 + c3T3)(ξ) ≥ 0.

We choose as in the previous proof c3 = 8 in order to eliminate the term ξ3
2 . This

gives the polynomial

S(ξ) = a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ2

2 + a5ξ1ξ2ξ3 + a6ξ
2
3 ,
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where

a1 = 12 − c1, a2 = −36 + 5c1, a3 = 4 + c2,

a4 = 41 − 9

4
κ + 3c2, a5 = 10 − 3

2
κ, a6 = 1 − κ

4
.

The two equations of condition (i) in Lemma 2.2 are linear equations for c1 and c2,

3(4 − κ)c2 − 20κ + 64 = 0,
(

10 − 5

2
κ
)

c1 +
(3

2
κ − 10

)

c2 + 24κ − 112 = 0.

Inserting the unique solution (c1, c2) into the inequality in condition (i) yields the
following inequality for κ:

18κ3 − 199κ2 + 784κ − 1024 ≤ 0.

All κ ≤ κ2, where κ2 is the unique solution to (1.8), satisfy this inequality. We notice
that condition (ii) gives the stronger restriction κ < κ2.

3. Existence of solutions. This section is devoted to the proof of Theorem
1.1. The proof is divided in several steps.

3.1. Existence of a time-discrete problem. Let T > 0 and τ > 0 be given.
We wish to find, for given w, a solution u ∈ W 1,6(T) with u2 ∈ H3(T) to the semidis-
crete equation

1

τ
(u4 − w4) = 2

(

u2(u2)xxx − 16

3
uu3

x

)

xxx
− 12

(

u2u2
x

)(iv)

+ 8
(

(u2)2xx +
16

3
u4

x

)

xx
. (3.1)

Lemma 3.1. Let w be a nonnegative measurable function satisfying E(w4) < ∞
and ‖w4‖L1(T) = 1. Then there exists a weak solution u ∈ W 1,6(T) to (3.1) satisfying
u2 ∈ H3(T) and u2

x ∈ H1(T). Furthermore, u4 has unit mass and the physical entropy
is dissipated in the sense

E(u4) + τC

∫

T

(

(u2)2xxx + (u2
x)2x + u6

x

)

dx ≤ E(w4), (3.2)

where C > 0 is a constant independent of τ .
Proof. In the proof we work simultaneously in the variables u and y = log(u4).
Step 1: solution of a regularized problem. We define first a regularized problem.

The solution to (3.1) is then obtained as the limit of the solutions to the regularized
problem. We reformulate (3.1) by introducing the logarithmic variable y = log(u4) as

1

τ
(u4 − w4) = (u4yxxx)xxx + 32

(

u2u2
xx − 2uu2

xuxx + u4
x

)

xx
+ ε(y(vi) − y), (3.3)

where ε > 0 is a regularization parameter. The first term on the right-hand side
comes from the formulation (1.4). The second term equals

32
(

u2u2
xx − 2uu2

xuxx + u4
x

)

xx
= 2

(

u4(log(u4))2xx

)

xx
.

The third term guarantees coercivity of the right-hand side with respect to y.
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In order to solve (3.3), we employ the Leray-Schauder fixed-point theorem (see,
e.g., [25, Theorem B.5]). Let σ ∈ [0, 1] and v ∈ W 2,4(T). We define for y, z ∈ H3(T),

a(y, z) =

∫

T

(

σv4yxxxzxxx + εyxxxzxxx + εyz
)

dx,

f(z) = −σ

τ

∫

T

(v4 − w4)zdx + 32σ

∫

T

(

v2v2
xx − 2vv2

xvxx + v4
x

)

zxxdx.

The bilinear form a is continuous and coercive since

a(y, y) ≥ ε

∫

T

(y2
xxx + y2)dx ≥ Cε‖y‖2

H3(T),

where C > 0 is some constant. Moreover, f is continuous on H3(T) since w4 ∈
L1(T) →֒ H−1(T) and v ∈ W 2,4(T) →֒ L∞(T) implies that v2v2

xx − 2vv2
xvxx + v4

x ∈
L2(T). Therefore, the Lax-Milgram lemma provides the existence of a unique solution
y ∈ H3(T) to the linear problem

a(y, z) = f(z) for all z ∈ H3(T).

This defines the fixed-point operator S : W 2,4(T) × [0, 1] → W 2,4(T), S(v, σ) = u =
ey/4. Notice that in one space dimension, H3(T) embeddes continuously into W 2,4(T)
and thus, S is well-defined. It holds S(v, 0) = 1. By standard results for elliptic
equations, S is continuous and compact since the embedding H3(T) →֒ W 2,4(T) is
compact. It remains to prove a uniform bound for all fixed points of S(·, σ).

Let u ∈ H3(T) be a fixed point of S(·, σ) for some σ ∈ [0, 1]. Then, by construc-
tion, u = ey/4 > 0 is a solution to (3.3). The convexity of φ(s) = s(log s − 1) + 1
implies that

1

τ

(

E(u4) − E(w4)
)

=
1

τ

∫

T

(φ(u4) − φ(w4))dx

≤ 1

τ

∫

T

φ′(u4)(u4 − w4)dx =
1

τ

∫

T

log(u4)(u4 − w4)dx

=

∫

T

(

− u4y2
xxx + 32(u2u2

xx − 2uu2
xuxx + u4

x)yxx

)

dx − ε

∫

T

(y2
xxx + y2)dx

= −
∫

T

(

u4(log(u4))2xxx − 2u4(log(u4))3xx

)

dx − ε

∫

T

(y2
xxx + y2)dx.

Lemma 2.1 shows that
∫

T

(

u4(log(u4))2xxx − 2u4(log(u4))3xx

)

dx ≥ κ1

∫

T

(

(u2)2xxx + u2
xu2

xx + (u2/3)6x
)

dx,

giving the estimate

E(u4) + τκ1

∫

T

(

(u2)2xxx + u2
xu2

xx + (u2/3)6x
)

dx

+ τε

∫

T

(

y2
xxx + y2

)

dx ≤ E(w4). (3.4)

Thus, y and yxxx are bounded in L2(T) (with a bound which depends on ε). By the
Gagliardo-Nirenberg inequality, we infer a bound for y in H3(T). This shows that
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u = ey/4 is bounded in H3(T) and hence, also in W 2,4(T). This proves the desired
bound for all fixed points of S(·, σ).

The Leray-Schauder theorem then provides a solution u to S(u, 1) = u, which we
denote by uε. By construction, we can write uε = exp(yε/4) > 0 for some yε ∈ H3(T).
This fixed point is a periodic solution to the following equation:

1

τ
(u4

ε − w4) =
(

u4
ε(log u4

ε)xxx

)

xxx
+ 32

(

u2
εu

2
ε,xx − 2uεu

2
ε,xuε,xx + u4

ε,x

)

xx

+ ε(y(vi)
ε − yε),

which can be written equivalently as

1

τ
(u4

ε − w4) = 2
(

u2
ε(u

2
ε)xxx − 16

3
uεu

3
ε,x

)

xxx
− 12

(

u2
εu

2
ε,x

)(iv)

+ 8
(

(u2
ε)

2
xx +

16

3
u4

ε,x

)

xx
+ ε(y(vi)

ε − yε). (3.5)

Step 2: limit ε → 0. We have to show that, as ε → 0, uε converges to some

function u, which solves (3.1). The estimate (3.4) shows that the sequence (u
2/3
ε ) is

bounded in W 1,6(T) and that (u2
ε) is bounded in H3(T). Since W 1,6(T) embeddes

continuously into L∞(T), the first bound implies that also (uε) is bounded in W 1,6(T).
Thus, for a subsequence, as ε → 0,

uε ⇀ u weakly in W 1,6(T), u2
ε ⇀ g weakly in H3(T). (3.6)

Employing again the compactness embedding of W 1,6(T) into L∞(T), again for a
subsequence, we infer that uε → u strongly in L∞(T). Hence, g = u2. Moreover,
u2

ε → u2 strongly in W 2,∞(T). These results show that

u2
ε(u

2
ε)xxx ⇀ u2(u2)xxx weakly in L2(T), (3.7)

(u2
ε)

2
xx → (u2)2xx strongly in L∞(T), (3.8)

and

(u2
εu

2
ε,x)x =

1

2
(u2

ε)x(u2
ε)xx → 1

2
(u2)x(u2)xx =

1

4

(

(u2)2x
)

x
= (u2u2

x)x (3.9)

strongly in L∞(T). By Proposition 6.1 of the appendix, with α = 2, β = 2/3, and
γ = 4/3, and the W 1,6 bound for uε,

uεu
3
ε,x =

(3

4

)3

(u4/3
ε )3x →

(3

4

)3

(u4/3)3x = uu3
x strongly in L2(Ω), (3.10)

and, with α = 2, β = 2/3, γ = 1,

u4
ε,x → u4

x strongly in L3/2(Ω). (3.11)

Finally, the entropy estimate (3.4) shows that
√

ε‖yε‖H3(T) is uniformly bounded.
Hence, for a subsequence,

εyε → 0 strongly in H3(T). (3.12)

The convergence results (3.7)-(3.12) allow us to perform the limit ε → 0 in (3.5),
which holds in the sense of H−4(T). Therefore, u is a nonnegative weak solution to
(3.1).
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Step 3: end of the proof. We need to verify that u4 has unit mass and that (3.2)
holds. Conservation of mass follows from the weak formulation of (3.1) by using z = 1
as a test function. It follows from (3.4) that uε satisfies, for some constant C > 0,

E(u4
ε) + τC

∫

T

(

(u2
ε)

2
xxx + u6

ε,x + (u2
ε,x)2x

)

dx ≤ E(w4).

Since (u2
ε)xxx, u3

ε,x, and (u2
ε,x)x converge weakly in L2(T), we conclude that

E(u4) + τC

∫

T

(

(u2)2xxx + u6
x + (u2

x)2x
)

dx

≤ E(u4) + τC lim inf
ε→0

∫

T

(

(u2
ε)

2
xxx + u6

ε,x + (u2
ε,x)2x

)

dx ≤ E(w4).

This finishes the proof.
Remark 3.2 (Convergence). The convergence results (3.10) and (3.11) can be

proved without the use of Proposition 6.1 by employing the H1 bound for u2
ε,x. Indeed,

this fact, together with the boundedness of (uε,x) in L6(T), implies that the sequence
(u3

ε,x)x = 3
2uε,x(u2

ε,x)x is bounded in L3/2(T). In particular, (u3
ε,x) is bounded in

W 1,3/2(T), which embeddes compactly into L∞(T). Thus, for a subsequence, u3
ε,x → h

and uε,x → 3
√

h strongly in L∞(T) for some function h. By (3.6), uε,x ⇀ ux weakly

in L6(T). We conclude that 3
√

h = ux and hence, u3
ε,x → u3

x strongly in L∞(T) and

u3
ε,x ⇀ u3

x weakly in W 1,3/2(T). Therefore,

uεu
3
ε,x → uu3

x strongly in L∞(T),

u4
ε,x = uε,xu3

ε,x ⇀ uxu3
x = u4

x weakly in L6(T),

which is sufficient to conclude the proof.
Remark 3.3 (Regularity). Lemma 3.1 shows that the square root of the particle

density satisfies the regularity
√

n = u2 ∈ H3(T). Actually, we can show a slightly
improved result. We claim that n = u4 ∈ H4(T). In order to see this, we observe
that (3.1) can be rewritten, in the sense of distributions, as

1

τ
(u4 − w4) = (u4)(vi) − 4

[

3(u2)x(u2)xxx − 4(u2)xxu2
x + (u2)2xx + 4(u2)x(u2

x)x

]

xx
.

Since the terms inside of the bracket [· · · ] are L2(T) functions, we infer that (u4)(vi)

∈ H−2(T) and therefore u4 ∈ H4(T).
It is known that whenever a function u2 has bounded second-order derivatives,

then u has bounded first-order derivatives [21] and

‖ux‖L∞(T) ≤ c‖(u2)xx‖L∞(T)

for some constant c > 0. Now, since u2 ∈ H3(T) →֒ W 2,∞(T), we obtain by the above
result that 4

√
n = u ∈ W 1,∞(T).

3.2. A priori estimates. Let T > 0 and τ > 0 be given such that T/τ ∈ N. We
define the step function u(τ) : [0, T ) → L2(T) recursively as follows. Let u0 = 4

√
n0

and for given k ∈ N, let uk ∈ W 1,6(T) with u2 ∈ H3(T) be a nonnegative solution
to (3.1) with w = uk−1. Now define u(τ)(t) = uk for (k − 1)τ < t ≤ kτ . Then u(τ)
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satisfies the equation

1

τ

(

(u(τ))4 − (στu(τ))4
)

= 2
(

(u(τ))2((u(τ))2)xxx − 16

3
u(τ)(u(τ))3x

)

xxx

− 12
(

(u(τ))2(u(τ))2x
)(iv)

+ 8
(

(

(u(τ))2
)2

xx
+

16

3
(u(τ))4x

)

xx
, (3.13)

where στ denotes the shift operator (στu(τ))(t) = u(τ)(t − τ) for τ ≤ t < T . By (3.2)
and taking into account the elementary inequality x4(log x4 −1) ≥ x− e for all x ≥ 0,
we obtain the following a priori estimates:

‖u(τ)‖L∞(0,T ;L4(T)) + ‖(u(τ))2‖L2(0,T ;H3(T)) ≤ C, (3.14)

‖(u(τ))2x‖L2(0,T ;H1(T)) + ‖u(τ)‖L6(0,T ;W 1,6(T)) ≤ C, (3.15)

where C > 0 denotes here and in the following a generic constant not depending on
τ . For the limit τ → 0, we need more estimates.

Lemma 3.4. The function u(τ) satisfies

τ−1‖(u(τ))4 − (στu(τ))4‖L5/4(0,T ;H−3(T)) ≤ C. (3.16)

Proof. We have to show that the right-hand side of (3.13) is uniformly bounded
in L5/4(0, T ;H−3(T)). To simplify the notation, we write u = u(τ). First, we remark
that by the Gagliardo-Nirenberg inequality, it holds for θ = 1/6,

‖u‖24
L24(0,T ;L∞(T)) ≤ C

∫ T

0

‖u(·, t)2‖12θ
H3(T)‖u(·, t)2‖12(1−θ)

L2(T) dt

≤ C‖u‖24(1−θ)
L∞(0,T ;L4(T))

∫ T

0

‖u2(·, t)‖12θ
H3(T)dt ≤ C. (3.17)

Now we estimate the right-hand side of (3.13) term by term. By the Hölder
inequality with respect to t, applied for p = 8/3 and p′ = 8/5, we obtain

‖u2(u2)xxx‖5/4

L5/4(0,T ;L2(T))
≤

∫ T

0

‖u(·, t)‖5/2
L∞(T)‖u(·, t)2‖5/4

H3(T)dt

≤ ‖u‖5/2

L20/3(0,T ;L∞(T))
‖u2‖5/4

L2(0,T ;H3(T)) ≤ C, (3.18)

taking into account the estimates (3.14) and (3.17). Applying the Hölder inequality
with p = 8/3 and p′ = 8/5 yields

‖uu3
x‖

5/4

L5/4(0,T ;L2(T))
≤

∫ T

0

‖u(·, t)‖5/4
L∞(T)‖u(·, t)‖15/4

W 1,6(T)dt

≤ ‖u‖5/4

L10/3(0,T ;L∞(T))
‖u‖15/4

L6(0,T ;W 1,6(T)) ≤ C, (3.19)

in view of (3.15) and (3.17). The estimates (3.14), (3.15), and (3.17) show that

‖(u2u2
x)x‖L5/4(0,T ;L2(T)) = ‖uux(u2)xx‖L5/4(0,T ;L2(T))

≤ ‖u‖L15/2(0,T ;L∞(T))‖ux‖L6(0,T ;L6(T))‖(u2)xx‖L2(0,T ;L2(T)) ≤ C. (3.20)
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Next, we apply the Gagliardo-Nirenberg inequality with θ = 7/10 and then the Hölder
inequality with p = 8/7 and p′ = 8:

‖(u2)2xx‖
5/4

L5/4(0,T ;L2(T))
= ‖(u2)xx‖5/2

L5/2(0,T ;L4(T))

≤ C

∫ T

0

‖u(·, t)2‖5θ/2
H3(T)‖u(·, t)2‖5(1−θ)/2

L∞(T) dt

= C

∫ T

0

‖u(·, t)2‖7/4
H3(T)‖u(·, t)‖3/2

L∞(T)dt

≤ C‖u2‖7/4
L2(0,T ;H3(T))‖u‖

3/2
L12(0,T ;L∞(T)) ≤ C, (3.21)

by (3.14) and (3.17). Finally, we conclude from (3.15) that

‖u4
x‖L5/4(0,T ;L1(T)) = ‖ux‖4

L5(0,T ;L4(T)) ≤ ‖u‖4
L5(0,T ;W 1,4(T)) ≤ C. (3.22)

Since L1(T) embeddes continuously into H−1(T), the above estimates show that

τ−1‖u4 − στ (u4)‖L5/4(0,T ;H−3(T)) ≤ 2
∥

∥

∥
u2(u2)xxx − 16

3
uu3

x

∥

∥

∥

L5/4(0,T ;L2(T))

+ 12
∥

∥(u2u2
x)x

∥

∥

L5/4(0,T ;L2(T))
+ 8

∥

∥

∥
(u2)2xx +

16

3
u4

x

∥

∥

∥

L5/4(0,T ;H−1(T))

is uniformly bounded.

Lemma 3.5. The function u(τ) satisfies

‖(u(τ))4‖L5/4(0,T ;H3(T)) ≤ C.

Proof. We set again u = u(τ) and observe that

(u4)xxx = 24uu3
x + 12u2(u2

x)x + 2u2(u2)xxx.

The first and last terms are uniformly bounded in L5/4(0, T ;L2(T)), taking into ac-
count (3.18) and (3.19). Furthermore, the Hölder inequality with p = 8/3 and p′ = 8/5
and the bounds (3.15) and (3.17) imply that

‖u2(u2
x)x‖5/4

L5/4(0,T ;L2(T))
≤

∫ T

0

‖u(·, t)‖5/2
L∞(T)‖ux(·, t)2‖5/4

H1(T)dt

≤ ‖u‖5/2

L20/3(0,T ;L∞(T))
‖u2

x‖
5/4
L2(0,T ;H1(T)) ≤ C.

Hence, (u4)xxx is uniformly bounded in L5/4(0, T ;L2(T)). Furthermore, u4 is uni-
formly bounded in L5/4(0, T ;L2(T)). This gives the desired estimate.

3.3. The limit τ → 0. The a priori estimates of the previous subsection are
sufficient to pass to the limit τ → 0. In fact, by Lemmas 3.4 and 3.5, we can apply the
Aubin lemma (Theorem 5 in [23]) to obtain the existence of a subsequence of ((u(τ))4),
which is not relabeled, such that (u(τ))4 → n strongly in L5/4(0, T ;W 2,p(T)) for all
p ≤ ∞ as τ → 0 for some limit function n. Here, we have employed the compact
embedding of H3(T) into W 2,p(T) for all p ≤ ∞. In particular, (u(τ)) converges
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pointwise a.e. Since (u(τ))4 is nonnegative, also the limit n is nonnegative, and the
function u = 4

√
n is well defined. Moreover, it holds

τ−1
(

(u(τ))4 − (στu(τ))4
)

⇀ (u4)t weakly in L5/4(0, T ;H−3(T)), (3.23)

(u(τ))2 ⇀ u2 weakly in L2(0, T ;H3(T)), (3.24)

The strong convergence of (u(τ))4 to u4 in L5/4(0, T ;L∞(Ω)) and the inequality |a −
b|4 ≤ |a4 − b4| for all a, b > 0 imply that

‖u(τ) − u‖5
L5(0,T ;L∞(T)) ≤

∫ T

0

‖(u(τ))4 − u4‖5/4
L∞(T)dt

= ‖(u(τ))4 − u4‖5/4

L5/4(0,T ;L∞(T))
→ 0,

which means that

u(τ) → u strongly in L5(0, T ;L∞(T)). (3.25)

This result allows us to prove the strong convergence of (u(τ))2 to u2 in L2(0, T ;
H2(T)). Indeed, the Gagliardo-Nirenberg inequality with θ = 3/5 and then the
Hölder inequality give

‖(u(τ))2 − u2‖2
L2(0,T ;H2(T)) ≤ C

∫ T

0

‖(u(τ))2 − u2‖2θ
H3(T)‖(u(τ))2 − u2‖2(1−θ)

L∞(T)dt

≤ C‖(u(τ))2 − u2‖2θ
L2(0,T ;H3(T))‖(u(τ))2 − u2‖2(1−θ)

L2(0,T ;L∞(T)).

By (3.14), first factor is bounded, whereas the second factor converges to zero, by the
above result. Thus,

(u(τ))2 → u2 strongly in L2(0, T ;H2(T)). (3.26)

As a consequence, we infer that

(u(τ))2(u(τ)
x )2 =

1

4
[(u(τ))2]2x → 1

4
(u2)2x = u2u2

x strongly in L1(0, T ;L1(T)),

[(u(τ))2]2xx → (u2)2xx strongly in L1(0, T ;L1(T)).

Taking into account the uniform bounds (3.20) and (3.21), it follows that

(u(τ))2(u(τ)
x )2 ⇀ u2u2

x weakly in L5/4(0, T ;L2(T)),

[(u(τ))2]2xx ⇀ (u2)2xx weakly in L5/4(0, T ;L2(T)). (3.27)

In view of the estimate (3.20), we obtain further

(

(u(τ))2(u(τ)
x )2

)

x
⇀ (u2u2

x)x weakly in L5/4(0, T ;L2(T)). (3.28)

The strong convergence of u(τ) (see (3.25)) and the weak convergence of the sequence
[(u(τ))2]xxx (see (3.24)) imply that (u(τ))2[(u(τ))2]xxx converges weakly to u2(u2)xxx

in L10/7(0, T ;L2(T)). In particular,

(u(τ))2[(u(τ))2]xxx ⇀ u2(u2)xxx weakly in L5/4(0, T ;L2(T)). (3.29)
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By Proposition 6.1, applied to α = 2, β = 2/3, γ = 4/3 and γ = 1, respectively, we
obtain

u(τ)(u(τ)
x )3 =

(3

4

)3

[(u(τ))4/3]3x ⇀
(3

4

)3

(u4/3)3x = uu3
x (3.30)

weakly in L10/7(0, T ;L2(T)) and

(u(τ)
x )4 ⇀ u4

x weakly in L3/2(0, T ;L3/2(T)), (3.31)

since (u(τ)) is bounded in L5(0, T ;L∞(T)) and L6(0, T ;W 1,6(T)).
In view of the convergence results (3.23), (3.27)-(3.31), we can perform the limit

τ → 0 in (3.13) to conclude that u solves

(u4)t = 2
(

u2(u2)xxx − 16

3
uu3

x

)

xxx
− 12

(

u2u2
x

)(iv)
+ 8

(

(u2)2xx +
16

3
u4

x

)

xx

in the sense of L5/4(0, T ;H−3(T). This proves Theorem 1.1.

4. Exponential time decay of the solutions. We prove Theorem 1.2. Let
k ∈ N, τ > 0, and t ∈ ((k − 1)τ, kτ ]. Furthermore, let uk be the periodic solution
to (3.1) constructed in Lemma 3.1. Then, by the proof of Lemma 3.1, using the
inequality of Lemma 2.3 instead of Lemma 2.1,

E(u4
k) + τκ2

∫

T

(u2
k)2xxxdx ≤ E(u4

k−1), k ∈ N,

where κ2 is given in (1.8). We employ the generalized logarithmic Sobolev inequality
with optimal constant (see Corollary 4.3 in [12]):

∫

T

v2 log
( v2

‖v2‖L1(T)

)

dx ≤ 2

(2π)6

∫

T

v2
xxxdx, v ∈ H3(T),

applied to v = u2
k. Then, since u4

0 is assumed to have unit mass, ‖u4
k‖L1(T) =

‖u4
0‖L1(T) = 1,

E(u4
k) ≤ 2

(2π)6

∫

T

(u2
k)2xxxdx,

and the above entropy inequality becomes

E(u4
k) + 1

2τκ2(2π)6E(u4
k) ≤ E(u4

k−1), k ∈ N.

This recursive inequality can be solved:

E(u4
k) ≤ E(u4

0)
(

1 + 1
2τκ2(2π)6

)

−k
, k ∈ N.

For t ∈ ((k − 1)τ, kτ ], we can write this inequality as

E
(

(u(τ))4
)

≤ E(u4
0)

(

1 + 1
2τκ2(2π)6

)

−t/τ
.

Since u(τ)(x, t) converges a.e. to u(x, t) as τ → 0 and (1 + 1
2τκ2(2π)6)−t/τ converges

to exp(− 1
2τκ2(2π)6t), we can perform the limit τ → 0 in the above inequality which

implies the assertion.
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Fig. 5.1. Time evolution of the solution n(x, t) with initial condition (5.1) with m = 1.

5. Numerical examples. The numerical examples of this section illustrate the
long-time behavior of the solution to (1.1). They also underline the preservation of
nonnegativity and the nonmonotonic behavior of the solutions. For the numerical
experiments we choose, as in [3, 18], the initial datum

n0(x) = ε + cos2m(πx), x ∈ (0, 1), (5.1)

where ε > 0 is a small parameter. We take ε = 10−4 and m = 1 or m = 8. For the
computations, we discretize (1.1) in time by the implicit Euler scheme and in space
by central finite differences. The discrete nonlinear system is solved by the Newton
method; no damping was necessary. The initial guess is chosen as the solution of the
previous time level. The time step is △t = 10−10, and we used 100 grid points.

Figures 5.1 and 5.2 show the evolution of the initial datum with m = 1 and
m = 8, respectively. Notice that we use a logarithmic scale for the ordinate. The
solution for m = 1 increases rapidly until it reaches the constant steady state ninf =
1/2 + ε. On the other hand, the solution for m = 8 starts with one higher-order
minimum, bifurcates into two local minima and reduces to one extremum again, before
converging to the constant steady state ninf = 6435/32768 + ε ≈ 0.196. In particular,
the evolution is not monotone. This behavior is similar to that of the fourth-order
equation (1.3) [3, 18].

The difference n(·, t) − ninf in the L1 norm versus time t is presented in Figures
5.3 and 5.4. In both cases, we see that the decay of the difference is approximately
exponential confirming the analytical result of Theorem 1.2.

6. Appendix. We prove the following result which is a consequence of Theorem
5.4.4 of [1].
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Fig. 5.2. Time evolution of the solution n(x, t) with initial condition (5.1) with m = 8.
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Fig. 5.3. Decay of the difference ‖n(·, t) − ninf‖L1(0,1) using the initial condition (5.1) with

m = 1.
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Fig. 5.4. Decay of the difference ‖n(·, t) − ninf‖L1(0,1) using the initial condition (5.1) with

m = 8.

Proposition 6.1. Let Ω ⊂ R
d be a bounded domain (d ≥ 1), 0 < β < γ < α <

∞, 1 < p, q, r < ∞ with αp = βq = γr, and let (uε) be a sequence of strictly positive
functions on Ω with the following properties:

(i) uα
ε → uα strongly in W 1,p(Ω), as ε → 0,

(ii) (uβ
ε ) bounded in W 1,q(Ω).

Then uγ
ε → uγ strongly in W 1,r(Ω) and, in particular,

|∇(uγ
ε )|r → |∇(uγ)|r strongly in L1(Ω).

Furthermore, when (uε) is a sequence of strictly positive functions on Ω×(0, T ), where
T > 0, and (i) and (ii) hold with W 1,s(Ω) replaced by Ls(0, T ;W 1,s(Ω)), where s = p
and s = q, respectively, then

|∇(uγ
ε )|r ⇀ |∇(uγ)|r weakly in L1(0, T ;L1(Ω)).

Proof. Let µε, µ be the measures corresponding to the densities uc
ε, uc, respec-

tively, where c = αp. Then, as (uc
ε) converges to uc strongly in L1(Ω), (µε) converges

narrowly to µ. The functions vε = ∇uε/uε belong to the space Lp(µε; Ω) since

‖vε‖p
Lp(µε;Ω) =

∫

Ω

|vε|pdµε =

∫

Ω

|vε|puc
εdx = α−p

∫

Ω

|∇uα
ε |pdx < ∞.

Thus, assumption (i) implies that (vε) converges strongly to v = ∇u/u ∈ Lp(µ; Ω) in
the sense of Definition 5.4.3 of [1]. By Theorem 5.4.4 (iii) of [1], the transport plans
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γε = (id× vε)#µε converge narrowly to γ = (id× v)#µ. Here, id denotes the identity
function on Ω and f#µ is the push-forward of the measure µ through the function f .
Since (µε) has uniformly integrable p-moments,

sup
ε>0

∫

Ω

|y|pdγε(x, y) = sup
ε>0

∫

Ω

|vε(x)|pdµε(x) < ∞,

we infer from the same theorem that, as ε → 0,
∫

Ω

f(x, vε(x))dµε(x) →
∫

Ω

f(x, v(x))dµ (6.1)

for all functions f with at most p-growth. In view of assumption (ii), this convergence
also holds for all functions with at most r-growth, r < q (see Lemma 5.1.7 of [1]).
Choosing f(x, y) = |y|r yields

∫

Ω

|∇(uγ
ε )|rdx = γr

∫

Ω

|vε|rdµε → γr

∫

Ω

|v|rdµ =

∫

Ω

|∇(uγ)|rdx.

Thus, (uγ
ε ) converges to uγ in norm and weakly in W 1,r(Ω), which implies strong

convergence (see Prop. 21.23 (g) of [26]).
In the case of the spaces Ls(0, T ;W 1,s(Ω)), s = p, q, r, the above arguments

leading to (6.1) still hold, where now x ∈ Ω×(0, T ). Then, choosing f(x, y) = φ(x)|y|r
with φ ∈ L∞(0, T ;L∞(Ω)) gives the weak convergence of |∇(uγ

ε )|r to |∇(uγ)|r in
L1(0, T ; L1(Ω)).
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