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Abstract. A one-dimensional cross-diffusion system modeling the transport of vesicles in
neurites is analyzed. The equations are coupled via nonlinear Robin boundary conditions
to ordinary differential equations for the number of vesicles in the reservoirs in the cell
body and the growth cone at the end of the neurite. The existence of bounded weak
solutions is proved by using the boundedness-by-entropy method. Numerical simulations
show the dynamical behavior of the concentrations of anterograde and retrograde vesicles
in the neurite.

1. Introduction

The aim of this paper is the analysis of cross-diffusion systems modeling the intracellu-
lar transport of vesicles in neurites. Compared to previous works like [12], where no-flux
boundary conditions are imposed, the novelties are the nonlinear Robin boundary condi-
tions and the coupling to ordinary differential equations.

Neurite growth is a fundamental process to generate axons and dendritic trees that
connect to other neurons. During their development, neurites show periods of extension
and rectraction until neuron polarity is established. Then one of the neurites becomes
the axon, while the other neurites do not grow further. The process of elongation and
retraction depends, besides many other mechanisms [15], on the motor-driven transport
of vesicles inside the neurites. Vesicles are biological structures consisting of liquid or
cytoplasm and are enclosed by a lipid membrane. They are produced in the cell body
(soma) and transport material to the tip of a neurite (the so-called growth cone). Vesicles
that fuse with the plasma membrane of the growth cone deliver their membrane lipids to
the tip, causing the neurite shaft to grow. Vesicles moving to the growth cone are called
anterograde vesicles. Retrograde vesicles are generated via endocytosis at the growth cone
plasma membrane and move back in the direction of the soma.

We model anterograde and retrograde vesicles as two different particle species as in [11].
Because of the finite size of the vesicles, we take into account size exclusion effects. In the
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diffusion limit of a deterministic lattice model, the authors of [11] derived formally mass
balance equations with fluxes that depend on the gradients of both the concentrations of
the anterograde and retrograde vesicles, leading to cross-diffusion equations. The dynamics
of the vesicle concentrations in the neurite pools at the soma and growth cone are governed
by ordinary differential equations, which are linked to the cross-diffusion equations through
nonlinear Robin boundary conditions.

The dynamics of the concentrations (or volume fractions) of the anterograde vesicles
u1(x, t) and the retrograde vesicles u2(x, t) along the one-dimensional neurite is governed
by

∂tu1 + ∂xJ1 = 0, J1 = −D1

(
u0∂xu1 − u1∂xu0 − u0u1∂xV1

)
,(1)

∂tu2 + ∂xJ2 = 0, J2 = −D2

(
u0∂xu2 − u2∂xu0 − u0u2∂xV2

)
,(2)

solved in the bounded interval Ω = (0, 1) with the soma at x = 0 and the growth cone at
x = 1 for times t > 0, supplemented with the initial conditions

(3) u1(·, 0) = u0
1, u2(·, 0) = u0

2 in Ω.

Here, u0 = 1−u1−u2 describes the void volume fraction, Ji are the corresponding fluxes, Di

the diffusion coefficients, and Vi given potentials. Equations (1)–(2) form a cross-diffusion
system with a nonsymmetric and generally not positive definite diffusion matrix, given by

(4) A(u) =

(
D1(1− u2) D1u1

D2u2 D2(1− u1)

)
.

Moreover, if u0 = 0, the equations are of degenerate type; see (24).
Let Λn(t)/Λ

max
n and Λs(t)/Λ

max
s be the percentage of currently occupied space in the

soma and the growth cone, respectively. Anterograde vesicles leave the soma and enter
the neurite at x = 0 if there is enough space with rate α1(Λs/Λ

max
s )u0(0, ·), and they

enter the growth cone with rate β1(1− Λn/Λ
max
n )u0(1, ·)u1(·, 1). Retrograde vesicles enter

the soma with rate β1(1 − Λs/Λ
max
s )u0(1, ·)u2(·, 0) and leave the growth cone with rate

α2(Λn/Λ
max
n )u0(1, ·), where αi, βi > 0 for i = 1, 2 are some constants. Thus, the fluxes at

x = 0 and x = 1 are given by the nonlinear Robin boundary conditions

J1(0, t) = J0
1 [u](t) := α1

Λs(t)

Λmax
s

u0(0, t),(5)

J1(1, t) = J1
1 [u](t) := β1

(
1− Λn(t)

Λmax
n

)
u0(1, t)u1(1, t),(6)

J2(0, t) = J0
2 [u](t) := −β2

(
1− Λs(t)

Λmax
s

)
u0(0, t)u2(0, t),(7)

J2(1, t) = J1
2 [u](t) := −α2

Λn(t)

Λmax
n

u0(1, t) for t > 0,(8)

where u = (u1, u2). Compared to [11], the boundary conditions (6) and (7) depend on u0 to
account for the resistance of entering the growth cone and soma, respectively, for instance
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due to viscosity. There is also a mathematical reason for this choice, which is explained
below.

Finally, the change of vesicle numbers in the soma and growth cone is determined by
the corresponding in- and outflow fluxes,

∂tΛn = J1
1 [u] + J1

2 [u], t > 0, Λn(0) = Λ0
n,(9)

∂tΛs = −(J0
1 [u] + J0

2 [u]) t > 0, Λs(0) = Λ0
2.(10)

Inserting (5)–(8) into these equations, they become linear ordinary differential equations
in Λn and Λn, coupled to equations (1)–(2).

Model (1)–(8) can be derived in the diffusion limit from the lattice model of [11]; see Sec-
tion 2. A Fokker–Planck equation for single-species vesicles with in- and outflow boundary
conditions was analyzed in [7]. The work [4] models a limited transport capacity inside the
neurites by taking into account size exclusion effects for a single motor-cargo complex with
and without vesicles. Advection-diffusion equations for the bidirectional vesicular trans-
port were derived in [5]. Dynamically varying neurite lengths are allowed in [14], leading
to drift-diffusion-reaction equations. A lattice model for the probability that a receptor
traveling with a vesicle is located at a given cell was analyzed in [2]. This model was
generalized in [3] by allowing motor-complexes to carry an arbitrary number of vesicles,
which leads to Becker–Döring equations for aggregation-fragmentation processes. The size
of the cargo vesicles, which strongly influences the speed of retrograde transport, was taken
into account in [16], and a free-boundary problem for the radius of the vesicle has been
formulated. We also mention the paper [1] for a related cross-diffusion system with free
boundary and nonvanishing flux boundary conditions.

The goal of this paper is to analyze model (1)–(8) mathematically. Equations (1)–(2)
are similar to the ion-transport model in [10]. The analysis of this system was based on
the boundedness-by-entropy method [6, 12] and a version of the Aubin–Lions compactness
lemma which takes into account the degeneracy at u0 = 0 [17]. The main difficulty here
is the treatment of the nonlinear Robin boundary conditions. Linear Robin boundary
conditions were considered in [8] but for stationary drift-diffusion equation for one species
only.

The key idea of our analysis is to work with the entropy (or, more precisely, free energy)

E(u) =

∫
Ω

(h(u)− u1V1 − u2V2)dx, where

h(u) =
2∑

i=1

ui(log ui − 1) + u0(log u0 − 1) and u0 = 1− u1 − u2.(11)

Introducing the electrochemical potentials µi = δE/δui = log(ui/u0) − Vi for i = 1, 2,
system (1)-(2) can be written as a formal gradient flow in the sense

∂tui = div
2∑

j=1

Bij∇µj, where Bij = Diu0uiδij, i = 1, 2,
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and δij is the Kronecker symbol. The advantage of this formulation is that the drift terms
are eliminated and that the new diffusion matrix (Bij) is (diagonal and) positive definite.
This formulation is the basis of the boundedness-by-entropy method [13, Chap. 4]. The
use of the electrochemical potentials has another benefit. Inverting the relation (u1, u2) 7→
(µ1, µ2), we infer from

ui =
exp(µi + Vi)

1 + exp(µ1 + V1) + exp(µ2 + V2)
, i = 1, 2,

that

(12) u = (u1, u2) ∈ D :=
{
u ∈ R2 : u1 > 0, u2 > 0, u1 + u2 < 1

}
,

guaranteeing the physical bounds without the use of a maximum principle.
Furthermore, a formal computation (see the proof of (21)) shows that

dE

dt
(u) +

∫
Ω

2∑
i=1

Diu0ui

∣∣∣∣∇(
log

ui

u0

− Vi

)∣∣∣∣2dx = −
2∑

i=1

[
Ji · ν

(
log

ui

u0

− Vi

)]x=1

x=0

,(13)

where ν(0) = −1 and ν(1) = 1. The most delicate terms are J1 ·ν(log(u1/u0)−V1)|x=0 and
J2 · ν(log(u2/u0) − V2)|x=1. To estimate these expressions, we exploit the fact that both
terms factorize u0. For instance,

−J1 · ν
(
log

ui

u0

− Vi

)∣∣∣∣
x=0

= α1
Λs

Λmax
s

u0(log u1 − log u0 − V1)|x=0

is bounded from above since Λs ≥ 0, −u0 log u0 is bounded, and u0 log u1 is nonpositive
due to 0 < u1 < 1. Similarly, the other boundary terms are bounded, and we conclude
that the right-hand side of (13) is bounded from above. An estimation of the entropy
production term (the second term on the left-hand side of (13)) shows that (see, e.g., the
proof of Lemma 6 in [10])∫

Ω

2∑
i=1

Diu0ui

∣∣∣∣∇(
log

ui

u0

− Vi

)∣∣∣∣2dx(14)

≥ c

∫
Ω

( 2∑
i=1

u0|∇
√
ui|2 + |∇

√
u0|2

)
dx− C

∫
Ω

2∑
i=1

|∇Vi|2dx.

Together with the L∞(Ω) bounds for ui, this provides H1(Ω) bounds for u0 and u0ui for
i = 1, 2, which are needed to apply the “degenerate” Aubin–Lions lemma [12]. Moreover,
the bounds show that we can define the traces of u0ui and u0, which is needed to give a
meaning to the boundary conditions (5)–(8). At this point, we need the factor u0ui in (6)
and (7). Indeed, without the factor u0, we are not able to define u1 and u2 at x = 0, 1.
This is the mathematical reason to introduce this factor.

We note that our method also works for more than two species and in several space
dimensions. Thanks to the L∞(Ω) bounds, no restriction on the space dimension due to
Sobolev embeddings is needed. For more than two species, one may apply the techniques
elaborated in [10].
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For our main result, we impose the following assumptions:

(A1) Domain: Ω = (0, 1), T > 0, ΩT := Ω× (0, T ).
(A2) Parameter: αi, βi, Di > 0, Vi ∈ H1(Ω) for i = 1, 2 and Λmax

n , Λmax
s > 0.

(A2) Initial data: u0
1, u

0
2 ∈ L1(Ω) satisfies (u0

1, u
0
2)(x) ∈ D for a.e. x ∈ Ω (see Definition

12 of D) and Λ0
n/Λ

max
n , Λ0

s/Λ
max
s ∈ [0, 1].

Theorem 1 (Global existence). Let Assumptions (A1)–(A3) hold. Then there exists a
weak solution (u1, u2,Λn,Λs) to (1)–(10) satisfying u1, u2 ≥ 0 and u1 + u2 ≤ 1 in ΩT ,

√
u0ui,

√
u0 ∈ L2(0, T ;H1(Ω)), ∂tui ∈ L2(0, T ;H1(Ω)′), i = 1, 2,

the weak formulation∫ T

0

⟨∂tui, ϕi⟩dt−
∫ T

0

∫
Ω

Ji∂xϕidxdt+

∫ T

0

[
Ji(x, t)ϕi(x, t)

]x=1

x=0
dt = 0

where ⟨·, ·⟩ is the dual product between H1(Ω)′ and H1(Ω), the fluxes are defined as

Ji =
√
u0∂x(

√
u0ui)− 3

√
u0ui∂x

√
u0 − u0ui∂xVi ∈ L2(ΩT ), i = 1, 2,

the initial conditions (3) are satisfied in the sense of H1(Ω)′, and equations (9)–(10) are
fulfilled in the sense of L2(∂Ω).

As mentioned above, the regularity of u0 and ui for i = 1, 2 allows us to define the
trace of u0 and u0ui such that the boundary conditions and the differential equations for
Λn and Λs are well defined. The proof of Theorem 1 is based on the entropy identity
(13), a regularization of equations (1)–(2), the Leray–Schauder fixed-point theorem, and a
compactness argument using uniform gradient estimates coming from (14).

The paper is organized as follows. We sketch the formal derivation of (1)–(8) from a
lattice model in Section 2. Theorem 1 is proved in Section 3. We present in Section 4 some
numerical experiments and properties of stationary solutions.

2. Formal derivation of the model

Equations (1)-(8) can be formally derived from discrete dynamics on a lattice, which
takes into account the in- and outflow of vesicles into the respective lattice cell. The
derivation is similar to the presentation in [11]; we repeat it for the convenience of the
reader and to highlight the main difference to [11]. We divide the domain Ω = (0, 1) into
m cells Kj of length h > 0 and midpoint xj = hj, where j = 0, . . . ,m − 1. The cell Kj

is occupied by anterograde vesicles with volume fraction u1,j(t) = u1(xj, t) and retrograde
vesicles with volume fraction u2,j(t) = u2(xj, t).
The transition rate of a vesicle to jump from cell j to a neighboring cell j ± 1 equals

ui,ju0,j±1 exp[−ηi(Vi(xj±1) + Vi(xj))], i = 1, 2,

where ηi > 0 is some constant and Vi,j = Vi(xj, ·), taking into account that a jump is
possible only if the cell j is not empty (ui,j > 0) and the cell j ± 1 is not fully occupied
(u0,j±1 > 0). The dynamics of ui,j is then given by

γih
2∂tui,j = −ui,ju0,j−1e

−ηi(Vi,j−Vi,j−1) + ui,j−1u0,je
−ηi(Vi,j−1−Vi,j)(15)
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− ui,ju0,j+1e
−ηi(Vi,j−Vi,j+1) + ui,j+1u0,je

−ηi(Vi,j+1−Vi,j),

where γi > 0. The factor h2 on the left-hand side corresponds to a diffusion scaling. By
Taylor expansion, we have e−ηiz = 1−ηiz+η2i z

2/2+O(z3) and Vi,j −Vi,j−1 = h∂xVi,j−1/2+
O(h3), where Vi,j±1/2 = Vi((j ± 1/2)h, ·). Then

e−ηi(Vi,j−Vi,j−1) = 1− ηih∂xVi,j−1/2 + η2i h
2(∂xVi,j−1/2)

2 +O(h3),

e−ηi(Vi,j−1−Vi,j) = 1 + ηih∂xVi,j−1/2 + η2i h
2(∂xVi,j−1/2)

2 +O(h3).

In a similar way, we expand ui,j±1 = ui,j ± h∂xui,j + (h2/2)∂2
xui,j + O(h3). Inserting these

expansions into (15), we find after a computation that

γih
2∂tui,j = (u0,j∂

2
xui,j − ui,j∂

2
xu0,j)h

2 − 2ηiui,ju0,j(∂xVi,j+1/2 − ∂xVi,j−1/2)h

− ηi(u0,j∂xui,j + ui,j∂xu0,j)(∂xVi,j+1/2 + ∂xVi,j−1/2)h
2 +O(h3)

= (u0,j∂
2
xui,j − ui,j∂

2
xu0,j)h

2 − 2ηiui,ju0,j∂
2
xVi,jh

2

− 2ηi(u0,j∂xui,j + ui,j∂xu0,j)∂xVi,jh
2 +O(h3),

where we expanded h∂xVi,j±1/2 = h∂xVi,j ± (h2/2)∂2
xVi,j + O(h3). We divide this equation

by h2, and pass to the formal limit h → 0:

γi∂tui = (u0∂
2
xui − ui∂

2
xu0)− 2ηiuiu0∂

2
xVi − 2ηi(u0∂xui + ui∂xu0)∂xV

= ∂x
(
u0∂xui − ui∂xu0 − 2ηiu0ui∂xV ).

Setting ηi = 1/2 and Di = 1/γi, we obtain (1)–(2).
At the points x = 0 and x = 1, there are reservoirs with concentrations Λs at x = 0 and

Λn at x = 1. The in- and outflow rates are given by

Ai(Λℓ) = aiu0,0
Λℓ

Λmax
ℓ

, Bi(Λℓ) = biu0,m

(
1− Λℓ

Λmax
ℓ

)
, ℓ = n, s,

where ai, bi > 0. We have multiplied these rates by the factor u0,j with j = 0 and j = m,
respectively, which models the resistance of entering the first and last cell. This is the main
difference to the derivation in [11]. Taken into account the inflow and outflow of vesicles
at x = 0, the change of the fraction of the anterograde vesicles is given by

h2∂tu1,0 = −u1,0(t)u0,1(t)e
−η1(V1(x1)−V1(x0))

+ u1,1(t)u0,0(t)e
−η1(V1(x0)−V1(x1)) + a1

Λs(t)

Λmax
s

u0,0(t)h,

An expansion similarly as before, up to O(h2) instead of O(h3), leads to

h2∂tu1,0 = −u1,0(u0,0 + h∂xu0,0)(1 + η1h∂xV1,0)

+ (u1,0 + h∂xu1,0)u0,0(1− η1h∂xV1,0) +O(h2)

= h(u0,0∂xu1,0 + u1,0∂xu0,0)− 2ηihu0,0u1,0∂xV1,0 + aih
Λs

Λmax
s

u0,0 +O(h2).
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We divide the previous equation by h and perform the limit h → 0:

0 = (u0,0∂xu1,0 + u1,0∂xu0,0)− 2ηiu0,0u1,0∂xV1,0 + ai
Λs

Λmax
s

u0,0.

We set ηi = 1/2 and αi = aiDi and multiply the equation by Di:

J1(0, ·) = −Di

(
(u0,0∂xu1,0 + u1,0∂xu0,0 − u0,0u1,0∂xV1,0

)
= αi

Λs

Λmax
s

u0(0, ·),

which equals (5). The boundary conditions (6)–(8) are shown in a similar way.

3. Proof of Theorem 1

After proving some auxiliary lemmas, we regularize system (1)–(2) in time and space and
prove the existence of a solution to this approximate problem by using the Leray–Schauder
fixed-point theorem. The compactness of the fixed-point operator follows from the discrete
entropy inequality analogous to (13). This inequality also provides a priori estimates
uniform in the approximation parameters. The relative compactness of the sequence of
approximate solutions then follows from a “degenerate” Aubin–Lions-type result. Finally,
we verify that the limit function is a solution to (2)–(8). To simplify the notation, we set
Λmax

n = 1 and Λmax
s = 1 in the analysis.

3.1. Auxiliary lemmas. The following lemma follows from a straightforward computa-
tion (also see [13, (4.61)]).

Lemma 2. Let h(u) be given by (11) and let A = (Aij(u)) ∈ R2×2 be defined by (4). Then,
for any u ∈ D and z ∈ R2,

z · h′′(u)A(u)z = min{D1, D2}u0

(
z21
u1

+
z22
u2

)
+min{D1, D2}

(
1

u0

+ 1

)
(z1 + z2)

2

+ |D2 −D1|
u2

u0

∣∣∣∣z1 − 1− u2

u2

z2

∣∣∣∣2.
Let w = h′(u), i.e. wi = ∂h/∂ui = log(ui/u0) for i = 1, 2, and recall that B =

A(u)h′′(u)−1. Then, by Lemma 2, for some c > 0,

∂xw ·B∂xw = (∂xu) · h′′(u)A(u)(∂xu) ≥ c

2∑
i=1

u0(∂x
√
ui)

2 + c(∂x
√
u0)

2,

which provides gradient bounds; also see (23) below.

Lemma 3. Let fi, gi ∈ L2(0, T ) be such that fi, gi ≥ 0 for i = 1, 2. Then there exists a
unique solution to

∂tΛn = β1(1− Λn)f1(t)− α2Λng1(t),(16)

∂tΛs = β2(1− Λs)f2(t)− α1Λsg2(t), t > 0,(17)

with the initial conditions Λn(0) = Λ0
n ∈ [0, 1] and Λs(0) = Λ0

s ∈ [0, 1] satisfying 0 ≤
Λn(t),Λs(t) ≤ 1 for t ≥ 0.
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Proof. The existence of a unique absolutely continuous solution to the differential system
(16)–(17) follows from a standard application of Banach’s fixed-point theorem. We sketch
the argument for the convenience of the reader.

Let T ′ < T and

Γ[Λ̃](t) := Λ0
n +

∫ t

0

[
β1(1− Λ̃(s))f1(s)− α2Λ̃(s)g1(s)

]
ds, t ∈ [0, T ′].

Exploiting the linearity with respect to Λ̃, standard estimates show the Lipschitz continuity
of Γ : C0([0, T ′]) → C0([0, T ′]):

∥Γ[Λ̃1]− Γ[Λ̃2]∥L∞(0,T ′) ≤ (α2∥g1∥L1(0,T ′) + β1∥f1∥L1(0,T ′))∥Λ̃1 − Λ̃2∥L∞(0,T ′).

Due to

∥f1∥L1(0,T ′) + ∥g1∥L1(0,T ′) ≤
√
T ′(∥f1∥L2(0,T ) + ∥g1∥L2(0,T )) → 0

as T ′ → 0, there exists some T0 < T such that

α2∥g1∥L1(0,T0) + β1∥f1∥L1(0,T0) <
√

T0(α2∥g1∥L2(0,T ) + β1∥f1∥L2(0,T )) < 1,(18)

i.e., Γ is a contraction on C0([0, T0]). Banach’s fixed-point theorem yields a unique solution
to (16) on [0, T0]. In view of (18), this procedure can be repeated on intervals [a, b],
satisfying 0 ≤ a < b ≤ T and b − a < T0. Hence, the solution can be progressively
extended to the whole interval [0, T ]. Similarl,y one proceeds for (17).

Multiplying (16) by Λ−
n := max{0,Λn} yields

1

2

d

dt
(Λ−

n )
2 = β1f1(t)(1− Λn)Λ

−
n − α2g1(t)(Λ

−
n )

2 ≤ 0,

using f1 ≥ 0 and g1 ≥ 0. We conclude from Λ−
n (0) = 0 that Λn(t) ≥ 0 for t ≥ 0. In a

similar way, we infer after multiplication of (17) by (Λn − 1)+ := max{0,Λn − 1} that

1

2

d

dt
[(Λn − 1)+]2 = −β1f1(t)(Λn − 1)(Λn − 1)+ − α2g1(t)Λn(Λn − 1)+ ≤ 0,

which implies that Λn(t) ≤ 1 since Λn(0) ≤ 1. The proof of 0 ≤ Λs ≤ 1 is similar. □

3.2. Solution of an approximate system. The approximate system is defined by an
implicit Euler discretization and a regularization in the entropy variable. Let T > 0,
N ∈ N, τ = T/N , tk = kτ for k = 0, . . . , N , and ε > 0. Let k ≥ 1 and uk−1 ∈ L∞(Ω;R2)
be given. We wish to find a solution wk = (wk

1 , w
k
2) ∈ H1(Ω;R2) to

1

τ

∫
Ω

(u(wk)− uk−1) · ϕdx+

∫
Ω

∂xϕ ·B(wk)∂xw
kdx−

∫
Ω

2∑
i=1

u0(w
k)ui(w

k)∂xVi∂xϕidx

+
2∑

i=1

(
J1
i [u(w

k)](tk)ϕi(1)− J0
i [u(w

k)](tk)ϕi(0)
)
+ ε

∫
Ω

(∂xw
k · ∂xϕ+ wk · ϕ)dx = 0(19)

for all ϕ ∈ H1(Ω;R2). The function ui(w
k) equals ui(w

k) = expwk
i /(1 + expwk

1 + expwk
2),

and the entries of the matrix B(wk) are Bij(w
k) = Diu0(w

k)ui(w
k)δij for i, j = 1, 2. We

set uk := u(wk) to simplify the notation.
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The pool concentrations Λk
n and Λk

s at iteration step k are defined by Λk
j = Λj(t) for

(k − 1)τ < t ≤ kτ , where Λj for j = n, s are the solutions of the following fixed-point
problem

Λn(t) = Λ0
n +

k−2∑
j=0

(
β1

∫ (j+1)τ

jτ

(1− Λn(r))u
j
0(1, r)u

j
1(1, r)dr − α2

∫ (1+j)τ

jτ

Λn(r)u
j
0(1, r)dr

)

+ β1

∫ t

(k−1)τ

(1− Λn(r))u
k−1
0 (1, r)uk−1

1 (1, r)dr − α2

∫ t

(k−1)τ

Λn(r)u
k−1
0 (1, r)dr,(20)

Λs(s) = Λ0
s +

k−2∑
j=0

(
β2

∫ (j+1)τ

jτ

(1− Λs(r))u
j
0(0, r)u

j
2(0, r)dr − α1

∫ (1+j)τ

jτ

Λs(r)u
j
0(0, r)dr

)

+ β2

∫ t

(k−1)τ

(1− Λn(r))u
k−1
0 (0, r)uk−1

2 (0, r)dr − α2

∫ t

(k−1)τ

Λn(r)u
k−1
0 (0, r)dr.

These equations can be interpreted as differential equations of the form

∂tΛn = β1(1− Λn)f1(t)− α2Λng1(t),

∂tΛs = β2(1− Λs)f2(t)− α1Λsg2(t), t > 0,

with suitable step functions fi, gi, i = 1, 2. It follows from |uk
0|, |uk

i | ≤ 1 that fi, gi ∈
L2(0, T ), and Lemma 3 guarantees a unique solution to (20).

The variable wk
i = log(ui(w

k)/u0(w
k)) can be interpreted as the chemical potential,

different from the electrochemical potential µi used in the introduction, which also includes
the eletric potential Vi. The following analysis could also be carried out using µi instead
of wi.

Lemma 4. There exists a solution wk ∈ H1(Ω) to (19) satisfying the discrete entropy
inequality

H(uk)−H(uk−1) +
cτ

2

∫
Ω

∂xw
k ·B(wk)∇xw

kdx+ ετ

∫
Ω

(|∂xwk|2 + |wk|2)dx ≤ Cτ,(21)

where c = min{D1, D2} and C > 0 only depends on αi, ηi, Di, and the L2(Ω) norm of
|∂xVi|2 for i = 1, 2.

Proof. The proof is similar to that one of Lemma 5 in [10], and we highlight the differences
only. By the Lax–Milgram lemma, for any given y ∈ H1(Ω;R2) and σ ∈ [0, 1], there exists
a unique solution to the linear problem a(v, ϕ) = σF (ϕ) for all ϕ ∈ H1(Ω;R2), where

a(v, ϕ) =

∫
Ω

∂xϕ ·B(y)∂xvdx+ ε

∫
Ω

(∂xw · ∂xϕ+ w · ϕ)dx,

F (ϕ) = −1

τ

∫
Ω

(u(y)− uk−1) · ϕdx+

∫
Ω

2∑
i=1

u0(y)ui(y)∂xVi∂xϕidx
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−
2∑

i=1

(
J1
i [u(y)](tk)ϕi(1)− J0

i [u(y)](tk)ϕi(0)
)

for v, ϕ ∈ H1(Ω;R2).

This defines the fixed-point operator S : C0([0, T ];R2)×[0, 1] → C0([0, T ];R2), S(y, σ) = v,
where v lies in fact in the space H1(Ω;R2). Compared to [12], we work with the space
C0([0, T ];R2) instead of L∞(Ω;R2) to ensure that the evaluation on the boundary points is
well defined. By standard arguments (see, e.g., [12, Lemma 5]), S(y, 0) = 0, S is continuous
and compact, since the embedding H1(Ω) ↪→ C0([0, T ]) is compact. It remains to prove a
uniform bound for all fixed points of S(·, σ).
We choose ϕ = v in a(v, ϕ) = σF (ϕ) to find that

σ

τ

∫
Ω

(u(v)− uk−1) · vdx+

∫
Ω

∂xv ·B(v)∂xvdx+ ε

∫
Ω

(|∂xv|2 + |v|2)dx

= σ

∫
Ω

2∑
i=1

u0(v)ui(v)∂xVi∂xvidx− σ
2∑

i=1

(
J1
i [u(v)](tk)vi(1)− J0

i [u(v)](tk)vi(0)
)

(22)

=: I1 + I2.

The convexity of the entropy density h implies that

(u(v)− uk−1) · v = (u(v)− uk−1) · h′(u(v)) ≥ h(u(v))− h(uk−1).

We conclude from Lemma 2 that

∂xv ·B(v)∂xv = ∂xu(v) · h′′(u(v))A(u(v))∂xu(v)(23)

≥ c

( 2∑
i=1

u0(v)
|∂xui(v)|2

ui(v)
+

|∂xu0(v)|2

u0(v)

)
,

where c = min{D1, D2} > 0. For the first term on the right-hand side of (22), we ob-
serve that the derivative of vi = log(ui/u0) equals ∂xvi = ∂xui(v)/ui(v) − ∂xu0(v)/u0(v).
Therefore, for any δ > 0,

I1 ≤
∫
Ω

2∑
i=1

(
u0(v)|∂xui(v)|+ ui(v)|∂xu0(v)|

)
|∂xVi|dx

≤ δ

∫
Ω

2∑
i=1

(
u0(v)

2|∂xui(v)|2 + ui(v)
2|∂xu0(v)|2

)
dx+ C(δ)

∫
Ω

2∑
i=1

|∂xVi|2dx

≤ δ

∫
Ω

( 2∑
i=1

u0(v)
|∂xui(v)|2

ui(v)
+

|∂xu0(v)|2

u0(v)

)
dx+ C(δ),

where we used ui(v) ≤ 1, u0(v) ≤ 1, and the assumption Vi ∈ H1(Ω) in the last step.
Choosing δ = c/2, the first term on the right-hand side can be absorbed by the second
term on the left-hand side of (22), thanks to (23). Finally, using definitions (5)–(8) and
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vi = log(ui(v)/u0(v)),

I2 = −σβ1(1− Λn)u0(v(1))u1(v(1)) log
u1(v(1))

u0(v(1))
+ σα1Λsu0(v(0)) log

u1(v(0))

u0(v(0))

+ σα2Λnu0(v(1)) log
u2(v(1))

u0(v(1))
− σβ2(1− Λs)u0(v(0))u2(v(0)) log

u2(v(0))

u0(v(0))
.

Since z 7→ z log z is bounded for z ∈ [0, 1] and Λn ≤ 1, Λs ≤ 1 by Lemma 3, the first and
fourth terms on the right-hand side are bounded from above. Furthermore, we deduce from
the fact that log ui(v(x)) is nonpositive for i = 1, 2 and x = 0, 1 that the second and third
terms are nonpositive. This shows that I2 ≤ C for some constant C > 0 which depends
only on αi and βi.

Summarizing, (22) becomes

H(u(v))−H(uk−1) +
τ

2

∫
Ω

∂xv ·B(v)∂xvdx+ ε

∫
Ω

(|∂xv|2 + |v|2)dx ≤ Cτ,

and C > 0 only depends on αi, βi, Di, and the L2(Ω) norm of |∂xVi|2 for i = 1, 2. In view
of the positive semidefiniteness of B(v), this inequality provides a uniform bound for v in
H1(Ω;R2) (also being uniform in σ ∈ [0, 1], but not uniform in ε). Hence, we can apply
the fixed-point theorem of Leray and Schauder to conclude the existence of a fixed point
of S(·, 1), which is a solution to (19). Defining wk := v, this fixed point satisfies (21). □

Summing the discrete entropy inequality (21) over k leads to the following result.

Lemma 5. There exists C > 0 independent of (ε, τ) (but depending on T ) such that

H(uj) + c

j∑
k=1

τ

∫
Ω

( 2∑
i=1

uk
0|∂x(uk

i )
1/2|2 + |∂xuk

0|2 + |∂x(uk
0)

1/2|2
)
dx(24)

+ εC

j∑
k=1

τ
2∑

i=1

∥wk
i ∥2H1(Ω) ≤ H(u0) + C.

Proof. We infer from (21) and Lemma 2 that

H(uk)−H(uk−1) + cτ

∫
Ω

( 2∑
i=1

uk
0|∂x(uk

i )
1/2|2 + |∂xuk

0|2 + |∂x(uk
0)

1/2|2
)
dx

+ ετ
2∑

i=1

∥wk
i ∥2H1(Ω) ≤ Cτ,

where c > 0 depends only on D1, D2 and C > 0 is independent of ε, τ and k. We sum this
inequality over k = 1, . . . , j and observe that τj ≤ T to conclude the proof. □
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3.3. Uniform estimates. We introduce the piecewise constant in time functions u
(τ)
i (x, t)

= uk
i and w

(τ)
i = wk

i for x ∈ Ω, t ∈ ((k − 1)τ, kτ ], i = 1, 2,. We set u(τ)(·, 0) = u0

and w(τ)(·, 0) = h′(u0) at time t = 0. Furthermore, we introduce the shift operator
(στu

(τ))(·, t) = uk−1 for t ∈ ((k − 1)τ, kτ ]. Summing (19) over k = 1, . . . , N and using
the definitions of B(w(τ)) and w(τ), we infer that the pair (u(τ), w(τ)) solves

1

τ

∫ T

0

∫
Ω

(u
(τ)
i − στu

(τ)
i )ϕidxdt+ ε

∫ T

0

∫
Ω

(∂xw
(τ)
i ∂xϕi + w

(τ)
i ϕi)dxdt(25)

+Di

∫ T

0

∫
Ω

(u
(τ)
0 ∂xu

(τ)
i − u

(τ)
i ∂xu

(τ)
0 − u

(τ)
0 u

(τ)
i ∂xVi)∂xϕidxdt

+

∫ T

0

(
J1
i [u

(τ)](t)ϕi(1, t)− J0
i [u

(τ)](t)ϕi(0, t)
)
dt = 0,

where ϕi : (0, T ) → H1(Ω) is piecewise constant, i = 1, 2, and J j
i [u

(τ)](t) is evaluated at
the time points ⌈t/τ⌉τ , which means, for instance,

J0
1 [u

(τ)](t) = α1Λs(kτ)u
(τ)
0 (1, t) for t ∈ ((k − 1)τ, kτ ].

The discrete entropy inequality gives the following uniform bounds.

Lemma 6 (Gradient bounds). There exists C > 0 independent of (ε, τ) such that

2∑
i=1

∥∥(u(τ)
0 )1/2u

(τ)
i

∥∥
L2(0,T ;H1(Ω))

+ ∥(u(τ)
0 )1/2∥L2(0,T ;H1(Ω)) ≤ C,

2∑
i=1

∥u(τ)
0 u

(τ)
i ∥L2(0,T ;H1(Ω)) + ∥u(τ)

0 ∥L2(0,T ;H1(Ω)) ≤ C.

Proof. The first estimate follows from the bound 0 ≤ u
(τ)
i ≤ 1 and (21) since∣∣∂x((u(τ)

0 )1/2u
(τ)
i

)∣∣ ≤ ∣∣(u(τ)
0 )1/2∂xu

(τ)
i

∣∣+ ∣∣u(τ)
i

∣∣∣∣∂x(u(τ)
0 )1/2

∣∣.
We deduce from the first estimate and

|∂x(u(τ)
0 u

(τ)
i )| ≤

∣∣(u(τ)
0 )1/2∂x((u

(τ)
0 )1/2u

(τ)
i )

∣∣+ ∣∣(u(τ)
0 )1/2u

(τ)
i ∂x(u

(τ)
0 )1/2

∣∣
≤

∣∣∂x((u(τ)
0 )1/2u

(τ)
i

∣∣+ ∣∣∂x(u(τ)
0 )1/2

∣∣,
the second estimate. □

Lemma 7 (Discrete time bounds). There exists C > 0 independent of (ε, τ) such that

∥u(τ)
i − στu

(τ)
i ∥L2(0,T ;H1(Ω)′) ≤ Cτ, i = 1, 2.

Proof. Let ϕi : (0, T ) → H1(Ω) be piecewise constant. Then, by (25) and the L∞(ΩT )

bound of u
(τ)
i ,

1

τ

∣∣∣∣ ∫ T

0

∫
Ω

(u
(τ)
i − στu

(τ)
i )ϕidxdt

∣∣∣∣(26)
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≤ Di

(
∥(u(τ)

0 )1/2∂xu
(τ)
i ∥L2(ΩT ) + ∥∂xu(τ)

0 ∥L2(ΩT ) + ∥∂xVi∥L2(ΩT )

)
∥∂xϕi∥L2(ΩT )

+
1∑

j=0

∥J j
i [u

(τ)]∥L2(0,T )∥ϕi∥L2(0,T ;H1(Ω)) + ε∥w(τ)
i ∥L2(0,T ;H1(Ω))∥ϕi∥L2(0,T ;H1(Ω))

≤ C∥ϕi∥L2(0,T ;H1(Ω)).

The last step follows from the boundedness of J j
i [u

(τ)], since 0 ≤ u
(τ)
i (x, t) ≤ 1 for x ∈ [0, 1]

and 0 ≤ Λn/s(t) ≤ 1. Inequality (26) holds for all piecewise constant functions ϕi : (0, T ) →
H1(Ω). By a density argument, we obtain

τ−1∥u(τ)
i − στu

(τ)
i ∥L2(0,T ;H1(Ω)′) ≤ C,

concluding the proof. □

3.4. Limit (ε, τ) → 0. Lemmas 6 and 7 allow us to apply the Aubin–Lions lemma in the
version of [9], giving the existence of a subsequence, which is not relabeled, such that as
(ε, τ) → 0,

u
(τ)
0 → u0 in L2(ΩT ),

and because of the uniform L∞(ΩT ) bound, this convergence holds in any Lp(ΩT ) for
p < ∞. Moreover, we conclude the following weak convergences (up to subsequences):

u
(τ)
i ⇀ ui weakly* in L∞(ΩT ),

τ−1(u
(τ)
i − στu

(τ)
i ) ⇀ ∂tui weakly in L2(0, T ;H1(Ω)),

εw
(τ)
i → 0 strongly in L2(0, T ;H1(Ω)).

Since both (u
(τ)
i ) and (∂xu

(τ)
0 ) are only weakly converging, we cannot obtain the conver-

gence of the product. However, the uniform bounds for ((u
(τ)
0 )1/2u

(τ)
i ) and ((u

(τ)
0 )1/2) in

L2(0, T ;H1(Ω)) allow us to apply the “degenerate” version of the Aubin–Lions lemma
[6, 12] so that (for a subsequence)

(u
(τ)
0 )1/2u

(τ)
i →

√
u0ui strongly in Lp(ΩT ), p < ∞ as (ε, τ) → 0.

This shows that

u
(τ)
0 ∂xu

(τ)
i − u

(τ)
i ∂xu

(τ)
0 = (u

(τ)
0 )1/2∂x

(
(u

(τ)
0 )1/2u

(τ)
i

)
− 3(u

(τ)
0 )1/2u

(τ)
i ∂x(u

(τ)
0 )1/2

⇀
√
u0∂x(

√
u0ui)− 3

√
u0ui∂x

√
u0

weakly in L1(ΩT ), and since this sequence is bounded in L2(ΩT ), the convergence holds
true in that space.

It follows from the linearity and continuity of the trace operator H1(Ω) → L2(∂Ω) that
this operator is weakly continuous and therefore,

u
(τ)
0 (x, ·) → u0(x, ·), (u

(τ)
0 u

(τ)
i )(x, ·) ⇀ (u0ui)(x, ·) weakly in L2(0, T ), x = 0, 1.
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In fact, these sequences are even bounded in L∞(0, T ) because of the embedding H1(Ω) ↪→
C0(Ω) ↪→ L∞(∂Ω). Let Λ

(τ)
j be the solution to (9) if j = n or (10) if j = s with u replaced

by u(τ). Then Λ
(τ)
n solves the integral equation

Λ(τ)
n = Λn(0) + β1

∫ t

0

(1− Λ(τ)
n (r))στ (u

(τ)
0 u

(τ)
1 )(1, r)dr − α2

∫ t

0

Λ(τ)
n (r)στu

(τ)
0 (1, r)dr.

Since the integrand is uniformly bounded, this gives |Λ(τ)
n (t) − Λ

(τ)
n (s)| ≤ C|t − s| for

s, t ∈ [0, T ]. Thus, (Λ
(τ)
n ) is uniformly bounded and uniformly equicontinuous. By the

Arzelà–Ascoli theorem, there exists a subsequence (not relabeled) such that Λ
(τ)
n → Λn

uniformly in [0, T ]. In a similar way, we prove that Λ
(τ)
s → Λs uniformly in [0, T ]. We need

to identify the limits Λn and Λs as the solutions to (9) and (10), respectively.

Set G(τ)(t) := Λ
(τ)
n (kτ) for t ∈ ((k − 1)τ, kτ ]. Then, for instance,

J1
1 [u

(τ)](t) = β1(1−G(τ)(t))u
(τ)
0 (1, t)u

(τ)
1 (1, t) for t ∈ ((k − 1)τ, kτ ].

It holds for s ∈ ((m− 1)τ,mτ ] and t ∈ ((k − 1)τ, kτ ] that

|G(τ)(t)−G(τ)(s)| ≤ C|mτ − kτ | ≤ C(|t− s|+ τ).

Therefore, since G(τ)(⌈t/τ⌉τ) = Λ
(τ)
n (⌈t/τ⌉τ),

|G(τ)(t)− Λn(t)| ≤ |G(τ)(t)−G(τ)(⌈t/τ⌉τ)|+ |Λ(τ)
n (⌈t/τ⌉τ)− Λ(τ)

n (t)|+ |Λ(τ)
n (t)− Λn(t)|

≤ C|t− ⌈t/τ⌉τ |+ Cτ + ∥Λ(τ)
n (t)− Λn(t)∥L∞(0,T ) → 0

as (ε, τ) → 0, and this convergence is uniform in [0, T ]. Hence, for instance,

J1
1 [u

(τ)] → β1(1− Λn)u0(1, ·)ui(1, ·) =: J1
1 [u] strongly in L2(0, T ).

To establish that Λn satisfies (9) it is sufficient to show that στ (u
(τ)
0 u

(τ)
i )(x, ·) ⇀ (u0u1)(x, ·),

στu
(τ)
0 (x, ·) ⇀ u0(x, ·) weakly in L2(0, T ) for x = 0, 1. In fact, this result can be proved

by straightforward arguments. Then the convergence of u
(τ)
i (1, ·) in L2(0, T ) implies that

Λn solves (9). In a similar way, we prove that Λ
(τ)
s → Λs uniformly in [0, T ], and Λs solves

(10).
The initial condition (3), understood in the sense of H1(Ω)′, follows from arguments

similar as at the end of the proof of Theorem 2 in [12]. This finishes the proof.

4. Numerical experiments and stationary states

4.1. Numerical scheme and parameters. We discretize equations (1)–(2) by an im-
plicit Euler finite-volume scheme. Let n,m ∈ N and set τ = T/n, h = 1/m. We divide
Ω = (0, 1) into m cells (xj, xj+1) for j = 0, . . . ,m − 1, where xj = jh. (Note that the
notation is different from Section 2.) We approximate h−1

∫ xj+1

xj
ui(x, kτ)dx by uk

i,j, which

solves for k = 1, . . . , n,

uk
i,j = uk−1

i,j +
τ

h
(Jk

i,j+1/2 − Jk
i,j−1/2), i = 1, 2, j = 1, . . . ,m− 1,
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Jk
i,j+1/2 = −Di

h

(
ūk
0,j+1/2(u

k
i,j+1 − uk

i,j) + ūi,j+1/2(u
k
0,j+1 − uk

0,j)
)

−Diū
k
0,j+1/2ū

k
i,j+1/2∂xVi(xj+1/2),

where ūk
i,j+1/2 := (uk

i,j+1+uk
i,j)/2 for i = 0, 1, 2. At the boundary points x = 0 and x = 1, we

replace Jk
i,1/2 and Jk

i,m−1/2 respectively, by the corresponding boundary condition, evaluated

at x0 = 0 or xm = 1 and at time kτ . For instance, Jk
1,0 = α1Λs(kτ)u

k
0,0. The differential

equations (9)–(10) are discretized by the implicit Euler scheme, for instance,

Λk
s = Λk−1

s − τα1
Λk

s

Λmax
s

uk
0,0 + τβ2

(
1− Λk

s

Λmax
s

)
uk
0,0u

k
2,0.

The nonlinear discrete system is solved by using a damped Newton method. More
precisely, let F : R3m+2 → R3m+2 be given by

Fj+m(i−1)(y) = uk−1
i,j +

τ

h
(Jk

i,j+1/2 − Jk
i,j−1/2)− yj+m(i−1), i = 1, 2,

Fj+2m(y) = yj+2m − yj+m − yj,

Fj+2m+2(y) = Λk−1
s − τα1

y3m+2

Λmax
s

(1− y2m+1)

+ τβ2

(
1− y3m+2

Λmax
s

)
(1− y2m+1)ym+1 − y3m+2,

where y = (y1, . . . , y3m+2) ∈ R3m+2 and F3m+1(y) is defined similarly from the implicit
Euler scheme for Λk

n. The damped Newton method reads as

y(r+1) = y(r) +
1

(r + 1)3/4
ŷ(r+1)

∥ŷ(r+1)∥∞
, r ∈ N,

where ŷ(r+1) solves F ′(y(r))(ŷ(r+1) − y(r)) = −F (y(r)). The exponent 3/4 was determined
from numerical experiments. We stopped the Newton iterations when ∥F (y(r))∥∞ < ε with
ε = 10−3 is reached. The numerical scheme is implemented in Python version 3.7.1. We
collect the values of the parameters, inspired from [11], in Table 1. If not otherwise stated,
we set h = 0.0025 and τ = 10−4.

α1 0.2666 Λmax
n 0.0029 D1 0.0004

α2 0.2666 Λ0
n 0.0015 D2 0.004

β1 3 Λmax
s 0.175 V1(x) 1.75x

β2 3 Λ0
s 0.12 V2(x) −1.5x

Table 1. Numerical parameters.

4.2. Numerical experiment 1. We choose the initial data u0
1 = u0

2 = 0.1. Figure 1
presents the vesicle concentrations at times t = 0, 1, 10 and the evolution of the number
Λn(t) of vesicles in the growth cone. The anterograde vesicles (species 1) are leaving the
soma, leading to an increase of the concentration near x = 0, while it is decreasing near
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the tip of the neurite at x = 1 because of the small value of Λs. The retrograde vesicles
(species 2) are leaving the growth cone at x = 1, leading to an increase of the concentration,
while it is decreasing near the soma. The number Λs is decreasing over time, which can
be explained by the difference of magnitude of the parameters α1 and β2 governing the
outflow rate.

The behavior of the vesicles at t = 10 in our model and the model of [11] is similar; see
the middle row of Figure 1. The difference is largest near the growth cone at x = 1 (see
the bottom left panel), which comes from the different boundary conditions at this point.
Since the boundary value J1

1 [u] contains the factor u0 < 1 in our model, the number Λn is
decreasing at a faster rate compared to the model of [11] (see the bottom right panel).

4.3. Numerical experiment 2. In this example, we choose piecewise constant initial
data:

u0
1(x) =

{
0.9 for 0.1 < x < 0.4,
0 else,

u0
2(x) =

{
0.9 for 0.6 < x < 0.9,
0 else,

The numerical results at times t = 0, 1, 10, 100 are shown in Figure 2. We observe a
smoothing effect (due to diffusion) and a drift of the vesicles profiles towards the middle.
The drift of the anterograde vesicles is stronger compared to the retrograde vesicles because
of |∂xV1| > |∂xV2|. Since the boundary values of the vesicles are very small, the results of
our model are almost identical to those from the model of [11]; see Figure 2 bottom for Λn

and Λs up to t = 10.

4.4. Convergence rates. We test our numerical scheme by computing the spatial and
temporal convergence rates. We choose the initial data u0

1 = u0
2 = 0.1 and the parameters

from Table 1. Furthermore, we set T = 1. We define the mean error as the discrete L2

norm ∥u − uref∥2/
√

2(m+ 1), where u = (u1, u2,Λn,Λs) and uref = (uref
1 , uref

2 ,Λref
n ,Λref

s ) is
the reference solution.

Figure 3 (left) shows the discrete L2 error for time step sizes τ = 10−2·2−k for k = 1, . . . , 7
with fixed h = 10−3. The reference solution is computed with h = 10−3 and τ = 10−5. The
convergence is of first order for rather large values of τ , while it is between first and second
order when the time step size is closer to the step size of the reference solution. The spatial
convergence is illustrated in Figure 3 (right) for grid sizes h = 10−2 · 2−k for k = 1, . . . , 7
with fixed τ = 10−3. The reference solution is calculated by using the parameters h = 10−5

and τ = 10−3. The convergence is of first order (if τ is not too large), which is expected
for the two-point approximation finite-volume scheme.

4.5. Stationary states. In this section, we derive some properties of stationary solutions,
i.e., solutions (u1, u2, Λn,Λs) to (1)–(10), where ∂tu1 = ∂tu2 = 0 and ∂tΛn = ∂tΛs = 0.
The former condition implies that the fluxes J1 and J2 are constant, and we deduce from
the latter condition that the total flux vanishes, J1+J2 = 0. Consequently, J := J1 = −J2.
Moreover, if u0(1) > 0 and u0(0) > 0, the stationary solution to (9)–(10) is given by

(27) Λn =
β1u1(1)

β1u1(1) + α2

, Λs =
β2u2(0)

β2u2(0) + α1

,
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t = 0 t = 1

t = 10 t = 10, model of [11]

Figure 1. Experiment 1: Concentrations of anterograde vesicles (species 1)
and retrograde vesicles (species 2). Top row: t = 0, 1. Middle row: t = 10.
Bottom left: t = 10, only species 2. Bottom right: Evolution of Λn(t).

We assume that a stationary solution exists and that u1, u2 ∈ W 1,∞(Ω). Then

(28) J = −D1

(
u0∂xu1 − u1∂xu0 − u0u1∂xV1

)
= D2

(
u0∂xu2 − u2∂xu0 − u0u2∂xV2

)
.

The following situation is approximately satisfied in numerical experiment 1 for large
times.
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t = 0 t = 1

t = 10 t = 100

Figure 2. Experiment 2: Concentrations of anterograde vesicles (species 1)
and retrograde vesicles (species 2). Top and middle rows: t = 0, 1, 10, 100.
Bottom row: evolution of Λs (left) and Λn (right).

Lemma 8. Let u0(1) > 0 and u0(0) > 0. Then Λn = 0 if and only Λs = 0, and u1(1) = 0
if and only of u2(0) = 0. In this situation, the flux vanishes, J = 0.
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Figure 3. Left: Discrete L2 error versus time step size τ for fixed h = 10−3.
Right: Discrete L2 error versus space step size h for fixed τ = 10−3.

Proof. Let Λn = 0. Then, by (27), u1(1) = 0. We insert expressions (27) into the boundary
conditions (5)–(6):

(29) J = J1(0) =
α1β2u2(0)

β2u2(0) + α1

u0(0) = J1(1) =
α2β1u1(1)

β1u1(1) + α2

u0(1) = 0.

This shows that u2(0) = 0 and consequently, again by (27), Λs = 0. Moreover, we infer
from (29) that J = 0. □

If the parameters are the same for both species, the solution is symmetric around x =
1/2, as proved in the following lemma.

Lemma 9. Let α1 = α2, β1 = β2, Λ
max
n = Λmax

s , D1 = D2, and V2(x) = V1(1− x) + const.
for x ∈ Ω. Then (u1, u2,Λn,Λs) with u2(x) = u1(1 − x) for x ∈ Ω and Λn = Λs is a
stationary solution to (1)–(8).

Proof. Let u1 be a solution to (28) with u0 := 1−u1(x)−u1(1−x) and u2(x) := u1(1−x)
for x ∈ Ω. Taking into account that ∂xu2(x) = −∂xu1(1− x) and ∂xV2(x) = −∂xV1(1− x),
we deduce from u0(x) = u0(1− x) that

−J/D1 = u0(x)∂xu1(x)− u1(x)∂xu0(x)− u0(x)u1(x)∂xV1(x)

= −u0(1− x)∂xu2(1− x) + u2(1− x)∂xu0(1− x)

+ u0(1− x)u2(1− x)∂xV2(1− x).

Thus, (u1, u2) solves (28). We infer from u1(1) = u2(0) and (27) that Λn = Λs. Further-
more, since u0(0) = u0(1), the boundary conditions (5)–(8) are satisfied. □

This situation is illustrated in Figure 4. We have chosen Λmax
n = Λmax

s = 0.175, Λ0
n =

Λ0
s = 0.12, with potentials V1(x) = 1.5x, V2(x) = −1.5x, and initial data u0

1 = u0
2 = 0.1.

The left panel shows the concentrations at T = 1000 using the parameters αi, βi, and Di

as in Experiment 1. The solution is approximately stationary (the modulus of the flux is
less than 0.01). Since u2(0) = 0, Lemma 8 shows that the stationary flux vanishes. In the
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right panel, we present a case where the stationary flux does not vanish. Here, the solution
is computed up to T = 100, the parameters are αi = βi = Di = 1 for i = 1, 2, and the flux
equals J = 0.118.

Figure 4. Concentrations of anterograde and retrograde vesicles. Left: J =
0. Right: J ̸= 0.
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