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Abstract. An implicit Euler finite-volume scheme for a nonlocal cross-diffusion system
on the one-dimensional torus, arising in population dynamics, is proposed and analyzed.
The kernels are assumed to be in detailed balance and satisfy a weak cross-diffusion
condition. The latter condition allows for negative off-diagonal coefficients and for kernels
defined by an indicator function. The scheme preserves the nonnegativity of the densities,
conservation of mass, and production of the Boltzmann and Rao entropies. The key idea
is to “translate” the entropy calculations for the continuous equations to the finite-volume
scheme, in particular to design discretizations of the mobilities, which guarantee a discrete
chain rule even in the presence of nonlocal terms. Based on this idea, the existence of
finite-volume solutions and the convergence of the scheme are proven. As a by-product, we
deduce the existence of weak solutions to the continuous cross-diffusion system. Finally,
we present some numerical experiments illustrating the behavior of the solutions to the
nonlocal and associated local models.

1. Introduction

This paper is devoted to the design and analysis of structure-preserving finite-volume
discretizations of the following one-dimensional nonlocal cross-diffusion initial-value prob-
lem:

∂tui = ∂x(σ∂xui + ui∂xpi(u)) in T, t > 0,(1)

ui(·, 0) = u0i in T, i = 1, . . . , n,(2)
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where σ ≥ 0 is the diffusion coefficient, T := R/Z is the one-dimensional torus of unit
measure, and pi is the nonlocal operator

(3) pi(u)(x) := aiiui(x) +
n∑

j=1
j ̸=i

aij(B
ij ∗ uj)(x) = aiiui(x) +

n∑
j=1
j ̸=i

∫
T
aijB

ij(x− y)uj(y)dy,

where aij are some constants. The kernel functions Bij : T → R are periodically extended
to R, and u = (u1, . . . , un) is the solution vector. If we define Bii = δ0, where i ∈ {1, . . . , n}
and δ0 is the Dirac measure, we can rewrite pi as

pi(u) =
n∑

j=1

aij(B
ij ∗ uj)(x).(4)

Equations (1) with definition (4) and general kernels Bij for i, j = 1, . . . , n can be derived
from stochastic interacting particle systems in the many-particle limit [10].

We proved in [16] that the “full” nonlocal system, i.e. system (1) and (4), where Bii ̸= δ0
are general kernels, admits global weak solutions. Our analysis was based on the fact that
this system possesses two Lyapunov functionals. More precisely, assume that there exist
numbers π1, . . . , πn > 0 such that the kernels Bij satisfy the so-called detailed-balance
condition

πiaijB
ij(x− y) = πjajiB

ji(y − x) for i, j = 1, . . . , n and a.e. x, y ∈ T,
and the positive semi-definiteness condition

(5)
n∑

i,j=1

∫
T

∫
T
πiaijB

ij(x− y)vj(y)vi(x)dydx ≥ 0 for all vi, vj ∈ L2(T).

Then we proved that the Boltzmann (type) and Rao (type) entropies, respectively,

HB(u) =
n∑

i=1

∫
T
πiui(log ui − 1)dx,

HR(u) =
1

2

n∑
i,j=1

∫
T

∫
T
πiaijB

ij(x− y)uj(y)ui(x) dydx,

fulfill the following entropy dissipation inequalities:

dHB

dt
+ 4σ

n∑
i=1

∫
T
πi|∂x

√
ui|2dx ≤ −

n∑
i,j=1

∫
T

∫
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x)dydx,(6)

dHR

dt
+

n∑
i=1

∫
T
πiui|∂xpi(u)|2dx ≤ −σ

n∑
i,j=1

∫
T

∫
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x)dydx,(7)

and the right-hand sides are nonpositive due to (5). The Boltzmann entropy is related
to the thermodynamic entropy of the system, and the Rao entropy is a measure of the
functional diversity of the species [21].
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While this theoretical framework was suitable to prove the existence of weak solutions,
condition (5) is cumbersome to check in practice. In [16, Remark 1], we proved that (5) is
satisfied for smooth kernels like the Gaussian one, i.e. Bij(x − y) = exp(−(x − y)2/2) for
i, j = 1, . . . , n. We also claimed that kernels Bij of the type Bij = 1K for some interval
K around the origin satisfies (5). This claim is in fact not true, see the counterexample in
Appendix B.

System (1) and (4), with local or nonlocal self-diffusion terms, describes the dynamics
of a population with n species, where the evolution of each species is driven by nonlocal
sensing [20]. In other words, each species has the capability to detect other species over a
spatial neighborhood, specified by the kernelBij, and weighted by the strength of attraction
(aij < 0) or repulsion (aij > 0). Thus, from a modeling point of view, the case Bij = 1K is
biologically meaningful. To include this case in our analysis (at the continuous or discrete
level), we propose to slightly modify the model studied in [16] by considering (3) instead
of (4).

For model (1)–(3), we impose the following assumptions. We assume that there exist
numbers π1, . . . , πn > 0 such that πiaij = πjaji for i, j ∈ {1, . . . , n}, that Bji(−x) =
Bij(x) ≥ 0 for a.e. x ∈ T and i, j ∈ {1, . . . , n} (with i ̸= j), and that for all i, j ∈ {1, . . . , n}
with i < j, the matrices

M ij(x) :=

(
πiaii (n− 1)πiaijB

ij(x)
(n− 1)πjajiB

ij(x) πjajj

)
(8)

are positive definite for a.e. x ∈ T. In particular, we could choose some nonpositive
off-diagonal coefficients. The possibility to analyze system (1)–(3) with nonpositive off-
diagonal coefficients is a new and meaningful result. However, we notice that with these
assumptions, the system is only “weakly” nonlocal, in the sense that the self-diffusion
coefficients have to dominate the cross-diffusion terms.

We claim that the functionals HB and HR are still entropies for system (1)–(3), where
of course now

HR(u) =
1

2

n∑
i=1

∫
T
πiaii|ui(x)|2dx+

1

2

n∑
i,j=1
i ̸=j

∫
T

∫
T
πiaijB

ij(x− y)uj(y)ui(x)dydx.

Both functionals satisfy some entropy dissipation inequalities similar to (6)–(7), where, if
i = j, the terms on the right-hand side are simply given by the square of the L2(T) norm
of ∂xui. Under the above-mentioned assumptions, the entropy production term

Q :=
n∑

i=1

∫
T
πiaii|∂xui(x)|2dx+

n∑
i,j=1
i ̸=j

∫
T

∫
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x)dydx(9)

is nonnegative; see Lemma 13 in Appendix A. Therefore, at least formally, the functionals
HB and HR are entropies for system (1)–(3). In this work, we will translate this property
to the discrete level by analyzing a two-point flux approximation finite-volume scheme for
(1)–(3).
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In the literature, there are some works dealing with the design and analysis of numerical
schemes for nonlocal cross-diffusion systems. The work [8] studies a positivity-preserving
one-dimensional finite-volume scheme for (1) with n = 2 and additional local cross-diffusion
terms, with a focus on segregated steady states, but without any numerical analysis. The
convergence of this finite-volume scheme was proved in [7], still focusing on the two-species
model. A converging finite-volume scheme for a nonlocal cross-diffusion system modeling
either a food chain of three species or, when dropping the cross-diffusion, being an SIR
model, was analyzed in [1, 3]. In both models, the nonlocality comes from the dependence of
the self-diffusion coefficients on the total mass of the corresponding species. A structure-
preserving finite-volume scheme for the nonlocal Shigesada–Kawasaki–Teramoto system
was suggested and analyzed in [15]. We also mention the paper [6] for a second-order
finite-volume scheme for a nonlocal diffusion equation, which preserves the nonnegativity
and fulfills a spatially discrete entropy inequality. Related works include a Galerkin scheme
for a nonlocal diffusion equation with additive noise [19], a finite-volume discretization of
a nonlocal Lévy–Fokker–Planck equation [2], and numerical schemes for nonlocal diffusion
equations arising in image processing [18]. Up to our knowledge, there does not exist any
numerical analysis of system (1)–(3).

In this paper, we propose a finite-volume scheme which preserves the structure of equa-
tions (1)–(3). Compared to [7], we allow for an arbitrary number of species, include linear
diffusion σ ≥ 0, and prove the preservation of the discrete Boltzmann and Rao entropies.
Since we need the positive definiteness of the matrix M ij(x), self-diffusion is needed in
our situation. Compared to [15], our equations do not have a Laplacian structure, which
was used in [15] to define the numerical scheme, and we allow for nonpositive off-diagonal
coefficients. Our main results can be sketched as follows (see Section 2.3 for details):

• We prove the existence of solutions to the finite-volume scheme, which are nonneg-
ative componentwise, conserve the discrete mass, and satisfy discrete versions of
the entropy inequalities (6) and (7).

• We show that the discrete solutions converge to a weak solution to (1)–(3) when
the mesh size tends to zero. As a by-product, this proves the existence of a weak
solution to (1)–(2).

• We illustrate numerically the rate of convergence (in space) in the Lp-norm as well
as the rate of convergence in different metrics of the solution to the nonlocal system
towards the solution of the local one (localization limit). Moreover, we illustrate
the segregation phenomenon exhibited by the solutions to (1)–(3); see [4].

The paper is organized as follows. The numerical scheme and our main results are in-
troduced in Section 2. We prove the existence of discrete solutions in Section 3, while the
proof of the convergence of the scheme is presented in Section 4. In Section 5, numeri-
cal experiments are given, Appendix A contains some auxiliary results, and we show in
Appendix B that indicator kernels generally do not fulfill inequality (5).
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2. Notation and numerical scheme

2.1. Notation. A uniform mesh T of the torus T consists of N intervals (or cells) Kℓ of
length ∆x = 1/N , given by Kℓ = (xℓ−1/2, xℓ+1/2) with end points xℓ±1/2 = (ℓ±1/2)∆x and
centers xℓ = ℓ∆x for ℓ ∈ G = Z \ NZ. For given end time T > 0, let NT ∈ N and define
the time step size ∆t = T/NT and the time steps tk = k∆t. A space-time discretization
of QT := T× (0, T ) is denoted by D; it consists of the space discretization T of T and the
time discretization (NT ,∆t) of (0, T ).

We introduce some function spaces. The space of piecewise constant (in space) functions
is given by

VT =

{
v : T → R : ∃(vℓ)ℓ∈G ⊂ R, v(x) =

∑
ℓ∈G

vℓ1Kℓ
(x)

}
,

where 1Kℓ
is the indicator function of Kℓ. We identify the function v ∈ VT and the numbers

(vℓ)ℓ∈G by writing v = (vℓ)ℓ∈G. For q ∈ [1,∞) and v ∈ VT , we introduce the Lq(T) norm,
the discrete W 1,q(T) seminorm, and the discrete W 1,q(T) norm by, respectively,

∥v∥q0,q,T =
∑
ℓ∈G

∆x|vℓ|q, |v|q1,q,T =
∑
ℓ∈G

∆x

∣∣∣∣vℓ+1 − vℓ
∆x

∣∣∣∣q,
∥v∥q1,q,T = |v|q1,q,T + ∥v∥q0,q,T .

We also define the L∞(T) norm by ∥v∥0,∞,T = maxℓ∈G |vℓ|. Note that ∥v∥0,q,T = ∥v∥Lq(T)
for functions v ∈ VT . We set

Dℓv :=
vℓ+1 − vℓ

∆x
and Dv := (Dℓv)ℓ∈G.

We recall the definition of the space BV(T) of functions of bounded variation. A function
v ∈ L1(T) belongs to BV(T) if its total variation TV(v), given by

TV(v) = sup

{∫
T
v(x)∂xϕ(x)dx : ϕ ∈ C1

0(T), |ϕ(x)| ≤ 1 for all x ∈ T
}
,

is finite. We endow the space BV(T) with the norm

∥v∥BV(T) = ∥v∥L1(T) + TV(v) for all v ∈ BV(T).

In particular, it holds ∥v∥BV(T) = ∥v∥1,1,T for any v ∈ VT ∩ BV(T).
For any given q ∈ [1,∞), we associate to these norms a dual norm with respect to the

L2(T) inner product by

∥v∥−1,q′,T = sup

{∣∣∣∣ ∫
T
vwdx

∣∣∣∣ : w ∈ VT , ∥w∥1,q,T = 1

}
,

where 1/q + 1/q′ = 1. Then the following estimate holds for all v, w ∈ VT ,∣∣∣∣ ∫
T
vwdx

∣∣∣∣ ≤ ∥v∥−1,q′,T ∥w∥1,q,T .
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We also need the space of piecewise constant (in time) functions taking values in VT :

VD =

{
v : T× (0, T ] → R : ∃(vk)k=1,...,NT

, v(x, t) =

NT∑
k=1

1(tk−1,tk](t)v
k(x)

}
,

and the discrete Lp(0, T ;W 1,q(T)) norm( NT∑
k=1

∆t∥vk∥p1,q,T
)1/p

, where 1 ≤ p, q <∞, v ∈ VD.

2.2. Numerical scheme. The initial datum (2) is approximated by

(10) u0i,ℓ =
1

∆x

∫
Kℓ

u0i (x)dx for ℓ ∈ G, i = 1, . . . , n.

For given k ∈ {1, . . . , NT} and uk−1 ∈ Vn
T , the values uk = (uki,ℓ)i=1,...,n, ℓ∈G are determined

by the implicit Euler finite-volume scheme

(11)
∆x

∆t
(uki,ℓ − uk−1

i,ℓ ) + Fk
i,ℓ+1/2 −Fk

i,ℓ−1/2 = 0, i = 1, . . . , n, ℓ ∈ G,

with the numerical fluxes

(12) Fk
i,ℓ+1/2 = − σ

∆x
(uki,ℓ+1 − uki,ℓ)−

uki,ℓ+1/2

∆x
(pki,ℓ+1 − pki,ℓ),

where the discrete nonlocal operators are given by

(13) pki,ℓ = aiiu
k
i,ℓ +

n∑
j=1
j ̸=i

∑
ℓ′∈G

∆xaijB
ij
ℓ−ℓ′u

k
j,ℓ′ , Bij

ℓ−ℓ′ =
1

∆x

∫
Kℓ−ℓ′

Bij(y)dy,

for all i, j = 1, . . . , n and ℓ, ℓ′ ∈ G. We show in the proof of Lemma 10 that pki,ℓ =

aiiu
k
i (xℓ) +

∑
j ̸=i aij(B

ij ∗ ukj )(xℓ) for ℓ ∈ G, verifying the consistency of the discretization

of pki,ℓ.

The mobility uki,ℓ+1/2 = F̂ (uki,ℓ, u
k
i,ℓ+1) is assumed to satisfy the following properties for

all ui,ℓ, ui,ℓ+1:

• The function F̂ : [0,∞)2 → [0,∞) is continuous and satisfies F̂ (ui,ℓ, ui,ℓ) = ui,ℓ as

well as min{ui,ℓ, ui,ℓ+1} ≤ F̂ (ui,ℓ, ui,ℓ+1) ≤ max{ui,ℓ, ui,ℓ+1}.
• There exists c0 > 0 such that the following discrete chain rule holds:

(14) ui,ℓ+1/2(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ) ≥ c0(pi,ℓ+1 − pi,ℓ)(ui,ℓ+1 − ui,ℓ).

Remark 1 (Examples for mobilities). Property (14) is satisfied if ui,ℓ (we omit the su-
perindex k) is defined by the upwind approximation

(15) ui,ℓ+1/2 =

{
ui,ℓ+1 if pi,ℓ+1 − pi,ℓ ≥ 0,

ui,ℓ if pi,ℓ+1 − pi,ℓ < 0,
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or by the logarithmic mean

(16) ui,ℓ+1/2 =


ui,ℓ+1 − ui,ℓ

log ui,ℓ+1 − log ui,ℓ
if ui,ℓ+1 > 0, ui,ℓ > 0, and ui,ℓ+1 ̸= ui,ℓ,

ui,ℓ if ui,ℓ+1 = ui,ℓ > 0,

0 else.

We refer to Lemma 14 in Appendix A for a proof. □

Remark 2 (Symmetry of discrete kernels). Definition (13) of Bij
ℓ−ℓ′ is consistent with the

discrete analog of Bji(−x) = Bij(x). Indeed, with the change of variables y 7→ −y,

Bji
−ℓ′ =

1

∆x

∫
K−ℓ′

Bji(y)dy =
1

∆x

∫
Kℓ′

Bji(−y)dy =
1

∆x

∫
Kℓ′

Bij(y)dy = Bij
ℓ′ .

Remark 3 (Discrete derivative of the convolution). A shift of ∆x in definition (13) of
Bij

ℓ−ℓ′ shows that B
ij
ℓ−ℓ′ = Bij

(ℓ+1)−(ℓ′+1), which leads to∑
ℓ′∈G

(Bij
(ℓ+1)−ℓ′ −Bij

ℓ−ℓ′)uj,ℓ′ =
∑
ℓ′∈G

(
Bij

(ℓ+1)−(ℓ′+1)uj,ℓ′+1 −Bij
ℓ−ℓ′uj,ℓ′

)
(17)

=
∑
ℓ′∈G

Bij
ℓ−ℓ′(uj,ℓ′+1 − uj,ℓ′)

for all ℓ ∈ G, i, j = 1, . . . , n. This is the discrete analog of the rule ∂xB
ij ∗ uj = Bij ∗

∂xuj. □

Remark 4 (Asymptotic-preserving scheme). For j ̸= i, let Bij = Bij
ε for some parameter

ε → 0 and Bij
ε → δ0 in the sense of distributions as ε → 0. Let pk,εi,ℓ be defined as in (13)

with Bij(y) replaced by Bij
ε (y). Then, as ε→ 0,

pk,εi,ℓ →
n∑

j=1

aij (δ0 ∗ uj) (xℓ) =
n∑

j=1

aijuj,ℓ.

Thus, our numerical scheme is asymptotic preserving in the sense that the method con-
verges to a finite-volume scheme for the local system, which also preserves the nonnega-
tivity, conserves the mass, and dissipates the Boltzmann and Rao entropies. □

2.3. Main results. We impose the following hypotheses:

(H1) Domain and parameters: T is a one-dimensional torus, T > 0, σ ≥ 0, and QT :=
T× (0, T ).

(H2) Initial datum: u0 = (u01, . . . , u
0
n) ∈ L2(T;Rn) satisfies u0i ≥ 0 in T.

(H3) Kernels: Let Bij ∈ L∞(T) for j ̸= i be a nonnegative function satisfying Bji(x) =
Bij(−x) for a.e. x ∈ T. There exist numbers π1, . . . , πn > 0 such that πiaij = πjaji
(detailed-balance condition), and the matrices M ij, defined in (8), are positive
definite for a.e. x ∈ T.
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We consider the one-dimensional equations mainly for notational simplicity. In several
space dimensions d > 1, we infer uniform estimates in spaces with weaker integrability than
in one space dimension, because of Sobolev embeddings. Thanks to the positive definiteness
condition on M ij

ℓ−ℓ′ , we obtain a bound for ui in the discrete L2(0, T ;H1(T)) norm, which
allows us to conclude, together with the Rao entropy estimate, by the discrete Gagliardo–
Nirenberg inequality, a bound for ui in L2+4/d(QT ), which is sufficient to estimate the
product ui∂xpi(u). In the one-dimensional situation, this procedure simplifies; see Lemma
11.

Our results also hold if σ = 0, since the condition σ > 0 provides an estimate for ui in
the discrete norm of L2(0, T ;W 1,1(T)), while the positive definiteness condition on M ij

ℓ−ℓ′

allows us to conclude a stronger bound in the discrete norm of L2(0, T ;H1(T)). Notice
that kernels of the type Bij = 1K satisfy Hypothesis (H3) (for suitable πi and aij).
Condition u0 ∈ L2(T;Rn) in Hypothesis (H2) is needed to obtain a finite initial Rao

entropy HR(u
0). For the existence result, the assumption on the kernels can be weakened

to Bij ∈ L1(T). The boundedness condition on Bij in Hypothesis (H3) is needed in the
proof of the convergence of the scheme.

We introduce for a given nonnegative function u ∈ Vn
T the discrete entropies

HB(u) =
n∑

i=1

∑
ℓ∈G

∆xπih(ui,ℓ), h(s) = s(log s− 1),(18)

HR(u) =
1

2

n∑
i=1

∑
ℓ∈G

∆xπiaii|ui,ℓ|2 +
1

2

n∑
i,j=1
i ̸=j

∑
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′uj,ℓ′ui,ℓ,

and the matrices

M ij
ℓ−ℓ′ :=

(
πiaii (n− 1)πiaijB

ij
ℓ−ℓ′

(n− 1)πjajiB
ij
ℓ−ℓ′ πjajj

)
for i < j, ℓ, ℓ′ ∈ G.(19)

In view of Hypothesis (H3), they are symmetric and positive definite uniformly in ℓ, ℓ′ ∈ G,
i.e. z⊤M ij

ℓ−ℓ′z ≥ cM |z|2 for all z ∈ R2 and some cM > 0.
Our first main result is the existence of discrete solutions.

Theorem 5 (Existence of discrete solutions). Let Hypotheses (H1)–(H3) hold. Then there
exists a solution uk ∈ Vn

T to (10)–(13) for all k = 1, . . . , NT , satisfying u
k
i,ℓ ≥ 0 for all

i = 1, . . . , n, ℓ ∈ G and the discrete entropy inequalities

HB(u
k) +

c0∆t

n− 1

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

(∆x)2
(
Dℓu

k
i

Dℓ′u
k
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

k
i

Dℓ′u
k
j

)
(20)

+ 4σ∆t
n∑

i=1

πi|(uki )1/2|21,2,T ≤ HB(u
k−1),

HR(u
k) + ∆t

n∑
i=1

∑
ℓ∈G

∆xπiu
k
i,ℓ+1/2

(
pki,ℓ+1 − pki,ℓ

∆x

)2

(21)
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+
σ∆t

(n− 1)

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

(∆x)2
(
Dℓu

k
i

Dℓ′u
k
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

k
i

Dℓ′u
k
j

)
≤ HR(u

k−1).

Furthermore, the solution conserves the mass,
∑

ℓ∈G∆xuki,ℓ =
∫
T u

0
i (x)dx for all i =

1, . . . , n, k = 1, . . . , NT .

This theorem is proved by solving a fixed-point problem based on a topological degree
argument, similar as in [17]. For this, we formulate (11) in terms of the entropy variable
wi = πi log ui and regularize the equations by adding the discrete analog of −ε∆wi + εwi.
The regularization ensures the coercivity in the variable wi. After transforming back to
the original variable ui = exp(wi/πi), we obtain automatically the positivity of ui (and
nonnegativity after passing to the limit ε→ 0). Like on the continuous level, the derivation
of the discrete entropy inequalities (20) and (21) relies on the detailed-balance condition
πiaij = πjaji for all i, j = 1, . . . , n,.

For our second main result, we need to introduce some notation. We define the “di-
amond” cell of the dual mesh Tℓ+1/2 = (xℓ, xℓ+1) with center xℓ+1/2. These cells define
another partition of T. The gradient of v ∈ VD is then defined by

∂Dx v(x, t) = Dℓv
k =

vkℓ+1 − vkℓ
∆x

for x ∈ Tℓ+1/2, t ∈ (tk−1, tk].

We also introduce a sequence of space-time discretizations (Dm)m∈N indexed by the mesh
size ηm = max{∆xm,∆tm} satisfying ηm → 0 as m→ ∞. The corresponding spatial mesh
is denoted by Tm with Gm = Z \ NmZ and the number of time steps by Nm

T . Finally, to
simplify the notation, we set ∂mx := ∂Dm

x .

Theorem 6 (Convergence of the scheme). Let Hypotheses (H1)–(H3) hold and let Dm be
a sequence of uniform space-time discretizations satisfying ηm → 0 as m → ∞. Let (um)
be the solutions to (10)–(13) constructed in Theorem 5. Then there exists u = (u1, . . . , un)
satisfying ui ≥ 0 in QT and, up to a subsequence, as m→ ∞,

ui,m → ui strongly in L2(QT ),

∂mx ui,m ⇀ ∂xui weakly in L2(QT ),

and u is a weak solution to (1)–(2), i.e., it holds for all ψi ∈ C∞
0 (T×[0, T )) and i = 1, . . . , n

that ∫ T

0

∫
T
ui∂tψidxdt+

∫
T
u0iψi(·, 0)dx =

∫ T

0

∫
T
(σ∂xui + ui∂xpi(u))∂xψidxdt.

The proof of Theorem 6 is based on suitable estimates uniform with respect to ∆xm and
∆tm, derived from the discrete entropy inequalites. A discrete version of the Aubin–Lions
lemma from [14] yields the strong convergence of a subsequence of (um) of solutions to
(11)–(13). The most technical part is the identification of the limit function as a weak
solution to (1)–(2).
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3. Proof of Theorem 5

Theorem 5 is proved by induction over k = 1, . . . , NT . We first regularize the problem
and prove the existence of an approximate solution by using a topological degree argument
for the fixed-point problem. The discrete entropy inequalities yield a priori estimates
independent of the approximation parameter. The deregularization limit is performed
thanks to the Bolzano–Weierstraß theorem.

Let k ∈ {1, . . . , NT} and uk−1 ∈ Vn
T satisfying uk−1

i,ℓ ≥ 0 for i = 1, . . . , n, ℓ ∈ G be given.

3.1. Solution to a linearized regularized scheme. We prove the existence of a unique
solution to a linearized regularized problem, which allows us to define the fixed-point
operator. Let R > 0, ε > 0 and define

ZR =
{
w = (w1, . . . , wn) ∈ Vn

T : ∥wi∥1,2,T < R for i = 1, . . . , n
}
.

We introduce the mapping F : ZR → RnN , w 7→ wε, where wε is the solution to the linear
regularized problem

(22) −ε
wε

i,ℓ+1 − 2wε
i,ℓ + wε

i,ℓ−1

∆x
+ ε∆xwε

i,ℓ = −∆x
ui,ℓ − uk−1

i,ℓ

∆t
− (Fi,ℓ+1/2 −Fi,ℓ−1/2),

where i = 1, . . . , n, ℓ ∈ G, ui,ℓ is defined by ui,ℓ = exp(wi,ℓ/πi), Fi,ℓ±1/2 is defined as in (12)
with uki replaced by ui and p

k
i,ℓ replaced by

pi,ℓ = aiiui,ℓ +
n∑

j=1
j ̸=i

∑
ℓ′∈G

∆xaijB
ij
ℓ−ℓ′uj,ℓ′ .

We claim that F is well defined. For this, we write (22) in the form

Mwε = v, where vi,ℓ = −∆x
ui,ℓ − uk−1

i,ℓ

∆t
− (Fi,ℓ+1/2 −Fi,ℓ−1/2).

The matrix M ∈ RnN×nN is a block diagonal matrix with entries M ′ ∈ RN×N , which are
tridiagonal matrices such that M ′

ℓ,ℓ = ε∆x + 2ε/∆x, M ′
ℓ+1,ℓ = M ′

ℓ,ℓ+1 = −ε/∆x. We can
decompose the full system Mwε = v into the subsystems M ′wε

i = vi for i = 1, . . . , n.
Since M ′ is strictly diagonally dominant, there exists a unique solution to M ′wε

i = vi and
consequently for Mwε = v by setting wε = (wε

1, . . . , w
ε
n). We infer that the mapping F is

well defined.

3.2. Continuity of F . We fix i ∈ {1, . . . , n}, multiply (22) by wε
i,ℓ, and sum over ℓ ∈ G:

ε
∑
ℓ∈G

(
−
wε

i,ℓ+1 − 2wε
i,ℓ + wε

i,ℓ−1

∆x
+∆xwε

i,ℓ

)
wε

i,ℓ(23)

= −
∑
ℓ∈G

∆x
ui,ℓ − uk−1

i,ℓ

∆t
wε

i,ℓ −
∑
ℓ∈G

(Fi,ℓ+1/2 −Fi,ℓ−1/2)w
ε
i,ℓ.
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The left-hand side can be rewritten by using discrete integration by parts (or summation
by parts):

ε
∑
ℓ∈G

(
−

(wε
i,ℓ+1 − wε

i,ℓ)− (wε
i,ℓ − wε

i,ℓ−1)

∆x
wε

i,ℓ +∆x(wε
i,ℓ)

2

)
(24)

= ε
∑
ℓ∈G

(wε
i,ℓ+1 − wε

i,ℓ)
2

∆x
+ ε

∑
ℓ∈G

∆x(wε
i,ℓ)

2 = ε∥wε
i ∥21,2,T .

The first term on the right-hand side of (23) is estimated by the Cauchy–Schwarz inequality,
taking into account that w ∈ ZR, which implies a finite discrete L2(T) norm for ui,ℓ =
exp(wi,ℓ/πi):∣∣∣∣−∑

ℓ∈G

∆x
ui,ℓ − uk−1

i,ℓ

∆t
wε

i,ℓ

∣∣∣∣ ≤ C(∆t)∥ui − uk−1
i ∥0,2,T ∥wε

i ∥0,2,T ≤ C(∆t, R)∥wε
i ∥1,2,T ,

where here and in the following C > 0, C(∆t, R) > 0, etc. are generic constants with values
changing from line to line. We split the second term on the right-hand side of (23) into
two parts:

−
∑
ℓ∈G

(Fi,ℓ+1/2 −Fi,ℓ−1/2)w
ε
i,ℓ = I1 + I2, where

I1 = σ
∑
ℓ∈G

(
ui,ℓ+1 − ui,ℓ

∆x
− ui,ℓ − ui,ℓ−1

∆x

)
wε

i,ℓ,

I2 =
∑
ℓ∈G

(
ui,ℓ+1/2

pi,ℓ+1 − pi,ℓ
∆x

− ui,ℓ−1/2
pi,ℓ − pi,ℓ−1

∆x

)
wε

i,ℓ.

For I1, we use discrete integration by parts, the Cauchy–Schwarz inequality, and the fact
that w ∈ ZR:

|I1| =
∣∣∣∣− σ

∑
ℓ∈G

∆x
ui,ℓ+1 − ui,ℓ

∆x

wε
i,ℓ+1 − wε

i,ℓ

∆x

∣∣∣∣
≤ σ

(∑
ℓ∈G

∆x

∣∣∣∣ui,ℓ+1 − ui,ℓ
∆x

∣∣∣∣2)1/2(∑
ℓ∈G

∆x

∣∣∣∣wε
i,ℓ+1 − wε

i,ℓ

∆x

∣∣∣∣2)1/2

= σ|ui|1,2,T |wε
i |1,2,T ≤ C(R)∥wε

i ∥1,2,T .

Using discrete integration by parts, and definition (13) of pi,ℓ, we obtain

|I2| =
∣∣∣∣−∑

ℓ∈G

∆xui,ℓ+1/2
pi,ℓ+1 − pi,ℓ

∆x

wε
i,ℓ+1 − wε

i,ℓ

∆x

∣∣∣∣ ≤ I21 + I22, where

I21 =

∣∣∣∣∑
ℓ∈G

∆xui,ℓ+1/2aii
(ui,ℓ+1 − ui,ℓ)

∆x

(wε
i,ℓ+1 − wε

i,ℓ)

∆x

∣∣∣∣,
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I22 =

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2ui,ℓ+1/2aij
Bij

ℓ+1−ℓ′ −Bij
ℓ−ℓ′

∆x
uj,ℓ′

wε
i,ℓ+1 − wε

i,ℓ

∆x

∣∣∣∣.
For I21, because of the bound in ZR, we can estimate ui,ℓ+1/2 ≤ max{ui,ℓ+1, ui,ℓ} ≤ C(R).
Then, thanks to the Cauchy–Schwarz inequality, we obtain

I21 ≤ C(R)aii |ui|1,2,T |wε
i |1,2,T ≤ C(R) ∥wε

i ∥1,2,T .

For I22, applying the discrete analog (17) of the rule ∂xB
ij ∗ uj = Bij ∗ ∂xuj,

I22 =

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2ui,ℓ+1/2aijB
ij
ℓ−ℓ′

uj,ℓ′+1 − uj,ℓ′

∆x

wε
i,ℓ+1 − wε

i,ℓ

∆x

∣∣∣∣
=

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2ui,ℓ+1/2aijB
ij
ℓ−ℓ′(Dℓ′uj)(Dℓwi)

∣∣∣∣,
where we used the notation of Section 2.1. Similarly to I21, we infer that

I22 ≤ C(R)
n∑

j=1
j ̸=i

aij
∑
ℓ∈G

∆x

(∑
ℓ′∈G

∆xBij
ℓ−ℓ′Dℓ′uj

)
Dℓwi.

Then, by the Cauchy–Schwarz inequality and the discrete convolution inequality from
Lemma 15 in Appendix A,

I22 ≤ C(R)
n∑

j=1
j ̸=i

{∑
ℓ∈G

∆x

(∑
ℓ′∈G

∆xBij
ℓ−ℓ′Dℓ′uj

)2}1/2

|wi|1,2,T

≤ C(R)
n∑

j=1
j ̸=i

∥Bij∥L1(T)|uj|1,2,T |wi|1,2,T ≤ C(R)∥wi∥1,2,T .

Combining these estimates, we deduce from (23) that ε∥wε
i ∥1,2,T ≤ C(∆t, R).

We can proceed to show the continuity of F . Let (wk)k∈N be such that wk → w ∈ ZR as
k → ∞ and set wε,k := F (wk). We have just proved that (wε,k)k∈N is bounded with respect
to the ∥ · ∥1,2,T norm. By the Bolzano–Weierstraß theorem, there exists a subsequence (not
relabeled) such that wε,k → wε in ZR as k → ∞. Performing the limit k → ∞ in (23),
satisfied for wε,k, shows that wε solves scheme (23) with ui,ℓ = exp(wε

i /πi). This means
that wε = F (w) and proves the continuity of F .

3.3. Existence of a fixed point. We show that F : ZR → RnN admits a fixed point by
using a topological degree argument. We recall that the Brouwer topological degree is a
mapping deg :M → Z, where

M =
{
(f, Z, y) : f ∈ C0(T), Z is open, bounded, y ̸∈ f(∂Z)

}
;
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see [11, Chap. 1, Theorem 3.1] for details and properties. If we show that any solution
(wε, ρ) ∈ ZR× [0, 1] to the fixed-point equation wε = ρF (wε) satisfies (wε, ρ) ̸∈ ∂ZR× [0, 1]
for sufficiently large values of R > 0, then we deduce from the invariance by homotopy
that deg(I − ρF, ZR, 0) is invariant in ρ. Then, choosing ρ = 0, deg(I, ZR, 0) = 1 and, if
ρ = 1, deg(I − F,ZR, 0) = deg(I, ZR, 0) = 1. This implies that there exists wε ∈ ZR such
that (I − F )(wε) = 0, which is the desired fixed point.

Let (wε, ρ) be a fixed point of wε = ρF (wε). If ρ = 0, there is nothing to show. Therefore,
let ρ > 0. Then wε

i solves

(25) −ε
wε

i,ℓ+1 − 2wε
i,ℓ + wε

i,ℓ−1

∆x
+ ε∆xwε

i,ℓ = −ρ
(
∆x

uεi,ℓ − uk−1
i,ℓ

∆t
+ F ε

i,ℓ+1/2 −F ε
i,ℓ−1/2

)
for all ℓ ∈ G and i = 1, . . . , n, where uεi,ℓ = exp(wε

i,ℓ/πi), and the fluxes F ε
i,ℓ±1/2 are defined

as in (12) with uki,ℓ replaced by uεi,ℓ. We multiply the previous equation by ∆twε
i,ℓ, sum over

ℓ ∈ G, i = 1, . . . , n, and use discrete integration by parts as in (24):

(26) ε∆t
n∑

i=1

∥wε
i ∥21,2,T = −ρ

n∑
i=1

∑
ℓ∈G

(
∆x(uεi,ℓ − uk−1

i,ℓ )wε
i,ℓ +∆t(F ε

i,ℓ+1/2 −F ε
i,ℓ−1/2)w

ε
i,ℓ

)
.

For the first term on the right-hand side, we use wε
i,ℓ = πi log u

ε
i,ℓ and the convexity of

h(s) = s(log s− 1):

(uεi,ℓ − uk−1
i,ℓ )πi log u

ε
i,ℓ ≥ πi

(
h(uεi,ℓ)− h(uk−1

i,ℓ )
)
.

Recalling definition (18) of HB, this shows that

−ρ
n∑

i=1

∑
ℓ∈G

∆x(uεi,ℓ − uk−1
i,ℓ )wε

i,ℓ ≤ −ρ
(
HB(u

ε)−HB(u
k−1)

)
.

Like in Section 3.2, we split the second term in (26) into two parts:

− ρ∆t
n∑

i=1

∑
ℓ∈G

(F ε
i,ℓ+1/2 −F ε

i,ℓ−1/2)w
ε
i,ℓ = I3 + I4, where(27)

I3 = ρσ∆t
n∑

i=1

∑
ℓ∈G

(
uεi,ℓ+1 − uεi,ℓ

∆x
−
uεi,ℓ − uεi,ℓ−1

∆x

)
wε

i,ℓ,

I4 = ρ∆t
n∑

i=1

∑
ℓ∈G

(
uεi,ℓ+1/2

pεi,ℓ+1 − pεi,ℓ
∆x

− uεi,ℓ−1/2

pεi,ℓ − pεi,ℓ−1

∆x

)
wε

i,ℓ.

We use discrete integration by parts, the definition wε
i,ℓ = πi log u

ε
i,ℓ, and the elementary

inequality (a− b)(log a− log b) ≥ 4(
√
a−

√
b)2 for a, b > 0 to estimate the first term:

I3 = −ρσ∆t
n∑

i=1

∑
ℓ∈G

uεi,ℓ+1 − uεi,ℓ
∆x

(wε
i,ℓ+1 − wε

i,ℓ)
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≤ −4ρσ∆t
n∑

i=1

∑
ℓ∈G

πi
∆x

(
(uεi,ℓ+1)

1/2 − (uεi,ℓ)
1/2

)2
= −4ρσ∆t

n∑
i=1

πi|(uεi )1/2|21,2,T .

For the second term I4, we use discrete integration by parts and wε
i,ℓ = πi log u

ε
i,ℓ again

as well as property (14) (discrete chain rule):

I4 = −ρ∆t
∆x

n∑
i=1

∑
ℓ∈G

πiu
ε
i,ℓ+1/2(p

ε
i,ℓ+1 − pεi,ℓ)(log u

ε
i,ℓ+1 − log uεi,ℓ)

≤ −ρc0
∆t

∆x

n∑
i=1

∑
ℓ∈G

πi(p
ε
i,ℓ+1 − pεi,ℓ)(u

ε
i,ℓ+1 − uεi,ℓ).

Then, inserting definition (3) of pεi,ℓ and using the discrete analog (17) of ∂xB
ij ∗ uj =

Bij ∗ ∂xuj,

I4 ≤ −ρc0
∆t

∆x
(I41 + I42), where

I41 =
n∑

i=1

∑
ℓ∈G

πiaii(u
ε
i,ℓ+1 − uεi,ℓ)

2,

I42 =
n∑

i,j=1
j ̸=i

∑
ℓ,ℓ′∈G

∆xπiaijB
ij
ℓ−ℓ′(u

ε
j,ℓ′+1 − uεj,ℓ′)(u

ε
i,ℓ+1 − uεi,ℓ).

We insert (n − 1)−1
∑

j ̸=i 1 = 1 and
∑

ℓ′∈G ∆x = 1 (note that m(T) = 1) in I41 and split
the resulting sum in two parts:

I41 =
1

n− 1

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

∆xπiaii(u
ε
i,ℓ+1 − uεi,ℓ)

2 +
1

n− 1

n∑
i,j=1
i>j

∑
ℓ,ℓ′∈G

∆xπiaii(u
ε
i,ℓ+1 − uεi,ℓ)

2.

We exchange i and j as well as ℓ and ℓ′ in the second term, which leads to

I41 =
1

n− 1

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

∆x
[
πiaii(u

ε
i,ℓ+1 − uεi,ℓ)

2 + πjajj(u
ε
j,ℓ′+1 − uεj,ℓ′)

2
]
.

Similarly, we distinguish between i < j and i > j in I42 and exchange i and j as well as ℓ
and ℓ′ in the sum over i > j, leading to

I42 =
n∑

i,j=1
i<j

∑
ℓ,ℓ′∈G

∆xπiaijB
ij
ℓ−ℓ′(u

ε
j,ℓ′+1 − uεj,ℓ′)(u

ε
i,ℓ+1 − uεi,ℓ)

+
n∑

i,j=1
i<j

∑
ℓ,ℓ′∈G

∆xπjajiB
ji
ℓ′−ℓ(u

ε
i,ℓ+1 − uεi,ℓ)(u

ε
j,ℓ′+1 − uεj,ℓ′).
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By Remark 2, we have Bji
ℓ′−ℓ = Bij

ℓ−ℓ′ . Therefore,

I42 =
n∑

i,j=1
i<j

∑
ℓ,ℓ′∈G

∆x(πiaij + πjaji)B
ij
ℓ−ℓ′(u

ε
j,ℓ′+1 − uεj,ℓ′)(u

ε
i,ℓ+1 − uεi,ℓ).

The sum of I41 and I42 can be written as a quadratic form in Dℓu
ε
i and Dℓ′u

ε
j with the

matrix M ij
ℓ−ℓ′ , defined in (19). This shows that

I4 ≤ − ρc0∆t

(n− 1)

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

(∆x)2
(
Dℓu

ε
i

Dℓ′u
ε
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

ε
i

Dℓ′u
ε
j

)
≤ 0.

Collecting the estimates for I3 and I4 in (27), we deduce from (26) the following regu-
larized discrete entropy inequality:

ρHB(u
ε) + ε∆t

n∑
i=1

∥wε
i ∥21,2,T + 4ρσ∆t

n∑
i=1

πi|(uεi )1/2|21,2,T(28)

+
ρc0∆t

(n− 1)

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

(∆x)2
(
Dℓu

ε
i

Dℓ′u
ε
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

ε
i

Dℓ′u
ε
j

)
≤ ρHB(u

k−1).

We proceed with the topological degree argument. We set R = 1+(HB(u
k−1)/(ε∆t))1/2.

Then (28) implies that

ε∆t
n∑

i=1

∥wε
i ∥21,2,T ≤ ρHB(u

k−1) ≤ HB(u
k−1) = ε∆t(R− 1)2 < ε∆tR2

and hence wε ̸∈ ∂ZR. We infer that deg(I − F,ZR, 0) = 1 and consequently, F admits a
fixed point. Note that we did not use the estimate for uεi in the seminorm | · |1,2,T at this
point, such that σ = 0 is admissible here (and also in the following two subsections).

3.4. Limit ε→ 0. There exists a constant C > 0 such that C(s− 1) ≤ h(s) for all s ≥ 0.
Hence,

Cπi∆x(u
ε
i,ℓ − 1) ≤ πi∆xh(u

ε
i,ℓ) ≤ HB(u

ε) ≤ HB(u
k−1)

for all ℓ ∈ G, i = 1, . . . , n. Thus, (uεi,ℓ) is bounded in ε and the Bolzano–Weierstraß

theorem implies the existence of a subsequence (not relabeled) such that uεi,ℓ → uki,ℓ ≥ 0 as

ε→ 0. It follows from (28) that εwε
i,ℓ → 0. Thus, the limit ε→ 0 in (25) shows that uk is

a solution to the numerical scheme (11)–(13). Moreover, the limit ε → 0 in (28) leads to
the discrete entropy inequality (20).
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3.5. Discrete Rao entropy inequality. We prove inequality (21). To this end, we
multiply (11) by ∆tπip

k
i,ℓ and sum over ℓ ∈ G, i = 1, . . . , n:

(29)
n∑

i=1

∑
ℓ∈G

∆xπi(u
k
i,ℓ − uk−1

i,ℓ )pki,ℓ +
n∑

i=1

∑
ℓ∈G

∆tπi(Fk
i,ℓ+1/2 −Fk

i,ℓ−1/2)p
k
i,ℓ = 0.

For the first term in (29), we use the definition of pki,ℓ:

n∑
i=1

∑
ℓ∈G

∆xπi(u
k
i,ℓ − uk−1

i,ℓ )pki,ℓ = I5 + I6, where

I5 =
n∑

i=1

∑
ℓ∈G

∆xπiaii(u
k
i,ℓ − uk−1

i,ℓ )uki,ℓ,

I6 =
n∑

i,j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓ − uk−1

i,ℓ )ukj,ℓ′ .

We rewrite I5 and I6 according to

I5 =
1

2

n∑
i=1

∑
ℓ∈G

∆xπiaii
(
(uki,ℓ)

2 − (uk−1
i,ℓ )2

)
+

1

2

n∑
i=1

∑
ℓ∈G

∆xπiaii
(
uki,ℓ − uk−1

i,ℓ

)2
,

I6 =
1

2

n∑
i,j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓu

k
j,ℓ′ − uk−1

i,ℓ uk−1
j,ℓ′ )

+
1

2

n∑
i,j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓ − uk−1

i,ℓ )(ukj,ℓ′ − uk−1
j,ℓ′ ).

Combining the second terms in I5 and I6, using similar computations as for I4 in Section
3.3, and applying Hypothesis (H3) show that the second term of I5 + I6 is nonnegative so
that

I5 + I6 ≥
1

2

n∑
i=1

∑
ℓ∈G

∆xπiaii
(
(uki,ℓ)

2 − (uk−1
i,ℓ )2

)
+

1

2

n∑
i,j=1
j ̸=i

∑
ℓ,ℓ′∈G

(∆x)2πiaijB
ij
ℓ−ℓ′(u

k
i,ℓu

k
j,ℓ′ − uk−1

i,ℓ uk−1
j,ℓ′ ).

Then it holds that
n∑

i=1

∑
ℓ∈G

∆xπi(u
k
i,ℓ − uk−1

i,ℓ )pki,ℓ ≥ HR(u
k)−HR(u

k−1).
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Now, we split the second term in (29) again into two parts:

n∑
i=1

∑
ℓ∈G

∆tπi(Fk
i,ℓ+1/2 −Fk

i,ℓ−1/2)p
k
i,ℓ = I7 + I8, where

I7 = −σ∆t
n∑

i=1

∑
ℓ∈G

πi

(
uki,ℓ+1 − uki,ℓ

∆x
−
uki,ℓ − uki,ℓ−1

∆x

)
pki,ℓ,

I8 = −∆t
n∑

i=1

∑
ℓ∈G

πi

(
uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆x

− uki,ℓ−1/2

pki,ℓ − pki,ℓ−1

∆x

)
pki,ℓ.

We reformulate I7 by using a discrete integration by parts:

I7 = σ∆t
n∑

i=1

∑
ℓ∈G

πi
uki,ℓ+1 − uki,ℓ

∆x
(pki,ℓ+1 − pki,ℓ).

Then, with similar computations as for I4 in Section 3.3, we obtain

I7 =
σ∆t

(n− 1)

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

(∆x)2
(
Dℓu

k
i

Dℓ′u
k
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

k
i

Dℓ′u
k
j

)
≥ 0.

Finally, the term I8 can be rewritten as

I8 = ∆t
n∑

i=1

∑
ℓ∈G

πiu
k
i,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆x

(pki,ℓ+1 − pki,ℓ) = ∆t
n∑

i=1

∑
ℓ∈G

πi∆x
∣∣(uki,ℓ+1/2)

1/2Dℓp
k
i

∣∣2.
Hence, we infer from (29) that

HR(u
k) + ∆t

n∑
i=1

∑
ℓ∈G

πi∆x
∣∣(uki,ℓ+1/2)

1/2Dℓp
k
i

∣∣2
+

σ∆t

(n− 1)

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈G

(∆x)2
(
Dℓu

k
i

Dℓ′u
k
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

k
i

Dℓ′u
k
j

)
≤ HR(u

k−1),

which proves (21).
Finally, conservation of mass follows from summing (11) over ℓ ∈ G and observing that

the sum over the numerical fluxes vanishes. This ends the proof of Theorem 5.

4. Proof of Theorem 6

To prove the convergence of the scheme, we derive first some uniform estimates and then
apply a discrete Aubin–Lions compactness lemma.
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4.1. Uniform estimates. Let (um)m∈N be a sequence of finite-volume solutions to (11)–
(13) associated to the mesh Dm and constructed in Theorem 5. The conservation of
mass and the discrete entropy inequalities (20) and (21) show that, after summing over
k = 1, . . . , Nm

T ,

(30) max
k=1,...,Nm

T

∥uki ∥20,2,Tm +

Nm
T∑

k=1

∆tm∥(uki )1/2∥21,2,Tm ≤ C, i = 1, . . . , n,

where C > 0 denotes here and in the following a constant independent of the mesh size
ηm = max{∆xm, ∆tm}, but possibly depending on u0 and T . Because of the positive
definiteness of M ij

ℓ−ℓ′ , we conclude a bound for uki in the norm ∥ · ∥1,2,Tm .

Lemma 7. Let the assumptions of Theorem 6 hold. Then there exists C > 0 independent
of ηm (but depending on the positive definite constant cM) such that for all m ∈ N, i =
1, . . . , n,

(31)

Nm
T∑

k=1

∆tm∥uki ∥21,2,Tm ≤ C.

Proof. We infer from (20) that

c0
n− 1

Nm
T∑

k=1

∆tm

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈Gm

(∆x)2
(
Dℓu

k
i

Dℓ′u
k
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

k
i

Dℓ′u
k
j

)
≤ HB(u

0),

Since M ij
ℓ−ℓ′ is positive definite with constant cM > 0,

c0
n− 1

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈Gm

(∆x)2
(
Dℓu

k
i

Dℓ′u
k
j

)⊤

M ij
ℓ−ℓ′

(
Dℓu

k
i

Dℓ′u
k
j

)

≥ cMc0
n− 1

n∑
i,j=1
i<j

∑
ℓ,ℓ′∈Gm

(∆x)2
(
|Dℓu

k
i |2 + |Dℓ′u

k
j |2

)

= cMc0

n∑
i=1

∑
ℓ∈Gm

∆x|Dℓu
k
i |2 + cMc0

n∑
j=1

∑
ℓ′∈Gm

∆x|Dℓ′u
k
j |2

= 2cMc0

n∑
i=1

∑
ℓ∈Gm

∆x|Dℓu
k
i |2.

Together with the first bound in (30), this finishes the proof. □
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Lemma 8. Let the assumptions of Theorem 6 hold. Then there exists a constant C > 0
independent of ηm (but depending on σ) such that for all m ∈ N, i = 1, . . . , n,

Nm
T∑

k=1

∆tm∥uki ∥21,1,Tm +

Nm
T∑

k=1

∆tm∥uki ∥20,∞,Tm ≤ C.

Moreover, there exists another constant, still denoted by C > 0 and independent of ηm,
such that

Nm
T∑

k=1

∆tm|pki |21,2,Tm ≤ C.(32)

Proof. As m(T) = 1, thanks to the Cauchy–Schwarz inequality,

|uki |1,1,Tm =
∑
ℓ∈Gm

|uki,ℓ+1 − uki,ℓ| ≤ |uki |1,2,Tm .

Using (31), this shows that

Nm
T∑

k=1

∆tm∥uki ∥21,1,Tm ≤ 2

Nm
T∑

k=1

∆tm
(
∥uki ∥20,1,Tm + |uki |21,1,Tm

)
≤ 2T max

k=1,...,Nm
T

∥uki ∥20,1,Tm + 2

Nm
T∑

k=1

∆tm|uki |21,2,Tm ≤ C(u0, T ).

To show the discrete L∞(T) bound, we apply the continuity of the embedding BV(T) ↪→
L∞(T) (in one space dimension). We conclude that, for i = 1, . . . , n,

Nm
T∑

k=1

∆tm∥uki ∥20,∞,Tm ≤ C

Nm
T∑

k=1

∆tm∥uki ∥2BV(T) = C

Nm
T∑

k=1

∆tm∥uki ∥21,1,Tm ≤ C(u0, T ).

For the last part, we estimate

|pki |21,2,Tm =
∑
ℓ∈Gm

∆xm

∣∣∣∣pki,ℓ+1 − pki,ℓ
∆xm

∣∣∣∣2
≤ Ca2ii|uki |21,2,Tm + C

∑
ℓ∈Gm

∆xm

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ′∈Gm

∆xmaij
Bij

ℓ+1−ℓ′ −Bij
ℓ−ℓ′

∆xm
ukj,ℓ′

∣∣∣∣2

≤ C|uki |21,2,Tm + C
∑
ℓ∈Gm

∆xm

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′

ukj,ℓ′+1 − ukj,ℓ′

∆xm

∣∣∣∣2

≤ C|uki |21,2,Tm + C
∑
ℓ∈Gm

∆xm

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′Dℓ′u

k
j

∣∣∣∣2.
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Then we deduce from the elementary inequality (
∑n

j=1, j ̸=i aj)
2 ≤ (n − 1)

∑n
j=1, j ̸=i a

2
j for

aj ∈ R and the discrete Young convolution inequality in Lemma 15 that∑
ℓ∈Gm

∆xm

∣∣∣∣ n∑
j=1
j ̸=i

∑
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′Dℓ′u

k
j

∣∣∣∣2

≤ (n− 1)
n∑

j=1
j ̸=i

∑
ℓ∈Gm

∆xm

( ∑
ℓ′∈Gm

∆xmaijB
ij
ℓ−ℓ′Dℓ′u

k
j

)2

≤ C

n∑
j=1
j ̸=i

∥Bij∥2L2(T)|ukj |21,1,Tm .

Summing over k, we infer that

Nm
T∑

k=1

∆tm|pki |21,2,Tm ≤ C

{ n∑
i=1

Nm
T∑

k=1

∆tm|uki |21,2,Tm +
n∑

j=1
j ̸=i

(
∥Bij∥2L2(T)

Nm
T∑

k=1

∆tm|ukj |21,1,Tm

)}
≤ C,

where we used Lemma 8 for the last inequality. At this point, we need the discrete
L2(0, T ;H1(T)) bound of (um,i). This ends the proof. □

Next, we show a uniform bound for the discrete time derivative.

Lemma 9. Let the assumptions of Theorem 6 hold. Then there exists C > 0 independent
of ηm such that for all m ∈ N, i = 1, . . . , n,

Nm
T∑

k=1

∆tm

∥∥∥∥uki − uk−1
i

∆tm

∥∥∥∥4/3

−1,2,Tm
≤ C.

Proof. Let ϕ = (ϕℓ)ℓ∈Gm ∈ VTm be such that ∥ϕ∥1,2,Tm = 1. We multiply (11) by ϕℓ, sum
over ℓ ∈ Gm, and use discrete integration by parts:∑

ℓ∈Gm

∆xm
uki,ℓ − uk−1

i,ℓ

∆tm
ϕℓ = σ

∑
ℓ∈Gm

(
uki,ℓ+1 − uki,ℓ

∆xm
−
uki,ℓ − uki,ℓ−1

∆xm

)
ϕℓ(33)

+
∑
ℓ∈Gm

(
uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

− uki,ℓ−1/2

pki,ℓ − pki,ℓ−1

∆xm

)
ϕℓ

= −σ
∑
ℓ∈Gm

∆xm
uki,ℓ+1 − uki,ℓ

∆xm

ϕℓ+1 − ϕℓ

∆xm
−

∑
ℓ∈Gm

∆xmu
k
i,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

ϕℓ+1 − ϕℓ

∆xm

=: I9 + I10.

By the Cauchy–Schwarz inequality,

|I9| ≤ σ
∑
ℓ∈Gm

∆xm
(
(uki,ℓ+1)

1/2 + (uki,ℓ)
1/2

)∣∣∣∣(uki,ℓ+1)
1/2 − (uki,ℓ)

1/2

∆xm

∣∣∣∣∣∣∣∣ϕℓ+1 − ϕℓ

∆xm

∣∣∣∣
≤ 2σ∥(uki )1/2∥0,∞,Tm|(uki )1/2|1,2,Tm|ϕ|1,2,Tm .
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Furthermore, using (uki,ℓ+1/2)
1/2 ≤ max{(uki,ℓ)1/2, (uki,ℓ+1)

1/2} ≤ ∥(uki )1/2∥0,∞,Tm ,

|I10| ≤
∑
ℓ∈Gm

∆xm
∣∣(uki,ℓ+1/2)

1/2
∣∣∣∣∣∣(uki,ℓ+1/2)

1/2
pki,ℓ+1 − pki,ℓ

∆xm

∣∣∣∣∣∣∣∣ϕℓ+1 − ϕℓ

∆xm

∣∣∣∣
≤ ∥(uki )1/2∥0,∞,Tm

( ∑
ℓ∈Gm

∆xm

∣∣∣∣(uki,ℓ+1/2)
1/2
pki,ℓ+1 − pki,ℓ

∆xm

∣∣∣∣2)1/2

|ϕ|1,2,Tm .

Applying the elementary inequality (a+b)r ≤ C(ar+br) for all a, b ≥ 0 and r > 1, inserting
the previous estimates into (33), and using Hölder’s inequality, we find that

Nm
T∑

k=1

∆tm

∥∥∥∥uki − uk−1
i

∆tm

∥∥∥∥4/3

−1,2,Tm
=

Nm
T∑

k=1

∆tm sup
∥ϕ∥1,2,Tm=1

∣∣∣∣ ∑
ℓ∈Gm

∆xm
uki,ℓ − uk−1

i,ℓ

∆tm
ϕℓ

∣∣∣∣4/3

≤ C

Nm
T∑

k=1

∆tm∥(uki )1/2∥
4/3
0,∞,Tm|(u

k
i )

1/2|4/31,2,Tm

+ C

Nm
T∑

k=1

∆tm∥(uki )1/2∥
4/3
0,∞,Tm

( ∑
ℓ∈Gm

∆xm

∣∣∣∣(uki,ℓ+1/2)
1/2
pki,ℓ+1 − pki,ℓ

∆xm

∣∣∣∣2)2/3

≤ C

( Nm
T∑

k=1

∆tm∥(uki )1/2∥40,∞,Tm

)1/3( Nm
T∑

k=1

∆tm|(uki )1/2|21,2,Tm

)2/3

+ C

( Nm
T∑

k=1

∆tm∥(uki )1/2∥40,∞,Tm

)1/3( Nm
T∑

k=1

∆tm
∑
ℓ∈Gm

∆xm

∣∣∣∣(uki,ℓ+1/2)
1/2
pki,ℓ+1 − pki,ℓ

∆xm

∣∣∣∣2)2/3

≤ C(u0, T ),

and the last bound follows from Lemma 8 and the discrete Rao entropy inequality (21). □

4.2. Compactness. We claim now that the estimates from Lemmas 8 and 9 are sufficient
to conclude the relative compactness of (um)m∈N. In fact, the result follows from the
discrete Aubin–Lions lemma [14, Theorem 3.4] if the following two properties are satisfied:

• For any (vm)m∈N ⊂ VTm such that supm∈N ∥vm∥1,2,Tm ≤ C for some C > 0, there
exists v ∈ L2(T) satisfing, up to a subsequence, vm → v strongly in L2(T). This
property follows from [13, Theorem 14.1].

• If vm → v strongly in L2(T) and ∥vm∥−1,2,Tm → 0 as m → ∞, then v = 0. This
property can be replaced by the condition that ∥ · ∥1,2,Tm and ∥ · ∥−1,2,Tm are dual
norms with respect to the L2(T) norm, which is the case [14, Remark 6]. A more
detailed proof can be found in [17, Prop. 10].

Hence, it follows from [14, Theorem 3.4] that there exists a subsequence, which is not
relabeled, such that

um,i → ui strongly in L1(0, T ;L2(T)) as m→ ∞.



22 A. JÜNGEL, S. PORTISCH, AND A. ZUREK

Let us now adapt in our case the Gagliardo–Nirenberg inequality. Let k = 1, . . . , Nm
T be

fixed. We first apply Lemma 16 with s = p = 2:

∥ukm,i∥0,∞,Tm ≤ C∥ukm,i∥
1/2
1,2,Tm∥u

k
m,i∥

1/2
0,2,T .

Then it follows from the Hölder inequality

∥ukm,i∥0,6,Tm ≤ ∥ukm,i∥
2/3
0,∞,Tm∥(u

k
m,i)

1/3∥0,6,Tm = ∥ukm,i∥
2/3
0,∞,Tm∥u

k
m,i∥

1/3
0,2,Tm

that

∥ukm,i∥0,6,Tm ≤ C∥ukm,i∥
1/3
1,2,Tm ∥ukm,i∥

2/3
0,2,T .

Therefore,

NT∑
k=1

∆tm∥ukm,i∥60,6,Tm ≤ C max
k=1,...,NT

∥um,i∥40,2,Tm
NT∑
k=1

∆tm ∥ukm,i∥21,2,Tm .

Recalling estimates (30) and (31), we conclude that (um,i)m∈N is uniformly bounded in
L6(T). The convergence dominated theorem implies that, up to a subsequence, for every
p < 6,

um,i → ui strongly in Lp(QT ) as m→ ∞.

Lemma 8 implies that the sequence of discrete derivatives (∂mx um,i)m∈N is bounded in
L2(QT ). Thus, there exists a subsequence (not relabeled) such that ∂mx um,i ⇀ vi weakly in
L2(QT ), and the proof of [9, Lemma 4.4] allows us to identify vi = ∂xui.

Lemma 10. The following convergences hold, up to subsequences, as m→ ∞,

pm,i → pi(u) strongly in L2(QT ),

∂xpm,i ⇀ ∂xpi(u) weakly in L2(QT ), i = 1, . . . , n.

Proof. We follow the strategy of [15, Corollary 14]. First, we rewrite pki,ℓ defined in (13).
By a change of variables, we have

pki,ℓ = aiiu
k
m,i,ℓ +

n∑
j=1
j ̸=i

∑
ℓ′∈Gm

aij

(∫
Kℓ−ℓ′

Bij(y)dy

)
ukm,j,ℓ′

= aiiu
k
m,i,ℓ +

n∑
j=1
j ̸=i

∑
ℓ′∈Gm

aij

∫
Kℓ′

Bij(xℓ − z)ukm,j(z)dz

= aiiu
k
m,i(xℓ) +

n∑
j=1
j ̸=i

aij(B
ij ∗ ukm,j)(xℓ).
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We introduce the piecewise constant function Qij
m by setting Qij

m := (Bij ∗ um,j)(xℓ) in Kℓ

for ℓ ∈ Gm. Then

pi(u)− pm,i = aii(ui − um,i) +
n∑

j=1
j ̸=i

aij(B
ij ∗ uj −Qij

m).

Since we know that ui − um,i → 0 strongly in L2(QT ), it is sufficient to prove that Bij ∗
uj −Qij

m → 0 strongly in L2(QT ). For this, we write

(Bij ∗ uj −Qij
m)(x, t) = Bij ∗ (uj − um,j)(x, t) +

∫
T
(Bij(x− y)−Bij(xℓ − y))um,j(y, t)dy.

By Young’s convolution inequality, we have

∥Bij ∗ (uj − um,j)∥L2(QT ) ≤ ∥Bij∥L1(T)∥uj − um,j∥L2(QT ) → 0.

Setting ξ(x, y) = Bij(x− y)−Bij(xℓ − y) for x ∈ Kℓ and y ∈ T, we estimate∥∥∥∥∫
T
ξ(·, y)um,j(y, t)dy

∥∥∥∥2

L2(QT )

≤
∫
T
∥ξ(x, ·)∥2L2(T)dx∥um,j∥2L2(QT )

≤ sup
|z|≤∆xm

∥Bij(z + ·)−Bij∥2L2(T)∥um,j∥2L2(QT ).

Since (um,j) is bounded in L2(QT ), it remains to verify that the first factor converges to
zero as ∆xm → 0. This follows from the density of continuous functions in L2(T). Indeed,
let ε > 0 and Bij

ε be continuous such that ∥Bij
ε −Bij∥L2(T) ≤ ε. Then

sup
|z|≤∆xm

∥Bij(z + ·)−Bij∥L2(T) ≤ sup
|z|≤∆xm

∥Bij(z + ·)−Bij
ε (z + ·)∥L2(T)

+ sup
|z|≤∆xm

∥Bij
ε (z + ·)−Bij

ε ∥L2(T) + ∥Bij
ε −Bij∥L2(T)

≤ 2ε+ sup
|z|≤∆xm

∥Bij
ε (z + ·)−Bij

ε ∥L2(T).

The last term is smaller than ε if we choose ∆xm sufficiently small. We have shown that
sup|z|≤∆xm

∥Bij(z + ·) − Bij∥2L2(T) → 0 as m → ∞ and Bij ∗ uj − Qij
m → 0 strongly in

L2(QT ). This proves the first part of the lemma.
Thanks to (32), we have shown that (∂mx pm,i)m∈N is bounded in L2(QT ). Hence, up

to a subsequence, ∂mx pm,i ⇀ z weakly in L2(QT ). The first part of the proof shows that
z = ∂xpi(u), finishing the proof. □

4.3. Convergence of the scheme. We show that the limit u = (u1, . . . , un) of the finite-
volume solutions is a weak solution to (1)–(2). Let i ∈ {1, . . . , n} be fixed, let ψi ∈ C∞

0 (T×
[0, T )) be given, and let ηm = max{∆xm,∆tm}. We set ψk

i,ℓ := ψi(xℓ, tk) and multiply (11)

by ∆tmψ
k−1
i,ℓ and sum over ℓ ∈ Gm, k = 1, . . . , Nm

T . This yields Fm
1 +Fm

2 +Fm
3 = 0, where

Fm
1 =

Nm
T∑

k=1

∑
ℓ∈Gm

∆xm(u
k
i,ℓ − uk−1

i,ℓ )ψk−1
i,ℓ ,
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Fm
2 = −σ

Nm
T∑

k=1

∆tm
∑
ℓ∈Gm

(
uki,ℓ+1 − uki,ℓ

∆xm
−
uki,ℓ − uki,ℓ−1

∆xm

)
ψk−1
i,ℓ ,

Fm
3 = −

Nm
T∑

k=1

∆tm
∑
ℓ∈Gm

(
uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

− uki,ℓ−1/2

pki,ℓ − pki,ℓ−1

∆xm

)
ψk−1
i,ℓ .

Furthermore, we introduce the terms

Fm
10 = −

∫ T

0

∫
T
um,i∂tψidxdt−

∫
T
um,i(x, 0)ψi(x, 0)dx,

Fm
20 = σ

∫ T

0

∫
T
∂mx um,i∂xψidxdt,

Fm
30 =

∫ T

0

∫
T
um,i∂

m
x pm,i∂xψidxdt.

Lemma 11. Let the assumptions of Theorem 6 hold. Then it holds that, as m→ ∞,

Fm
10 → −

∫ T

0

∫
T
ui∂tψidxdt−

∫
T
u0i (x)ψi(x, 0)dx,(34)

Fm
20 → σ

∫ T

0

∫
T
∂xui∂xψidxdt,(35)

Fm
30 →

∫ T

0

∫
T
ui∂xpi(u)∂xψidxdt.(36)

Proof. The strong convergence of (um,i)m∈N and the weak convergence of (∂mx um,i)m∈N in
L2(QT ) as well as the fact that um,i(x, 0) = (∆xm)

−1
∫
Kℓ
u0i (z)dz for x ∈ Kℓ and ℓ ∈ G

immediately show convergences (34) and (35). It remains to verify (36). We know from
Lemma 10 that ∂mx pm,i ⇀ ∂xpi(u) weakly in L2(QT ). Since um,i → ui strongly in L2(QT ),
this implies that

um,i∂
m
x pm,i ⇀ ui∂xpi(u) weakly in L1(QT ).

In fact, since u
1/2
m,i∂

m
x pm,i is uniformly bounded in L2(QT ) and u

1/2
m,i is uniformly bounded in

L∞(0, T ;L4(T)), this weak convergence even holds in L2(0, T ;L4/3(T)). This proves (36)
and ends the proof. □

Lemma 12. Let the assumptions of Theorem 6 hold. Then it holds that, as m→ ∞,

Fm
10 − Fm

1 → 0, Fm
20 − Fm

2 → 0, Fm
30 − Fm

3 → 0.

The lemma implies that

Fm
10 + Fm

20 + Fm
30 = (Fm

10 − Fm
1 ) + (Fm

20 − Fm
2 ) + (Fm

30 − Fm
3 ) + (Fm

1 + Fm
2 + fm

3 )

= (Fm
10 − Fm

1 ) + (Fm
20 − Fm

2 ) + (Fm
30 − Fm

3 ) → 0 as m→ ∞.

Therefore, thanks to Lemma 11, we conclude that u = (u1, . . . , un) is a weak solution to
(1)–(2). This finishes the proof of Theorem 6 once Lemma 12 is proved.
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Proof of Lemma 12. The limit Fm
10 − Fm

1 → 0 is shown in [9, Theorem 5.2]. For the
convergence of Fm

20 − Fm
2 , we use discrete integration by parts:

Fm
2 = σ

Nm
T∑

k=1

∆tm
∑
ℓ∈Gm

uki,ℓ+1 − uki,ℓ
∆xm

(ψk−1
i,ℓ+1 − ψk−1

i,ℓ )

= σ

Nm
T∑

k=1

∑
ℓ∈Gm

∫ xℓ+1

xℓ

uki,ℓ+1 − uki,ℓ
∆xm

∫ tk

tk−1

ψk−1
i,ℓ+1 − ψk−1

i,ℓ

∆xm
dxdt,

Fm
20 = σ

Nm
T∑

k=1

∑
ℓ∈Gm

∫ tk

tk−1

∫ xℓ+1

xℓ

uki,ℓ+1 − uki,ℓ
∆xm

∂xψidxdt.

By the mean-value theorem,∣∣∣∣ ∫ tk

tk−1

1

∆xm

∫ xℓ+1

xℓ

(
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

∆xm
− ∂xψi

)
dxdt

∣∣∣∣ ≤ C∆tmηm.

This shows that, as m→ ∞,

|Fm
2 − Fm

20 | ≤ σ

Nm
T∑

k=1

∑
ℓ∈Gm

∣∣∣∣ ∫ tk

tk−1

∫ xℓ+1

xℓ

(
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

∆xm
− ∂xψi

)
uki,ℓ+1 − uki,ℓ

∆xm
dxdt

∣∣∣∣
≤ Cηm

Nm
T∑

k=1

∆tm
∑
ℓ∈Gm

|uki,ℓ+1 − uki,ℓ| = Cηm

Nm
T∑

k=1

∆tm|uki |1,1,Tm → 0,

where we used the uniform discrete L2(0, T ;W 1,1(T)) bound from Lemma 8.
It remains to prove that |Fm

30 −Fm
3 | → 0. First, using a discrete integration by parts we

rewrite Fm
3 as well as Fm

30 as

Fm
3 =

Nm
T∑

k=1

∑
ℓ∈Gm

∫ tk

tk−1

uki,ℓ+1/2

pki,ℓ+1 − pki,ℓ
∆xm

(ψk−1
i,ℓ+1 − ψk−1

i,ℓ )dt,

Fm
30 =

Nm
T∑

k=1

∑
ℓ∈Gm

∫ tk

tk−1

(∫ xℓ+1/2

xℓ

uki,ℓ
pki,ℓ+1 − pki,ℓ

∆xm
∂xψidx

+

∫ xℓ+1

xℓ+1/2

uki,ℓ+1

pki,ℓ+1 − pki,ℓ
∆xm

∂xψidx

)
Then we find that

|Fm
3 − Fm

30 | =
∣∣∣∣ Nm

T∑
k=1

∑
ℓ∈Gm

(uki,ℓ+1/2 − uki,ℓ)
pki,ℓ+1 − pki,ℓ

∆xm

×
∫ tk

tk−1

(
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

2
−
∫ xℓ+1/2

xℓ

∂xψi(x)dx

)
dt
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+

Nm
T∑

k=1

∑
ℓ∈Gm

(uki,ℓ+1/2 − uki,ℓ+1)
pki,ℓ+1 − pki,ℓ

∆xm

×
∫ tk

tk−1

(
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

2
−
∫ xℓ+1

xℓ+1/2

∂xψi(x)dx

)
dt

∣∣∣∣,
Thanks to the regularity of ψi, there exists a constant C independent of ηm such that∣∣∣∣ ∫ tk

tk−1

(
ψk−1
i,ℓ+1 − ψk−1

i,ℓ

2
−
∫ xℓ+1/2

xℓ

∂xψi(x)dx

)
dt

∣∣∣∣ ≤ Cηm∆tm.

We obtain a similar expression if we integrate ∂xψi over (xℓ+1/2, xℓ+1). Thus, since

|uki,ℓ+1/2 − uki,ℓ| ≤ |uki,ℓ+1 − uki,ℓ| and

|uki,ℓ+1/2 − uki,ℓ+1| ≤ |uki,ℓ − uki,ℓ+1|,
we have

|Fm
3 − Fm

30 | ≤ 2Cηm

Nm
T∑

k=1

∆tm
∑
ℓ∈Gm

|uki,ℓ+1 − uki,ℓ||Dℓ p
k
i |

≤ 2Cηm

( n∑
i=1

aii

Nm
T∑

k=1

∆tm|uki |21,2,Tm

+
n∑

j=1
j ̸=i

Nm
T∑

k=1

∆tm
∑

ℓ,ℓ′∈Gm

|uki,ℓ+1 − uki,ℓ||aij(B
ij
ℓ+1−ℓ′ −Bij

ℓ−ℓ′)u
k
j,ℓ′ |

)
.

It follows for j ∈ {1, . . . , n} with j ̸= i, using the discrete analog (17) of ∂xB
ij ∗ uj =

Bij ∗ ∂xuj, that

max
ℓ∈Gm

( ∑
ℓ′∈Gm

|aij(Bij
ℓ+1−ℓ′ −Bij

ℓ−ℓ′)u
k
j,ℓ′ |

)
= max

ℓ∈Gm

( ∑
ℓ′∈Gm

∆xm|aij||Bij
ℓ−ℓ′||Dℓ′u

k
j |
)

≤ |aij|∥Bij∥L∞(T)|ukj |1,1,Tm .

At this point, we need the regularity condition Bij ∈ L∞(T) from Hypothesis (H3). Hence,
it holds that

|Fm
3 − Fm

30 | ≤ 2Cηm

( n∑
i=1

Nm
T∑

k=1

∆tm|uki |21,2,Tm +

Nm
T∑

k=1

∆tm|uki |1,1,Tm
n∑

j=1
j ̸=i

|ukj |1,1,Tm
)
.

It remains to apply the Cauchy–Schwarz inequality to conclude that

|Fm
3 − Fm

30 | ≤ 2Cηm

{ n∑
i=1

Nm
T∑

k=1

∆tm|uki |21,2,Tm
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+
n∑

j=1
j ̸=i

( Nm
T∑

k=1

∆tm|uki |21,1,Tm

)1/2( Nm
T∑

k=1

∆tm|ukj |21,1,Tm

)1/2}
.

Finally, we infer from Lemma 8 that |Fm
3 − Fm

30 | → 0 as m → ∞. Here, we need the
discrete L2(0, T ;H1(T)) bound for ui, at least of aii > 0. This concludes the proof of
Lemma 12. □

5. Numerical experiments

In this section, we present several numerical experiments to illustrate the behavior of
the scheme. The scheme was implemented in one space dimension using Matlab. In all the
subsequent numerical tests, we choose the upwind mobility (15). The code is available at
https://gitlab.tuwien.ac.at/asc/nonlocal-crossdiff. Our code is an adaptation
of that one developed in [15] for the approximation of the nonlocal SKT system. We refer
the reader to [15, Section 6.1] for a complete presentation of the different methods used to
implement the scheme.

5.1. Test case 1. Rate of convergence in space for various Lp-norms, convolution
kernels, and initial data. We investigate the rate of convergence in space of the scheme
at final time T = 1. In all test cases of this section, we consider n = 2 species, σ = 10−4,
the coefficient matrix A = (aij)1≤i,j≤2 given by

A =

(
0.1251 0.25

1 2

)
,

and π1 = 4, π2 = 1. We consider various initial data and kernels. More precisely, we choose

u01(x) = 1[1/4,3/4](x), u02(x) = 1[0,1/4](x) + 1[3/4,1](x),(37)

u01(x) = cos (2πx) + 1, u02(x) = sin (2πx− π/2) + 1,(38)

u01(x) = max (1− |1− 2x|, 0) , u02(x) = max (1− 2|x|, 0)(39)

and the kernels

Bij(z) = 1[−0.3,0.3](z),(40)

Bij(z) = 2max (1− |z|/0.3, 0) ,(41)

Bij(z) = exp
(
−|z|2/2ε2

)
/
√
2πε2, ε = 10−3.(42)

First, we consider a mesh of Ninit = 32 cells and the time step size ∆tinit = 1/64. Then,
starting from this initial mesh, we refine the mesh in space by doubling the number of cells
and halving the time step size, i.e. Nnew = 2Nold and ∆tnew = ∆told/2. This refinement of
the meshes is in agreement with the first-order convergence rate of the Euler discretization
in time and the expected first-order convergence rate in space of the scheme, due to the
choice of the upwind mobility in the numerical fluxes. As exact solutions to system (1)–
(3) are not explicitly known, we refine the mesh in space and time until Nend = 2048
and ∆tend = 1/4096, and we consider the solutions of the scheme obtained for Nend and

https://gitlab.tuwien.ac.at/asc/nonlocal-crossdiff
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Kernel →
Indicator (40) Triangle (41) Gaussian (42)

Initial Data ↓

(37)

Testcase 13 Testcase 16 Testcase 19
L1-order: 1.1741 L1-order: 1.1741 L1-order: 1.0109
L1-error: 9.76 · 10−4 L1-error: 9.76 · 10−4 L1-error: 3.20 · 10−3

L∞-order: 1.14 L∞-order: 1.1331 L∞-order: 0.98437
L∞-error: 1.49 · 10−3 L∞-error: 1.68 · 10−3 L∞-error: 2.45 · 10−2

(38)

Testcase 14 Testcase 17 Testcase 20
L1-order: 1.0948 L1-order: 1.0336 L1-order: 0.93381
L1-error: 1.81 · 10−5 L1-error: 2.78 · 10−5 L1-error: 2.35 · 10−3

L∞-order: 1.0486 L∞-order: 1.0092 L∞-order: 0.91831
L∞-error: 4.73 · 10−5 L∞-error: 8.57 · 10−5 L∞-error: 8.87 · 10−3

(39)

Testcase 15 Testcase 18 Testcase 21
L1-order: 0.97752 L1-order: 0.97495 L1-order: 0.9611
L1-error: 6.39 · 10−5 L1-error: 5.35 · 10−5 L1-error: 9.27 · 10−4

L∞-order: 0.99787 L∞-order: 0.99741 L∞-order: 0.9761
L∞-error: 1.74 · 10−4 L∞-error: 11.48 · 10−4 L∞-error: 3.69 · 10−3

Table 1. Orders of convergence in the L1 and L∞ norms in space at final
time T = 1 for different kernels and initial data.

∆tend as reference solutions. The error is computed between the reference solutions and
the solutions obtained for N = 1024 cells and ∆t = 1/2048 at final time T = 1. Finally,
using linear regression in logarithmic scale, we present in Table 1 the experimental order
of convergence in the L1 and L∞-norms. As expected, we observe a rate of convergence
around one. In Table 1, the numbers in bold letters denote the number of the test case
available in our code (see the file loadTestcase.m).

5.2. Test case 2. Rate of convergence of the localization limit in various metrics.
In the second test case, following [15], we evaluate numerically the rate of convergence of
the localization limit. More precisely, for some sequences of kernels converging towards the
Dirac measure δ0, we compute the rate of convergence in different metrics of the solutions
to scheme (10)–(13) towards its local version, i.e. Bij = δ0 for all i, j = 1, . . . , n. At the
continuous level, one can show by adapting the approach of [16] that the localization limit
holds thanks to a compactness method; see also [12] for the SKT system. However, so far
no explicit rate of convergence is available. The goal of this numerical test is to obtain a
better insight into this rate of convergence. Besides, it also illustrates Remark 4.
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We consider the following parameters (for all 6 test cases of this section): n = 3 species,
diffusion parameter σ = 10−4, coefficient matrix

A =

 0.5 0.2 0.125
0.4 1 0.2
0.25 0.2 1

 ,

and π1 = 4, π2 = 2, π3 = 2. We choose the final time T = 1, a mesh of N = 512 cells, and
the time step size ∆t = 10−3. Furthermore, we take the nonsmooth initial data

(43) u01(x) = 1[3/6,5/6](x), u02(x) = 1[0,1/6](x) + 1[5/6,1](x), u03(x) = 1[1/6,3/6](x),

and the smooth initial data

u01(x) = cos (2πx) + 1, u02(x) = sin (2πx) + 1,(44)

u03(x) = (cos (2πx) + sin (2πx) + 2) /2.

The kernels are choosen according to

Bij
α (z) = 1[−α,α](z)/2α,(45)

Bij
α (z) = max (1− |z|/α, 0) /α,(46)

Bij
α (z) = exp

(
−|z|2/2α2

)
/
√
2πα2.(47)

In our experiments, starting from αinit = 27∆x, we successively halve α until we reach
α = ∆x. For each value of α we compute the solutions to the nonlocal scheme (10)–(13)
at final time. We evaluate the L1, L∞, and Wasserstein distance W1 between the solution
to the nonlocal scheme and the solution to the local one (for this, it is enough to set
α = 0 in our code). Since we are in one space dimension, we can explicitly compute the
Wasserstein distance W1; see [22, Chapter 2]. The rates of convergence are estimated by
linear regression (in log scale) and the results are presented in Table 2. Surprisingly, we
observe a slightly better rate of convergence in the case of nonsmooth initial data. As
before, in Table 2, the names in bold letters denote the name of the test case available in
our code (see the file loadTestcase.m).

5.3. Test case 3. Segregation phenomenon. In the last numerical experiment, we set
σ = 0. Under the assumptions n = 2 species, aij = 1, and Bij = δ0 for i, j = 1, 2, it has
been shown in [4] that if the initial data are segregated (initial data with disjoint supports)
then the solutions remain segregated for all time. The main goal of this subsection is to
illustrate the segregation pattern due to the nonlocal terms, i.e. Bij ̸= δ0. Let us notice
that in the subsequent test cases, Hypothesis (H3) is never satisfied. However, we did not
encounter any numerical issues with our code.

We launched the code for a mesh of 512 cells and the time step size ∆t = 10−4. In the
case of n = 2 species, we considered the initial data

u01(x) = 1[0.1,0.4](x), u02(x) = 1[0.6,0.8](x),

while for n = 3 species, we have taken

u01(x) = 1[0.5,0.6](x), u02(x) = 1[0.8,0.9](x), u03(x) = 1[0.1,0.2](x).
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Kernel →
(45) (46) (47)

Initial Data ↓

nonsmooth (43)

Testcase NLTL2 Testcase NLTL4 Testcase NLTL6
L1-order: 1.8280 L1-order: 1.8709 L1-order: 1.7386
L∞-order: 1.8271 L∞-order: 1.8698 L∞-order: 1.7379
W1-order: 1.8306 W1-order: 1.8724 W1-order: 1.7426

smooth (44)

Testcase NLTL3 Testcase NLTL5 Testcase NLTL7
L1-order: 1.7430 L1-order: 1.8240 L1-order: 1.5991
L∞-order: 1.7462 L∞-order: 1.8261 L∞-order: 1.6038
W1-order: 1.7451 W1-order: 1.8252 W1-order: 1.6023

Table 2. Rates of convergence of the localization limit in the L1, L∞ and
W1 metric for different initial data and kernels.

In both cases, we set aij = 1 for all i, j = 1, . . . , n.
In Figures 1 and 2, we present the segregation pattern at time t = 0.02 and t = 0.2

obtained for the local model, Bij = δ0, and the nonlocal model with

Bij(z) = 100 · 1[−0.1,0.1](z).

For small times, the support of the species extends until reaching the support of another
species. In the local model, the species slightly mix (due to numerical diffusion), while we
observe a “gap” between the supports of the solutions in the nonlocal model. This “gap”
is of order 0.1 which is the size of the radius of the kernels Bij. Similar numerical results
have been observed in [7, Section 6] but using different kernel functions and two species
only.

Appendix A. Some auxiliary results

Lemma 13. Under Hypothesis (H3), the entropy dissipation Q, defined in (9), is nonneg-
ative.

Proof. We follow the approach of [12] and write Q = Q1 + · · ·+Q3, where

Q1 =
1

n− 1

n∑
i,j=1, i<j

∫
T
πiaii|∂xui(x)|2dx+

1

n− 1

n∑
i,j=1, i>j

∫
T
πiaii|∂xui(y)|2dy,

Q2 =
n∑

i,j=1, i<j

∫
T

∫
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x)dydx,

Q3 =
n∑

i,j=1, i>j

∫
T

∫
T
πiaijB

ij(x− y)∂xuj(y)∂xui(x)dydx.



A CONVERGENT FINITE-VOLUME SCHEME 31

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Solutions u1 and u2 at time t = 0.02

u1
u2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Solutions u1 and u2 at time t = 0.02

u1
u2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Solutions u1 and u2 at time t = 0.2

u1
u2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Solution u1 and u2 at time t = 0.2

u1
u2

Figure 1. Comparison of the segregation pattern for two species at times
t = 0.02 (top) and t = 0.2 (bottom) obtained from the local model (left)
and nonlocal model (right). The solutions are almost in the steady state at
t = 0.2.

Exchanging i and j in the second integral of Q1 and using m(T) = 1, we have

Q1 =
1

n− 1

n∑
i,j=1, i<j

∫
T

∫
T

(
πiaii|∂xui(x)|2dx+ πjajj|∂xuj(y)|2

)
dydx.

Exchanging i and j as well as x and y in Q3 gives

Q3 =
n∑

i,j=1, i<j

∫
T

∫
T
πjajiB

ji(y − x)∂xuj(y)∂xui(x)dydx

=
n∑

i,j=1, i<j

∫
T

∫
T
πjajiB

ij(x− y)∂xuj(y)∂xui(x)dydx.
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Figure 2. Comparison of the segregation patterns for three species at times
t = 0.02 (top) and t = 0.2 (bottom) obtained from the local model (left) and
nonlocal model (right). The solutions are almost in the steady state at
t = 0.2.

We collect these expressions to obtain

Q =
1

(n− 1)

n∑
i,j=1, i<j

∫
T

∫
T

(
∂xui(x)
∂xuj(y)

)⊤

M ij(x− y)

(
∂xui(x)
∂xuj(y)

)
dydx ≥ 0,

where M ij is defined in (8), and the last inequality follows from Hypothesis (H3). □

Lemma 14. The upwind approximation (15) and the logarithmic mean (16) satisfy prop-
erty (14) of the mobilities ui,σ.

Proof. The proof is based on the following inequalities for the logarithmic mean:

(48) min{a, b} ≤ a− b

log a− log b
≤ max{a, b} for all a, b > 0.
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They imply the linear growth ui,ℓ+1/2 ≤ max{ui,ℓ, ui,ℓ+1} for the logarithmic mean, which
also holds, by definition, for the upwind approximation. We show that property (14) is
satisfied for the upwind approximation (15). Let pi,ℓ+1 − pi,ℓ ≥ 0. Then, by (48),

ui,ℓ+1/2(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ) = ui,ℓ+1(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ)

≥ (pi,ℓ+1 − pi,ℓ)(ui,ℓ+1 − ui,ℓ).

On the other hand, if pi,ℓ+1 − pi,ℓ < 0, again by (48),

ui,ℓ+1/2(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ) = ui,ℓ(pi,ℓ+1 − pi,ℓ)(log ui,ℓ+1 − log ui,ℓ)

≥ (pi,ℓ+1 − pi,ℓ)(ui,ℓ+1 − ui,ℓ).

Property (14) follows immediately after inserting definition (16) of the logarithmic mean.
This ends the proof. □

Lemma 15 (Discrete Young convolution inequality). Let 1 ≤ p, q ≤ ∞ and 1 ≤ r ≤ ∞ be
such that 1 + 1/r = 1/p + 1/q and let B ∈ Lp(T) and v = (vℓ)ℓ∈G ∈ VT . Furthermore, let
Bℓ−ℓ′ = (∆x)−1

∫
Kℓ−ℓ′

B(y)dy for every ℓ and ℓ′ ∈ G. Then(∑
ℓ∈G

∆x

∣∣∣∣∑
ℓ′∈G

∆xBℓ−ℓ′ vℓ′

∣∣∣∣r)1/r

≤ ∥B∥Lp(T)∥v∥0,q,T .

Proof. First, let ℓ ∈ G be fixed. Then∣∣∣∣∑
ℓ′∈G

∆xBℓ−ℓ′vℓ′

∣∣∣∣ ≤ ∑
ℓ′∈G

∆x
(
|Bℓ−ℓ′|p|vℓ′ |q

)1/r|Bℓ−ℓ′ |(r−p)/r|vℓ′ |(r−q)/r.

Thanks to the assumption 1 = 1/p + 1/q − 1/r, we can apply Hölder’s inequality with
exponents r, pr/(r − p), and qr/(r − q) to obtain∣∣∣∣∑

ℓ′∈G

∆xBℓ−ℓ′vℓ′

∣∣∣∣ ≤ (∑
ℓ′∈G

∆x|Bℓ−ℓ′|p|vℓ′ |q
)1/r(∑

ℓ′∈G

∆x|Bℓ−ℓ′ |p
)(r−p)/pr

×
(∑

ℓ′∈G

∆x|vℓ′|q
)(r−q)/qr

=

(∑
ℓ′∈G

∆x|Bℓ−ℓ′|p|vℓ′ |q
)1/r

∥B∥(r−p)/r
0,p,T ∥v∥(r−q)/r

0,q,T .

Then, taking the exponent r and summing over ℓ ∈ G,∑
ℓ∈G

∆x

∣∣∣∣∑
ℓ′∈G

∆xBℓ−ℓ′vℓ′

∣∣∣∣r ≤ ∥B∥r−p
0,p,T ∥v∥

r−q
0,q,T

(∑
ℓ∈G

∆x
∑
ℓ′∈G

∆x|Bℓ−ℓ′|p|vℓ′ |q
)

≤ ∥B∥r−p
0,p,T ∥v∥

r−q
0,q,T

(∑
ℓ′∈G

∆x|vℓ′ |q
∑
ℓ∈G

∆x|Bℓ−ℓ′ |p
)

≤ ∥B∥r−p
0,p,T ∥v∥

r−q
0,q,T ∥v∥

q
0,q,T ∥B∥p0,p,T = ∥B∥r0,p,T ∥v∥r0,q,T .
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Finally, it holds that

∥B∥p0,p,T ≤
∑
ℓ∈G

∆x

∣∣∣∣ 1

∆x

∫
Kℓ

B(y)dy

∣∣∣∣p ≤ ∑
ℓ∈G

(∫
Kℓ

|B(y)|pdy
)(∫

Kℓ

dx

∆x

)p−1

≤
∑
ℓ∈G

∫
Kℓ

|B(y)|pdy = ∥B∥pLp(T),

which concludes the proof. □

Lemma 16. Let s > 1 and p > 1. Then for any sequence u = (uℓ)ℓ∈G, there exists a
constant C > 0 only depending on s such that

∥u∥0,∞,T ≤ C∥u∥1/s1,p,T ∥u∥
1−1/s
0,(s−1)p/(p−1),T .

Proof. We adapt the proof of [5, Lemma 4.1] to the one-dimensional case. By the embed-
ding BV(T) ↪→ L∞(T) applied to the sequence (|uℓ|s)ℓ∈G,

∥u∥s0,∞,T ≤ C

(
∥u∥s0,s,T +

∑
ℓ∈G

∣∣|uℓ|s − |uℓ+1|s
∣∣).(49)

Since s > 1, we have∑
ℓ∈G

∣∣|uℓ|s − |uℓ+1|s
∣∣ ≤ s

∑
ℓ∈G

(
|uℓ|s−1 + |uℓ+1|s−1

)
|uℓ − uℓ+1|.

We apply Hölder’s inequality with exponents p and p/(p− 1):∑
ℓ∈G

∣∣|uℓ|s − |uℓ+1|s
∣∣ ≤ 2s

(∑
ℓ∈G

|uℓ − uℓ+1|p

∆xp−1

)1/p(∑
ℓ∈G

∆x|uℓ|
(s−1)p
p−1

)(p−1)/p

.

Besides, using again Hölder’s inequality (with the same exponents), we find that

∥u∥0,s,T =

(∑
ℓ∈G

∆x|uℓ||uℓ|s−1

)1/s

≤ ∥u∥1/s0,p,Tm∥u∥
(s−1)/s
0,(s−1)p/(p−1),T .

Then, inserting the last two inequalities into (49) yields the desired result. This concludes
the proof of Lemma 16. □

Appendix B. Counter-example

We claim that there exist kernels Bij, being an indicator function, and piecewise constant
functions u1, . . . , un such that the positive semi-definiteness condition

J :=
n∑

i,j=1

∫
T

∫
T
πiaijB

ij(x− y)uj(y)ui(x)dydx ≥ 0
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is not satisfied. For this statement, we assume that the matrix (πiaij) ∈ Rn×n is (symmetric
and) positive definite. With the notation of Section 2.1, we set ∆x = 1/N for some even
number N > 5 and choose r = 3∆x/2 as well as the kernels

Bij(x) = 1(−r,r)(x) for x ∈ T.
Let ui = (ui,ℓ)ℓ∈G ∈ VT for i = 1, . . . , n. Then we can write J as

(50) J =
n∑

i,j=1

∑
ℓ,ℓ′∈G

πiaijM̂
ij
ℓ,ℓ′uj,ℓ′ui,ℓ, where M̂ ij

ℓ,ℓ′ =

∫
Kℓ

∫
Kℓ′

Bij(x− y)dydx.

A straightforward, but rather tedious computation shows that the matrix M̂ ij = (M̂ ij
ℓ,ℓ′)ℓ,ℓ′∈G

∈ RN×N is pentadiagonal with entries

M ij
ℓ,ℓ′ = (∆x)2, M ij

ℓ,ℓ±1 =
7

8
(∆x)2, M ij

ℓ,ℓ±2 =
1

8
(∆x)2.

This matrix possesses the eigenvector w ∈ RN , defined by wℓ = 1 for ℓ odd and wℓ = −1
for ℓ even, associated with the negative eigenvalue λ = −4(∆x)2.

Let v1, . . . , vn ∈ Rn be the eigenvectors of the symmetric matrix (πiaij)i,j=1,...,n associated
with the eigenvalues 0 < ν1 ≤ . . . ≤ νn, respectively. We define the nN × nN matrix

M̂ = (πiaijM̂
ij) consisting of the N × N blocks πiaijM̂

ij. It can be verified that the

matrix M̂ possesses the eigenvector z = (z1, . . . , zn) ∈ RnN with zi = vn,iw ∈ RN for
i = 1, . . . , n associated with the eigenvalue λνn = −4(∆x)2νn. Then, choosing ui = zi in
(50), we find that

J =
n∑

i,j=1

πiaijz
⊤
i M̂

ijzj = −4(∆x)2νn

n∑
i=1

|zi|2 < 0.

This provides the desired counter-example.
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