A STRUCTURE-PRESERVING DISCONTINUOUS GALERKIN
SCHEME FOR THE FISHER-KPP EQUATION
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ABSTRACT. An implicit Euler discontinuous Galerkin scheme for the Fisher-Kolmogorov-
Petrovsky-Piscounov (Fisher-KPP) equation for population densities with no-flux bound-
ary conditions is suggested and analyzed. Using an exponential variable transformation,
the numerical scheme automatically preserves the positivity of the discrete solution. A
discrete entropy inequality is derived, and the exponential time decay of the discrete den-
sity to the stable steady state in the L' norm is proved if the initial entropy is smaller
than the measure of the domain. The discrete solution is proved to converge in the L2
norm to the unique strong solution to the time-discrete Fisher-KPP equation as the mesh
size tends to zero. Numerical experiments in one space dimension illustrate the theoretical
results.

1. INTRODUCTION

The preservation of the structure of nonlinear diffusion equations on the discrete level
is of paramount importance in applications. While there has been an enormous progress
on structure-preserving schemes for ordinary differential equations (see, e.g., [16]), the
development of structure-preserving numerical techniques for nonlinear diffusion equations
is still an ongoing quest, in particular for higher-order methods. In this paper, we analyze
a toy problem, the Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) equation with
no-flux boundary conditions, to devise an implicit Euler discontinuous Galerkin scheme
which preserves the positivity of the solution, the entropy structure, and the exponential
equilibration on the discrete level. In a future work, we aim to extend the scheme to
diffusion systems.

The Fisher-KPP equation [12] is the reaction-diffusion equation

(1) o = DAu+u(l —u) in Q, t >0,
(2) Vu-n=0 ond, u(0)=1uy in€Q,
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where D > 0 is the diffusion coefficient, = R? a bounded domain, and n the exterior
unit normal vector on the boundary 0€). The variable u(z,t) models a population density
or chemical concentration, influenced by diffusion and logistic growth. The Fisher-KPP
equation admits traveling-wave solutions u(z,t) = ¢(x — ct), which switch between the
unstable steady state u* = 0 and the stable steady state u* = 1. By the maxiumum
principle, the density stays nonnegative if it does so initially, and it satisfies the entropy
inequality

d

(3) p (logu — 1)dx + DJ [V |2

= —f u(u — 1)logudzx < 0.
Q

If there are no reaction terms, we have conservation of the total mass, and the logarithmic
Sobolev inequality implies the exponential decay of the (mathematical) entropy S(t) =
So(u(t)(logu(t) — 1) + 1)dz (see, e.g., [20, Chapter 2]). When reaction terms are present,
the situation is more delicate, since there are two steady states, u* = 0 and u* = 1. If the
initial entropy S(0) is smaller than the measure of €2, then u(t) converges exponentially fast
to u* = 1 in the L'(Q2) norm. Our objective is to preserve the aforementioned properties
on the discrete level.

It is well known that the preservation of the positivity or nonnegativity of discrete
solutions for (1) may fail in standard (finite-element) schemes, in particular when the
solution vanishes in some region; see Section 5 for an example. Our key idea to preserve
the positivity is to employ the exponential transformation v = e*. Such a transformation
or a variant is used, for instance, in the II'in scheme [19] and in the existence analysis of
drift-diffusion equations [13]. Moreover, it allows for the preservation of L*(£2) bounds in
volume-filling cross-diffusion systems [8, 20]. The implicit Euler scheme for (1)-(2) in the
exponential variable then reads as

1
4 =
(5) VA.n=0 ondQ,

(e’\k — e’\k_l) — div(e"veM) + M (1—e) inQ,

where here and in the following, we set D = 1 for simplicity and we choose 0 < At < 1. At
first glance, one may think that this formulation unnecessarily complicates the problem,
but we will show that it enjoys some useful properties.

We propose a discontinuous Galerkin (DG) discretization for problem (4)-(5) with vari-
able \f, where h > 0 is the maximal diameter of the mesh elements. The nonlinear
diffusion term is discretized by an interior penalty DG method. By construction, the dis-
crete densities exp(\F) are positive, and the scheme also preserves the entropy structure
and large-time asymptotics. Our main results can be sketched as follows:

e Existence of a solution Af to the implicit Euler DG scheme (8), given a function Ai’l
(Proposition 6). This result is based on the Leray-Schauder fixed-point theorem
and a coercivity estimate.

e Discrete entropy inequality (Lemma 7). The inequality follows from scheme (8)
using the test function A} and the convexity of u — u(logu — 1) + 1.
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e Exponential decay of the discrete entropy
SE = f (6)\ﬁ(€>\§ — 1) + 1)da < Spe 4
Q

(Proposition 9) and of the L' norm of e’ — 1 (Theorem 11). The result holds
if SY < |Q|. This condition implies a positive lower bound for the total mass
SQ e’\’ﬁdx, which is needed to guarantee that the discrete solution converges to the
stable steady state u* = 1 and not to the steady state u* = 0. The case S? > |Q|
is discussed in Remark 12.

e Convergence of the scheme (Theorem 14): There exists a unique strong solution
uk € H2(Q) to the implicit Euler discretization associated to (1)-(2) such that

eM — u*  strongly in L*(Q) as h — 0.

The result is based on a compactness property, which is a consequence of the
gradient estimate from the entropy inequality and a coercivity estimate. This yields
a very weak semi-discrete solution, which turns out to be a strong solution thanks
to a duality argument.

Let us put our results into context and review the state of the art of stucture preservation
in DG methods. The DG scheme was introduced in the early 1970s for first-order hyperbolic
problems in [22, 31]. The development of discontinuous finite-element schemes for second-
order elliptic problems can be traced back to [27] with similar approaches in, for instance,
2, 5, 29, 34]; see also [3].

The design of structure-preserving DG methods is a rather recent topic. Positivity-
preserving DG schemes for parabolic equations were developed in, e.g., [9, 15, 23, 33, 36].
The positivity preservation is ensured by using a special slope limiter (as in [9, 15]), together
with a strong stability preserving Runge-Kutta time discretization (as in [33, 36]), while in
[23], the positivity of the discrete solution is enforced through a reconstruction algorithm,
based on positive cell averages. As far as we know, the use of an exponential transformation
to ensure the positivity of the discrete solutions within a DG scheme is new. Positivity-
preserving schemes for the Fisher-KPP equation were already studied in the literature, but
only for finite-difference approximations [17, 24], without a convergence analysis, and for
continuous finite-element discretizations [35].

Other important properties are entropy stability (the entropy is bounded for all times)
and entropy monotonicity (the entropy is nonincreasing). Entropy-stable DG schemes for
the compressible Euler and Navier-Stokes equation were studied in [14, 28], while a discrete
version of the entropy inequality (and hence entropy monotonicity) was proved in [33] for
Fokker-Planck-type equations and aggregation models. We are not aware of results in the
literature regarding the preservation of the entropy structure of the Fisher-KPP equation
on the discrete level.

The paper is organized as follows. We state our notation and some auxiliary results
related to the DG method in Section 2. The DG scheme is introduced and studied in
Section 3: The existence of a solution to the DG scheme, the discrete entropy inequality,
and the exponential decay of the entropy are proved. The convergence of the numerical
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scheme is proved in Section 4. Finally, Section 5 is devoted to some numerical experiments
in one space dimension.

2. NOTATION AND AUXILIARY RESULTS

We start with some notation. Let 7, = {K; : i = 1,..., Ny} be a family of simplicial
partitions of the bounded domain Q = R? for d = 1,2, 3. The mesh parameter h is defined
by h = maxger, hi, where hg = diam(K). The elements may be tetrahedra in three
space dimensions, triangles in two dimensions, and intervals in one dimension. In two and
three dimensions, we suppose that 7, is shape regular (see, e.g., [30, Section 2.1]) and,
for simplicity, without hanging nodes. Our analysis actually extends also to k-irregular
meshes [18]. We denote by &, the set of interior faces or edges of the elements in 7.

On the partition 7, we define the broken Sobolev space

HY(Q,Tp) = {€e L*(Q): {|x e H¥(K) for all K € Tp,}, s> 0.

The traces of functions in H'(€,7,) belong to the space T(I'y) = [ [ ko7 L*(0K), where T,
is the union of all boundaries 0K for all K € T;,. The functions in T'(I';) are single-valued
on 0f2 and double-valued on I',\0S2.

Let ¢ be a piecewise smooth function and ¢ be a piecewise smooth vector field on 7j,.
We write K_ and K for the two elements sharing the face f, ie. f = 0K_nJK,, and ny

for the unit normal vector pointing to the exterior of K. Furthermore, we set g1 = ¢|x.
and ¢4 = ¢|k,. Then we define

averages: {q} = (q +4q+), {¢} = %(fb +é4),
jumps: g =q-n_+qny, o] =d- n_+ by -ny.

Note that the jump of a scalar function is a vector which is normal to f, and the jump of
a vector-valued function is a scalar.
The mesh size function h € L*(I',) is defined by

h(z) = min{hx ,hg, } forze dK_noK,.

Furthermore, we introduce the finite-element space of degree p € N associated to the
partition 7Tj,:
Vi, = {ve L*(Q) : v|g € Py(K) for all K € T},

where P,(K) is the set of polynomials on K with degree at most p, and the space of test
functions

H*(Q) = {pe H*(Q) : Vo-n = 0on Q}.

Next, we recall some auxiliary results.

Lemma 1 (Inverse trace inequality; Lemma 2.1 in [32]). Let K € R? (d = 2,3) be an
element with diameter hi, let f be an edge or face of K, and let ny be a unit normal
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vector normal to f. Then for all polynomials & € P,(K) of degree p, there exists a constant
Ciny > 0, independent of hx and p, such that

(6) €l < Com—p= €200
V€ - nsls2ox0) < Con = V201

Lemma 2 (Multiplicative trace inequality; Lemma A.2 in [30]). Let K be a shape-regular
element. Then there exists a constant C' > 0 such that for all £ € H'(K),

1
€l < Clelo - lelan + 19600 )

Lemma 3 (Discrete Poincaré-Wirtinger inequality; Theorem 4.1 in [7]).  There ezists a
constant Cpyw > 0 such that for all £ € H'(Q,Ty),

1 p2 1/2
le- < Cou( 3 Vel + 3, [ ElielPar)

9 Jo KeTy, fe€n
We also need a compactness result for functions & € H'(Q,7;,). For this, we define the
DG norm

2 1/2
) loc = (el + X I9€la00+ 3, [ lelPas)

KeTy, feén

£ — Ed

L2()

Lemma 4 (DG compact embedding; Lemma 8 in [7]). Let (&,) = HY(Q,T;,) be a sequence
such that |&|pg < C for all h € (0,1) and some C > 0. Then there exists a subsequence
(hi) with h; — 0 as i — o and a function £ € HY(Q) such that

&, — & strongly in L1(S2) as h; — 0,
where 1 < g < q* and q* =4 ford =3, ¢* =0 ford=1,2.
3. ANALYSIS OF THE DG SCHEME: EXISTENCE AND STRUCTURE PRESERVATION
The DG discretization of the weak formulation of (4)-(5) reads as follows. Let ¢ > 0
and \) € V},. Given )\’fL_l € Vi, we wish to find A\¥ € V}, such that for all ¢;, € V,,
(8) J (M — M) pudr + ALBAGAE, dy) + € f Ay da = At J M (1 — M)y da.
Q Q Q

The form B : H'(Q2,7,)> — R represents the interior penalty DG discretization of the
nonlinear diffusion term. It is linear in the second and third argument and is defined by

B(u;v,w) = Z e"Vu - Vwdr — Z Jf ({e"Vo} - [w] + {e"Vw} - [v])ds

KeT,, fe&n

(9) + L%a(u)[{vﬂ [w]ds,

fe&n
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where a(u) is a stabilization function, given by

(10)  aw) = 502, (max{(e), ("), )" max {expulmgr ). xpul o)

We recall that the constant Ci,, is defined in Lemma 1. The third term on the left-hand
side of (8) is a regularization term (only) needed for the existence analysis to derive a
uniform (but e-depending) bound for the fixed-point argument. For linear elements p = 1,
we may allow for ¢ = 0; see Appendix A.

3.1. Existence of a discrete solution. We show that problem (8) possesses a solution.
First, we prove a coercivity property for the form B.

Lemma 5 (Coercivity of B). The form B, defined in (9), satisfies for allve H'(Q,Ty),
2
B(v;v,v) = 2 Z Ve 2dx + 202, Z f p—]ﬂev/z]HQdS.
KeT, VE reg, I h
Proof. Definition (9) gives for v e H(Q,Tp):
2
(11)  B(v;v,v) = Z f e'|Vol?dr — 2 Z j{e”VU} [vlds + Z J p—oz(v)|[[vﬂ|2ds
KeT, VK feen U feen VI h
We estimate the second integral by using Young’s inequality:
1
2 Z J{e”VU} - Jv]ds < Z (J BHe'Volds + J —2\[0]]|2d5>,
fee, Y fe&, NV fﬁf

where 85 > 0 is a parameter which will be defined below. The first integral on the right-
hand side is estimated according to

Z f BHe'Voyids = 411 Z [ Bi|(e"Vv)- + (e”V'U)Jr’st
fegn O fegn VI
< % Z [ Bi(I(e"Vv)_|* + (e"Vv) 4 |*)ds
fe&n I
1 (
=5 2 | AH(maxd (€)=, (@)u]) ((T0)-F + (Vo) )ds.
fe€n ¥

To proceed, we set

min{yx_, vk, } 9 hi
,  where vi := ——— exp(— v Lo x))-
max{(e”)_, (7)) K=o )

Taking into account the inverse trace inequality (6), we infer that

1 1 2
Z f BHe ' Vuds < 3 Z J | Vo|?ds < QCﬁw ﬁ(%J |Vv|*dx
feen O f KeT, YK KeT, K JK

By =
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2
il v
—C12nv E hi exp(’U\Loo(K))Le V|’ dx

KeTy,
=— 2 f e’ | Vo|*da.
KeTh
Consequently, we obtain
2 Z J{e”Vv} [v]ds < Z J —|[v]Pds + = Z J e’ |Vo|*dz.
feén feén e KeTh K
Inserting this estimate into (11), it follows that
B(v;v,v) > Z ¢'|Volde + Y f < >|My ds.
KeTh fe&n

With the definitions of a(v) (see (10)) and 3y as well as the property h < hg, , the difference
in the bracket can be computed as

Ta(v) = = = S0 (max{(e”) -, ()4 }) max {exp(v] i), exp(o] o)}

B Cvp? (max{(e”), (¢")+})
min{hK, exp(— v L)), e, exp(=v]Loexc )}

> —Civ(max{(ev)—, (e)+})* max { exp([[v] e (x)), exp(vl e,y }

1
= 31; a(v).

This shows that

(12) (v;v,v) =2 Z J |Ve”/2\2dx+ Z J —a(v)|[v][*ds.
feS

KeTy,

By the definition of the jumps and the mean-value theorem for x € f,
1
L] = e~/ — e 2" < S max{e*, e o]
We use definition (10) and insert the previous estimate into (12):
(v;v,v) =2 Z f \Ve?[2dz + 2C2 Z J — max{(e")_, (e"),}
KeTy fe&n
x max { exp([[v] por)), exp(ol e, e TP ds.
Since (e”)+ = exp(—|v|re(k,)), we have
max{(e")-, (¢")+ } max { exp(v]ze(x_)), exp([v]Lex,)) } = 1.
This finishes the proof. O
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Proposition 6 (Existence). Let ¢ > 0. Given \i™' € Vj,, the DG scheme (8) admits a
solution A} € Vj,.

Proof. The idea is to apply the Leray-Schauder fixed-point theorem. We define the fixed-
point operator ® : Vj, x [0, 1] — V}, by ®(w, o) = w, where v € V}, is the unique solution to
the linear problem

(13) 5J vpdr = O'J (e’\fb_l — ¥ + Ate”(1 — €v))pdx — o AtB(w; w, @)
Q Q

for ¢ € V},. The left-hand side defines the bilinear form a(w, ¢), which is coercive, a(w, w) =
efw]?2(q)- The right-hand side defines a linear form which is continuous on L*() (using
the fact that in finite dimensions, all norms are equivalent). Thus, ® is well defined by
the Lax-Milgram lemma. As the right-hand side of (13) is continuous with respect to w,
standard arguments show that ® is continuous. Furthermore, ®(w,0) = 0. It remains to
prove that there exists a uniform bound for all fixed points of . To this end, let v € V},
and o € [0, 1] such that ®(v,0) = v.
Let s(v) = v(logv — 1) + 1 = 0. The convexity of s implies that

(14) (M — e = (M —e")s(e?) < s(eM ) — s(ev).

Then, using the test function ¢ = v in (13) gives, because of the properties B(v;v,v) = 0
(Lemma 5) and e’(1 — e”)v < 0,

elvlie =0 L(e’\lfi1 —e')vdx + aAtJ e’ (1 — e’ vdx — o AtB(v; v,v)

Q
(15) < Of (s(e’\ﬁ_l) — s(e”))dz < O'J s(ekﬁ_l)d:ﬁ.

Q Q
This is the desired uniform bound. We infer the existence of a solution to (8) by the
Leray-Schauder fixed-point theorem. U

3.2. Discrete entropy inequality and exponential decay. Let \; € V}, be a solution
to (8). We show that the entropy

Sk = J s(eM)dz, where s(u) = u(logu — 1) + 1,
Q

is nonincreasing with respect to k € .

Lemma 7 (Discrete entropy inequality). Let € = 0 and let \¥ € V, be a solution to (8).
Then

1 2
(16) Sy 4 C’oAtJ M2 — @f MN2dy| da + Atf M (M — DA\Fdz < Syt
0 Q Q

where the constant Cy > 0 only depends on Ciy,, and Cpw from Lemmas 1 and 3.

Proof. We take ¢, = A} as a test function in (8) and use inequality (14) to find that

Sy — Syt = L (s(e’\z) - s(e)‘ﬁfl))da;
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= —AtBOE NN — ¢ J (AY2dz — At f M (eM — 1)dz
Q Q

(17) < —ABOEAE AR — Atj M (M — DAENE .
Q

It remains to estimate the first term on the right-hand side. For this, we use the coercivity
estimate of Lemma 5 and the discrete Poincaré-Wirtinger inequality from Lemma 3:

BAF; AN N = 2min{1,Ci2nv}( Z J Ve /2|2da:+ Z f —I[e h/Qﬂ\ ds)
KeTy, feén
2
> 2min{1,C2,}C52 | [eM/? - LJ MP2dz| da.
o 2] Jo
Setting Cy = 2min{1, C2_ }Cpy; finishes the proof. O

We wish to bound the total mass {, exp(A})dz from below and above. Since s(u) =
u(logu — 1) + 1 is invertible only on [0,1] and on [1,00) but not globally on [0,c0), we
introduce the following functions:

_:[0,00) = [0,1], o-(v) = (s|jo.1)) " (v) for v e [0,1], o_(v) =0 for v € [1, ),
o+ :]0,0) = [1,0), 04(v) = (s|pm) " (v) for v e [0, ).

In particular, o_ o s =id on [0,1] and 0, o s =id on [1, ).

Lemma 8 (Bounds for the total mass). Let € = 0 and let \} be a solution to (8). Then

5,3) 1f N (52)
o_| = | <— | erder <o | =% ].
(IQ! Q[ Jo N

Observe that if S} < |Q|, the lower bound o_(S)/|€]) is positive. Thus, the total mass
can never vanish, which excludes the case of solutions converging for k& — oo to the zero
solution. The reason for the difference between SP < || and SP > [Q] lies in the fact that
(4)-(5) admits two Steady states, A\f = 0 (corresponding to uf = e™ = 1) and A = —0
(corresponding to u* = 0). The assumption Sy < |[Q] will be crucial to prove the decay
estimate for the entropy; see Proposition 9. We discuss the case SY > || in Remark 12.

Proof of Lemma 8. First, we show the lower bound. If S{ > |Q|, we have o_(S}/[Q2]) = 0,
and there is nothing to prove. Thus, let S? < |Q]. Set 8 = min{l,exp(Af)} < 1. As s is
convex, we infer from Jensen’s 1nequal1ty and s(ﬁk =0 for A} > 0 that

Sk S
I5) dl’) f (Br)d J k r < b < _h7
<|Q| f ’ 1l T Jpeny Q] 1€

where in the last step we have used the monotonicity of k +— SF. With this preparation,
we are able to verify the lower bound. As o_ is decreasing, we find that

1 Ak 1 B 1 Sg
@Le dv > @Lﬁkdz = (0-05) (ﬁ] Lﬁkdx) >o0_ (@)
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For the upper bound, we can assume that {,exp(A})dz > |Q], since otherwise, the
inequality is trivially satisfied in view of o, (v) = 1. By the concavity of o, , we can again
apply the Jensen inequality:

(rfn) (\_slzrf “k)d"”) ] ol o = i |

proving the claim. U

Proposition 9 (Discrete entropy decay). Let € = 0 and let A} be a solution to (8). We
assume that SY < |Q|. Then there exists a constant Cy > 0, only depending on S, such
that for all k € N,

(18) SE < (1+CiAt)7FS).
In particular, with n = log(1 + C1At)/(C1At) < 1, we have the exponential decay
SF < Qe kAL e N,
The proof is based on two properties: The diffusion drives the solution towards a con-
stant, while the reaction term guarantees that there is only one (positive) steady state.

In order to cope with the interplay of diffusion and reaction, we prove first the following
lemma.

Lemma 10. Introduce for 0 > 0 the functions

s(0) B
My(0) = m M5 (0) = max{1, s(0)}.
Th
. vy < M (0)e’ (e’ — 1)v if v =logh,

s(e’) < M,(0) if v < logd.

Proof. The function
s eflv—-1)+1
9lv) = ev(er — v ev(er —1)v v#0,

can be continuously extended to v = 0 (with value g(0) = 1/2) and it is decreasing with
limits lim, ,, ¢g(v) = 0 and lim,_,_4 g(v) = +00. Therefore, g(v) < g(logf) = M;(0) for
all v = log 0, showing the first inequality. For the second one, let v < logf. Then s(e”) < 1
for v < 0 and the monotonicity of v — s(e¥) for v = 0 implies that s(e¥) < s(f). Thus, for
any v € R, s(e) < max{l,s(#)} = My(0), completing the proof. O

Proof of Proposition 9. The idea of the proof is to split SF into two integrals,

(19) Sy = f s(e)‘ﬁ)da: + J s(eA’li)da:,
{AF<log o} {AF>log o}

for some suitably chosen a > 0 and to estimate these integrals by the second and third
terms on the left-hand side of the discrete entropy inequality (16).

Since SP/|Q)] < 1, there exists 6 € (0,1) such that s(f) > SP/|Q. Let 0 < gy <
[1—SY/(]Qs(0))]* and set a = g6 € (0, 1).
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We turn to the first integral on the right-hand side of (19). We claim that there exists
a constant C.» > 0 such that

1 2
(20) f s(eM)dr < CEOQJ J M2 — —J N 2dy| dx
{\F<log o} QJa ’Q‘ Q

To prove this inequality, we begin by showing that {, exp(\}/2)dz is bounded from below.
Indeed, using the monotonicity of s o exp in [0, 1] and of k +— S*,

4 < log0}] = [{s(eX) > s(0))] = - | s(O)ds
$(0) Jis(eprt)=s0))
< —= s(em)de < — | s(e™)dr = —% < —*.
s(0) {s(exp(\F))=5(0)} s5(0) Jo s(0) s(0)

This yields the lower bound

f M2 dy > f M2dr > VO[{AE > log 0}
Q {\F>log 6}

=VO(|Q — [{\; <logb}|) = \f(ym - %)

Therefore, as long as A} < log(gof), the difference

g J, e g [ a2 B (1 - v o

is positive. Squaring this expression and integrating over {\¥ < log(gof)} thus does not
change the inequality sign:

f M2 LJ M2y
{\r<log(eo0)} ’Q‘ Q

2 SO 2
dx = J 9(1 \/5) dx
{\F<log(en0)} |Q’ ( )

_ ‘{)\i < log(e?oe)}‘e( |Qf( 0) \/570> .

Combining the estimate of Lemma 10 and the previous estimate, we arrive at

f s(eM)dr < Ma(eo8) |[{AF < log(c)}]
{A<log(e00)}

2

EIC) dz.

< J
(1= 5p/(121s(0)) = /20)8 Jo

This proves claim (20) with

B f A2
1] Jo

MQ(E?()Q)

o = T 50/(00s(6)) — van)6'

recalling that o = (6.
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Next, we estimate the second integral on the right-hand side of (19). It follows from
Lemma 10 that

s(eM)da < Mi(26) J MM — 1)\
Q

Therefore, (19) gives

J{>\§>108:(509)}
S}]f < OEOGJ

1 2
/2 —f M2dz| dr + M1<509)J eAZ(eAﬁ - 1))‘26155

1 . 1 ?
< = (Cof M2 —f MN2dz| da + J M (M — 1))\ﬁdx>
Gy Q €2 Jo 0

for C7 = 1/ max{C.,9/Co, M1(g00)}. Finally, by Lemma 7,

k—1 k
(S Sh)a
and solving this recursion shows the proposition. [l

Theorem 11 (Decay in the L'(Q) norm). Let the assumptions of Proposition 9 hold.
Then there exists a constant Cy > 0, only depending on Sy and ||, such that

HeAIZ - 1HL1(Q) < 026_n01kAt/2a ke IN)
where n € (0,1) and Cy > 0 are as in Proposition 9.

Proof. To simplify the notation, we set u = e and u = |t SQ e*dz. Then the Csiszér-
Kullback inequality (see, e.g., [4, (2.8)]) gives

2u B 2u
lu — |71 ) < o] J ( )u T = o), (s(u) — s(u))dz < . s(u)dz,

using the property s(u) = 0 for all uw = 0. We know from Lemma 8 that @ is bounded from
above by o, (S7/||). Hence,

_ 2 Sy
(21) ey < s ()t

[t remains to show that a similar estimate holds for |u — 1|. Since the entropy density s
is convex, Jensen’s inequality shows that

22 s(u) =s| — | e‘rdx S L2 <1
(22) (@) <|ﬂ| <), BRG]

It holds s(v) < 1 if and only if v < e. Consequently, we have & < e. Applying the
elementary inequality

1
s(u)>—1) forall0 <u<e
e
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to u = u and using (22) gives

1@ — 1) < (e — 1)%s() <

Thus, combining (21) and the previous inequality, we conclude that

[ = 1) < Ju—al @) + @ = 1@

and the proof follows after applying Proposition 9. U

Remark 12. We discuss the case Sj > |Q|. Fix At € (0,1) and L € N with L > 1. Define
N = (L — k)t log(1 — At), where 2+ = max{0, 2z} denotes the positive part of z € R. Then
M = (1 —At)E* <1 for k < L and e™ = 1 for k > L. Consider the case L > k = 1.
Then, setting § := (1 — At)LF we estimate

1

2
AtS}IL + C’of dx + f NN — DAL dx
0 Q

A2 L f A2
Q] Jo

s(9) Q] _ 9] _ Sy
=|—" — < — — < —— < ——.
<At + (0 1)10g5)|Q| (1+(1—=At)dlogd) NS AL S A
If 1 <k < L, we deduce from eM < 1 that
1 & E—1 1 _ _ _
Et(e% —eM ) = Kt((l — AP (1= AH)FHY) = (1 AnEF
(23) = M= M (M - 1).

By the convexity of s, it follows that s(u) — s(v) < (v —v)s'(u) = (u — v)logu for all u,
v > 0. Since A} <0 for k < L, (23) yields

s(eM) < (e — e’\lz_l))\fl + s(e’\i_l) < —AteMh(eMh — AF + s(e’\lfb_l),

which directly implies the entropy inequality (16). This inequality is trivially satisfied for
k = L. However, it holds for L = 2k that
M= (1— At >0, SF= f s(eM)dz — Q] as k — 0.
Q

This means that if Sy > |Q|, there exists no constant C' > 0 depending only on S? such
that (18) holds for all (AF) = L?(Q) satisfying the entropy inequality (16). Note that the

constructed function e*» does not possess a uniform positive lower bound. O

4. ANALYSIS OF THE DG SCHEME: NUMERICAL CONVERGENCE

We show first that the solutions to (8) are uniformly bounded in the DG norm (7) if the
initial entropy SP is bounded uniformly in h.
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Lemma 13 (Uniform bound in DG norm). Let e = 0 and let A} be a solution to (8). Then
there exists a constant C' > 0 such that

1
ln{l IHV}
Proof. We have shown in the proof of Lemma 7 that

> J Ve 2dz + ) J = I[e* /2]|2ds> < Sk

KeTy, fe€n
Then, by definition of the DG norm,

k k k— 1 k
At /23 < Atf eMdx + 2mm{1 mv}f et ) — s(e™))dx

PV

At|eM2|3 e < 2A8Q] + max{ At}S,?.

SF 4+ 2At min{1, Cfm}(

Using the inequality u < 2 + s(u) for u = 0, applied to u = e
k +— SF we find that

n, and the monotonicity of

A2 < Al J @+ s(@))dr + | (s = s(eM))da
Q

2m1n{1 Civ} f

= 2AtQ| + | At — ! Sk + S
N min{1, C2_} h 2min{1, C? }

1 Sy
< 2AtQ ANt—— |5k —
00+ (8~ g ey )%+ e
If 2min{1, C2 }At < 1 then
SO
1{1 an}‘

2 YAt > 1, we have, again by the monotonicity of k — S¥,

At 2|2 o < 2080 +5

On the other hand, if 2min{1, C

inv

1 i 1 .
- < -
(At 2 min{1, C, mv}>5h (At 2 min{1, C, mv}>5’“

such that in either case,
1

n{ 1 lIlV}
proving the lemma. U

At 22, < 2080 + max{ At}Sg,

Theorem 14 (Convergence). Let ¢ = 0, At € (0,1), and let \¥ be a solution to (8).
Assume that \i~' € Vi, such that M — uk1 strongly in L*(Q) as (g,h) — 0. Then there
exists a unique strong solution u* € H2(Q) to

(24) ufF — P = AdF (1 =) inQ, Vb n=0 on o

At(
such that .
e — ub strongly in L*(Q) as (g,h) — 0.
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Proof. Let Af € V}, be a solution to (8).
Step 1: We claim that there exists a subsequence (g;, h;) — 0 such that
M — b strongly in L*(2) as i — 0.
Indeed, by assumption, the initial entropy (Sgi)iew is bounded. Then Lemma 13 implies

that e*/2 is bounded in the DG norm uniformly in € and h. By the compactness Lemma
4, there exists a subsequence (g;, h;) — 0 and a function v* € H(2) satisfying

eMi/? s ok strongly in L*(Q) as i — oo.

k

Consequently, e™ — (vF)2 =: u¥ strongly in L'(€2). The discrete entropy inequality (16)

shows that
J g(eX)dx = f N2 (N2~ )N
Q o)

is bounded uniformly in (e, h), where g(u) = v/u(y/u — 1) logu for uw = 0. As the function
g : [0,00) — [0,00) is continuous and satisfies g(u)/u — o as u — o0, we can apply the
Theorem of de la Vallée-Poussin [11, Theorem 1.3, p. 239] (for a proof, see [26, Section
k¥ weakly in
LY(Q) as i — oo, for some function w®. We deduce from the strong L' convergence of e,

k k
I1.2]) to conclude that there exists a subsequence e such that e®m — w

possibly for another subsequence, that i (uF)? = w" a.e. in Q. This implies that
(25) P o (u*)?  strongly in L'(9),

thus proving the desired L? convergence. N
Step 2: We claim that for any ¢ € H2(Q2) n C*(Q), it holds that

ﬁf Migde + Y J MV - Vdr — J[P\ 1 {e Vo}ds

K€7~h ngh
(26) + J e (6% — 1)gz§da: — —J eAZi_l(;ﬁdx as i — o0.
Q At Jq

Since ¢ does not necessarily belong to V},, we cannot use it as a test function in the weak
formulation (8). Therefore, let P, : C°(2) — C°(Q) NV}, be the interpolation operator,
defined, e.g., in [10, Section 2.3]. It possesses the following property [10, Section 3.1.6]:
There exists a constant C; > 0 such that for all K € T, and ¢ € H*(K),

(27) 6 = Pagllwmaicy < Crlize *~ 28] 2
for m < 2 < ¢ such that m — d/q < 2 — d/2. In particular, for ¢ € H*(Q) and d < 3,
(28) H¢ — Ph¢HLOO(Q) < C[h?_d/2||q5||H2(Q) — 0 as hl — 0.

For given ¢ € H2(2) n C'(€2), we choose the test function ¢y, := Py, ¢ in (8):

1 k—1 1
EJQE)\}% Op,dx = EJQ b i Op, dx—l—elf )\h Op,dzr + Z f X V)\k -Vop,dx

Ke’I}L
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(29) - Z J [{)\Z}] : {e’\ﬁivmi}ds + f M (ex:% — 1) ¢p,dz.
reén; 7 @
Here, we have used the fact that [¢p,] = 0 since ¢y, is continuous. Note that (28) implies

k—1

that ¢p, — ¢ strongly in L*(Q) as i — . As ™ — u*! strongly in L2(2), by
assumption, we have for the left-hand side of (29):

)\k*l
f i (¢p, —¢)dx — 0 as h; — 0.
Q

Similarly, as i s b strongly in L?(Q), we infer for the first and last integrals on the
right-hand side of (29) that

J i (¢, — ¢)dx — 0, J i (M = 1) (6n, — @)dz — 0.
Q

Q

Inequality (15) shows that

eill A%,

k—1
%Z(Q) < JQ 8(6/\}” )dI

Thus, (51-1/2)\%) is bounded in L*(Q) from which we have g;A}; — 0 strongly in L*(2) as
(¢;, h;) — 0. This implies that the second integral on the right-hand side of (29) converges

to zero.
Next, we prove for the third integral on the right-hand side of (29) that

Ejt[eﬁﬁVAi~VK¢m—de$—+O as h; — 0.
KeThi K

Indeed, by the Holder inequality, the interpolation property (27), and the discrete entropy
inequality (16), we obtain

k k k
2 f VN V(n, — @)z <2 3 ooy [V ), — Sllwragae
KeThi K

K eThi

k k _
<207 Y iy Ve gy hie 6 rr2
KeThi

< 20N

1/2 1/2
1/2 Ak /2 2—d/2
L/m)( 2, e !izm) ( > b /wip(m)

KeTy, KeTh,
< Chi 6] 2y — 0.
[t remains to prove for the fourth integral on the right-hand side of (29) that
3 [ 5T - o)lds 0 ash -0
!

J€ER,
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To this end, we use the elementary inequality [{uVv}| < 2{u}{|Vv|} for functions u, v with
nonnegative u and the Cauchy-Schwarz inequality:
2

DT 1596 - onas] <| 3 [ I (on, - oas
) ey ‘
DeYs (on,— Mys|
f€En,
(30) <4 3 | PR 3 | (90, - o
feén, f€én,

We estimate both integrals separately. First, the multiplicative trace inequality in Lemma 2
shows that, for some constant C' > 0 and for faces or edges f = 0K, n 0K _,

fwm—m% cwawm{—m—ml+m—m2)
K=K+
We deduce from (27), i.e
|bn, — Oy < Crig|o|mzxy,  on, — Ol < Crlld]m2(x)
that

ﬁw@—nws

J€€n,
Therefore, also using h(z) < h;, we deduce from (30) that

2 JWH (v —cﬁ)}ds2 Ch2 ZJ P I Pds,

feSh feS

where h;(z) = min{h; k., hix } for x € 0K, n 0K_. We claim that the sum on the
right-hand side is bounded uniformly in h;. By Definition (10),

a(Ny,).

e} < 302

mv

such that we can estimate

3 J S

k 2
. EJ—M )| T|%ds
36(HlV feg
2
02

where we used (12) in the last step. The proof of Lemma 7 shows that B(A} ; Af A} ) =
C'/ At since M is uniformly bounded in L?(£2). We conclude that

S, [ DRI 16V, - onis| < oy

= 1/2
= (AT) ()12

BV A AL,

— 0 as h; — 0.
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We put together all the previous convergence results to infer that

AJ i, — & dm+szf/\h¢hdm+ZJ MVNE Y (G, — O)da

1(671

- Zf[m (5 0n, = s + | (e~ 1) (61, o)

J€€n,
(31) — ZJ eAl’j';l((bhi — ¢)dr — 0 asi— 0.
Q

Thus, inserting (29), all integrals involving ¢, cancel, and we end up with (26).
Step 3: We prove that the limit u*, derived in Step 1, is a solution to the very weak
formulation

(32) Aitf (u* — u" ) pdr = fQ ub Apdx + JQ uP(1 — uF)pda

for all ¢ € H2(2) n C*(Q). For the proof, we pass to the limit h; — 0 in each term of (26).
Because of (25), we have

J M pdr — f uFgdz, J M (e’\]’iz‘ —1)¢dz — f uF (u* — 1)¢d.
0 Q 0 Q

The limit ¢ — o0 in the remaining expression
- > f M VAE - Vedr — > fm |- {V}ds
KeTy, feén,

is more delicate. Consider the first term in the definition of I;. Integrating by parts
elementwise gives

2 f VN, Vede = Y f Ve - Vdz

}(67} ](67%
-- ) J N Apda + > f NV - nds
}(e7ﬁ 1(672
:—J hAngdeer[[ehﬂngds
Q ey,

where we have used the fact that V¢ has a continuous normal component across interele-
k
ment boundaries. From the previous identity and the L? convergence of e)‘hi, we obtain

2 f WA’f -Vodr — Z f [e*] - Vpds = f N Agdr — —f uFAgdz.
KeTh, f€&n, Q
We claim that

(33) J [} b i] - Vods —

JEE,

JW]] (i Velds — 0,

f€€n,;
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since this implies that
I, — —J uF Agdz,
Q

and thus shows (32).

For the proof of (33), let x € 0K, n dK_ for two neighboring elements K., K_ € Ty,
and set Ay := )‘ZJ k.- We assume without loss of generality that A, > A_ since otherwise,
we may exchange K, and K_. The definitions of the jump [-] and average {-} imply that

1] - 76 - M ] - (e Vo)

= ’((6/\“% +ernl) — (Apng + )\_n_)%(eA+ T @/\)) . ngﬁ‘

1
_ e)\, ((6A+—)\ _ 1)n+ — ()\+ — )\_)n+§(e>\+—>\— + 1)) . V¢‘
1

<l 2 1) = Ay — )\,)§(e>\+—>\— + 1)‘]V¢’
(34) = Mg — 2|V,
where g(s) = (e — 1) + s(e®* +1)/2 for s = 0. A Taylor expansion shows that g(s) =
g"(&)s?/2 = —Eefs?/4 for some 0 < & < s. Therefore [g(s)] < s%e*/4 for s > 0, and we
obtain

- 1
6/\7|9(>\+ - )| < QT(/\Jr — /\_)2@2(/\+—A—) — Z()““ _ )\_)262,\+_A,

e e\
2
The difference can be identified with the jump of )\’,fbi across f = 0K, n 0K _, while the

sum corresponds to the average of e in f. Thus, it follows from (34) that
3 J 11 vods - 3 [ D tevoyas
J€ER, =y

> [V oo () max { exp(| A,
fe€n; s f=0K nK_

: f [ J2{e™ bds.
f

1
< 5()\+ - )\7) 6|)‘_|.

<

ro(k))s exXP(| AL [ e i) }

N | —

By definition (10) of the stabilization factor, it holds that

204(/\21_)
3C2

mv

2)\k
max { exp(| A}, | (i), exp(| ), o)) e ™} <
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Using this estimate and the coercivity estimate (12) for the form B, we can write

3 f[[eh]] Vods— Y f[w]] (MiVlds

fegh fegh
sz Vol 3 [ oI s
3CIHV feén,
< gVl ¥ [ eI
inv f€5h
R

e IT0le@ B AL M),
We know from the proof of Lemma 7 that B(Ay ; Aj , Aj ) < C//At is uniformly bounded.
This proves our claim (33).

Now, we can pass to the limit ¢« — oo in (26), which yields (32).

Step 4: We claim that the solution u* € L?(Q) to (26) satisfies the regularity u* € H(Q)
and hence is a weak solution to (4)-(5). To this end, we use the duality method as in [6,
p. 318]. Let 7 : L*(Q) — HZ(Q2) be defined by Tv = u, where u solves the elliptic problem
u— AtAu =vin Q, Vu-n = 0 on 0Q. By [25, Theorem 8.3.10], for v € C§°(£2), it holds
that Tv € H2(Q) n C*(Q). Then, introducing g := u*~1 + Atu*(1 — ), the very weak
formulation (32) can be equivalently written as

L uP(¢p — ANtAP)dx = L godx

for all ¢ € H2(2) n C1(Q). Given v e CF(2), we set ¢ = To, and the previous equation
becomes

(35) J uFvde = J gTvdx.
0 0

As CF () is dense in L*(2) and T is continuous, (35) remains valid for all v € L*(€).

Next, we denote by 7’ : H2(2) — L?*(2) the dual operator of 7. According to [25,
Theorem 8.3.10], the operator 7 can be extended to an operator T : LP(Q2) n H*(Q)" —
W2P(Q) for 1 < p < 2. (This is basically a regularity statement for the elliptic problem.)
We deduce from the Sobolev embedding theorem that W2P(Q) — C°(Q) for p > 3/2
since d < 3. Therefore, there exists an extension 7* : C°(Q)" — LY (Q) of 77, where
p=p/lp—1) <3. _

Now, g € L'(Q2) = C°(Q)'. Then (35) implies that u* = T*(g) € L¥ () for p’ < 3 and
consequently, g € L1(Q) for ¢ < 3/2.

It remains to show that u* € H'(Q). Since u* € L?(), the elliptic problem

1
U — —Avp =0 inQ, Vv, -n=0 ondQ,
m
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possesses a unique solution v, € H2(Q) [25, Theorem 8.3.10]. Multiplying the elliptic
equation by v,, and applying the Cauchy-Schwarz inequality, we have

1 1 1
—f v2 dr + —f |V, |2de < —J (u”)?dx.
2 Jo m Jo 2 Jo

Thus, (v,,) is bounded in L*(Q) and it follows the existence of a subsequence which is not
relabeled that v, — u* weakly in L?(Q2) as m — co. Using v = v,, — AtAv,, in (35), it
follows that

J gTvdr = f uFvdr = J (vm — lAvm) (U — DNtAV,, ) dx
Q Q Q m
:f v2 dx + (At+ >J (Vv ?dr + —f (Avy,)%da
Q

(36) > f Ve + At j Vonlde > Atfvn3 g

We apply the Holder inequality and use the Sobolev embedding H'(Q) < L% (Q2) for ¢’ < 6,
knowing that g € LI(£2) for ¢ < 3/2:

| 7ot < gl Toluv ) < Clalia| Tolin

VAN
< C(A)| gl 7oy + THUmH%ﬂ(Q)

where 3 < ¢ < 6and 1/g+1/¢' = 1. The H*(2) norm can be absorbed by the corresponding
term on the right-hand side of (36), and we end up with

At
THUmH%ﬂ(Q) < C(A)|9]7a -

This shows that (v,,) is bounded in H!(€). Thus, there exists a subsequence (not relabeled)
which converges weakly in H'(Q) to some function w € H'(2). Since v,, — u* weakly in
L?(92), we conclude that w = u* € H(Q).

Knowing that u* € H(Q) solves (32), we can integrate by parts in the first term of the
right-hand side of (32), leading to

Alt f (¥ — uF N pdr = f Vuk - Vodr + JQ uP(1 — uF)pda
for all ¢ € H2(Q) and, by density, for all ¢ € H(Q).

Moreover, since u* € L*(Q) and consequently, u*(1 — u*) e L?(Q), elliptic regularity
implies that u* € H*(Q) and Vu* -n = 0 on 09, i.e. u* € H2(Q2). We conclude that u”
solves (24).

Step 5: We prove the uniqueness of weak solutions to (4)-(5) to conclude the convergence

of the whole sequence e to u*. Let u*, v¥ € H'(Q) be two weak solutions to (4)-(5).
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Taking the difference of the corresponding weak formulations with the test function u* —v*,

we obtain

0— é L(u’f 2 + L V(i — ob) 2z + L (1) — oF(@F — 1) — F)da

1
= <— - 1> J (u —o*)2da + J IV (u* — ¥ [Pdx + J (u¥ + vF) (uF — v*)da.
At Q Q Q
Thus, choosing At < 1, we infer that u* — v¥ = 0 in Q. U

5. NUMERICAL RESULTS
We present some numerical results for the Fisher-KPP equation in one space dimension,
(37) o = Dugy +u(l —u) in Q=(0,1), t >0,
(38) u, - n=0 atx=0,1,¢t>0, u(0)=u" in (0,1).

5.1. One group of species. Let D = 107! and ug(z) = 0.8 for 0 < z < 1/2, ug(z) = 0
else. Problem (37)-(38) models the evolution of one species initially concentrated in the
domain (0,1/2). We solve this problem by using an implicit Euler scheme in time and a
continuous P; finite-element discretization, both on a uniform mesh. The reaction term is
treated implicitly. The Newton method with relaxation is used at each time step, up to
convergence. The integrals are computed by using a GauB-Legendre quadrature formula
of order 8. Figure 1 shows the density u(z,t) at various time instances. We observe that
the finite-element solution uf becomes negative even on the finer mesh, and it is pushed
towards —oo in some region since u* = 0 is a repulsive steady state.

05f \ 1 05

\ 0
0 —
Y
v
05 05t
0 02 04 06 08 1 0 02 04 06 08 1
X X

F1cure 1. Continuous P finite-element discretization of problem (37)-(38)
in the variable u, using No = 20 elements (left) and N, = 40 elements
(right). The time step size is in both cases At = 1/6, and the solutions move
from left to right.
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These results motivate the introduction of the exponential transformation u = exp(\).
We are choosing the same initial datum as before but choosing ug(x) = 1076 instead of
uo(x) = 0 to allow for the exponential transformation. Figure 2 shows the solutions to the
continuous P; finite-element approximation associated to problem (4)-(5) in the variable
AF. The implicit nonlinear scheme is solved again by Newton’s method with relaxation at
each time step. The integrals are solved again by a GauB-Legendre quadrature formula of
order 8. Note that if p = 1, the integrals are of the type §,. e+ (cx 4+ d)dz and thus can be
integrated exactly. The discrete densities exp(\F) are positive by construction. However,
we need more relaxation in the Newton method when higher-order schemes p > 1 are used,
which slows down the algorithm.

0.8

0.61

0.4+

0.27

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T T

FIGURE 2. Continuous P; finite-element discretization of problem (4)-(5) in
the variable A\¥, using Ny = 20 elements (left) and Ny = 40 elements (right).
The time step size is in both cases At = 1/6 and the end time is 7" = 20.

Therefore, we employ a discontinuous Galerkin method with polynomial order p > 1
for problem (4)-(5) in the variable Af; see scheme (8). The regularization term is not
necessary for the numerics, i.e., we set € = 0 in (8) for our simulations. Figure 3 illustrates
the discrete solutions for polynomial orders p = 1, 2, 3, indicating that the method is stable
with respect to the order. The jumps are due to the discontinuous Galerkin method.

Figure 4 represents the discrete solutions with the same numerical parameters as in
Figure 3 but with the initial datum wug(z) =1 for 0 < x < 1/2 and wuy(z) = 0 else. Also in
this example, the lower and upper bounds 0 < exp(\f) < 1 are always satisfied.

5.2. Entropy decay. Proposition 9 shows that the discrete entropy SF decays exponen-
tially fast if Sp < |Q| = 1. To illustrate this behavior numerically, we consider the one-group
model with initial condition ug(z) = 1 for 0 < < 1/2 and ue(z) = 1076 else. Figure 5
(left) shows that there are two different slopes. For small times, the entropy decay is rather
slow. When the time step k is sufficiently large such that exp(\F) > ¢ for some & > 0, the
reaction dominates, and the entropy decay becomes faster. This behavior becomes even
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F1GURE 3. Reference solution computed from the P; finite-element scheme
with Ng = 300 elements and At = 1/3 (left top) and solutions computed
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from the DG scheme with Ny = 40 elements, At = 1/3, and polynomial

order p =1 (right top), p = 2 (left bottom), and p = 3 (right bottom). The
initial datum is ug(z) = 0.8 for 0 < x < 1/2 and ug(x) = 10716 else.

more apparent in the case of pure diffusion (i.e. without reaction terms), illustrated in
Figure 5 (right). We remark that in this situation, the total mass is conserved numerically.

0 <z < 1/nand uy(z) = 10716 else for n = 3,6,12. Then

Figure 6 shows the entropy decay in semi-log scale for the initial data wug(z)

S0 — Ln(nlog(n) i+ 1)de + r

ldx = logn

n for

is larger than |Q| = 1 if n > e. We observe a region in which the decay rate is very small

and it becomes smaller when n (and SY) increases. This indicates that the assumption
Sh < Q| is not just technical to derive exponential time decay.
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F1GURE 4. Reference solution computed from the P; finite-element scheme
with Ng = 300 elements and At = 1/3 (left top) and solutions computed
from the DG scheme with Ny = 40 elements, At = 1/3, and polynomial
order p = 1 (right top), p = 2 (left bottom), and p = 3 (right bottom). The
initial datum is ug(z) = 1 for 0 < x < 1/2 and ug(x) = 1071° else.

5.3. Traveling waves. We are looking for traveling-wave solutions to (37) with D = 1.

Setting u(x,t) = ¢(s) with s = = — ct, the Fisher-KPP equation can be rewritten as a
system of first-order differential equations:

(39) o = o+ —1), ¥ =9, t>0.

We choose the initial data ¢(0) = 1 and ¥(0) = —107'°. The (reference) traveling-wave
solution ¢(s), computed from (39) using the Matlab command ode45, is compared in Figure
7 with the DG solution exp(\f), computed from the DG scheme (8), and the continuous P
finite-element solution u;,. The solutions are shown at the time instances t = 0, t = 7/6,
t=T/3,and t = T/2 (with T' = 20). Both approximations are diffusive, i.e., the traveling-
wave speed is overestimated by the DG and finite-element solutions. On the finer mesh
with Ng = 80 elements, the DG solution is clearly less diffusive compared to the other

25
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FiGURE 5. Left: Entropy decay for the one-group model. The reference
slopes are ¢t — 0.95" (slope 1) and ¢ +— 0.5" (slope 2). Right: entropy decay
for the pure diffusion equation. Both figures are in semi-log scale.
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FIGURE 6. Entropy decay for the one-group model with the initial datum
ug(r) = n for 0 < z < 1/n and up(x) = 1071° else.

discrete solutions on the coarser mesh with N, = 50 elements. Better approximations
are expected by using a higher-order time discretization. Structure preservation of higher-
order temporal approximations is a delicate topic (see, e.g., [21]) and will be studied in a

future work. Also an error analysis is postponed to a future work.

APPENDIX A. LINEAR ELEMENTS: EXISTENCE OF SOLUTIONS FOR € = (

We show that the regularization term ¢ §, A\f¢,dz in the DG scheme (8) is not needed if

we consider linear elements.
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FIGURE 7. Comparison of the traveling-wave solution ¢(s), the DG solution
exp(AF) (with Ny = 50 or Ny = 80 and At = 1/3), and the finite-element
solution uy,.

Proposition 15 (Existence for p = 1). Let p = 1, Ay ™' € Vj,, and SP' < |Q|. Then there
exists a solution A € Vj, to (8) with e = 0.

Proof. The proof is based on the idea of the proof of [1, Lemma 3.10]. Let ¢ > 0 and let
A¥ € Vj, be a solution to (8) given by Proposition 6. In order to emphasize the dependency
on g, we write A. := AF. Our goal is to derive an e-uniform L*(€2) bound for A..

Step 1: We derive ﬁrst some estimates for e*s. Lemma 8 shows that

(40) § < J erdr < M,
Q

where § = o_(Sp/|Q]) and M = 0,(S}/|Q]). Since we assumed that S) < |Q2|, we have
§ > 0. Using the coercivity estimate (12), the inequality (17), and e*:(e*s — 1)\, = 0, we
find that

Sk 4 f |V 2dr + = At Z f —a(\)|[A]Pds < <S5,
fe€y

KeTy,

where we used in the last step the monotonicity of k ~ SF, guaranteed by Lemma 7.
Consequently,

p2 3,50
(41) J >\5|V)\5’2dl’ =+ Z J _a(A€)|[)\eﬂ|2dS < M/ - Kh
KeTy, h ;

fe&n vt

Step 2: We claim that for any ¢ > 0, there exists an element K, € 7, and a constant
1 > 0, independent of e, such that

(42) ellzeqe < b



28 F. BONIZZONI, M. BRAUKHOFF, A. JUNGEL, AND I. PERUGIA

For the proof, let N € N be the number of elements in 7;,. The lower and upper bounds
(40) imply the existence of an element K. € T, such that

)
(43) + < . eredx < M.
By the mean-value theorem, there exists x. € K. such that
1
)\E(xE) _ )\E(I)
e = — e dx.
|Ks| K.

Then (43) gives
1 )

log <— ekg(z)dx> ‘ < max{ }
|Ke| Jk. [KC[] 7 NIK]

Since A. is a polynomial of degree one on K., by assumption, its gradient is constant on
K., and we deduce from (41) and (43) that

§i IV Pda _ M'N
SKE eredx T

Combining the last two estimates, it follows for x € K. that

‘)‘s(xsﬂ = log ,log

VA2 = on K..

1
IAe(@)| < [Ae()| + |2 — 2] J IV (xe + 0(x — x.)|do
0

LMY
5 e :u7

M
log _|K ’

J
NIK|

< max { , log

which shows the claim.

Step 3: We wish to prove a uniform L* bound for A. on the faces or edges of K.. Let
p > 0 and K. € T, such that |A|rex.) < p. Set K_ := K. and consider neighboring
elements K € T, satisfying f € 0K_ n 0K, # J. Furthermore, let Ay = A;|x,. We claim
that there exists C), > 0, independent of ¢, such that

(44) 1ALy < G

The idea is to prove an L2(f) estimate for A., as the equivalence of all norms in the
finite-dimensional setting then implies the desired L*(f) bound.
Observe that

max {(e%)_, (%), } > (%) > exp(—IA_le(n) = exp(—IA =) > exp(—p)
Then we can estimate the stabilization function « according to
3 3 iy
a(Ae) = 5012nv exp(— A= e(x ) exp(|A- =i ) = §O§1v€ &
To estimate the L*(f) norm of A\_|;, we use the inequality |A.| < [Ny — A_| 4+ [A_| =
ITA]] + [Ae] on f. Then (42) yields

4et
f I\, [2ds < 2J (A + [[ADP)ds < 2| f|u> + e
f f

3CE

inv

f a(\) [N Pds =: B,
f
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and 3, is uniform in € (but not in A) in view of (41). We conclude that
Aoy < ClANz2r) < CBY2.

Step 4: Denote by (¢o, ..., ¢q) the basis of Py(K ) such that ¢;(e;) = 0;; for i, j =
0,...,d, where the vertices ¢; of K, are ordered in such a way that eq ¢ f. Then we can
formulate A, on K, as

d

Ai(z) = Zafﬁbi(x)a re Ky,

i=0
where a5 = A\, (e;). Estimate (44) shows that A, (e;) is uniformly bounded at the vertices
ar,...,aqof Ky ie |af| <C,forali=1,...,d

Step 5: We wish to estimate the remaining vertex ef that is not an element of K_ = K..
We claim that there exist constants L, < U, being independent of ¢, such that

L,<ay<U,.

We first prove the upper bound. Using the bound for a; for i = 1,...,d, we have

d d

A = agbo — Y. las||gi] = ajdo — Cu Y. |6i] = agdo — Clud.

i=1 i=1

If af < 0, there is nothing to show. Otherwise, it follows from (43) that
M = f exp(Ay)dz = f exp(agpo — Cpd)dx > ec“df agpodz.
Ky K. Ky
Then, setting ¢y = SK+ Podx, we infer that a < Me%rd/cy =: U
The proof of the lower bound is more involved. Let fy be the face or edge that is opposite

of the vertex eg, and let f1,..., f; be the remaining faces or edges. For later use, we note
that the integrals

d 2
I(b) = f (|bV¢|+C’MZ|V¢i|) ebPo+Cud gy
K i=1

d d 2
NOEDY f (|bV¢| +C#Z|ngi|> et Cud g
j=1v1fj i=1

converge to zero as b — —o0, so there exists L), € R such that
(45) I(b) +J(b) <1 forallb< L,

We estimate

~~~~~
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As we assumed that p = 1, the expression |V, - n| is constant. Thus, since |V¢g - n| > 0
and A\, = —C,, on fy, by (44), the previous inequality gives

R 1
|ag| < Voo 7] (IVA -l + O“dig%?_)fd IVil)
(46) <t (ec“ J VA, - nds| + Cd max Vo y)
< €V A - nas max il |-
Voo - n| \|foll s, Hois1,d

An integration by parts leads to

d
f V. - nds + ZJ VA - nds = f e AN dr + f e |V Pda
0 i=1"fi Ky

K
= f |V |2 de,
Ky
since A is linear on K, so the Laplacian vanishes. Hence, using
d
Ae <afgo+ ) |af]|6i] < afeo + Cud.
i=1
and (45), we have

‘ J eV, - nds
fo

< I(ag) + J(ay) < 1

if we choose ag < Lj,. Inserting this information into (46), it follows for all aj < L/, that

0] < —— (eCH +C,d Ve \) L
ag| < =—— | — max i) = —L".
0 Vo -n|\|fol R R "
Thus, setting L, = min{L;,, L7}, we conclude that af > L,,.

Step 6: Combining the previous steps, we infer that there exists a constant g(u) > 0
such that

IAellzoo sy < g(p)-
This estimate means that if A. is bounded in some element with constant g, then A, is
bounded in the neighboring elements with constant g(u). Now, take an arbitrary element
K € Ty. Then there exists a finite sequence K°, K', ..., K™ of elements with K° = K,
and K™ = K such that K’~! and K’/ are neighboring elements. Repeating the arguments
of Steps 3-5, the bound [A.|p=(x1) < g := g(p) implies that [A |z (x2) < g(1') = g(g(n))-
Thus, by iteration,
[Aellpe(ry < (g o0 g) (1)
-
m times

The upper bound is independent of € and holds for all elements K € 7,. Consequently,
(Ac) is bounded in L*(£2).

We deduce that there exists a subsequence (not relabeled) such that A\, — A strongly in
L*(Q), recalling that V}, is finite-dimensional. In fact, the convergence holds in any norm.
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Thus, we can pass to the limit ¢ — 0 in (8), and the limit equation is the same as (8) with
e=0. U
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