ENERGY TRANSPORT IN SEMICONDUCTOR DEVICES
ANSGAR JUNGEL

ABSTRACT. The modeling, analysis, and numerical approximation of energy-transport
models for semiconductor devices is reviewed. The derivation of the partial differen-
tial equations from the semiconductor Boltzmann equation is sketched. Furthermore,
the main ideas for the analytical treatment of the equations, employing thermodynamic
principles, are given. A new result is the proof of the weak sequential stability of ap-
proximate solutions to some time-dependent energy-transport equations with physical
transport coefficients. The discretization of the stationary model using mixed finite el-
ements is explained, and some numerical results in two and three space dimensions are
presented. Finally, energy-transport models with lattice heating or quantum corrections
are discussed.

1. INTRODUCTION

The transport of charge carriers in semiconductors has to be described on the most basic
level in a quantum mechanical way. The large number of electrons, however, makes it nec-
essary to follow a statistical approach using a probability distribution and to incorporate
the quantum mechanical effects semi-classically. The distribution function may be deter-
mined as the solution of a kinetic equation such as the Boltzmann equation. It contains
much more information about the state of the system than actually needed. The variables
of interest are typically the carrier density, mean velocity, and energy, which are averaged
quantities of the probability distribution over the momentum space (so-called moments).
Moreover, the direct solution of the Boltzmann equation is very time-consuming even with
modern computers. Therefore, one aims to derive simpler model equations which still
contain the most important physical information.

When collisions are dominant in the semiconductor domain, the ratio between the parti-
cle mean free path and the reference length (the so-called Knudsen number) is very small,
and the distribution function may be expanded in the Knudsen number. This leads in the
Chapman-Enskog approach to diffusive evolution equations for the moments. The lowest-
order equation, the drift-diffusion equation, describes the evolution of the particle density
only. Although this model gives very fast and satisfactory simulation results for semicon-
ductor devices on the micrometer scale, it is not able to cope with so-called hot-electron
effects in nanoscale devices. A possible solution is to incorporate the mean energy in the
model equations, leading to energy-transport equations, which describe the evolution of
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9 A. JUNGEL

the particle density and energy. The advantage of these models is that they have a nice
mathematical structure which helps to devise efficient numerical schemes.

In this survey, we sketch the derivation of the energy-transport models from the semicon-
ductor Boltzmann equation, review the thermodynamic structure of the model equations,
summarize the existence analysis, and explain the numerical techniques used to solve them.

The first energy-transport model has been presented by Stratton in 1962 [79]. His ap-
proach is based on the relaxation time approximation of the collision integral to obtain an
approximate explicit solution for the distribution function. Since then, energy-transport
models have been widely used for numerical computations mostly with phenomenological
transport coefficients [7, 49, 74, 77]. In the engineering literature, the energy-transport
model is often considered as an approximation of the hydrodynamic equations by (essen-
tially) neglecting convection [7, 73]. There exist many versions of the energy-transport
equations, also called energy-balance models, derived under various hypotheses on the scat-
tering terms, the semiconductor band structure, and the degeneracy, see e.g. [20, 39, 77, 83].
A more rigorous derivation from a diffusion approximation of the Boltzmann equation has
been first presented in [11], later improved and extended in [10, 31, 32]. Energy-transport
models derived from a high-field limit [34] or involving impact ionization [27] have been
studied too.

Mathematicians started to pay attention to energy-transport models in the 1990s, in par-
ticular for numerical discretizations, using finite-difference methods [40, 71, 72], (mixed)
finite-volume techniques [12, 18, 19], and (mixed) finite-element schemes [24, 31, 41, 51, 52,
62, 68]. Less standard techniques are essentially nonoscillatory (ENO) schemes [53], expo-
nential difference methods [69], and pseudo-hyperbolic schemes [80]. On the other hand,
there are only a few analytical results, mainly due to the strong nonlinear coupling in the
equations. In earlier works, the drift-diffusion equations with temperature-dependent mo-
bilities but without temperature gradients [84] (also see [48]) or with nonisothermal systems
containing simplified thermodynamic forces [5] have been studied. Later, existence results
for the complete energy-transport equations have been achieved, see [37, 46] for stationary
solutions near thermal equilibrium, [21, 22, 23] for transient solutions close to equilib-
rium, and [29, 30] for systems with nondegenerate diffusion coefficients. Furthermore, the
nonlinear stability of classical bounded solutions to the one-dimensional equations was in-
vestigated [4]. All these results give only partial answers to the well-posedness problem,
and a complete global existence result for any data and with physical transport coefficients
is still missing.

The review is organized as follows. In Section 2, we introduce the semiconductor Boltz-
mann equation, explain the main collision mechanisms, and sketch, following [32], the
derivation of the energy-transport models. Furthermore, relations to nonequilibrium ther-
modynamics are highlighted, and explicit models are computed. Section 3 is devoted to the
mathematical analysis of the time-dependent equations. We explain how the thermody-
namic (entropy) structure can be employed to deduce a priori estimates, and we prove the
weak sequential stability of certain approximate solutions. This proof is presented here for
the first time. In Section 4, the main ideas of the discretization with mixed finite elements
are introduced, and some numerical simulations of field-effect transistors in two and three
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space dimensions, taken from [41, 52|, are given. Finally, we mention in Section 5 some
actual research directions.

2. DERIVATION OF THE MODEL EQUATIONS

2.1. Boltzmann transport equation. Before we detail the derivation of the model,
we introduce shortly in some basic notions of semiconductor theory. For details about
semiconductor physics, we refer to the textbooks [8, 13, 64]. A semiconductor crystal
is modeled as a three-dimensional array of atoms arranged in a lattice. The quantum
states of the electrons in the periodic lattice are given by the eigenfunctions v, (k), n € N,
of a suitable Schrodinger equation, indexed by the so-called pseudo-wave vector k € B,
where the subset B C R? is the Brillouin zone [55, 67]. The corresponding eigenvalue
E(k) = E, (k) represents the energy of the state k in the n-th band. According to Pauli’s
exclusion principle, no two electrons may occupy the same quantum state simultaneously.

Instead of a full quantum description, we prefer a semi-classical approach in which
the electrons in the conduction band of the semiconductor are modeled statistically and
quantum effects enter only through the band structure E (k). Let f(x,k,t), with the spatial
variable z € R? and the time ¢ > 0, be the ratio of the number of occupied quantum states of
the electrons in the infinitesimal volume element dx dk in the conduction band to the total
number of states in dx dk in the conduction band. By Liouville’s theorem, the distribution
function f(x,k,t) is constant along the particle trajectories. Then, differentiation along
the trajectories gives the scaled semiconductor Boltzmann transport equation

(1) PO fo+a(v(k) - Vofa+ ViV -Vifa) =Q(fa), z€R’ ke B, t>0,

where a > 0 is the Knudsen number (or scaled mean free path), v(k) = VE(k) the electron
group velocity, and Q(f) the collision operator. We consider physical regimes in which
scattering dominates transport, i.e. &« < 1. The Boltzmann equation is complemented
with periodic boundary conditions for £ € B and initial conditions for f at t = 0. The
electric potential V' may by a given function or selfconsistently defined by the Poisson
equation

VAV:/f%—C@%
B

where A\ denotes the (scaled) Debye length and C'(x) models fixed charged background ions
in the semiconductor crystal (doping profile).

The collision operator is assumed to be the sum of elastic, electron-electron, and inelastic
scattering terms,

Q(f) = Qa(f) + aQee(f) + *Qin(f).
In this formulation, elastic collisions dominate, and inelastic scattering is of the order O(a?)
only. The elastic collision operator may be given by

(2) @Jﬂﬂ%hﬂZ/Owﬁﬁﬁ@%ﬁ—ﬂ@Mf—ﬁ%Q

B
which models acoustic phonon scattering in the elastic approximation, for instance. In
the above integral, o is a scattering rate, d is the Dirac distribution, and [ = f(z, k', t).
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The integral can be defined more precisely by means of the coarea formula [55, Chap. 4].
Binary carrier-carrier scattering may be described by

(Qaﬂﬂahﬂz/‘ﬂﬁﬁ%%bh)

B3
x (f'fil = A= fr) = fLO =)A= f1)dE dky di,
where the transition rate reads as
s(z, Kk, k’l, ki) = o(z, Kk, k'l, kl)é(E(k/) + E(k'l) — E(k) — E(/ﬁ)),

and we employed the abbreviation f; = f(x, k1, t) etc. More precisely, the delta distribution
should be understood as B-periodic in order to account for so-called umklapp processes
(which preserve the periodic structure in k). Finally, inelastic scattering may be modeled
by the integral

(Qu(f)(z, k1) = / (s(x, K" k) /(L= f) = sz, k. K) f(1 = [))dK".
B
In the case of inelastic phonon scattering, the transition rate s(x, k', k) is given by

s(z, k' k) = o(z, K, k) (1 + N)S(E(K') — E(k) + Epn) + NO(E(K') — E(k) — Epn)),

where N is the phonon occupation number, and the delta distributions contribute only if
a phonon with wave energy E,;, is absorbed or emitted, i.e. E(k') = E(k) £ Epp.

We need the following properties of the above collision operators [55]. All three operators
conserve mass,

/B Qu(f)dk = /B Qe f)dls = /B Qu(f)dk =0,

and the elastic scattering operator conserves additionally energy,

(LQJﬁE%MkZO

The kernel of the linear elastic scattering integral (2) consists of functions which depend
only on the energy, i.e. Qu(f) = 0if and only if f(z, k,t) = F(z, E(k),t) for some functions
F. Furthermore, Qe (f) = 0 holds for Fermi-Dirac distributions, f = (1 + exp((E(k) —
w)/T))~t, where the chemical potential y and the electron temperature 7' > 0 are some
parameters.

2.2. Chapman-Enskog expansion. The main idea of the derivation of the energy-trans-
port equations is to multiply the Boltzmann equation (1) by the weights 1 and E(k) and
to integrate the resulting equations over the wave-vector space, leading to the moment
equations

1
(3) 8t/ fodk + —divx/ favdk = 0,
B a B

(4) 8t/ foEdk + ldivm/ favEdk + l/ V.V - VifaEdk = LQ/ Q(fa)Edk:.
B @ B a Jp «

B
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The integrals [ g Jadk and /, 5 JaEdk can be interpreted as the particle and the energy
densities, respectively, and the integrals over f,v and f,vE are the particle and energy
fluxes, respectively.

In order to derive constitutive relations for the fluxes, we assume that the Knudsen
number « is very small and expand the distribution function f, in a. The derivation
follows the lines of [32]. First, we let formally @« — 0 in the Boltzmann equation (1),
leading to Qe (f) = 0, where f = lim,_o fo. Then, by assumption, f(z,k,t) depends only
on the energy E(k), f(z,k,t) = F(x, E(k),t) for some function F. Second, we introduce
the Chapman-Enskog expansion f, = F + ag, (which defines in fact g¢,), insert this
expression in (1), and let o — 0:

(5) Qel(g) = U(k) ' v:cF + vxv . ka - Qee(F)a

where ¢ = lim,_.¢ go. The most difficult part now is to solve this operator equation. It can
be shown that (5) is (formally) solvable if and only its integral over the energy surface of
energy ¢ vanishes [55]:

/ Qee(F)I(E(k) —e)dk =0 for all e € R.
B
This implies that F is a Fermi-Dirac distribution, F' = F, 7 = (1 + exp((E(k) — u)/T))™*
for some functions p = p(z,t) and T'= T'(z, t). Since Qee(F,, 1) = 0, we infer from (5) that
(6) Qel(g) = U(k> -V F+V,V-VLF.
Integrating this equation and observing that (). conserves mass and energy, we find that
(7) Oz/v'Vdek’:/ (U-V1F+VxV~VkF)Edk.

B B

Third, we insert the Chapman-Enkog expansion into the moment equations (3)-(4):

Gt/de—i—l/v'Vdek—l—/U~ngadk:O(a),
B B

Q B

1
8t/FEdk+a/ (v-V.F+V,V-V,F)Edk
B B

+ / (v Viga + VoV - Viga) Edk = / Qi (fo)Edk + O(a),
B B

where we have used that the elastic and electron-electron collisions conserve mass and
energy and that the inelastic collisions conserve mass. Because of (7), the integrals of
order o~ ! vanish, and we obtain in the limit o« — 0:

(8) o —div,J, =0, J(ne) —divyJ. + J, - V.,V =W,

where the particle and energy densities n and ne and the particle and energy current
densities J,, and J, are defined by

9) n:/de, ne:/FEdk, Jn:—/gvdk, Je:—/ngdk,
B B B B
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and W = [, Qi(F)Edk describes averaged inelastic scattering. Notice that we have
integrated by parts in the energy equation and employed the definition of the velocity
v = VkE .

It remains to derive expressions for the current densities which depend on n and ne. To
this end, we introduce the vector-valued solution dy of Qu(dy) = —vF (1 — F'). It can be
shown that this solution exists. In view of (6), we can decompose g = —dy - (V. (1/T') —
V.V/T — EV,.(1/T)) + Fi, where Fj is some element of the kernel of Q¢. This implies
that

V.V 1
(10) Jn = Doo (v(%) - ) ~ DouVa(7);
V.V 1
(11) Je = D1 (Vz<%> -7 ) — DV, <T>’
and the diffusion coefficients D;; are defined by
(12) Di; = D;;(p, T) = / EYy®dydk, 1,5 =0,1.
B

Equations (8) and (10)-(12) are referred to as the energy-transport equations. They are com-
plemented by initial conditions for n and 7" and, in bounded domains, by mixed Dirichlet-
Neumann boundary conditions for n and 7. Notice that the densities (n,ne) are functions
of (1, T) through (9) and F' = F), r. Equations (8) can be interpreted as balance equations
of mass and energy, and (10)-(11) are the constitutive equations for the particle and heat
fluxes. Under a weak condition on the band structure, it is shown in [11] that the diffusion
matrix (D;;) is symmetric and positive definite.

2.3. Thermodynamic structure of the equations. In nonequilibrium thermodynam-
ics, the formulation of the energy-transport model (8), (10)-(11) is well known. Indeed, the
thermodynamic fluxes depend linearly on the thermodynamic forces Xog = V(u/T)—-VV/T
and X, = —V(1/T) [47]. The variables uy = u/T and u; = —1/T are known as the
(primal) entropy variables. The connection to thermodynamics has two important conse-
quences. First, by introducing the dual entropy variables wy = (u—V)/T and wy = —1/T,
the current densities can be written in the “symmetric” form

1 1
(13) Tp = Z LoVwi, J.= Z L;Vw;,

i=0 1=0
where LOO = DOO, L01 = L10 = D01 — DOQV and L11 = D11 - 2D01V + DO()VQ, and the
balance equations become
(14) O —div], =0, 8y(ne —nV) —divJ, = W.

The dual entropy variables have “symmetrized” the model in the sense that the convec-
tive terms J, - VV in (8) and D;VV/T in (10)-(11) are eliminated. As we will explain
below, this simplifies the mathematical analysis and it is useful for designing numerical
approximations.
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Second, the existence of a symmetrizing change of unknowns implies the existence of an
entropy (or free energy) functional. Let us consider the whole-space situation (the case of
bounded domains is treated in Section 3.1). The entropy reads as

S = [ stz = [ (p-u=xu)de.

where V, x(u) = p(u), and the entropy density s relates the extensive variables p = (n, ne)
and the intensive variables u = (ug, u1) through u = ds/dp. In fact, the entropy density s
can be interpreted as the Legendre transform of x. Differentiating S formally with respect
to t and assuming that the potential is time-independent, we compute

ds -
E — /R;?) atp udr = — Z /R3 vawz . Vw]dx -+ - Wuldx

i.j=0

Since the diffusion matrix (D;;) is symmetric and positive definite (under weak conditions
on the band structure), so is (L;;), and we find that

s
(15) — +c | |Vw]Pdr < | Wuds,

dt R3 R3
where ¢ > 0. Neglecting the source term W, S is a nonincreasing function in ¢. This
property is extremely useful to derive a priori estimates for the solutions and to study
their long-time behavior.

2.4. Explicit models. The formulation (8), (10)-(12) is not explicit in the macroscopic
variables (n,ne) or (i, T'). Explicit expressions are obtained under simplifying assumptions.
We assume that the semiconductor material is nondegenerate such that the Fermi-Dirac
distribution F' in (9) can be approximated by the Maxwellian exp(—(F — u)/T'), that the
energy band is given by the parabolic approximation E(k) = |k|?/2, k € R3, and that
the elastic scattering rate o in (2) is proportional to E® with 3 > 0 (see [64, Sec. 2.3.4]).
Finally, we suppose that the averaged inelastic collision integral W is approximated by a
Fokker-Planck ansatz [31]. Then the extensive variables can be formulated as
n = NoT??e"T.  ne = gnT,

where NoT?%2 = 2(T/(27))/? is the scaled density of states. The diffusion matrix (D;;)
becomes

(16) (Dij) = pol'(2 = B)nT/?70 ((2 —16)T (3 —%)_(szﬁ)TQ) ’

where 1o comes from the elastic scattering rate and I" denotes the Gamma function with
I'(3) = /7 and I'(z + 1) = 2I'(z) for z > 0. Typical choices for 3 are 3 = 3, employed
n [20], 5 = 0, used in [65], and § = —%, coming from the diffusion approximation of
the hydrodynamic semiconductor model. Nonpolar phonon scattering may be modeled by
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(3.37)]. A computation shows that the current densities can be written as

(17) T = pol'(2 = B)(V(nTY*7P) —nT~1270vV),

(18) Je = pol(3 = B) (V(nT¥*7F) — nTY*PvV).

Finally, the inelastic collision integral W becomes (see [55] for details)
3n(T -1

(19) W=—= u T8 = Tgyngﬂiﬁ,

2 T ﬂ(T) ’
where 75 3 > 0 is a constant depending on the elastic and inelastic scattering rates.

The remark that the assumptions needed to derive the explicit model can be weakened.
Fermi-Dirac distribution functions have been considered in [57] and energy-transport mod-
els based on Fermi-Dirac statistics have been derived. Nonparabolic band structures in
the sense of Kane E(1 + aF) = 1|k|?, where a > 0 measures the nonparabolicity, lead
to energy-transport models in which the energy integrals cannot be computed explicity

[31, 56]. Simplifications are also obtained when assuming monotone spherically symmetric
energy bands [10, 56.

3. ANALYTIC RESULTS

3.1. Existence and uniqueness of solutions. The symmetric formulation (13)-(14) and
the entropy estimate (15) are the key observations for the mathematical analysis of the
energy-transport equations. In the following, we describe the main ideas and refer to [29]
for the mathematical details.

We recall that the equations can be written as

(20) Oypo(u) —divJy =0, Ohp1(u) —divJy + Jo- VV = W(u),

where p = (po, p1) = (n,ne), u = (ug,u1) = (u/T,—1/T), and the current densities are
given by

We assume that the electric potential is selfconsistently given by the Poisson equation
(22) NAV = po(u) — C(x).

Equations (20)-(22) are solved in a bounded domain Q C R? (d > 1) and complemented
with the mixed Dirichlet-Neumann boundary conditions

(23) u=up, V=Vp onlpx(0,00),

(24) Joov=J-v=VV-vr=0 onIy x(0,00),

where 0{2 = I'p UT'y and v denotes the exterior unit normal vector to 02, and with the
initial conditions

(25) p(u(-,0)) = plur) in Q.
In [29], the existence of weak solutions to (20)-(25) is shown under the following main
assumptions. First, p is supposed to be a gradient and strongly monotone, i.e. there exist a
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smooth scalar function y and a number ko > 0 such that p = Vx and (p(u)—p(a))-(u—10) >
Kkolu — @]* for u, 4 € R?. Second, the diffusion matrix (D;;) is symmetric and uniformly
positive definite, i.e.

1
(26) > Dij(w)&g > ml¢* for £ € R
i,j=0

and for some constant x; > 0. Third, the averaged scattering term W grows at most
linearly and satisfies (W (u)—W (4))(u; —t) < 0 for all u, & € R?. Finally, the temperature
on the Dirichlet boundary has to be constant, Tp = const. These assumptions are rather
restrictive. Indeed, for the explicit models derived in the previous section, the function
p(u) = (No(—u1)~3? exp(ug), u1) is monotone but generally not strongly monotone, and
the diffusion matrix (16) is symmetric and positive definite but not uniformly positive
definite (since m or 7" may vanish). Under the above hypotheses (and some regularity
conditions for the initial and boundary data), for any terminal time ¢y, > 0, there exists a
weak solution (u, V') to (20)-(25) satisfying

u € L*(0,to; H'(Q;R?)) N C([0, to]; L*(2; R?)),
p(u) € HY(0,to; (H' (4 R?))*) N L*(0,t0; L*(4R?)), V€ L™(0,t0; H'(Q)).

The idea of the proof is to semi-discretize the equations by an implicit Euler scheme in
t with grid size At and to solve the semi-discrete system in the variables wy = ug + u, V'
and wy; = uy. Indeed, in these variables the system becomes [29]

1 ~
(bo(’w, V) — bo(w, V)) — diVJO = O,

(27) Z

(b1(w, V) = by (@, V) — divJ; = W + L(v — V)bo(w, V),

(28) N,

K
where b;(w, V) = p;(u), w and V represent variables at time ¢t and w and V variables at
time t — At. The current densities are given by

1
(29) = Ly(w,V)Vuw;, i=0,1,

7=0

where the new diffusion matrix (L;;), defined in Section 2.3, is symmetric and positive
definite. Then (27)-(29) is a system of nonlinear elliptic equations, which is solved by
employing the Leray-Schauder fixed-point theorem. The key step is the compactness of
the fixed-point operator which is obtained by means of the entropy estimates. For this,
set t; = jAt and denote the discrete solutions to (27)-(28) at step j by (w’, V7). It can be
shown that the discrete entropy (or free energy)

S(ud, V) = / (o) - (0 — ) = x(0) + x(ac) e — “22 / TV~ V),
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where ), and Vj, is the boundary data evaluated at t;, is uniformly bounded,
S(u?, V) +AtZ/ & (|Vwg? + |Vt ?)dx
k=07
j

+ Atey Y [V(VE = VE)Pda < e,

k=0

where ¢} > 0 depends on k; (see (26)) and the L? norm of u*, and ¢y, c3 > 0 depend on
the boundary data. Since p is assumed to be strongly monotone, this implies L? bounds
for u* and hence H' bounds for w* and V*. These bounds are sufficient for the fixed-point
argument. In fact, the estimate also implies bounds independent of At, allowing for the
limit At — 0 in (27)-(29) using Aubin’s lemma.

Uniqueness of solutions has been proved under the additional assumption that the diffu-
sion coefficients D;; depend on x only. More precisely, there is uniqueness of weak solutions
in the class of functions satisfying u € L>(0,to; W*/2(Q)) and V € L>®(0,ty; WH(2))
[54]. The proof is based on the so-called duality method.

The most restrictive conditions in the existence analysis are the strong monotonicity of
p and the uniform positive definiteness of (D;;). These conditions could be removed in [46,
21, 23] but only under other limiting assumptions. Griepentrog [46] proved the existence
and uniqueness of stationary Holder continuous weak solutions near the thermodynamic
equilibrium using the implicit function theorem. A similar result has been shown in [37].
Stationary energy-transport equations which are defined on different domains have been
examined in [44]. Near-equilibrium solutions to the time-dependent equations have been
found in [21, 23].

3.2. Weak sequential stability. Weak sequential stability (in the sense of Feireisl [38])
means that, given a sequence of (smooth) solutions to a system of equations, there exists a
subsequence which converges to a (weak) solution to this problem. Typically, the sequence
of solutions solves an approximate system of equations, obtained from the original one
by a Galerkin scheme or a semi-discretization in time, for instance, and the index of the
sequence is related to the approximation parameter. Then weak stability implies that the
limiting solution is a solution to the original system. In this section, we show the weak
sequential stability for the energy-transport equations with 5 = —1/2 for vanishing electric
fields and without the averaged scattering term W (see (8) and (17)-(18)):

(30) o = A(nT), g@t(nT) = gA(nTQ) in T¢ ¢ >0,

(31) n(-,0)=n;, T(-,0)=T; in T,

where T? is a d-dimensional torus (thus, imposing periodic boundary conditions). Here,
we have rescaled the equations such that g = 1/T°(5/2). These assumptions may be (at
least partially) weakened, but they simplify the computations to follow. We assume that
there exists a sequence (n.,T.), € > 0, of positive smooth solutions to a (not specified)
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approximation of (30)-(31). The lower bound for n. and 7. may depend on the approx-

imation parameter, n. > c(¢) > 0 and T, > c(¢) > 0 in T¢. Our aim is to show that

(ne, T.) converges to a weak solution to (30)-(31). Although the construction of (n.,T.) is

an open problem, the weak sequential stability constitutes an important step in the global

existence analysis of the energy-transport equations with physical transport coefficients.
We prove first some a priori estimates.

Lemma 1. The following estimates hold:

d

(32) — [ nlog(n.T7%*)dx + 4/ IV/n.T.|*dz <0,
dt Td Td

(33) — [ n2TPdx + ¢ / |V (n2/2T P/ 2qz < 0,
dt T Td

where (o, B) = (3/2,—1), (2,4), and ¢ > 0 is some constant which depends on («, 3) but
not on €.

Proof. Employing log(nETQB'/ ®) and —3/(27T.) as test functions in (30), respectively, we
obtain after some computations:

d Ne 3
7 y n. log <T3/2>dx = /Jl‘d (log <T3/2>8tn6 3 Tat(ne )> dx

2 2
_ _/ T, (‘Vna 71VT. QVna . VTE) i
Td e

2l T, n. T,
S_/ Ne
Td

Vn, T.
e vn —V = —4/ V1.2 d.
This proves the first inequality. For the second one, we calculate

n®TPdr = / ((a = B ' TPOm. + B TP 10, (n. 1)) d
d Td

dt
= —/ (A2 TP V| + 2Bnd ' TPV, - VI + Cn2TP VL) da
Td
where
10 | 2 10
A—ﬂ( ﬁ+a—§>, B—§<a(a—1)+§ﬁ 4ﬂ+—aﬂ>

C=(a— 1)(a+§ﬁ>.
Now, we use the following result: If A > 0 and AC — B? > 0 then there exists ¢y > 0
such that Alz|*> + 2Bx -y + Cly|* > co(|x|2 + |y[?) for all z, y € R% Thus, choosing
n?/Q_lTE(BH)/QVnE and y = a/2T(ﬁ VTg, we infer that
d
dt

xr =

neTlde < —cq / (n& TP Vne|? + TP YV da
Td

e / V(0P T2 2,
'[[‘d



12 A. JUNGEL

under the conditions that A > 0 and AC — B? > 0. Since

1 2 1 1 9
AO—B2=—ZQ4+<—§ﬁ+§)a3—§<52+65+1)a2
+4ﬁ(52+46+3) i

9 o 5(5 + 26+ 16),

it is easy to verify that the pairs (o, 5) = (3/2,—1), (2,4) are admissible, finishing the
proof. O

Notice that in the above proof, the approximate solutions have to be constructed in such
a way that the corresponding test functions are admissible in the approximate scheme. For
instance, this may be delicate when employing a Galerkin approximation.

Theorem 2. Let d < 3, ty > 0, and let (n.,T.) be a sequence of positive smooth solutions
to (possibly an approzimate system of) (30)-(31). Then there exists a subsequence (which
is not relabeled) such that n. — n, n.T. — nT strongly in L?(0,te; L*(T%)), n.T? — nT?
weakly* in L>=(0, to; L?(T?)), and (n,T) solves (30)-(31) in the sense of L*(0,to; H2(T?)).

Proof. We need to show that the estimates from Lemma 1 are sufficient to pass to the limit
e — 01in (30)-(31). First, since (30)-(31) conserve mass and energy, we have

(34) 17 || oo (0,001 (1)) + [ Te|| oo (0,20521 (Tay) < €,

where ¢ > 0 denotes here and in the following a constant independent of €. Then, in view

of (32),

” \ n€T€HL2(07tO;H1(Td)) S C.
Hence, since (v/n.T.) is bounded in L*°(0,ty; L?(T?)) and in L?(0,to; L°(T¢)) (because of
the embedding H(T4) — L5(T?) for d < 3),

V(nT.) =2v/n.T.V/n.T.
is bounded in L%(0,t; L3/%(T?)), and we obtain the bound
(35) HnETE||L2(0,t0;W1»3/2(Td)) <ec.
Estimates for the time derivative d;(n.T;) follow from (33) with o = 2 and § = 4. Indeed,
this yields a bound for (n.T2) in L*°(0,ty; L*(T¢)) and therefore,
5)
(36) 19 (Tl 0 p051-2xy) < FlMTE w002y < e

Next, we derive uniform bounds for n.. By (33) with a = 3/2 and 8 = —1, (V(nZ/*))
is bounded in L?(0,%p; L*(T?)) and by (34), (néM) is bounded in L>(0, to; L*(T¢)). Thus,
Vn. = (4/3)nd*V(n¥*) is uniformly bounded in L2(0, to; L*/3(T%)). This implies that
(37) ||n6||L2(0,t0;W4/3(11‘d)) <c

Furthermore, by (35),

(38) 10ime || 2(0,40; -2 (1)) < [MeTe| L2(0,7;02(Ta)) < -
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Now, in view of the estimates (35)-(36) and (37)-(38), we can employ Aubin’s lemma,
yielding the existence of subsequences of (n.) and (n.7.) (which are not relabeled) such
that, as ¢ — 0,

(39) ne —mn, nJ.—y strongly in L*(0,ty; L*(T%)).

Here we have used the compact embeddings W'#/3(T?) — L2(T?) and WH3/2(T?) —
L*(T?) (if d < 3). Since (n.T?) is bounded in L>(0,ty; L*(T?)), it holds (up to a subse-
quence)

(40) nT2 — z  weakly* in L>(0,to; L*(T9)).
Moreover, again up to subsequences,
ome — Om, Oy(n.T.) — Oy weakly in L*(0,to; H *(T%)).

We wish to identify y and z with expressions in n and T. First, we notice that the
L>(0,tg; L*(T%)) bound for (n.7?) and the Fatou lemma give

T 2

/ lim inf de < 0.
Td e—0 Ne

This shows that y = 0 in {n = 0}. We define T := y/n if n > 0 and T := 0 if n = 0. Then

y = nT'. Furthermore, by (39) and (40),

(n.T.)? = n. -n.T2 —nz weakly in L?(0,to; L'(T?)).

Hence, since (n.T.)? converges pointwise a.e. to y*> = (nT)?, we may identify (nT)? = nz
showing that z = nT? if n > 0 and also if n = 0 (since T'= 0 if n = 0).

The above convergence results are sufficient to pass to the limit € — 0 yielding (30) in
L?(0,to; H=2(T%)). The initial data is satisfied in the sense of H~2(T4). O

4. NUMERICAL APPROXIMATION

4.1. Mixed finite-element approximation. In this section, we describe two approaches
to discretize the energy-transport equations by using mixed finite elements. The most
important features of the mixed finite-element method are the current conservation (the
current is introduced as an independent variable and continuity is directly imposed) and
the ability to approximate accurately steep gradients.

The discretization devised in [31, 51, 52| is based on the “drift-diffusion” formulation
(17)-(18) of the current equations, which allows for the use of well-understood discrete
schemes developed originally for the semiconductor drift-diffusion equations. The station-
ary equations are written in the form

V
—divJ +og = f, J:Vg—VTEL

where J is either the particle or energy current density, g = nTV/?78 or g = nT%?7%, og
with ¢ > 0 is a zeroth-order term originating from the relaxation-time term (19), and f
is some right-hand side. In [51], the equation is discretized in two space dimensions as
follows.
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First, the problem is written by means of a local Slotboom variable in a symmetric form,
defining y = exp(—V/T)g in each element of the triangulation of the semiconductor do-
main, where 7T is some piecewise constant function approximating the electron temperature
T. Then, the current density becomes J = exp(V/T)Vy in each element, which eliminates
the drift term gVV/T. This change of unknowns is also called exponential fitting.

In the second step, the symmetric form is discretized using mixed finite elements. For
the case ¢ = 0 and constant temperature, a mixed scheme, based on the lowest-order
Raviart-Thomas elements [70], has been introduced and discussed in [15] for f = 0 and
in [14] for f # 0. The matrix associated with the scheme is an M-matrix if a weakly
acute triangulation is used. This property guarantees a discrete maximum principle and,
in particular, a nonnegative solution if the boundary data are nonnegative. Unfortunately,
the M-matrix property does not hold anymore if ¢ # 0. In order to circumvent this fact
we use the finite elements developed and analyzed by Marini and Pietra [66]. It has been
proved that these elements provide an M-matrix for all o > 0.

In the third step, a suitable discrete change of unknowns is performed to return to the
original variable g. Finally, static condensation gives a nonlinear discrete system in the
(discrete version of the) variable g only. The nonlinear problem is solved by a variant
of the Gummel iteration procedure. The main idea is to solve the Poisson equation, in
which the variable n is replaced by the local V-dependent Slotboom variable, by a Newton
method, but to employ a fixed-point strategy for the remaining equations. It is well known
that a Gummel-type iteration scheme is very sensitive to the choice of the initial guess,
in particular far from thermal equilibrium. Therefore, the procedure is coupled with a
continuation in the applied voltage. In [52], the two-dimensional mesh has been adaptively
refined using an error estimator motivated by results of Hoppe and Wohlmuth.

The second numerical approach, employed in [41, 68], is based on the dual-entropy for-
mulation (13)-(14). Compared to the previous approach, no convective terms appear, and
the use of Raviart-Thomas-type mixed finite elements is sufficient to guarantee a monotone
scheme. In [41], the three-dimensional stationary equations have been approximated us-
ing a hybridized mixed finite-element method with Raviart-Thomas-Nédélec elements. As
above, static condensation allows for a reduction of the number of variables in the mixed-
hybrid formulation. The resulting nonlinear algebraic system is solved by two iterative
schemes, either using the full Newton method with a continuation in the applied voltage
and a path-following algorithm or a Gummel-type strategy, which allows for a complete
decoupling of the diffusion system such that only scalar equations have to be solved in
each step. Since Gummel-type iteration procedures have a low convergence rate, a vector
extrapolation technique was added to the algorithm to improve its convergence.

4.2. Numerical simulations. As a first numerical example, we simulate a two-dimensio-
nal MOSFET (metal-oxide semiconductor field-effect transistor) which can be employed as
a voltage switch. It is the most used device in computer technology. The transistor has a
size of 420nmx210nm with an effective channel (source to drain) length of 70 nm and an
oxide thickness of 1.5 nm near the gate contact (see Figure 1). For the physical parameters,
we refer to [52] from which the following pictures are taken. The transistor is simulated
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using the energy-transport equations for electrons and the drift-diffusion equations for
holes, discretized by the mixed Marini-Pietra finite-element scheme.

% n+ e n+ D

B

F1GURE 1. Geometry of the MOSFET with source S, drain D, gate GG, and
bulk B contacts.

The electron density and temperature are shown in Figure 2. Close to the gate contact
in the channel region, the electron density is large compared to the bulk density. In this
region, the electron temperature is high too. The temperature near the drain junction is
larger than at the source junction since the electrons gain more energy from the electric
field during their flow through the device.

As a second example we present some simulations for a three-dimensional gate-all-around
MESFET (metal-semiconductor field-effect transistor). Compared to the device presented
above, the gate contact is on all four sides of the transistor. This geometry allows for
a very efficient switching behavior but its industrial production is more involved. The
geometry of the device is shown in Figure 3. The channel length is 0.4 ym; the gate length
is 0.33 pm. The transistor is simulated by employing the dual-entropy formulation of the
energy-transport model, discretized by a mixed Raviart-Thomas-Nédélec finite-element
scheme.

10 w;.fm i w,g éitw‘ ‘N * el

w R
\

(»
»ANM

’r

50 %, 'sp 100 150 200 250 300 350 400 400 350 300 250 200 150 100 50 0O

xinnm xinnm

FIGURE 2. Electron density (left, gate contact at the back) and electron
temperature (right, gate contact at the front) in a MOSFET with 70 nm
channel length. A part of the bulk region is not shown.
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Drain
n

0.1pm

T 0.24pin
F1GURE 3. Geometry of the three-dimensional gate-all-around MESFET.

The particle density and electron temperature are depicted in Figure 4. The electron
density is larger in the middle of the channel than close to the gate contacts since the
transistor operates in the on-state. These electrons contribute to the temperature (and
thermal energy) which is large at the end of the channel region.
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FIGURE 4. Electron density n in cm™? (left) and electron temperature T in
K (right) in the gate-all-around MESFET.

The current-voltage characteristics for the MESFET are presented in Figure 5 (left) at
the gate. The current increases rapidly with the voltage and saturates for voltages larger
than about 0.5V. The saturation effect is much more pronounced than for the current-
voltage characteristics from the drift-diffusion equations. The energy-transport current
flow is smaller close to the gate contacts than in the middle of the channel due to the
depletion region (Figure 5 right).

5. FURTHER DEVELOPMENTS

5.1. Energy-transport models including lattice heating. Energy-transport equa-
tions model electron temperature effects but they neglect phenomena coming from the
lattice heating. Nonisothermal models have been already introduced in the 1970s, employ-
ing drift-diffusion-type equations and heat flow models for the lattice temperature [1]. In
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F1GURE 5. Current-voltage characteristics for various values of the gate volt-
age Vi (left) and electron current density in the gate-all-around MESFET

(right).

[43, 76], a Joule heating term has been suggested as source term for the heat flow equation.
More sophisticated but still heuristic source term models have been presented in [1, 28, 75].
Wachutka employed a thermodynamic approach to extend the drift-diffusion equations to
the nonisothermal case [81]. Based on first principles of entropy maximization and partial
local equilibrium, Albinus et al. [2] derived nonisothermal carrier transport equations and
included also carrier temperatures. An energy-transport model taking into account the
heat transfer between the devices and an electric circuit has been recently proposed in [3].

Models for different lattice and charge carrier temperatures have been developed in
the 1990s. For instance, the unipolar hydrodynamic semiconductor equations have been
coupled to a heat equation, with a coupling realized through the energy relaxation term [45,
61]. In [82], the heat equation and the energy-transport models for the carrier subsystems
have been coupled. More recently, the energy-transport equations are coupled with a
heat equation for the lattice temperature, a thermal network model (describing the heat
evolution in interconnects, electric lines, etc.), and an electric circuit model (describing
resistors, capacitors, and inductors, for instance) [16].

In [16], based on [9], the heat equation for the lattice temperature 717, is derived from
thermodynamic principles, assuming that the total energy satisfies a standard balance
equation. It turns out that 77 solves the heat equation

p@tTL — diV(/{LVTL) = H,

where p is the product of the lattice material density and heat capacity, x;, is the lattice
heat conductivity, and the heat source term H is the sum of relaxation, recombination
heat, band-energy Joule heating, and radiation effects (see [16] for details). This equation
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is coupled to the energy-transport equations (8), where the current densities are given by

n
Jn = V(Mn(TL)TLTL) - ,un(TL)TLfVVa

3 3
Je = §V(Mn(TL)TLnT) - §Nn(TL)TL”vvv

and the electron mobility is defined by p,(T7) = pino(To/TL)* with a > 0.

It is well known in industrial applications that thermal effects in semiconductors are
becoming stronger in smaller devices. This statement is verified in the following numerical
simulations of one-dimensional ballistic diodes. A ballistic diode consists of a low-doped
channel sandwiched between two highly doped contact regions. Figure 6 shows the effect
of the lattice heating on the current-voltage characteristics of such a diode with two dif-
ferent channel sizes. It turns out that the influence of lattice heating is rather small for
a 400 nm channel and becomes significant for very high applied bias only (Figure 6 left).
For smaller devices, this influence becomes stronger even for rather small applied voltages
(Figure 6 right). The same figure also presents the influence of the radiation of heat to the
environment.

x10" | | | g X 10°
4.5¢ 1 -
al 6 \M;“‘;«_u:‘,_
g 3 g 4 f'f
5 3 i
o 3 —ETwithvar. T, | o —var. T without rad.
___ET.T =300K 27 - - =Var. TL with rad.
L
2.5} 1 we T = 300K
L L L L O L
1 1.2 14 1.6 1.8 2 0 0.5 1 15
applied voltage [V] applied voltage [V]

FiGURE 6. Current-voltage characteristics for ballistic diodes computed
from the drift-diffusion model and the energy-transport (ET) model with
constant and variable lattice temperature for the 400 nm channel (left) and
50 nm channel (right) device.

5.2. Quantum energy-transport models. The nanoscale structure of state-of-the-art
semiconductor devices makes it necessary to incorporate quantum corrections in the exist-
ing simulation tools. In order to reduce the computational cost, one may devise fluid-type
models incorporating quantum effects in an approximate way. One possibility is to employ
macroscopic models derived from a Wigner-Boltzmann equation, such as the quantum hy-
drodynamic equations [42, 55] and the simpler quantum drift-diffusion equations [6, 60].
However, the former model is computationally quite involved, whereas the latter model
does not account for temperature effects which seem to be important in quantum sim-
ulations [58]. Therefore, quantum energy-transport models may fulfill both demands of
thermal modeling and computational efficiency.
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Starting from a Wigner-Boltzmann equation with a relaxation-time collision term, a
suitable Chapman-Enskog expansion leads to the balance equations of mass and energy
(8) and the current relations [33]

2
(41) Jp=divP —nVV, J,=divU — (P +nel)VV + %nVAV,

where ¢ is the scaled Planck constant, I the identity matrix in R™? and P and U are the
tensors

1
P:/ p @ pMdk, U:—/ p ® plp|*MdF,
Rd 2 Rd

Here, the matrix p®p has the components p;p; and the function M represents the quantum
equilibrium, depending implicitly on the densities n and n [33, 55]. By expanding P and
U in powers of €2, these tensors may be written in terms of n and ne and their derivatives.
However, the mathematical (and thermodynamic) structure of the resulting equations is
an open problem.

Another way to derive quantum-corrected energy-transport models is to perform a
relaxation-time limit in the quantum hydrodynamic equations. Indeed, in the diffusive
time and small velocity scaling, the following (simplifying) set of equations has been for-
mally derived in [59]:

By — div (V(nT) vV — %W(%?)) —0,

—div(x(n, T)VT) = ;(TL - 7),

where k(n,T) is the heat conductivity, Ty, the (given) lattice temperature, and 7 > 0 the
energy relaxation time. The first equation expresses mass conservation with a current den-
sity corresponding to (17) with 5 = —1/2, together with the quantum potential Ay/n/\/n,
which is called the Bohm potential. For constant temperature, this equation reduces to the
quantum drift-diffusion model. The second equation follows from the last equations in (8)
and (41) in the small-velocity limit. An analysis of the above model has been performed
in [59] for the case k(n,T) = n.

Chen and Liu [25, 26] suggested a quantum-corrected energy-transport model, which lies
in between the quantum drift-diffusion and energy-transport model. More specifically, the
current density is given as in the quantum drift-diffusion case,

2

: £ Av/n
on—divd, =0, J,=V(nT)—nVV — EnV( NG ),

thus containing quantum effects, whereas the energy equation is written as

d
O(ne) —divJe+ J, - VV =W, J, = §JnT + ~VT.
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Notice that this expression is consistent with the classical case, since, by (17) and (18)

with 3 = —1/2,

5 5 5
Jo = §(V(nT2) —nTVV) = 5T(V(nT) —nVV) + IV,
which corresponds to the above expression with k = (5/2)nT" (and ¢ = 0). The numerical
simulations in [25] for a MOS device show that the current density of the quantum-corrected
model is smaller than that of the classical energy-transport model.

5.3. Optimal doping profiles and energy-transport models. The functionality of
semiconductor devices may be improved by methods from mathematical optimization. A
major objective in optimal design is to improve the current flow over the contacts by
modifying the doping profile. The doping concentration then enters as a source term in
the semiconductor model and plays the role of the design variable. First approaches have
been based on black-box optimization tools or nonlinear least-square methods [63, 78].
The disadvantage of this approach is the large computational cost. More recently, the
optimization problem has been solved in the framework of optimal control of the drift-
diffusion equations, which makes possible the design of fast algorithms [17, 50].

Energy-transport models have been included in the optimal control approach in [35] and
the first-order optimality system has been derived. Numerical results have been presented
in [36] for the energy-transport system in the dual-entropy formulation (13)-(14). The
design objective is to adjust the current jn at some Ohmic constant I" by changing the
reference doping profile Cs. At the contact I', we prescribe the desired current I;. Then
the aim is to minimize the cost functional

1 -
F(w,V,C)ZE /F Jn(w, V) -vds — 1,
0

+J / IV(C — Chog) 2de,
2 Jq

where v denotes the exterior unit normal to 02, under the constraint that (w,V’) solves
the stationary energy-transport system (13)-(14) with mixed Dirichlet-Neumann boundary
conditions. The parameter v > 0 allows one to balance the effective cost. The solvability
of this constrained optimization problem has been proved in [35].
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