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Abstract. Necessary and sufficient conditions for the existence of an entropy structure
for certain classes of cross-diffusion systems with diffusion matrix A(u) are derived, based
on results from matrix factorization. The entropy structure is important in the analysis
for such equations since A(u) is typically neither symmetric nor positive definite. In
particular, the normal ellipticity of A(u) for all u and the symmetry of the Onsager
matrix implies its positive definiteness and hence an entropy structure. If A is constant
or nearly constant in a certain sense, the existence of an entropy structure is equivalent
to the normal ellipticity of A. Several applications and examples are presented, including
the n-species population model of Shigesada, Kawasaki, and Teramoto, a volume-filling
model, and a fluid mixture model with partial pressure gradients. Furthermore, the normal
elipticity of these models is investigated and some extensions are discussed.

1. Introduction

Cross-diffusion systems are systems of quasilinear parabolic equations in which the gra-
dient of one variable induces a flux of another variable. They arise naturally in multicom-
ponent systems from physics, chemistry, and biology and describe, for instance, segregation
in population species, ion transport through nanopores, or dynamics of gas mixtures (see
[18]). A characteristic feature of most of these systems arising from applications is that
the diffusion matrix is generally neither symmetric nor positive definite which significantly
complicates the mathematical analysis. However, it turns out that there might exist a
transformation of variables (called entropy variables) such that the transformed diffusion
matrix becomes positive definite and sometimes even symmetric. This is an important
ingredient in the global existence analysis of the equations. The question is under which
conditions does such a transformation exist? In this paper, we will give some necessary
and sufficient conditions for the existence of entropy variables for certain classes of cross-
diffusion systems.
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The setting. We consider the equations

(1) ∂tui = div

( n∑

j=1

Aij(u)∇uj

)
in Ω, t > 0, i = 1, . . . , n,

subject to the initial and no-flux boundary conditions

(2) ui(0) = u0
i in Ω,

n∑

j=1

Aij(u)∇uj · ν = 0 on ∂Ω, t > 0, i = 1, . . . , n,

where Ω ⊂ R
d (d ≥ 1) is a bounded domain, ui : Ω × (0,∞) → R are the unknowns (for

instance, densities or concentrations), Aij(u) ∈ R are the diffusion coefficients, and ν is the
exterior unit normal vector to ∂Ω. More general equations, where Aij(u) are matrices, will
be briefly discussed in Section 8. We may add reaction terms to (1), but we concentrate
in this paper on the diffusion operator.
Typically, A(u) is neither symmetric nor positive definite (see the examples below) such

that even the local-in-time existence of solutions to (1)–(2) is nontrivial. Amann [1] has
shown that there exist local classical solutions if the operator div(A(u)∇(·)) is normally
elliptic, which means that all eigenvalues of A(u) have positive real parts. By slightly
abusing the notation, we call such matrices normally elliptic. This property is usually not
sufficient for global-in-time existence. In many applications, there exists a transformation
of variables w = h′(u), where h ∈ C2(D) (D ⊂ R

n being a domain) is called an entropy
density and h′ its derivative, such that (1) can be written as

(3) ∂tui(w) = div

( n∑

j=1

Bij(w)∇wj

)
in Ω, t > 0, i = 1, . . . , n,

where u(w) := (h′)−1(w), and B(w) = A(u(w))h′′(u(w))−1 is positive definite in the sense
that B(w) +B(w)⊤ is symmetric positive definite. (We assume that the inverse functions
exist.) In this situation, t 7→

∫
Ω
h(u(t))dx is a Lyapunov functional along the solutions to

(1)–(2). Indeed, using w = h′(u) as a test function in (1), a formal computation yields

d

dt

∫

Ω

h(u)dx+

∫

Ω

∇u : h′′(u)A(u)∇udx = 0,

where “:” denotes the Frobenius matrix product. Since B(w) is assumed to be positive
definite, so does h′′(u)A(u), which shows that t 7→

∫
Ω
h(u(t))dx is nonincreasing. Moreover,

the second integral generally provides gradient estimates which are essential in the existence
analysis. We say that (1) possesses an entropy structure if there exists a strictly convex
function h ∈ C2(D) such that B(w) or, equivalently, h′′(u)A(u) is positive definite.
The aim of this paper is to explore under which conditions there exists an entropy

structure and how the corresponding entropy density can be constructed. Furthermore,
we will explore the connection between normal ellipticity and the existence of an entropy
structure.
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Examples. In the literature, an entropy structure has been found for specific classes of
cross-diffusion systems. For instance, segregating population species can be modeled by
equations (1) with the diffusion coefficients

Aij(u) = δijpi(u) + ui∂pi/∂uj , i, j = 1, . . . , n,

where pi(u) are transition rates originating from the lattice model from which these equa-
tions can be formally derived [28, Appendix A]. This model was suggested by Shigesada,
Kawasaki, and Teramoto [27] for pi(u) = ai0 +

∑n

j=1 aijuj and n = 2. The n-species model

with linear or nonlinear functions pi(u) was analyzed in [9, 11, 17, 22], and the existence
of global weak solutions was proved. Equations (1) with diffusion coefficients associated
to linear functions pi,

(4) Aij(u) = δij

(
ai0 +

n∑

k=1

aikuk

)
+ aijui, i, j = 1, . . . , n,

where ai0 ≥ 0, aij ≥ 0, are called the SKT model. It has an entropy structure if there exist
numbers π1, . . . , πn > 0 such that πiaij = πjaji for all i 6= j holds. This assumption can
be recognized as the detailed-balance condition for the Markov chain generated by (aij).
Moreover, the function h(u) =

∑n

i=1 πiui(log ui − 1) is an entropy density, and h′′(u)A(u)
is positive definite for all u ∈ D = R

n
+.

A second example are volume-filling models which describe multi-species systems which
take into account the finite size of the species and are given by (1) with the diffusion
coefficients

(5) Aij(u) = δijpi(u)qi(u0) + uipi(u)q
′
i(u0) + uiqi(u0)∂pi/∂uj,

where pi and qi are transition rates (again, see [28, Appendix A] for a formal derivation)
and u0 := 1 −∑n

i=1 ui is the volume fraction of “free space” (in the context of biological
models) or the solvent concentration (in the context of fluid mixtures). The concentration
vector u = (u1, . . . , un) is an element of D = {u ∈ R

n
+ :

∑n

i=1 ui < 1}, the so-called Gibbs
simplex. The existence of global weak solutions to system (1) with qi = q in (5) was proved
in [28]. If there exists a convex function χ such that ∂χ/∂ui = log pi for i = 1, . . . , n, then
the function

h(u) =
n∑

i=1

ui(log ui − 1) +

∫ u0

a

log q(s)ds+ χ(u), u ∈ D,

is an entropy density, and h′′(u)A(u) is positive definite for u ∈ D.
A third example are equations for fluid mixtures driven by partial pressure gradients,

(6) ∂tui = div(ui∇pi(u)), i = 1, . . . , n,

where ui is the density of the ith fluid component and pi is the ith partial pressure. This
model follows from the mass continuity equation ∂tui+div(uivi) = 0 if the partial velocities
vi are related to the partial pressures via Darcy’s law, vi = −∇pi(u). This system was
derived from an interacting particle system in the mean-field limit in [8]. The entropy
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structure of this system is unknown up to now. We determine conditions on the pressures
pi under which (6) has an entropy structure.

Main results. We sketch some of our main results. For details, we refer to the following
sections.

• Section 2: If a matrix A ∈ R
n×n can be decomposed as the product A1A2 with a

symmetric positive definite square matrix A1, the normal ellipticity or diagonaliz-
ability of A can be proved subject to properties of the square matrix A2. We collect
known results from matrix factorization theory and prove a new result character-
izing the normal ellipticity of A. We apply these findings in Sections 3–6.

• Section 3: Any cross-diffusion system with entropy structure has a normally elliptic
diffusion matrix. Thus, the normal ellipticity is a necessary condition. Under this
condition, if there exists a strictly convex function h ∈ C2(D) (D ⊂ R

n being a
domain) such that h′′(u)A(u) is symmetric in D, then h′′(u)A(u) is positive definite
in D. The symmetry requirement may be used to determine h(u), and we present
some examples in this direction.

• Section 4: If the diffusion matrix A is constant, then its normal ellipticity is equiva-
lent to the existence of an entropy structure. Even if the normally elliptic constant
matrix A is perturbed by a bounded nonlinear matrix, (1) has an entropy structure.
Such a structure also exists if h′′(u)A(u) is symmetric up to a bounded nonlinear
perturbation.

• Section 5: If the entropy density is the sum of single-valued functions and h′′(u)A(u)
is symmetric, the positive definiteness of h′′(u)A(u) is equivalent to the positivity of
the leading principal minors of A(u). This avoids the computation of the eigenvalues
of A(u) to check its normal ellipticity. The idea allows us to construct entropies in
some situations, for instance for a general class of 2× 2 diffusion matrices.

• Section 6: If the matrix (∂pi/∂uj) is normally elliptic in D and the detailed-balance
condition

πi

∂pi
∂uj

(u) = πj

∂pj
∂ui

(u) for all u ∈ D, i 6= j,

holds, then the fluid mixture model (6) has an entropy structure with a Boltzmann-
type entropy density. Surprisingly, there exists a second entropy density, which is of
quadratic type. It is derived from the Poincaré lemma for closed differential forms
by interpreting the detailed-balance condition as the curl-freeness of the vector-field
(π1p1, . . . , πnpn). These results are new.

• Section 7: We prove that the diffusion matrix (4) of the SKT model is normally
elliptic. Surprisingly, this property has not been proved in the literature so far
(except for the easy case n = 2). Furthermore, we investigate the normal ellipticity
of the diffusion matrix (5) of the volume-filling model and (6) of the fluid mixture
model. Also these results are new.

Finally, we discuss in Section 8 some connections with results of other authors and some
extensions.
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Definitions and notation. We consider only real matrices A ∈ R
n×n with coefficients

Aij. The coefficients of a vector u ∈ R
n are denoted by u1, . . . , un. The set σ(A) signifies

the spectrum of A. We say that the (possibly nonsymmetric) matrix A is positive definite if
z⊤Az > 0 for all z ∈ R

n, z 6= 0, or, equivalently, if A+A⊤ is positive definite. The matrix
A is normally elliptic if Re(λ) > 0 for all λ ∈ σ(A). In stability theory, this property
is sometimes called positive stability. We say that A is diagonalizable if there exists a
nonsingular matrix P ∈ R

n×n such that A = PΛP−1 and Λ = diag(λ1, . . . , λn) ∈ R
n×n,

where λi ∈ σ(A) for i = 1, . . . , n. In particular, the eigenvalues of diagonalizable matrices
are (here) real. We denote by I ∈ R

n×n the identity matrix.
Let D ⊂ R

n be a domain. We say that (1) has an entropy structure if there exists a
strictly convex function h ∈ C2(D) such that h′′(u)A(u) is positive definite for all u ∈
D. The matrix A(u)h′′(u)−1 is called the Onsager matrix and it is symmetric and/or
positive definite if and only if h′′(u)A(u) is symmetric and/or positive definite, respectively.
The integral H(u) =

∫
Ω
h(u)dx is called an entropy and −dH/dt the entropy production.

Finally, we set R+ = (0,∞) and C+ = {y ∈ C : Re(y) > 0}.

2. Factorization of matrices

In this section, we collect some results concerned with the factorization of a normally
elliptic or diagonalizable matrix A ∈ R

n×n. Some of these results are new. We will apply
them to the diffusion matrix A(u) from (1). The factorization is based on the Lyapunov
theorem for matrix equations; see, e.g., [15, Theorems 2.2.1 and 2.2.3].

Theorem 1 (Lyapunov). (i) If A ∈ R
n×n is normally elliptic then for any given G ∈ R

n×n,
there exists a unique matrix H ∈ R

n×n such that HA+ A⊤H = G.
(ii) The matrix A ∈ R

n×n is normally elliptic if and only if for a given symmetric positive
definite matrix G ∈ R

n×n, there exists a symmetric positive definite matrix H ∈ R
n×n such

that HA+ A⊤H = G.

We are analyzing factorizations A = A1A2 or A = A2A1 such that A1 is symmetric
positive definite. We will determine properties of A when A2 is symmetric or positive
definite and vice versa.

Proposition 2 (Positive definite factorization). The matrix A ∈ R
n×n is normally elliptic

if and only if there exists a symmetric positive definite matrix A1 and a positive definite
matrix A2 such that A = A1A2 (or A = A2A1).

Proof. Let A ∈ R
n×n be normally elliptic. By the Lyapunov theorem, there exists a

symmetric positive definite matrix H such that HA + A⊤H = I. Then A1 = H−1 is
symmetric positive definite and A2 = HA satisfies A2+A⊤

2 = I, i.e., A2 is positive definite.
This yields the desired factorization A = A1A2. Furthermore, since A⊤ is normally elliptic,
the same argument shows that there exists a symmetric positive definite matrix A1 and
a positive definite matrix B such that A⊤ = A1B. We conclude that A = A2A1 with
A2 := B⊤.
Assume that A = A1A2, where A1 is symmetric positive definite and A2 is positive

definite. Set H := A−1
1 . Then A2 = HA and HA + A⊤H = A2 + A⊤

2 is positive definite.
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By the Lyapunov theorem, A is normally elliptic. If A = A2A1, the same argument can be
applied to A⊤ = A1A

⊤
2 . �

The first part of the following result is proved in [5, Theorem 6].

Proposition 3 (Symmetric factorization). (i) The matrix A ∈ R
n×n is diagonalizable if

and only if there exists a symmetric positive definite matrix A1 and a symmetric matrix
A2 such that A = A1A2 (or A = A2A1).
(ii) If A = A1A2 or A = A2A1 is normally elliptic with A1 being symmetric positive

definite and A2 being symmetric, then A2 is also positive definite.

Proof. It remains to prove part (ii). Indeed, we have A−1
1 = A2A

−1 and hence A2A
−1 +

(A−1)⊤A2 = A−1
1 + (A−1

1 )⊤ = 2A−1
1 . Since A−1 is normally elliptic and 2A−1

1 is symmetric
positive definite, we conclude from the Lyapunov theorem that there exists a unique sym-
metric positive definite matrix H such that HA−1 + (A−1)⊤H = 2A−1

1 . The uniqueness of
H implies that H = A2, showing that A2 is positive definite. The same argument can be
made for A = A2A1. �

Remark 4 (Eigenvalues of A). If A = A1A2 factorizes in a symmetric positive definite
matrix A1 and a symmetric matrix A2, Proposition 3 implies in particular that the eigen-
values of A are real. We can say a bit more: By the inertia theorem of Sylvester [7, Section
1], the inertia of A1A2 and A2 are the same, which means that the number of positive,
negative, and vanishing eigenvalues of A and A2, respectively, are the same. In particular,
if A2 has only positive eigenvalues, A is normally elliptic. The eigenvalues of A can be
bounded from below (or above) by the product of the eigenvalues of A1 and A2; see, e.g.,
[23, Theorem 2.2] for details. �

Remark 5 (Compatibility of factorizations). Let A = A1A2 or A = A2A1 be a matrix
factorization with a symmetric positive definite matrix A1. Proposition 3 (ii) states that
if A is normally elliptic and A2 is symmetric then A2 is positive definite. We may ask
whether the diagonalizability of A and positive definiteness of A2 imply symmetry of A2.
The answer is no. A counter-example is given as follows. Let

A =

(
1 2
0 2

)
, P =

(
1 2
0 1

)
, Λ =

(
1 0
0 2

)
.

Then A = PΛP−1 is diagonalizable and positive definite. The matrix A1 = I is symmetric
positive definite, A2 = A is positive definite, and A = A1A2 = A2A1. However, A2 is not
symmetric. Still, we can factorize A = A1A2 with two symmetric positive definite matrices

A1 =

(
5 2
2 1

)
, A2 =

(
1 −2
−2 6

)
.

This motivates the following proposition. �

Proposition 6 (Symmetric positive definite factorization). The matrix A ∈ R
n×n is nor-

mally elliptic and diagonalizable if and only if it is a product of two symmetric positive
definite matrices.
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Note that A ∈ R
n×n is normally elliptic and diagonalizable if and only if A is diagonal-

izable with positive eigenvalues. Thus, the proposition is the same as [5, Theorem 7], but
our proof is new.

Proof. The sufficiency follows from Propositions 2 and 3, while the necessity is a conse-
quence of Proposition 3. �

Table 1 summarizes the factorization results.

Table 1. Types of factorization. PD = positive definite, S = symmetric,
NE = normally elliptic, D = diagonalizable.

Factorization Prop. A σ(A) A1 A2

Positive definite 2 NE C+ S+PD PD
Symmetric 3 D R S+PD S

Symmetric positive definite 6 NE+D R+ S+PD S+PD

3. Necessary conditions for an entropy structure

We use the matrix factorization results to characterize the entropy structure of (1).

Theorem 7. Let A(u) ∈ R
n×n with u ∈ D.

(i) If (1) has an entropy structure then A(u) is normally elliptic for all u ∈ D.
(ii) If A(u) is normally elliptic for all u ∈ D and there exists a strictly convex function

h ∈ C2(D) such that h′′(u)A(u) is symmetric for all u ∈ D, then h′′(u)A(u) is positive
definite for all u ∈ D, i.e., (1) has an entropy structure.
(iii) If (1) has an entropy structure such that h′′(u)A(u) is symmetric for all u ∈ D,

then A(u) is diagonalizable with positive eigenvalues.

Proof. The theorem follows from Propositions 2, 3 (ii), and 6. We factorize A(u) = A1A2

with A1 = h′′(u)−1, which is symmetric positive definite, and A2 = h′′(u)A(u).
(i) By assumption, A2 is positive definite, so the result follows from Proposition 2.

Another more elementary proof is given in [19, Lemma 3.2].
(ii) As the matrix A2 is assumed to be symmetric, Proposition 3 (ii) shows that A2 is

positive definite.
(iii) Proposition 6 implies that A(u) is normally elliptic and diagonalizable, which is

equivalent to A(u) being diagonalizable and having only positive eigenvalues. �

Remark 8 (Consequences). The theorem can be used to determine whether an entropy
structure exists.
(i) By Amann’s result [1, Section 1], the normal ellipticity of A(u) is a natural minimal

condition for the local-in-time existence of smooth solutions. If A(u) is not normally
elliptic, we cannot expect any entropy structure.
(ii) If h′′(u)A(u) is symmetric, so does the Onsager matrix A(u)h′′(u)−1. The symmetry

of the Onsager matrix is a natural condition imposed in general systems consisting of irre-
versible thermodynamic processes. If the application behind system (1) should satisfy this
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principle, we may calculate the entropy density by exploiting the symmetry of h′′(u)A(u);
see the examples below.
(iii) A simple check whether an entropy structure for (1) exists with a symmetric Onsager

matrix is to compute the eigenvalues of A(u). According to Theorem 7, if the diffusion
matrix A(u) is not diagonalizable with positive eigenvalues, we cannot expect such a struc-
ture. �

We consider the following cases to detect an entropy structure. Let A(u) = A1A2 or
A(u) = A2A1, where A1 is always symmetric positive definite.

Case 1.1. Let A(u) = A1A2 and let A2 be positive definite. (According to Proposition
2, A(u) is normally elliptic.) If we are able to find a function h ∈ C2(D) such that
h′′(u) = A−1

1 (implying that h is strictly convex), then A2 = h′′(u)A(u) is positive definite,
and (1) has an entropy structure.
As an example, we consider the Keller–Segel system with additional cross-diffusion:

(7) ∂tu1 = div(∇u1 − u1∇u2), ∂tu2 = ∆u1 + δ∆u2 + u1 − u2 in Ω ⊂ R
2,

together with the initial and boundary conditions (2). The variables u1 and u2 denote the
cell density and the concentration of the chemical signal, respectively. The parameter δ > 0
describes the strength of the additional cross-diffusion. The classical parabolic-parabolic
Keller–Segel model is obtained when δ = 0. It is well known that this model has solutions
that blow up in finite time if d ≥ 2 and the total mass is sufficiently large [6, 10]. System
(7) was suggested in [14] to allow for global-in-time solutions for any initial data.
The eigenvalues of A(u) are λ = 1± i

√
δu1, so A(u) is normally elliptic. We can factorize

A(u) = A1A2 with

A1 =

(
u1 0
0 δ

)
, A2 =

(
1/u1 −1
1 1/δ

)
,

where A1 is symmetric positive definite and A2 is positive definite for u1 > 0. Then
h′′(u) = A−1

1 and hence, A2 = h′′(u)A(u) is positive definite. We can solve

h′′(u) =

(
1/u1 0
0 1/δ

)

explicitly. Since ∂2h/∂u1∂u2 = 0, the entropy density is the sum of h1(u1) and h2(u2) such
that h′′

1(u1) = 1/u1, h
′′
2(u2) = 1/δ. This gives h(u) = u1(log u1 − 1) + u2

2/(2δ).

Case 1.2. Let A(u) = A1A2 and let A2 be symmetric. (According to Proposition 3, A(u)
is diagonalizable.) If we are able to find a function h ∈ C2(D) such that h′′(u) = A−1

1 , then
A2 = h′′(u)A(u) is symmetric. Thus, if A(u) is normally elliptic, Theorem 7 (ii) implies
that (1) has an entropy structure, i.e., h′′(u)A(u) is positive definite.
To illustrate this result, we consider the n-species population model (1) with diffusion

matrix (4). The existence of global weak solutions was proved in [9] under the detailed-
balance condition, i.e., there exist π1, . . . , πn > 0 such that

πiaij = πjaji for all i 6= j.
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Under this condition, there exists a symmetric factorization A(u) = A1A2 with

(A1)ij =
ui

πi

δij, (A2)ij =
πi

ui

δij

(
ai0 +

n∑

k=1

aikuk

)
+ πiaij,

where i, j = 1, . . . , n. Clearly, A1 is symmetric positive definite if ui > 0, while A2 is
symmetric. We set h′′(u) = A−1

1 and A2 = h′′(u)A(u). We prove in Section 7 that A(u) is
normally elliptic. Then Theorem 7 (ii) shows that h′′(u)A(u) is positive definite, and (1)
has an entropy structure. Clearly, the positive definiteness of h′′(u)A(u) can be also verified
directly; see [9, Lemma 4]. We solve h′′(u) = A−1

1 by observing that ∂2h/∂ui∂uj = 0 for
i 6= j (so, h(u) is the sum of some functions hi(ui)), and it follows that h′′

i (ui) = πi/ui. We
infer that h(u) =

∑n

i=1 πiui(log ui − 1), which is the entropy density suggested in [9].

Case 2.1. Let A(u) = A2A1 and let A2 be positive definite (thus, A(u) is normally elliptic).
If A1 = h′′(u) and A2 = A(u)h′′(u)−1 then (1) has an entropy structure.
For instance, we wish to determine the entropy structure of the following system:

(8) ∂tu1 =
1

2
∆(u2

1 + u2
3), ∂tu2 =

1

2
∆(u2

1 + u2
2), ∂tu3 =

1

2
∆(u2

2 + u2
3),

together with the no-flux boundary conditions in (2). This system is of the form ∂tu =
∆F (u), where F : D → R

3. The example was not considered in the literature before. The
diffusion matrix is given by

A(u) =



u1 0 u3

u1 u2 0
0 u2 u3


 .

Then A(u) = A2A1, where

A1 =



u1 0 0
0 u2 0
0 0 u3


 , A2 =



1 0 1
1 1 0
0 1 1


 .

The matrix A2 is positive definite and A1 is symmetrix positive definite if ui > 0 for
i = 1, 2, 3. Then h′′(u) = A1, and A2 = A(u)h′′(u)−1 is positive definite, which provides
the entropy structure. The equation h′′(u) = A1 can be solved explicitly and leads to the
entropy density h(u) = (u3

1 + u3
2 + u3

3)/6. Indeed, a formal computation shows that along
solutions to (8),

d

dt

∫

Ω

h(u)dx+
1

2

3∑

i=1

∫

Ω

|∇u2
i |2dx = 0.

Case 2.2. Let A(u) = A2A1 and A2 be symmetric (then A(u) is diagonalizable). If
h′′(u) = A1, then A2 = A(u)h′′(u)−1 is symmetric. If A(u) is also normally elliptic, then
A(u)h′′(u)−1 and consequently h′′(u)A(u) is positive definite, by Proposition 6. We infer
that (1) has an entropy structure.
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As an example, consider the volume-filling model with diffusion matrix qi = q in (5). We
assume that q > 0, q′ > 0 and there exists a convex function χ such that pi = exp(∂χ/∂ui)
for i = 1, . . . , n. Then ∂pi/∂uj = pi∂

2χ/∂ui∂uj and consequently,

Aij(u) = uipi(u)q(u0)

(
δij
ui

+
q′(u0)

q(u0)
+

∂2χ

∂ui∂uj

)
,

recalling that u0 = 1−
∑n

i=1 ui. We can decompose A(u) = A2A1, where

(A2)ij = uipi(u)q(u0)δij, (A1)ij =
δij
ui

+
q′(u0)

q(u0)
+

∂2χ

∂ui∂uj

(u).

Both A1 and A2 are symmetric positive definite for u ∈ D. The entropy density can be
computed from

∂2h

∂ui∂uj

(u) =
δij
ui

+
q′(u0)

q(u0)
+

∂2χ

∂ui∂uj

(u)

by integration, which leads, up to unimportant linear terms, to

h(u) =
n∑

i=1

ui(log ui − 1) +

∫ u0

a

log q(s)ds+ χ(u), u ∈ D,

where a > 0. This is the same entropy density as used in [28].

4. Application: Perturbations

We show some applications of Propositions 2 and 3 (ii). In particular, we analyze
perturbations of symmetric Onsager matrices and of constant diffusion matrices.

Proposition 9 (Perturbation of h′′(u)A(u)). Let A(u) be normally elliptic uniformly in
D and diagonalizable. Assume that there exists a strictly convex function h ∈ C2(D) such
that h′′(u)A(u) = S(u) + εN(u), where S(u) is symmetric, ε > 0, and N is bounded in
D. We also suppose that the eigenvalues of S are bounded in D and the condition number
‖A(u)‖ ‖A(u)−1‖ and ‖h′′(u)−1N(u)‖ are bounded in D, where the matrix norm is induced
by the absolute norm in C

n. Then there exists ε0 > 0 such that for all 0 < ε < ε0, (1) has
an entropy structure.

Proof. Since A(u) is diagonalizable, we can apply the Bauer–Fike theorem [16, Theorem
6.3.2]: Let λ(u) be an eigenvalue of A(u) and µ(u) be an eigenvalue of h′′(u)−1S(u). Then

Re(λ(u))− Re(µ(u)) ≤ |λ(u)− µ(u)| ≤ ε‖A(u)‖ ‖A(u)−1‖ ‖h′′(u)−1N(u)‖ ≤ εC1,

where C1 > 0 does not depend on u ∈ D. By assumption, there exists λ∗ > 0 such that
Re(λ(u)) ≥ λ∗. Therefore, we have Re(µ(u)) ≥ λ∗/2 for all 0 < ε < ε1 = λ∗/(2C1). Thus,
h′′(u)−1S(u) is normally elliptic. Moreover, we can decompose h′′(u)−1S(u) = A1A2, where
A1 = h′′(u)−1 is symmetric positive definite and A2 = S(u) is symmetric. We deduce from
Proposition 3 (ii) that S(u) is positive definite. By assumption on the eigenvalues of S,
there exists κ > 0 such that for all z⊤S(u)z ≥ κ|z|2. Thus, for all z ∈ R

n,

z⊤h′′(u)A(u)z = z⊤S(u)z + εz⊤N(u)z ≥ (κ− εK)|z|2,
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where K = ‖N(u)‖. Thus, if 0 < ε < ε2 < κ/K, the matrix h′′(u)A(u) is positive definite,
and the proof is finished after setting ε0 = min{ε1, ε2} > 0. �

Remark 10. In cross-diffusion systems with volume filling, h′′(u)−1 may be uniformly
bounded. As an example, let h(u) =

∑3
i=1 ui(log ui − 1), where u ∈ D = {u ∈ R

2
+ :∑2

i=1 ui < 1} and u3 = 1− u1 − u2. Then

h′′(u)−1 =

(
u1(u2 + u3) −u1u2

−u1u2 u2(u1 + u3)

)

is indeed bounded in D. Consequently, if N(u) is bounded, so does h′′(u)−1N(u), which is
one of the assumptions in Proposition 9. �

For a constant diffusion matrix, normal ellipticity and the existence of an entropy struc-
ture are equivalent.

Proposition 11 (Constant diffusion matrix). If A ∈ R
n×n is normally elliptic then (1)

has an entropy structure and vice versa.

Proof. By Theorem 7 (i), an entropy structure implies that A is normally elliptic. Con-
versely, if A is normally elliptic, by Proposition 2, there exists a symmetric positive definite
matrix A1 and a positive definite matrix A2 such that A = A1A2. Defining the entropy
density h(u) = 1

2
u⊤Hu with H := A−1

1 , we infer that h′′(u)A = HA = A2 is positive
definite. �

Remark 12 (Explicit formula for H). The matrix H appearing in the entropy density
h(u) = 1

2
u⊤Hu can be constructed explicitly. By the Lyapunov theorem, there exists a

unique symmetric positive definite matrix H ∈ R
n×n such that HA + A⊤H = I. Then

HA + (HA)⊤ = HA + A⊤H = I is symmetric positive definite, i.e., h′′(u)A = HA is
positive definite. According to [15, Problem 9, Section 2.2], it follows that

H =

∫ ∞

0

e−A⊤te−Atdt.

An interesting consequence from this formula is that

detH =

∫ ∞

0

det(e−At) det(e−At)dt =

∫ ∞

0

det(e−2At)dt =

∫ ∞

0

e−2 tr(A)tdt =
1

2 tr(A)
,

where we used the property det(e−2At) = e−2 tr(A)t [13, Theorem 2.12]. �

Proposition 11 can be slightly generalized to the sum of a constant matrix and a nonlinear
perturbation. Note that we do not assume that A(u) is diagonalizable.

Proposition 13 (Perturbations of constant diffusion matrices). Let A0 ∈ R
n×n be a con-

stant normally elliptic matrix.
(i) Let A(u) = A0 + p(u)I, where p(u) is a positive scalar function. Then (1) has an

entropy structure.
(ii) Let A(u) = A0 + εA1(u), where A1(u) is a bounded matrix in D and ε > 0. Then

there exists ε0 > 0 such that for all 0 < ε < ε0, (1) has an entropy structure.
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Proof. (i) By Proposition 11, there exists a symmetric positive definite matrix H ∈ R
n×n

such that h′′(u)A0 is positive definite, where h(u) = 1
2
u⊤Hu. Then h′′(u)A(u) = HA0 +

p(u)H is positive definite as the sum of two positive definite matrices.
(ii) We know from part (i) that HA0 is positive definite, where H is symmetric positive

definite. Thus, there exists λ > 0 such that z⊤HA0z ≥ λ|z|2 for all z ∈ R
n. Since A1(u)

is bounded, there exists M > 0 such that ‖HA1(u)‖ ≤ M for all u ∈ D. We conclude
that z⊤h′′(u)A(u)z ≥ (λ − εM)|z|2 for z ∈ R

n, and the positive definiteness follows after
choosing 0 < ε < ε0 < λ/M . �

5. Application: Sum of single-species entropy densities

When the entropy density h(u) can be written as the sum of functions depending on
ui, we can give an easy criterion for the positive definiteness of h′′(u)A(u), avoiding the
computation of the eigenvalues of A(u) in order to check the normal ellipticity.

Proposition 14. If there exists a strictly convex function h(u) =
∑n

i=1 hi(ui) for some
functions hi ∈ C2(D) such that h′′(u)A(u) is symmetric, then h′′(u)A(u) is positive definite
if and only if all leading principal minors of A(u) are positive.

Proof. It holds that h′′(u)A(u) = (h′′
i (ui)Aij(u)) ∈ R

n×n. Let Mk be the kth leading
principal minor of h′′(u)A(u) and let Ak ∈ R

k×k be the leading principal submatrix of
order k of A(u). Then

Mk =
k∏

i=1

h′′
i (ui) det(Ak).

Thus, if h′′(u)A(u) is symmetric positive definite, then Mk > 0 for all k = 1, . . . , n, by
Sylvester’s criterion and hence det(Ak) > 0 for all k = 1, . . . , n. On the other hand, if
det(Ak) > 0 then Mk > 0 for all k = 1, . . . , n, and we conclude from the symmetry of
h′′(u)A(u), by Sylvester’s criterion again, that h′′(u)A(u) is positive definite. �

The symmetry of h′′(u)A(u) implies that h′′
i (ui)Aij(u) = h′′

j (uj)Aji(u) for all i 6= j. Since
h′′
i (ui) > 0, this shows that both Aij(u) and Aji(u) are positive, negative, or zero for any

i 6= j. We apply Proposition 14 to various examples.

Construction of entropies in two-species systems. We construct convex entropy
densities h(u) = h1(u1) + h2(u2) for (1) with the diffusion matrix

A(u) =

(
a11(u) b1(u1)b2(u2)

c1(u1)c2(u2) a22(u)

)
,

where a11 > 0, b1b2c1c2 > 0, and detA > 0 in D. The symmetry of h′′(u)A(u) is equivalent
to b1b2h

′′
1 = c1c2h

′′
2 or b1h

′′
1/c1 = c2h

′′
2/b2. The left-hand side depends only on u1, the right-

hand side only on u2. Thus, both sides are constant and, say, equal to k ∈ R. Since h′′
1

and h′′
2 are positive, we may set k = sign(b1(u)c1(u))|k|. (Note that the sign of b1(u)c1(u)

must be the same for all u ∈ D.) Then

h1(u1) = |k|
∫ u1

u∗

1

∫ v1

v∗
1

∣∣∣∣
c1(s)

b1(s)

∣∣∣∣dsdv1, h2(u2) = |k|
∫ u2

u∗

2

∫ v2

v∗
2

∣∣∣∣
b2(s)

c2(s)

∣∣∣∣dsdv2,
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at least if these integrals exist. Without loss of generality, we may choose |k| = 1. Our
assumptions imply that the leading principal minors of A(u), namely a11(u) and det(A(u)),
are positive. Thus, by Proposition 14, h′′(u)A(u) is positive definite, and (1) has an entropy
structure.

Construction of entropies in n-species systems. The idea for two-species systems can
be extended to n×nmatrices. To simplify, we consider entropy densities h(u) =

∑n

i=1 hi(ui)
and diffusion matrices of the form

(9) A(u) =




a11(u) a12u1 a13u1 · · · a1nu1

a21u2 a22(u) a23u2 · · · a2nu2

a31u3 a32u3 a33(u) a3nu3
...

...
. . .

...
an1un an2un an3un · · · ann(u)




,

where aij ∈ R and u ∈ R
n
+. We assume that both aij and aji are positive, negative, or zero

for any i 6= j and that the leading principal minors of A(u) are positive. Matrices like (9)
appear, for instance, in diffusive population dynamics; see (4). The matrix h′′(u)A(u) is
symmetric if and only if

h′′
i (ui)uiaij(u) = h′′

j (uj)ujaji(u) for all u ∈ D, i, j = 1, . . . , n.

Hence, there exist constants kij ∈ R such that

h′′
i (ui)uiaij = h′′

j (uj)ujaji = kij = sign(aij)|kij|.

Case 1. Let aijaji > 0 for any 1 ≤ i < j ≤ n. Then

h′′
i (ui) =

kij
aijui

=
|kij|
|aij|ui

for i+ 1 ≤ j ≤ n,

h′′
j (uj) =

kij
ajiuj

=
|kij|
|aji|uj

for 1 ≤ i ≤ j − 1.

We introduce the numbers πi = |kij|/|aij| for i + 1 ≤ j ≤ n and πj = |kij|/|aji| for
1 ≤ i ≤ j − 1. Then it holds that πi > 0 for i = 1, . . . , n and πi|aij| = πj|aji| for
1 ≤ i < j ≤ n. Since we assume that aijaji > 0 for i < j, this yields the detailed-balance
condition

πiaij = πjaji for i 6= j,

which has been already imposed in [9] (but we allow for negative values of aij and aji).
This shows that h′′

i (ui) = πi/ui and hence, the entropy density becomes

h(u) =
n∑

i=1

hi(ui) =
n∑

i=1

πiui(log ui − 1).

Note that the detailed-balance condition is equivalent to the symmetry of h′′(u)A(u).
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Case 2. To simplify the presentation, we assume that there exists only one couple of
indices (i0, j0) with 1 ≤ i0 < j0 ≤ n such that ai0j0 = aj0i0 = 0. Case 1 applies to all indices
(i, j) 6= (i0, j0), while for (i, j) = (i0, j0), we have

πi0 =
|ki0j|
|ai0j|

, j = i0 + 1, . . . , j0 − 1, j0 + 1, . . . , n,

πj0 =
|kij0 |
|aij0|

, i = 1, . . . , i0 − 1, i0 + 1, . . . , j0 − 1.

The detailed-balance condition πi0ai0j0 = πj0aj0i0 is automatically satisfied since ai0j0 =
aj0i0 = 0. For example, if n = 3 and a12 = a21 = 0, the detailed-balance condition reduces
to the identities π1a13 = π3a31 and π2a23 = π3a32, while π1a12 = π2a21 is no longer needed.

6. Application: fluid mixture and population models

We construct entropy densities for diffusive fluid mixture and population systems.

Fluid models with partial pressure gradients. Let us consider the fluid mixture
model (6) which has the diffusion matrix Aij(u) = ui∂pi/∂uj for i, j = 1, . . . , n. Essen-
tial for the analysis of is the following detailed-balance condition: There exist numbers
π1, . . . , πn > 0 such that

(10) πi

∂pi
∂uj

= πj

∂pj
∂ui

in D for all i 6= j,

and we assume that D ⊂ R
n
+.

Proposition 15. Assume that the matrix Q = (∂pi/∂uj) is normally elliptic and that the
detailed-balance condition (10) holds. Then (6) has an entropy structure with the entropy
density h(u) =

∑n

i=1 πiui(log ui − 1).

Proof. The normally elliptic matrix Q factorizes according to Q = A1A2, where A1 =
diag(π−1

1 , . . . , π−1
n ) is symmetric positive definite and A2 = (πi∂pi/∂uj) is symmetric.

Therefore, Proposition 3 (ii) shows that h′′(u)A(u) = A2 is positive definite. �

Remark 16 (Alternative proof). We claim that the normal ellipticity of A(u) is equivalent
to that of Q. Then Proposition 15 is an immediate consequence of Theorem 7 (ii) since
h′′(u)A(u) = (πi∂pi/∂uj) is assumed to be symmetric. We use the inertia theorem of
Sylvester [7, Section 1]: If A1 is symmetric positive definite and A2 is symmetric, then the
inertia of A1A2 and A2 coincide. As a consequence, A1A2 and A2 have the same number of
eigenvalues with positive real parts. We apply this result to A1 = diag(π−1

1 , . . . , π−1
n ) and

A2 = (πi∂pi/∂uj) to infer that A1A2 = Q and A2 have the same number of eigenvalues

with positive real parts. The same argument applied to Ã1 = diag(u1π
−1
1 , . . . , unπ

−1
n ) and

A2 shows that also Ã1A2 = A(u) and A2 have the same number of eigenvalues with positive
part. This implies that the number of eigenvalues with real parts of A(u) and Q coincide,
proving the result. �

Interestingly, there exists a second entropy density.
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Proposition 17 (Second entropy). Let p1, . . . , pn ∈ C1(D) be defined on the simply
connected set D ⊂ R

n
+ and assume that the detailed-balance condition (10) holds. If

Q = (∂pi/∂uj) is invertible on D then (1) has an entropy structure with an entropy density
h(u) satisfying ∂h/∂ui = πipi for i = 1, . . . , n.

Proof. The proof is based on the Poincaré lemma for closed differential forms. Since (πipi)
defines a curl-free vector field in the sense ∂(πipi)/∂uj = ∂(πjpj)/∂ui for all i 6= j, there
exists a function h ∈ C2(D) such that ∂h/∂ui = πipi for i = 1, . . . , n. It follows from the
detailed-balance condition that for all z ∈ R

n,

z⊤h′′(u)A(u)z =
n∑

i,j,k=1

πi

∂pi
∂uk

uk

∂pk
∂uj

zizj =
n∑

i,j,k=1

πkuk

∂pk
∂ui

∂pk
∂uj

zizj

=
n∑

k=1

πkuk

( n∑

j=1

∂pk
∂uj

zj

)2

≥ 0.

Assume that z⊤h′′(u)A(u)z = 0 for z 6= 0. Since uk > 0, it follows that Qz = 0. However,
Q is invertible which implies that z = 0, contradiction. Thus, z⊤h′′(u)A(u)z > 0 for
z 6= 0. �

Note that if the matrix (∂pi/∂uj) is normally elliptic then it is invertible. As an example,
consider pi(u) =

∑n

j=1 aijuj with coefficients aij ≥ 0. Then the Jacobian of (p1, . . . , pn)

equals the matrix (aij). Thus, if this matrix is invertible (and the detailed-balance condition
holds), Proposition 17 applies, and (6) with this choice has an entropy structure. The
entropy density can be constructed explicitly from ∂h/∂ui = πi

∑n

j=1 aijuj leading to

h(u) =
1

2

n∑

i,j=1

πiaijuiuj.

If u is a (smooth) solution to (2), (6) and ∂h/∂ui = πipi for i = 1, . . . , n, it follows that

d

dt

∫

Ω

h(u)dx+

∫

Ω

n∑

i=1

πiui|∇pi(u)|2dx = 0,

which yields slightly better integrability than the Boltzmann-type entropy density from
Proposition 15.

Population models. We have considered the n-species SKT population model with dif-
fusion matrix (4) already in Section 3. Here, we study a more general version, given by

(11) ∂tui = ∆(uipi(u)) = div(ui∇pi(u) + pi(u)∇ui), i = 1, . . . , n,

where pi(u) > 0 are transition rates from the underlying lattice model [28, Appendix A].
In the classical SKT model (4), we have pi(u) = ai0 +

∑n

j=1 aijuj . Generally, the diffusion

matrix has the elements Aij(u) = δijpi(u) + ui∂pi/∂uj. Compared to the fluid model (6),
system (11) contains the additional term pi(u) on the diagonal of the diffusion matrix.
Therefore, we have the same result as in Proposition 15.
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Corollary 18 (General SKT model). Let p1, . . . , pn : D → R+ be defined on the simply
connected set D ⊂ R

n
+, let the matrix Q = (∂pi/∂uj) be normally elliptic, and let the

detailed-balance condition (10) hold. Then (11) has an entropy structure with entropy
density h(u) =

∑n

i=1 πiui(log ui − 1) for u ∈ D.

Proof. The matrix h′′(u)A(u) is the sum of the diagonal matrix with positive entries πiu
−1
i pi

and the matrix (πi∂pi/∂uj). Since it follows from Proposition 15 that both matrices are
symmetric positive definite, so does h′′(u)A(u). �

This idea can be generalized to cross-diffusion systems of the form

(12) ∂tui = ∆Fi(u), i = 1, . . . , n.

The diffusion matrix is given by the elements Aij(u) = ∂Fi/∂uj for i, j = 1, . . . , n. We
recover (11) for Fi(u) = uipi(u).

Proposition 19. Let F1, . . . , Fn ∈ C1(D) be defined on the simply connected set D ⊂ R
n,

let the Jacobian of (F1, . . . , Fn) be invertible and let the detailed-balance condition (10) with
pi replaced by Fi hold. Then (12) has an entropy structure.

Proof. By assumption, (π1F1, . . . , πnFn) is curl-free. Hence, we deduce from the Poin-
caré lemma for closed differential forms the existence of a function h : D → R such that
∂h/∂ui = πiFi for i = 1, . . . , n. This implies for all z ∈ R

n, z 6= 0 that

z⊤h′′(u)A(u)z =
n∑

i,j,k=1

πi

∂Fi

∂uk

∂Fk

∂uj

zizj =
n∑

i,j,k=1

πk

∂Fk

∂ui

∂Fk

∂uj

zizj =
n∑

k=1

πk

( n∑

j=1

∂Fk

∂uj

zj

)2

.

Since (∂Fk/∂uj) is invertible, we infer as in the proof of Proposition 17 that the previous
expression is positive for all z 6= 0. �

7. Normal ellipticity

We prove the normal ellipticity of the diffusion matrices associated to the three models
introduced in the introduction.

SKT model. The normal ellipticity of the two-species SKT model with diffusion matrix
(4) was proved in [2, Section 17.1]. Surprisingly, this property is not known for the n-
species model. Under the detailed-balance condition πiaij = πjaji for i 6= j, the existence
of an entropy structure was shown in [9, Lemma 4], so that in this case A(u) is normally
elliptic by Theorem 7 (i). In the following, we prove that this property also holds when
the detailed-balance condition is not valid.

Lemma 20. Define the matrix A(u) ∈ R
n×n by (4), i.e.

Aii(u) = ai0 + 2aiiui +
∑

j 6=i

aijuj, Aij = aijui for i 6= j.

If ai0 ≥ 0, aij ≥ 0 with ai0 + aii > 0 for i, j = 1, . . . , n, then A(u) is normally elliptic for
any u ∈ R

n
+.
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Proof. We reformulate the matrix A(u) by setting Bii = ai0 + 2aiiui and Bij = aijuj for
i 6= j. Then Aii =

∑n

j=1Bij and Aij = Bij for i 6= j. We define the matrix

Ã =




A11 a12u2 · · · a1nun

a21u1 A22 a2nun

...
. . .

an1u1 an2u2 Ann


 =




∑n

j=1B1j B12 · · · B1n

B21

∑n

j=1B2j B2n

...
. . .

Bn1 Bn2

∑n

j=1 Bnn


 .

Then A(u) and Ã are similar since Ã = U−1A(u)U , where U = diag(u1, . . . , un), and thus

they have the same eigenvalues. Since Bii = ai0 + 2aii > 0 by assumption, the matrix Ã is

strictly diagonally dominant. It follows from [16, Theorem 6.1.10] that all eigenvalues of Ã
have a positive real parts and so does A(u). This means that A(u) is normally elliptic. �

This result can be generalized to population models of the form (11), where Aij(u) =
pi(u)δij + ui∂pi/∂uj. Indeed, if ∂pi/∂uj ≥ 0 and pi(u) >

∑
k 6=i uk∂pi/∂uk for u ∈ D and

i, j = 1, . . . , n then A(u) is normally elliptic. For instance, if

pi(u) = ai0 +
n∑

j=1

aiju
s
j , i = 1, . . . , n,

this condition is satisfied if 0 < s < 1, ai0 ≥ 0, aij ≥ 0, and ai0 + aii > 0.
Another generalization concerns the condition ai0 + aii > 0. It is not necessary to

conclude the normal ellipticity of A(u). By applying the Routh–Hurwitz stability criterion
[15, Section 2.3] (or the stability criterion of Liénard–Chipart [12, Theorem 11, p. 221]),
we may allow for ai0 + aii = 0. To avoid too many technicalities, we restrict ourselves
to the case n = 3. Then the Routh–Hurwith criterion reads as follows: The roots of the
polynomial λ3 + b2λ

2 + b1λ+ b0 have negative real parts if and only if bi > 0 for i = 0, 1, 2
and b2b1 > b0.

Lemma 21. Let ai0 ≥ 0, aij ≥ 0 for i, j = 1, 2, 3 and set bij = aij for i 6= j and
bii = ai0 + aii. Assume that there exists a tripel (i, j, k) ∈ {1, 2, 3}3 such that

(i, j) 6= (2, 1), (i, k) 6= (3, 1), (j, k) 6= (3, 2), and b1ib2jb3k > 0.

Then A(u) is normally elliptic for any u ∈ R
3
+.

Proof. The characteristic polynomial p(λ) = det(A(u) − λI) equals q(λ) = p(−λ) = λ3 +
b2λ

2 + b1λ+ b0, where

b0 = detA, b1 =
∑

1≤i<j≤3

det

(
Aii Aij

Aji Ajj

)
, b2 = traceA.

According to the Routh–Hurwitz criterion, we need to verify that bi > 0 for i = 0, 1, 2 and
b2b1 − b0 > 0 to deduce the normal ellipticity of A(u). To this end, we recall the definition
of Bij from the proof of Lemma 20: Bii = ai0 + 2aiiui and Bij = aijuj for i 6= j. Then



18 X. CHEN AND A. JÜNGEL

Aii =
∑3

j=1Bij and for u ∈ R
3
+,

b2 =
3∑

i,j=1

Bij > 0,

b1 =
∑

1≤i<j≤3

(AiiAjj −BijBji) =
∑

1≤i<j≤3

∑

(k,ℓ) 6=(j,i)

BikBjℓ > 0,

b0 = A11A22A33 + B12B23B31 + B13B32B21

− A11B23B32 − A22B13B31 − A33B12B21

=
∑

(i,j,k)

B1iB2jB3k + B12B23B31 + B13B32B21 > 0,

where the sum is over all (i, j, k) ∈ {1, 2, 3}3 such that (i, j) 6= (2, 1), (i, k) 6= (3, 1), and
(j, k) 6= (3, 2). Finally, we have

b2b1 − b0 ≥ 2
3∑

i,j,k=1

B1iB2jB3k − B12B23B31 −B13B32B21 ≥
3∑

i,j,k=1

B1iB2jB3k > 0

for u ∈ R
3
+, finishing the proof. �

For instance, the matrix

A(u) =



u3 0 u1

u2 u1 0
0 u3 u2




satisfies the conditions of Lemma 21 with (i, j, k) = (1, 2, 3). Note that the detailed-balance
condition is not satisfied for this matrix, but Lemma 21 states that it is normally elliptic.
It is an open question whether (1) with this diffusion matrix has an entropy structure.

Volume-filling models. We show the normal ellipticity of the diffusion matrix (5) asso-
ciated to the volume-filling models in a special case.

Lemma 22. Let A(u) be defined by

Aij(u) = δijpi(ui)qi(u0) + uipi(ui)q
′
i(u0) + δijuiqi(u0)

∂pi
∂ui

(ui), i, j = 1, . . . , n,

for i = 1, . . . , n, u ∈ D = {u ∈ R
n
+ :

∑n

i=1 ui < 1}, and we recall that u0 = 1 −
∑n

i=1 ui.
We assume that pi, qi, and q′i are positive functions. Then A(u) is normally elliptic (and
diagonalizable).

Proof. Since we can write

Aij(u) = (δijuipiqi)

(
δij

(
1

ui

+
p′i
pi

)
+

q′i
qi

)
,
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we can decompose A(u) = A1A2, where

(A1)ij = δijuipiqi

(∏

k 6=i

q′k
qk

)−1

, (A2)ij = δij

(
1

ui

+
p′i
pi

)∏

k 6=i

q′k
qk

+
n∏

k=1

q′k
qk
.

Setting V :=
∏n

k=1 q
′
k/qk and Ri := (1/ui + p′i/pi)

∏
k 6=i q

′
k/qk, the matrix A2 becomes

A2 =




R1 + V V · · · V
V R2 + V V
...

. . .
V V Rn + V


 .

This matrix is symmetric positive definite since the leading principle minors are positive,

i∏

k=1

Rk

(
1 + V

i∑

k=1

1

Rk

)
> 0, i = 1, . . . , n

(or since z⊤A2z =
∑n

i=1 Riz
2
i + (

∑n

i=1 zi)
2V > 0 for z 6= 0). We infer from Proposition 6

that A(u) is normally elliptic and diagonalizable. �

Fluid mixture model governed by partial pressure gradients. The diffusion matrix
A(u) of the fluid mixture model (6) is given by Aij(u) = ui∂pi/∂uj . We consider the case
of linear pressures, pi(u) =

∑n

j=1 aijuj with aij ≥ 0. Then Aij(u) = uiaij, and A(u) can be

decomposed according to A(u) = A1A2 with A1 = diag(u1, . . . , un) and A2 = (aij). The
matrix A1 is clearly symmetric positive definite. Thus, A(u) is normally elliptic if (aij) is
positive definite (but not necessarily symmetric).
This condition is sufficient but not necessary. Indeed, if n = 2 and aij ≥ 0, A(u) is

normally elliptic in D if and only if detA2 = a11a22 − a12a21 > 0, and in this case, the
eigenvalues of A(u) are positive. On the other hand, (aij) is positive definite if and only if
detA2 >

1
4
(a12−a21)

2, which is more restrictive than detA2 > 0 except if A2 is symmetric.

8. Connections and extensions

More general cross-diffusion systems. Amann [2, Section 4] considered a more general
class of cross-diffusion equations:

(13) ∂tui =
n∑

j=1

d∑

k,ℓ=1

∂

∂xk

(
Akℓ

ij (u)
∂uj

∂xℓ

)
, i = 1, . . . , n.

These equations reduce to (1) if Akℓ
ij (u) = δkℓAij(u). Amann calls the differential operator

on the right-hand side normally elliptic if all the eigenvalues of its principal part Aπ(u, z)
have positive real parts, where

Aπ(u, z) =
d∑

k,ℓ=1

Akℓ(u)zkzℓ, u ∈ D, z ∈ R
n.
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If Akℓ
ij (u) = δkℓAij(u), this coincides with our definition. We say that (13) has an entropy

structure if there exists a strictly convex function h ∈ C2(D) such that

(14)
d∑

k,ℓ=1

h′′(u)Akℓ(u)zkzℓ

is positive definite for all u ∈ D, z ∈ R
n. Our results can be extended in a straightforward

way to this situation. For instance, if Aπ(u, z) is normally elliptic and there exists a strictly
convex function h ∈ C2(D) such that h′′(u)Akℓ(u) is symmetric for all u ∈ D and k, ℓ =
1, . . . , d then (13) has an entropy structure. This follows from the fact that Aπ(u, z) =

A1A2, where A1 = h′′(u)−1 is symmetric positive definite and A2 =
∑d

k,ℓ=1 h
′′(u)Akℓ(u)zkzℓ

is symmetric. So, the claim follows from Proposition 3 (ii).

Symmetrization by Kawashima and Shizuta. The entropy structure of (13) has been
explored by Kawashima and Shizuta [21], also including first-order terms. They call h ∈
C2(D) an entropy for (13) if h is strictly convex, the Onsager matrix Akℓ(u)h′′(u)−1 is
symmetric, and (14) is symmetric positive semidefinite for all u ∈ D and k, ℓ = 1, . . . , d. In
our situation, this is equivalent to the symmetry and positive semidefiniteness of h′′(u)A(u).
It is shown in [21] that if an entropy exists then system (13) can be symmetrized in the
sense that it can be written as

(15) ∂tui(w) =
n∑

j,k,ℓ=1

∂

∂xj

(
Bkℓ

ij (w)
∂uj

∂xℓ

)
, i = 1, . . . , n,

where Bkℓ(w) = Akℓ(u(w))u′(w) is symmetric positive semidefinite and u(w) := (h′)−1(w).
Conversely, if there exists a diffeomorphism w 7→ u(w) such that the Jacobian (∂wi/∂uj)
is symmetric and Bkℓ(w) is symmetric positive semidefinite then there exists an entropy.
Indeed, by Poincaré’s lemma for closed differential forms and the symmetry ∂wi/∂uj =
∂wj/∂ui, there exists a function g such that ∂g/∂wi = wi. Then h(u) = u ·w(u)− g(w(u))
is an entropy for (13).
In the presence of first-order terms, we obtain hyperbolic-parabolic balance laws:

∂tui +
d∑

j=1

∂fij
∂xj

(u) =
n∑

j=1

d∑

k,ℓ=1

∂

∂xk

(
Akℓ

ij (u)
∂uj

∂xℓ

)
,

and the existence of an entropy requires the additional condition h′(u)f ′
j(u) = q′j(u) for

some real-valued smooth functions qj, where fj = (f1j, . . . , fnj) and j = 1, . . . , d. The
first-order terms do not modify the entropy production. We refer to [21, Theorem 2.1]
for details. Such systems have been also studied in [26], including rank deficient Onsager
matrices. The extension of our results to such situations is a future work. An example
are Maxwell–Stefan systems whose diffusion matrix has rank n − 1; see [4, 20]. The
symmetrizability property of the Euler equations was first observed by Gudonov and later
by Friedrichs and Lax and extended by Boillat to general hyperbolic systems; see, e.g., [3].
Note that our definition of entropy does not need the symmetry of the Onsager matrix;
see Case 1.1 in Section 3.
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Gradient-flow structure. The entropy structure of (1) is strongly related to the gradient-
flow formulation of Mielke and co-workers [24, 25]. Let M be a manifold, H : M → R

be differentiable, and K(u) : T ∗
uM → TuM be symmetric positive definite for all u ∈ M ,

where TuM is the tangent space at u ∈ M and T ∗
uM its cotangent space. Physically, ele-

ments of TuM are the thermodynamic fluxes and elements of T ∗
uM are the driving forces

(here: entropy variables). Then Mielke et al. call a solution u : [0, T ] → M to

∂tu = −K(u)H ′(u), t > 0,

a gradient flow. The positive definiteness of K(u) implies that

dH

dt
= 〈H ′(u), ∂tu〉 = −〈H ′(u), K(u)H ′(u)〉 ≤ 0,

and we can interpret H as an entropy. Here, 〈·, ·〉 is the dual paring between T ∗
uM

and TuM . In the special case K(u) = − div(B(w(u))∇(·)) and identifying H ′(u) with
h′(u), we recover (1) since K(u)H ′(u) = div(B(w(u))∇h′(u)) = div(A(u)∇u), where
B(w(u)) = A(u)h′′(u)−1. Note that the mapping ξ 7→ K(u)ξ is linear. This framework was
generalized to nonlinear mappings ξ 7→ K(u, ξ)ξ in [25]. Physically, this means that the
thermodynamics fluxes depend nonlinearly on the driving forces. Then the gradient-flow
equation reads as

∂tu = ∂ξΨ(u,−H ′(u)), t > 0,

where Ψ∗ : TM → R is convex in its second argument and ∂ξΨ
∗ is the partial deriva-

tive with respect to the second argument. This equation is by Legendre–Fenchel theory
equivalent to

Ψ(u, ∂tu) + Ψ∗(u,−H ′(u)) + 〈H ′(u), u〉 = 0.

An example is Ψ∗(u, ξ) = 1
2
〈ξ,K(u)ξ〉. The function H(u) is an entropy in the sense

dH

dt
= 〈H ′(u), ∂tu〉 = −Ψ(u, ∂tu)−Ψ∗(u,−H ′(u)) ≤ 0,

since Ψ ≥ 0 and Ψ∗ ≥ 0 (see [25] for details). It is an open question to what extent the
results of this paper can be extended to this case.
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