A NOTE ON THE UNIQUENESS OF WEAK SOLUTIONS TO A CLASS
OF CROSS-DIFFUSION SYSTEMS

XIUQING CHEN AND ANSGAR JUNGEL

ABSTRACT. The uniqueness of bounded weak solutions to strongly coupled parabolic
equations in a bounded domain with no-flux boundary conditions is shown. The equa-
tions include cross-diffusion and drift terms and are coupled selfconsistently to the Poisson
equation. The model class contains special cases of the Maxwell-Stefan equations for gas
mixtures, generalized Shigesada-Kawasaki-Teramoto equations for population dynamics,
and volume-filling models for ion transport. The uniqueness proof is based on a combina-
tion of the H~! technique and the entropy method of Gajewski.

1. INTRODUCTION

Several techniques have been developed for the analysis of nonlinear parabolic systems,
including sufficient conditions for the global existence of weak or strong solutions [3, 18, 22,
29]. However, the proof of uniqueness of weak solutions is generally much more delicate, in
particular for strongly coupled systems. In this paper, we prove the uniqueness of bounded
weak solutions to a class of cross-diffusion systems. The proof is based on a combination of
the H~! technique and the method of Gajewski [14], where a certain semimetric measures
the distance between two solutions. It is shown that the semimetric is related to relative
entropies.

1.1. Model equations. The equations describe the evolution of the concentrations u;,
(1) Ou; = divz (Aij(w)Vu; + B;j(w)Ve), i=1,...,n,
j=1

in a bounded domain Q C R? (d > 1), where u = (uy,...,u,) and ¢ is a potential solving
the Poisson equation

(2) —A¢=ug— f(z) inQ,
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where uy = > | a;u; for some constants a; > 0, and f(z) is a given background concen-
tration. We complement the equations by no-flux boundary and initial conditions,

(3) ZAij(u)Vuj-u: Vo-v=00n09, u0)=u"inQ, i=1,...,n
j=1

For consistency, the initial datum has to satisfy the condition

/Qiz:;aiu?dz:/ﬂf(x)dx.

The diffusion coefficients A;; and drift coefficients B;; are defined by
(4) Aij(u) = p(uo)dij + ajuiq(uo),  Bij(u) = r(uo)uidiy, i,j=1,...,n,

for some functions p, ¢, and r and numbers a; > 0. Our main assumption is that these
functions do not depend on the species number i. Then wug satisfies a nonlinear drift-
diffusion equation (see (12) below), and this property allows us to initiate the uniqueness
proof. We do not know how to relax this assumption in the context of weak solutions.

The diffusion matrix A(u) = (A;j(u)) is not assumed to be positive definite and it may
degenerate. The existence theory developed in [17] is based on the assumption that there
exists a transformation of variables such that the transformed diffusion matrix becomes
positive semidefinite, allowing for some degeneracy; see [18] for details.

Under some conditions, model (1), (4) can be derived formally from a master equation
for a continuous-time, discrete-space random walk in the macroscopic limit [26, 32] or from
a fluiddynamical model in the inertia approximation [18, Section 4.2]. The variables u; may
describe the density of the ¢th population species or the ith component of a gas mixture
with electrically charged components. In the former case, ¢ models the environmental
potential, in the latter case, it denotes the electric potential. Because of these applications,
it is reasonable to assume that u; > 0 in €2, ¢t > 0.

For special choices of A;; and B;;, including condition (4), the existence of global bounded
weak solutions can be shown. We give some examples and references in section 4 below.
In this paper, we are only concerned with the uniqueness of weak solutions.

1.2. State of the art. Before stating and explaining our assumptions and the main result,
let us review some techniques to show the uniqueness of (weak) solutions to nonlinear
parabolic equations. We focus on generalized solutions since uniqueness of strong solutions
is usually proved by standard L? estimations.

One important technique is based on the use of the test function sign +(u(1) —u?), where
u™ and u® are two solutions and sign . is the positive sign function (sign,(s) = 1 for
s > 0 and sign, (s) = 0 else). The use of this test function can be justified by employing the
technique of doubling the variables, first developed by Kruzkov for hyperbolic equations
[21] and later extended by Carrillo to scalar parabolic equations [8] and by Blanchard and
Porretta to allow for renormalized solutions [6]. We refer to the review [4] for an extensive
bibliography. All these results hold for scalar equations only.
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Nonlinear semigroup methods provide powerful abstract tools for proving the uniqueness
of (mild of integral) solutions; see, e.g., [5]. However, this approach seems to be generally
not accessible to cross-diffusion systems.

One of the first uniqueness theorems for diffusion systems was shown by Alt and Luck-
haus [2] under the assumptions that the time derivative of u; is integrable and the elliptic
operator is linear. The first hypothesis was relaxed to finite-energy solutions by Otto
[27], and the ellipticity condition was generalized by Agueh using methods from optimal
transport [1], but in both cases for scalar equations only.

Another powerful approach is the dual method which consists in choosing a test function
which satisfies an appropriate dual problem [10]. This includes the H~! method, where a
test function of an elliptic dual problem is chosen. In some sense, the uniqueness problem
is reduced to an existence problem of the dual problem [23]. The dual method allows one
to treat diffusion systems that are, to some extent, weakly coupled; see, e.g., [10, 16, 25].
Based on a dual method, Pham and Temam [28] proved recently a uniqueness result for a
strongly coupled population system assuming a strictly positive definite diffusion matrix.

The uniqueness of (weak) solutions may be also proven by using an entropy method.
One idea is to differentiate the relative entropy H(u|u®), where u™") and u® are two
solutions emanating from the same initial data, with respect to time and to show that
LHuW|u®) < CH(uV[u®) for some constant C' > 0, which implies from Gronwall’s
lemma that H(u™|u?) = 0 and hence u") = u?. This approach has been used to show
the weak-strong uniqueness for compressible Navier-Stokes equations [11, 12] and reaction-
diffusion systems (with diagonal diffusion matrix) [13]. A second idea, due to Gajewski
[14], is to time-differentiate the semimetric

(1) 2)
(5) A u®) = H(u®) + H(u®) — 2H (u)

2

for convex entropies H and to show that £d(u™,u®) <0, implying again that u(!) = u(®.
The technique has been applied to nonlinear drift-diffusion equations for semiconductors
[14] and later to cross-diffusion systems [20, 32]. Compared to other methods, it has the
advantage that only weak solutions are needed [18, Chapter 4.7]. The Gajewski method is
related to the approach of using relative entropies; see Remark 4.

1.3. Assumptions and main result. Our approach is to combine the H~! technique
and the method of Gajewski and to generalize the results from [20, 32]. The novelty is the
inclusion of the potential term and the general structure of A;;(u). With hypothesis (4),
equations (1) can be formulated as

(6) Opu; = div (p(uo)Vui + q(uo)u; Vug + r(uo)ungb), 1=1,...,n.

This can be interpreted as a drift-diffusion equation with field term q(ug)Vug + 7(ug) V.
Since ug depends on all u;, this is still a cross-diffusion system. However, the drift-diffusion
structure is essential in the uniqueness proof. Our main result is as follows.

Theorem 1 (Uniqueness of weak solutions). Let (u,d) with u = (uy, ...,u,) be a weak
solution to (1)-(3) such that ug(x,t) € [0, L] for x € Q, t € (0,T) and some L > 0. Let
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u? € L>®(Q) and f € L*(2). We assume that there exists M > 0 such that for all s € [0, L],
(7) p(s) >0, p(s)+q(s)s >0,
+1'(s)s)?

8 r(s)s € CY([0, L)), (r(s) < M.
) (s i), I
Then (u,¢) is unique in the class of solutions satisfying [, ¢dx = 0, Vo € L>(0,T;
L>(Q)), and

u; € L*(0,T; H'(Q)), Oy € L*(0,T; HY(Q)), i=1,...,n

In the case r = 0, the boundedness of ug is not needed, provided that

9) Vp(uo) Vg, /|q(uo)|Vu; € L*(Q x (0,7)).

Remark 2. 1. The regularity assumption on the potential can be relaxed to V¢ €
L>(0,7; L*(R2)) for a > d if p(s) + q(s)s = const. > 0; see Remark 3.

2. If 0Q € C' and f € LY(Q) with a > d, the regularity V¢ € L*°(0,T; L>=()) is
a consequence of elliptic theory. Indeed, since ug is bounded, ug — f € L>(0,T; L*(R2)),
which implies, by Sobolev embedding, that ¢ € L>(0,T; W2%(Q)) — L>*(0,T; WhH>=(Q)).

O
The idea of the proof is first to show the uniqueness of (ug, ¢). Indeed, multiplying (1)
by a; and summing over i = 1,...,n leads to a nonlinear drift-diffusion equation for wy,
(10) Orug = div (VQ(uo) + R(uo) V),

coupled with the Poisson equation (2), where

(1) R(s) = r(s)s, Qs) = / (o) + q(r)r)d

Since the diffusion operator in (10) may degenerate, it is natural to apply the H~! tech-
nique. Indeed, given two solutions (u™, M), (u®, @ )with the same initial data we use
the test function ¢ := ¢ — ¢ in (12), which solves the dual problem —A¢ = u) —u®? in
Q, V¢ -v =0 on 9. Then, using conditions (7)-(8), it can be shown that < ||qu||L2(Q <
C’||ng||L2(Q which implies that u) = 4 and ¢ = ¢, In this step, we need the
regularity Vo € L*.

The second step is to prove the uniqueness of (6). For this, we employ the method of
Gajewski [14], based on an estimation of the semimetric

d(u, v) = i/ﬁ (h(ui) + h(vs) — 2h(“" ;“ Ui))dx,

where h(s) = s(logs — 1) + 1 is called an entropy. Let u(") = (ugl), . ,u%l)), u? =

W)

be two weak solutions to (6). A formal computation shows that 4d(u(V,

2)) <0 and hence d(uV),; u®) = 0. The convexity of h implies that u(!) = u(?). In order
to make this argument rigorous, we need to regularize the entropy, since terms with log u;
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may be not defined on sets where u; = 0. We discuss in Remark 4 the applicability of the
Gajewski method.

The paper is organized as follows. Theorem 1 is proved in section 2. Section 3 is
concerned with some comments on the techniques and the proof. Some examples satisfying
conditions (7)-(8) are detailed in section 4.

2. PROOF OF THEOREM 1

Step 1. Uniqueness for (ug, »). We multiply (1) by a; and sum over i = 1,... n:

Oyug = Z div < diip(uo)a;Vu; + q(uo)aw;V(aju;) + 0;57(uo)au; V¢>

i,7=1
= div (p(uo)Vuo + q(uo)uoVug + T(uo)uOng)
(12) = div (VQ(uo) + R(uo)V),
where Q and R are defined in (11). Clearly, it holds

VQ(U(]) V= Z a; ZAUVUJ -v=0 on 0f.
=1 j=1
In view of condition (7), the function @ is nondecreasing. We use the H~! method to

prove that (2), (12) possesses at most one solution. Let (uél),gb(l)) and (u((f), »?) be two
solutions to (2), (12), subject to no-flux boundary conditions and the same initial condition

(3). We set ug = uél) — u((f) and ¢ = ¢() — ¢ Tt holds that [, updz =0, and ¢ solves
—Ap=uy inQ, Vo-v=0 on 0, /gbdx:O.
Q

Since up € L*(2 x (0,T)) and dyug € L*(0,T; H(Q2)), we have ¢ € L*(0,T; H*(Q)) and
OA¢ € L*(0,T; H'(Q)"). By applying a standard mollification procedure, we can prove
that t — ||Vo(t) H%Q(Q) is continuous on [0, T'] (possibly after redefinition on a set of measure
zero) and

thllvéb( Mza@) = — (A1), 6(t)) = (Bruo(t), 6(1)),

where (-,-) is the dual product between H'(Q2) and H*(€2). Observe that at time ¢ = 0,

—A¢(0) = 0 and hence, ¢(0) = 0. Using ¢ as a test function in the difference of the weak

formulations of (12) for uél) and ué2)

—||V¢ ||L2(Q) //V - (((]2)))-ngdmds
/ / u§ YV — R(u§? V@) - Vodrds

_/0 /Q (Q(“o1 ) — Q(u((f)))(“(()l) - ug )da;ds

, respectively, it follows that
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/ / R(u(")|Vp|Pdads
(13) —~ / / (R(u$") = R(u$)) V@ - Vpdads.
0 Q

The second integral on the right-hand side is estimated as

)IVgPdrds| < |R(ug”) | s= o=@ VSli2@r) < CillVélliagn

for some constant C; > 0, where Qr = Q x (0,7). This is the only place where the
boundedness of uq is needed.

To estimate the last integral in (13), we use the assumption V¢ € L>(0,T; L>(Q))
and Young’s inequality with ¢ > 0:

R(ug”) — R(u))Vo® - Vdrds

<(12/ /|R ) = R(u)||Vo|dwds

/ / (ug Vg + £ dids

e RO oo
14 Vo|*duds.
( ) / / UO u(() )))uo N 8’ ¢| Tas

We claim that the quotient is bounded. Indeed, by assumption (8), (R')?/Q’ is bounded
on [0, L] and hence, by Holder’s inequality,

1 2 1 / (1) D))
(/0 R’(euél)Jr(l—e)“t()z))de) S/ (RC(;’;;OU +((1_Z)) (2)>)) )dﬁ

/Qeuo (1—0)u(?)do

< 03/ Q' (6ul" + (1 — 0)u?)do.
0
This shows that

(R(u$)) = Ru))?  (fy B(Oug? + (1= 0)ui’)do) ud
<Q<u<”>—c2<ué”>>uo+s Jo @(0ug” + (1 = O)ug?)dbug + ¢~

Then (14) becomes
/ / Qu 82)))u0 + ¢)dxds

‘ / / uP)) VP - Vodrds| <
+ZO§(13/O /Q|ng5|2dxds.
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/ / ul? )))uodxds

+ chcgylwuimﬂ.

In the limit ¢ — 0, we obtain

)) Vo . Vodrds| <

The first integral on the right-hand side is absorbed by the first integral on the right-hand
side of (13), and we end up with

t
V6 ()220 < Ci / V6112 ds

where Cy = 2C) + C2C3/2. Finally, by Gronwall’s lemma, it follows that V¢(¢) = 0 in Q
and ug(t) = —A¢(t) = 0. Since [, ¢(t)dx = 0, we also have ¢(t) = 0 for t € (0,T). This
shows that (2), (12) is uniquely solvable.

Step 2. Uniqueness for u;. Let ut) = (ugl) ul)) and u® = (WP ,uq(f)) be two
weak solutions to (1). In this step, the solutlons are not required to be bounded We
set ul! = o lazugl), ul?) = Yo aiuZ@). Step 1 shows that vy := u(()l) — u!? and the
corresponding potential ¢ is unique. Then u™") and u(? solve, respectively,

(15) Al = div (p (uo) Vul? + u(])F) j=1,2,

with corresponding no-flux and initial conditions, where F' = q(ug)Vug + 7(ug)Ve €
L*(Qr). Let 0 < e < 1. We introduce, as in [32], the regularized entropy

he(s) = (s+e¢)(log(s+¢e)—1)+1, s>0,

(u, v) Z/( (i) + he(v5) — 2h5(“i;r”i>)dx

and the semimetric

for appropriate functions u = (uy,...,u,), v = (v1,...,v,). Since h. is convex, we have
d.(u,v) > 0.

We recall the following result. Let 0 < w € L*(0,T; H'(2)) n H*(0,T; H*(2)"). Then
t = [, he(w(t))dz is absolutely continuous and

g / he(w(t))dz = (D, log(w + ).

Therefore, we can differentiate ¢ > d.(u(V)(t),u®(t)), yielding

d . (1) (2)
Eds(u(l), u?) = ,Zl ((@u Jog(ul + &)Y + (8ul? log(u® + €))

(1) (2)
B <8t<u£” + 1), log (u T +5>>)
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1)
:_Z/ p(ug)V —i—u(l)F) Vluz dx

§)+8
Vu,”
—Z / Vul +ul F) 5 —da
u; " +e¢
S [ G )+ )+ ) T
+ /puOVui +u;) + (u; ) +u ) : dz.
—1 JQ ugl)—i—u()—{—%

Rearranging the terms, we end up with

d (2)2 OIRIOMNE:
Ly Z/ " (IVU v v +uf) )dx

(1+€ (2)+5 §)+u§)+2€

(1) (1) (2)
_Z/F Yu (1)( ﬁl U; +2uz >d$

+e u+u® 4o

@ a4 o
_Z/F vu@( ;”) tu )daz.

+5 El)+u§)+25

/v—l—gvu_ u+8vv
u-+e v+¢€

the first term is nonpositive. Then, integrating in time and observing that d.(u{"(0),
u?(0)) = 0, it follows that

1) e
d.(uV(t),u Z / / F-vu! ( a Yt )dxds

)+€ 51)+u§)+2€

e 4 ,@
U; u; o+
(16) —Z/ /F V! ( B > )dxds.

+e o El)+u§)+25

Since for suitable functions u, v,

2

|Vul? N V| B V(u+v)> 1
ut+e v+e U+ v+ 2 u—+v—+ 2

)

Expanding h. ( M) ) and he(u; @ ) at ( u® ) /2 up to second order and summing the
resulting expressmns we find that, for some 9 M) e € (0,1) (k=1,2) and Sz(k) = Ql(k)ul(-k) +

(1= 0" (ut) +u?) /2,

d.(u! Z / (D) + HED)) (@) — u? e
) 2)) ))2

(1 (1) u(g
= E g z dz.
4 /Q max{ul , l N+ 5 =1 /Q max{ul : l N+
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Since F' - Vug € LY(Qr) for j = 1,2, we may apply the dominated convergence theorem
giving, as € — 0,

t ‘ J (1) (2)
//F-vug( ' +2“ )d:cds—>0, j=1,2.
0 Ja ug—i-é? ()—i—u()—i—Qa

Therefore, (16) becomes

(1) (2)y(4)2

( (2)\ (¢

O S / <ul(l) UZ (2>)( ) dl’ - 07
o max{u,; "’ (t),u;,” (t)} +1

and thus, ugl)(t) = UEQ) (t) =0 for t € (0,T) since ul(])(t) is finite a.e. in €.
If » =0 and wug is not bounded, then we need the integrability (9) to make the compu-
tations rigorous. This concludes the proof of Theorem 1.

3. REMARKS

We give two comments on the regularity of the drift term and on the relation of Gajew-
ski’s semimetric to relative entropies.

Remark 3 (Lower regularity of V). We claim that the regularity on ¢ can be relaxed
to Vo € L>(0,T; L%(2)) with a > d if p(s) + q(s)s = D = const. > 0. For simplicity, we
assume that D = 1. In this case, we do not need to apply the H~! method and can use
standard L? estimates. Let (u™,¢M) and (u®, ¢®)) be two solutions to (2), (12) with the
same boundary and initial conditions. Taking u™") —u(® as a test function in (12), we find

that
;/< M _ @) dﬁ/ /|v — u))Pdads
/ / RPNV . V() — ul?)deds
_/ /R(u(()2))V(¢(l)—¢(2))'V(U(()1)—Uo )dxds
(17) = Ili[;

By the boundedness of uz(?) and the elliptic estimate for the Poisson equation, the second
integral is estimated as

I < G5 V(6D — ¢l 1200 IV (6 — u§) 2000
1 1
< V(U = u§) 220 + Collus” — us 220,

where @Q; = Q x (0,¢) and Cs > 0 depends on the L* norm of uéQ). For the first integral
I;, we employ the Lipschitz continuity of R, he Cauchy-Schwarz inequality, the Holder
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inequality, the Gagliardo-Nirenberg inequality with § = d/2 —d/p € (0, 1), and eventually
the Young inequality with parameter 6:

1 2 t 1
1< V(g = ug)[72q, + Cr / g = 46”170y | VO I s
0

1 1 2
< 1V (" = w32 + cg<r|v¢<”Hmm;mm))

x / IV - u[Fallus” — ue gy + ug = uf (32 ds
< IV~ u) g + Co(IV6 oz / lug” = u” |22 0y ds.
Therefore, (13) becomes
1 = u@) (O ey < Cro / s — P 20y ds,
and Gronwall’s lemma shows that (u(() ) u(()Q))(t) =0in Q, t > 0. O

Remark 4 (Comparison of Gajewski’s semimetric and relative entropies). In the second
step of the proof of Theorem 1, we may work with another semimetric, based on the relative
entropy

(Ulv) :H(u) — H(v) = H'(v) - (u—v),
as done in [13], where H (u Doy fﬂ w;)dx with h(u;) = u;(logu; — 1) + 1. Setting
h(u) = (h(uy), ..., h(uy)) by a shght abuse of notation, we see that h : R" — R" is a convex

function. Instead of the expression from [13], we use its symmetrized version to obtain a
semimetric:

(18) do(u,v) = H(u|v) + H(v|u) = /Q(h’(u) —h'(v)) - (u—v)d.

The semimetrics (5) and (18) are strongly related although they are different. First, both
expressions behave like |u — v|? for “small” |u — v|, since a Taylor expansion shows that
both semimetrics can be estimated from below by, up to a factor, (u — v)"h"(&)(u — v),
where h”(£) is the Hessian of h at some point & € R™. Second, when differentiating
do(uM, u?) with respect to time and inserting (1), the drift terms cancel, as they do when
differentiating d(u™, u®). A formal computation shows that

d
adﬂ( Z/ U'O uz+vz

implying that ") = «(®. In order to make this argument rigorous, we need to work as in

)|V 1o dx<0

section 2 with a regularization (replacing ug‘j ) by ugj )+ £).
In fact, the previous argument can be generalized to the following family of semimetrics.
Let di(u,v) = [, g(u,v)dz for some smooth symmetric convex function g and let u(") and
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u® be two solutions to the scalar equation
(19) Owu = div(a(z)Vu + uF'(z)),

which resembles (15), with no-flux boundary conditions and the same initial condition. We
assume that a(x) > 0 and F'(x) € R™. Set

g g

0%g
_ 1) @) _
g11 8u2 (U y U )7 gi12 (9u8v

1) (2 _ @ 2
(U , U )7 gQQ_w(u , U )

Then, formally,

d
%dl(u(l),u@)) = —/ a(x) (911|Vu(1)|2 +2¢1,Vul - v + g22|Vu(2)|2)d:v
Q

— / F(x) - ((u(l)g11 + u@g1)Vu + (uW gy + u(z)gzg)Vu(Q))d:c.
Q

Since g is convex, the first integral is nonnegative. If we assume that

(20) u— +v =0 for all u,v,

then the second integral vanishes (using the symmetry of ¢g) and consequently, %dl (uV)
u?) < 0, which implies that u") = u?). The integrands of the semimetrics (5) and (18
satisfy condition (20). This argument shows that the linearity in the diffusion term of (19
is essential for the entropy method.

o=

4. EXAMPLES
Theorem 1 can be applied to some cross-diffusion systems arising in applications.

4.1. Maxwell-Stefan equations. The first example are the Maxwell-Stefan equations
(24, 31]
n+1

(21) @tul—f-leJZ:O, VUZ: - Z dij(ujJi_uiJj), 1= 1,...,n+1,

J=1,7#
where J; are the fluxes and d;; the diffusion coefficients. For a formal derivation, see [18,
Section 4.2]. We assume that the sum of all concentrations is constant, Z:fll u; = 1, which
implies that 3" J; = 0. In contrast to (1), the fluxes are not a linear combination of
the gradients Vu;, and we need to invert the flux-gradient relations. However, because of
Z?Ill ; = 0, the relations cannot be directly inverted. One idea is to remove the variable
Upp1 = 1 —>" |, ending up with n equations, formulated as Vu' = AyJ’ [19], where
U= (ug, .. un), J = (J1,..., Jn), and Ag = (A);) € R™" with

A?j = —(dij = dipy)wi, i#£7j, i,j=1,...,n,

n

A?i = Z (dij —dips1)uj +dintr, i=1,...,n.
j=Li#i

is invertible. The existence of global bounded weak solutions was shown in [19].
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Corollary 5 (Maxwell-Stefan model). Let d;; = Dy and d; i1 = D fori,j =1,...,n.
Then the Mazwell-Stefan system (3), (21) has at most one weak solution.
Proof. By assumption, we have

n

k=1, ki
A computation shows that the inverse A(u) = A" is given by

A = J .
) = 5 DDy - DY

This expression is of the form (4) with a; = 1 and

B D (- — DD
T D2+ DD, —D)s T D2y DD, - D)s’

p(s)

The assumptions of Theorem 1 are satisfied since r(s) = 0 and

1

> —— >0 > 0.
pls) 2 max{Dy, D} =

p(s) +als)s = 5

This concludes the proof. O

4.2. Shigesada-Kawasaki-Teramoto equations. The second example is the Shigesada-
Kawasaki-Teramoto system (1) arising in population dynamics [30] with coefficients

(22) AU(U) = 51']' (aio + Z ClijUj> + Q5 Uy, Bij (U) = 5ijui, Z,] = 1, o,y

Jj=1

where a;; > 0 fori=0,...,n,j =1,...,n. The variables u; model population densities of
interacting species subject to some environmental potential. A formal derivation was given
in [18, Section 4.2]. The existence of global weak solutions was proved in [9] (with B;; = 0)
under the assumption that there exists a vector (7, ..., m,) such that the detailed-balance
condition m;a;; = mja,; for all 4,7 = 1,...,n holds or the self-diffusion a;; dominates cross-
diffusion a;; (i # j). Under additional conditions and for n = 2, the weak solutions are
bounded [20].

Corollary 6 (Population dynamics model). Let a;p = a9 > 0 and a;; = a; > 0 for
i,7=1,...,n. Then (1)-(3), (22) has at most one bounded weak solution.

Note that under the conditions of the corollary, the detailed-balance condition is satisfied
with m; = a;. The corollary follows from Theorem 1 by setting p(s) = a9+ s > ag > 0,
q(s) =1, and r(s) = 1.
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4.3. A volume-filling model for ion transport. The ion-transport model is defined by
(23) Aw(u) = Dlul fOl" 7 7é j, A“(U) = Dl(l — Ug + ui), Bij = Zl(l — Uo)uiéij,

where ug = > | u; and D; > 0, z; € R are some constants [7]. The variables u; represent
the ion concentraton of the ith species and u,11 := 1 — ug the solvent concentration. The
model can be derived formally from a random-walk lattice model [26, 18]. The existence
of global bounded weak solutions was shown in [32] without potential and in [15] including
the potential term. Formulation (4) is obtained for D; = D > 0 and z; = z € R by setting
a; =1, pi(s) = D(1—35), ¢;(s) = D, and r;(s) = z(1 — s). The following result was already
proved in [15]. We show here that the model fits in our framework.

Corollary 7 (Ion-transport model). Let D; = D > 0 and z; = z € R fori =1,...,n.
Then (1)-(3), (23) has at most one bounded weak solution with V¢ € L>(0,T; L*(2)) and
a>d.

Proof. Conditions (7)-(8) are satisfied since p(s) + ¢(s)s = D > 0 and r(s) is con-
tinuous on [0,1]. By Remark 3, the uniqueness result holds for potentials satisfying
V¢ e L>(0,T; L%()) with o > d. O
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