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Abstract. Discrete convex Sobolev inequalities and Beckner inequalities are derived for
time-continuous Markov chains on finite state spaces. Beckner inequalities interpolate
between the modified logarithmic Sobolev inequality and the Poincaré inequality. Their
proof is based on the Bakry-Emery approach and on discrete Bochner-type inequalities
established by Caputo, Dai Pra, and Posta and recently extended by Fathi and Maas
for logarithmic entropies. The abstract result for convex entropies is applied to several
Markov chains, including birth-death processes, zero-range processes, Bernoulli-Laplace
models, and random transposition models, and to a finite-volume discretization of a one-
dimensional Fokker-Planck equation, applying results by Mielke.

1. Introduction

Convex Sobolev inequalities such as Poincaré and logarithmic Sobolev inequalities play
an important role in the analysis of the convergence to stationarity for Markov processes.
Besides implying exponential decay of the entropy, it is known that these functional in-
equalities give useful concentration bounds [7] and hypercontractivity of the corresponding
semigroup [17], and they are a natural tool to estimate mixing times [29]. There exists an
extensive literature on the derivation of Poincaré inequalities (or spectral gap estimates)
and logarithmic Sobolev (or shorter: log-Sobolev) inequalities in the discrete and continu-
ous setting; see, e.g., the reviews [17, 22, 29] and the books [1, 4, 31]. An algorithm for the
computation of the spectral gap is presented in [15], while corresponding estimates can be
found in [9, 13, 10]. For log-Sobolev inequalities, we refer to [6, 11, 23].
There are much less results on Beckner inequalities for Markov chains, which interpolate

between the Poincaré inequality and log-Sobolev inequality [5]. Such inequalities are of
interest, for instance, in the large-time analysis of Markov chains using general entropies
or in numerical analysis, proving the exponential decay of solutions to discretized partial
differential equations [12]. We are only aware of the paper by Bobkov and Tetali [7], where
estimates on the constant of the Beckner inequality were derived for Bernoulli-Laplace and
random transposition models. In this paper, we establish new bounds for discrete convex
Sobolev and Beckner inequalities for stochastic processes not studied in [7].
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The technique of proof is the Bochner-Bakry-Emery method of Caputo et al. [11], which
was recently extended by Fathi and Maas in [18] in the context of Ricci curvature bounds.
The idea of the Bakry-Emery approach is to relate the second time derivative of the entropy
to its entropy production. This relation is achieved by employing a discrete Bochner-type
equation which replaces the Bochner identity in the continuous case.
In order to make these ideas precise, consider a time-homogeneous Markov process

(Xt)t≥0 with values in a finite state space S, having an invariant measure π. We as-
sume that the semigroup (Tt)t≥0, defined on L2(π) by Ttf(x) = E[f(Xt) : X0 = x], is
strongly right continuous, so that the infinitesimal generator L exists, Tt = etL. Given a
probability measure µ on S, we denote by µTt the distribution of Xt assuming that X0 is
distributed according to µ. The rate of convergence of µTt to the invariant measure π is a
major topic in probability theory. It can be achieved by estimating the time derivative of
the relative entropy.
Before explaining the entropy decay, we introduce some notation. The relative entropy

hφ(µ|π) of µ with respect to π is defined by

hφ(µ|π) = π

[
φ

(
dµ

dπ

)]
=

∑

η∈S

π(η)φ

(
dµ

dπ

)
(η),

where φ : R+ → R+ is a smooth convex function such that φ(1) = 0 and 1/φ′′ is concave,
R+ = [0,∞), and hφ(µ|π) is meant to be infinite whenever µ 6≪ π or φ(dµ/dπ) 6∈ L1(π).
The entropy can be defined on the set of probability densities f such that φ(f) ∈ L1(π) by

Entφπ(f) = π[φ(f)],

so that hφ(µ|π) = Entφπ(dµ/dπ). When φ1(s) = s(log s− 1) + 1, we obtain the logarithmic
entropy and if φ2(s) = s2−2s+1, Entφπ(f) equals the variance of f , Varπ(f) = π[f 2]−π[f ]2.
Another example is φα(s) = (sα − s)/(α − 1) − s + 1 for 1 < α ≤ 2, which interpolates
between φ1 and φ2 in the sense that φα(s) → φ1(s) pointwise as α → 1 and φα(s) = φ2 if
α = 2.
Let ρt = d(µTt)/dπ be the probability density of the Markov chain at time t ≥ 0. We

assume in the following that the Markov chain is reversible, i.e., the generator is self-
adjoint in L2(π). Then ρt solves the Kolmogorov equation ∂tρt = Lρt, t > 0. The idea of
Bakry and Emery [3] is to differentiate the entropy twice with respect to time. A formal
computation gives

(1)

d

dt
Entφπ(ρt) = −E(φ′(ρt), ρt),

d2

dt2
Entφπ(ρt) = π[Lφ′(ρt)Lρt + φ′′(ρt)(Lρt)2

]
,

where E(f, g) := −π[fLg] is the Dirichlet form of L. Now suppose that the following
inequality holds for some λ > 0:

(2) π[Lφ′(ρ)Lρ+ φ′′(ρ)(Lρ)2
]
≥ λE(φ′(ρ), ρ), t > 0.
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This is equivalent to ∂2tEnt
φ
π(ρ) + λ∂tEnt

φ
π(ρ) ≥ 0, and by Gronwall’s lemma, we conclude

that ∂tEnt
φ
π(ρt) converges to zero with exponential rate. Furthermore, integration over

(t,∞) leads to

(3)
d

dt
Entφπ(ρ) + λEntφπ(ρ) ≤ 0, t > 0,

if we know that Entφπ(ρt) → 0 as t → ∞. On the one hand, this implies exponential
convergence of the relative entropy to zero, i.e., Entφπ(ρt) ≤ Entφπ(ρ0)e

−λt. On the other
hand, (3) is equivalent to the convex Sobolev inequality

(4) λEntφπ(f) ≤ E(φ′(f), f),

valid for all probability densities f .
It is well known that if the so-called curvature-dimension condition CD(λ,∞) is satisfied,

then the convex Sobolev inequality (4) is valid [4, Section 1.16]. For instance, if L is
the generator of the Ornstein-Uhlenbeck process, CD(λ,∞) holds with λ = 1 under the
conditions that φ is convex and 1/φ′′ is concave [2]. In the discrete case, the validity of
(4) is not known except in the logarithmic case φ = φ1. In this paper, we derive general
conditions on φ that guarantee the validity of (4).
For the special cases φ1(s) = s(log s − 1) + 1 and φ2(s) = s2 − 2s + 1, we obtain the

modified log-Sobolev inequality and Poincaré inequality, respectively,

(5) λMEntφ1

π (f) ≤ E(log f, f), λPVarπ(f) ≤ E(f, f).
Note that if L is the generator of a reversible diffusion process, we may write E(log f, f) =
4E(f 1/2, f 1/2), so the log-Sobolev inequality λLEnt

φ1

π (f) ≤ E(f 1/2, f 1/2) and the first in-
equality in (5) coincide with λM = 4λL. This is generally not true for Markov processes
with jumps [6], but for reversible processes, the relations 4λL ≤ λM ≤ 2λP hold [7, 17].
The aim of this paper is to determine conditions under which there exists a constant

λ > 0 such that the (discrete) convex Sobolev inequality (4) and the exponential entropy
decay

(6) Entφπ(ρt) ≤ e−λtEntφπ(f). t > 0,

hold. Furthermore, we derive explicit constants λB(α) > 0 such that the (discrete) Beckner
inequality holds:

(7) λB(α)Ent
φα

π (ρ) ≤ α

α− 1
E(ρα−1, ρ), 1 < α ≤ 2.

The Beckner inequality is related to the modified log-Sobolev and Poincaré inequalities.
Indeed, if α → 1, (7) becomes the modified log-Sobolev inequality with limα→1 λB(α) = λM
and if α = 2, (7) equals the Poincaré inequality with λB(2) = 2λP . For 1 < α < 2, applying
(7) to functions of the form 1+εf , performing a Taylor expansion, and letting ε→ 0 shows
that λB(α) ≤ 2λP .
According to the above discussion, inequalities (5)-(7) are achieved by proving (2), and

the proof of this inequality is based on a discrete Bochner-type identity. The idea to employ
such an identity was first presented in [9], elaborated later in [11, 18], and goes back to
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[8]. The identity is obtained by identifying the Radon-Nikodym derivative of a measure
involving the jump rates of the Markov chain [9, Section 2]. This allows one to relate
terms with different orders of “discrete derivatives” occuring in L. For details, we refer to
Section 2. Our technique of proving (7) is completely different from the work [7], where
an iteration method was used to derive discrete Beckner inequalities.
Fathi and Maas [18] extended the results of Caputo et al. [11]. The key idea of [18]

(and, by the way, of [27]) is the use of the logarithmic mean

ρ∗(η, ξ) =
ρ(η)− ρ(ξ)

log ρ(η)− log ρ(ξ)

in the analysis. The logarithmic mean allows for the discrete chain rule ρ∗∇ log ρ = ∇ρ,
where ∇ρ(η, ξ) = ρ(η) − ρ(ξ), which naturally holds in the continuous case. This chain
rule is needed to treat the logarithmic entropy. In the case of general convex entropies, it
is natural to replace the logarithmic mean by

(8) ρ̂(η, ξ) =
ρ(η)− ρ(ξ)

φ′(ρ(η))− φ′(ρ(ξ))
, φ convex,

which satisfies the discrete chain rule ρ̂∇φ′(ρ) = ∇ρ since ρ̂ “approximates” 1/φ′′(ρ). When
φ = φα, we obtain the power mean

ρ̂(η, ξ) =
α− 1

α

ρ(η)− ρ(ξ)

ρ(η)α−1 − ρ(ξ)α−1
, 1 < α < 2.

We remark that the idea to enforce a discrete chain rule is well known in the design of
structure-preserving numerical schemes and was used, e.g., in the construction of entropy-
conservative finite-volume fluxes [19] and in the discrete variational derivative method [20].
The novelty of this paper is the identification of the conditions on φ that are needed to

apply the technique of [11, 18]. It turns out that, besides convexity of φ and the concavity
of 1/φ′′, the concavity of

(9) θ(s, t) =
s− t

φ′(s)− φ′(t)
, s 6= t, θ(s, s) =

1

φ′′(s)
,

is needed. This is not surprising since θ(s, t) is a discrete approximation of 1/φ′′, and the
concavity of 1/φ′′ is assumed in the continuous case. Conditions on φ that guarantee the
concavity of θ are stated in Lemma 15. Both the logarithmic mean and the power mean
satisfy these conditions; see Lemma 16. The general theory can be applied to birth-death
processes, thus yielding new discrete convex Sobolev inequalities. For other stochastic
processes considered in this paper (zero-range processes, Bernoulli-Laplace models, random
transposition models), a homogeneity property of θ is needed, which restricts the class
of admissible functions φ. It turns out that the logarithmic mean and the power mean
satisfy this property; see Lemma 16. For the mentioned processes, new discrete Beckner
inequalities are derived.
The paper is organized as follows. We detail the Bochner-Bakry-Emery method in Sec-

tion 2. The validity of the discrete Beckner inequality (7) is reduced to the validity of
a modification of (2). In Section 3, we apply the general technique to four stochastic
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processes (as in [18]): birth-death processes, zero-range processes, Bernoulli-Laplace mod-
els, and random transposition models. Furthermore, the results for birth-death processes
are applied to a finite-volume discretization of a one-dimensional Fokker-Planck equation,
yielding exponential decay of the discrete entropy. The proof consists of a combination of
the convex Sobolev inequality for birth-death processes and the results of Mielke [27], who
proved exponential decay for the logarithmic entropy.
Our main conclusion is that the Bochner-Bakry-Emery approach is sufficiently flexible

to be applicable to power functions and, in certain cases, to general convex functions.

2. The Bochner method

Let an irreducible and reversible Markov chain on a finite state space S be given and let
π be the invariant measure. We write the generator L in the form

Lf(η) =
∑

γ∈G

c(η, γ)∇γf(η),

where G is the set of allowed moves (represented by functions γ : S → S), the mapping
c : S × G → [0,∞) represents the jump rates, and ∇γf(η) = f(γη) − f(η). We observe
that the generator of every finite Markov chain can be written in this form. We assume
the following two properties: For any γ ∈ G, there exists γ−1 ∈ G satisfying γ−1γη = η for
all η ∈ S with c(η, γ) > 0. Furthermore, the reversibility condition

π

[∑

γ∈G

c(η, γ)F (η, γ)

]
= π

[∑

γ∈G

c(η, γ)F (γη, γ−1)

]

holds for all F : S ×G→ R. Under reversibility, the Dirichlet form can be written as

(10) E(f, g) = 1

2
π

[∑

γ∈G

c(η, γ)∇γf(η)∇γg(η)

]
.

For the discrete Bochner-type identity, we suppose as in [11]:

Assumption 1. There exists a function R : S ×G×G→ R such that
(i) R(η, γ, δ) = R(η, δ, γ) for all η ∈ S, γ, δ ∈ G;
(ii) for all bounded functions ψ : S ×G×G→ R,

π

[ ∑

γ,δ∈G

R(η, γ, δ)ψ(η, γ, δ)

]
= π

[ ∑

γ,δ∈G

R(η, γ, δ)ψ(γη, γ−1, δ)

]
.

(iii) γδη = δγη for all η ∈ S, γ, δ ∈ G with R(η, γ, δ) > 0.

The following lemma, which extends Lemma 2.3 in [11], was proven in [18, Lemma 3.3].
It expresses a discrete Bochner-type identity.

Lemma 1. Let χ, ψ : S → R and let β : S × S → R be symmetric. Then

π

[ ∑

γ,δ∈G

R(η, γ, δ)β(η, δη)∇δχ(η)∇γψ(η)

]
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=
1

4
π

[ ∑

γ,δ∈G

R(η, γ, δ)∇γ

(
β(η, δη)∇δχ(η)

)
∇δ∇γψ(η)

]
.

The key estimate is contained in the following proposition that is an extension of Theo-
rem 3.5 in [18] from the logarithmic case to the case of general convex functions.

Proposition 2. Let φ ∈ C3((0,∞); (0,∞)) be convex such that φ(1) = 0, 1/φ′′ is concave
on (0,∞), and let θ, defined in (9), be concave. Assume that there exists a function R
satisfying Assumption 1 and define Γ(η, γ, δ) = c(η, γ)c(η, δ)− R(η, γ, δ) for η ∈ S and γ,
δ ∈ G. Then, for any positive probability density ρ,

π
[
Lφ′(ρ)Lρ+ φ′′(ρ)(Lρ)2

]
(11)

≥ π

[ ∑

γ,δ∈G

Γ(η, γ, δ)
(
∇γφ

′(ρ(η))∇δρ(η) + φ′′(ρ(η))∇γρ(η)∇δρ(η)
)]
.

Remark 3. In Lemma 15 (see Appendix), conditions on φ are stated guaranteeing the
concavity of θ. We introduce the following notation:

ρ̂(η, δη) = θ(ρ(η), ρ(δη)) =
ρ(δη)− ρ(η)

φ′(ρ(δη))− φ′(ρ(η))
=

∇δρ(η)

∇δφ′(ρ(η))
,(12)

ρ̂1(η, δη) = ∂1θ(ρ(η), ρ(δη)) = − 1

∇δφ′(ρ(η))
+

∇δρ(η)φ
′′(ρ(η))

(∇δφ′(ρ(η)))2
,(13)

ρ̂2(η, δη) = ∂2θ(ρ(η), ρ(δη)) = ρ̂1(δη, η),(14)

where ∂1θ and ∂2θ are the partial derivatives of θ with respect to the first and second
variable, respectively. �

Proof of Proposition 2. The first term on the left-hand side of (11) can be written as fol-
lows, using the definitions of L, ρ̂, and Γ:

π
[
Lφ′(ρ)Lρ

]
= π

[ ∑

γ,δ∈G

c(η, γ)c(η, δ)∇γφ
′(ρ)∇δρ(η)

]

= π

[ ∑

γ,δ∈G

c(η, γ)c(η, δ)ρ̂(η, δη)∇γφ
′(ρ(η))∇δφ

′(ρ(η))

]

= π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂(η, δη)∇γφ
′(ρ(η))∇δφ

′(ρ(η))

]

+ π

[ ∑

γ,δ∈G

Γ(η, γ, δ)ρ̂(η, δη)∇γφ
′(ρ(η))∇δφ

′(ρ(η))

]
.

By Lemma 1 with β(η, δη) = ρ̂(η, δη), the first term on the right-hand side of the previous
equation can be rewritten, leading to π[Lφ′(ρ)Lρ] = A1 + A2, where

A1 =
1

4
π

[ ∑

γ,δ∈G

R(η, γ, δ)∇γ

(
ρ̂(η, δη)∇δφ

′(ρ(η))
)
∇δ∇γφ

′(ρ(η))

]
,
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A2 = π

[ ∑

γ,δ∈G

Γ(η, γ, δ)ρ̂(η, δη)∇γφ
′(ρ(η))∇δφ

′(ρ(η))

]
.

Next, we reformulate the second term on the left-hand side of (11), using the definitions
of L, ρ̂1, and Γ:

π
[
φ′′(ρ)(Lρ)2

]
= π

[ ∑

γ,δ∈G

c(η, γ)c(η, δ)∇γρ(η)∇δρ(η)φ
′′(ρ(η))

]

= π

[ ∑

γ,δ∈G

c(η, γ)c(η, δ)∇γρ(η)ρ̂1(η, δη)(∇δφ
′(ρ(η)))2

]

+ π

[ ∑

γ,δ∈G

c(η, γ)c(η, δ)∇γρ(η)∇δφ
′(ρ(η))

]

= π

[ ∑

γ,δ∈G

R(η, γ, δ)∇γρ(η)ρ̂1(η, δη)(∇δφ
′(ρ(η)))2

]

+ π

[ ∑

γ,δ∈G

Γ(η, γ, δ)∇γρ(η)ρ̂1(η, δη)(∇δφ
′(ρ(η)))2

]

+ π

[ ∑

γ,δ∈G

c(η, γ)c(η, δ)∇γρ(η)∇δφ
′(ρ(η))

]

=: B1 +B2 + (A1 + A2).

Then the left-hand side of (11) is given by

π
[
Lφ′(ρ)Lρ+ φ′′(ρ)(Lρ)2

]
= (B1 + 2A1) + (B2 + 2A2),

and we will estimate B1 + 2A1 and B2 + 2A2 separately.
First, we treat B2 + 2A2. Inserting the definition of ρ̂(η, δη) and rearranging the terms,

we find that

B2 + 2A2 = π

[ ∑

γ,δ∈G

Γ(η, γ, δ)ρ̂1(η, δη)∇γρ(η)(∇δφ
′(ρ(η)))2

]

+ 2π

[ ∑

γ,δ∈G

Γ(η, γ, δ)ρ̂(η, δη)∇γφ
′(ρ(η))∇δφ

′(ρ(η))

]

= π

[ ∑

γ,δ∈G

Γ(η, γ, δ)∇γφ
′(ρ(η))∇δρ(η)

]

+ π

[ ∑

γ,δ∈G

Γ(η, γ, δ)∇γρ(η)∇δρ(η)φ
′′(ρ(η))

]
,

which is exactly the right-hand side of (11). Thus, it remains to prove that B1 + 2A1 ≥ 0.
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To this end, we reformulate B1, employing Assumption 1 (i)-(ii) and identity (14):

B1 = π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂1(η, δη)∇γρ(η)(∇δφ
′(ρ(η)))2

]
(15)

= π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂1(δη, η)∇γρ(δη)(∇δ−1φ′(ρ(δη)))2
]

= π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂2(η, δη)∇γρ(δη)(∇δφ
′(ρ(η)))2

]
,(16)

since ∇δ−1φ′(ρ(δη)) = −∇δφ
′(ρ(η)). Averaging (15) and (16) gives

B1 =
1

2
π

[ ∑

γ,δ∈G

R(η, γ, δ)
(
ρ̂1(η, δη)∇γρ(η) + ρ̂2(η, δη)∇γρ(δη)

)
(∇δφ

′(ρ(η)))2
]
.

By (41) from Lemma 15 (see Appendix) with u = ρ(γη), v = ρ(γδη), s = ρ(η), and
t = ρ(δη), it follows that

ρ̂1(η, δη)∇γρ(η) + ρ̂2(η, δη)∇γρ(δη) ≥ ∇γ ρ̂(η, δη),

and we infer from the definition of A1 that

B1 + 2A1 ≥
1

2
π

[ ∑

γ,δ∈G

R(η, γ, δ)
{
∇γ ρ̂(η, δη)(∇δφ

′(ρ(η)))2(17)

+∇γ

(
ρ̂(η, δη)∇δφ

′(ρ(η))
)
∇δ∇γφ

′(ρ(η))
}]
.

The following identity has been used in the proof of Theorem 3.5 in [18]:

∇γ ρ̂(η, δη)(∇δψ(η))
2 +∇γ

(
ρ̂(η, δη)∇δψ(η)

)
∇δ∇γψ(η)(18)

= ρ̂(γη, γδη)(∇γ∇δψ(η))
2 − ρ̂(η, δη)∇δψ(γη)∇δψ(η)

+ ρ̂(γη, δγη)∇δψ(γη)∇δψ(η).

It can be verified by elementary computations. Taking ψ(η) = φ′(ρ(η)), the left-hand side
of (18) equals the expression in the curly brackets of (17), and we conclude that

B1 + 2A1 ≥
1

2
π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂(γη, γδη)(∇γ∇δφ
′(ρ(η)))2

]

− 1

2
π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂(η, δη)∇δφ
′(ρ(γη))∇δφ

′(ρ(η))

]

+
1

2
π

[ ∑

γ,δ∈G

R(η, γ, δ)ρ̂(γη, δγη)∇δφ
′(ρ(γη))∇δφ

′(ρ(η))

]
.
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It follows from Assumption 1 (ii)-(iii) that the second and third term on the right-hand
side cancel. The first term being nonnegative, we infer that B1+2A1 ≥ 0, which concludes
the proof. �

The following corollary is a consequence of Proposition 2.

Corollary 4. Let φ ∈ C3((0,∞); (0,∞)) be convex such that φ(1) = 0, 1/φ′′ is concave on
(0,∞), and let θ, defined in (9), be concave. Suppose that there exists a constant λ > 0
such that for all positive probability densities ρ,

π

[ ∑

γ,δ∈G

Γ(η, γ, δ)
(
∇γφ

′(ρ(η))∇δρ(η) + φ′′(ρ(η))∇γρ(η)∇δρ(η)
)]

(19)

≥ λ

2
π

[∑

γ∈G

c(η, γ)∇γφ
′(ρ(η))∇γρ(η)

]
.

Then the convex Sobolev inequality (4), the decay of the Dirichlet form

(20) E(φ′(etLρ), etLρ) ≤ e−λtE(φ′(ρ), ρ), t > 0,

and the decay of the entropy (6) hold for all positive probability densities ρ.

Proof. By Proposition 2 and representation (10) of the Dirichlet form, it follows from (19)
that

π[Lφ′(ρ)Lρ] + π[(Lρ)2φ′′(ρ)] ≥ λE(φ′(ρ), ρ).

Taking into account (1), this inequality is equivalent to

(21)
d2

dt2
Entφπ(ρt) ≥ −λ d

dt
Entφπ(ρt).

Using Gronwall’s lemma, we infer that 0 = limt→∞(−∂tEntφπ(ρt)). Furthermore, as π is an
invariant measure, ρt → 1 and Entπ(ρt) → 0 as t → ∞. Therefore, integrating (21) over
(0,∞), we conclude that

−E(φ′(ρ0), ρ0) =
d

dt
Entφπ(ρ0) ≤ −λEntφπ(ρ0),

and this is exactly the convex Sobolev inequality (4). �

3. Examples

In this section, we consider some stochastic processes analyzed in [11, 18] but for loga-
rithmic entropies only. For birth-death processes, we are able to allow for general convex
entropies, while for the remaining cases (zero-range processes, Bernoulli-Laplace models,
Random transposition models), only power entropies with φ = φα can be considered. The
reason is that we need additional features of φ that seem to be satisfied only under cer-
tain homogeneity properties. These features are summarized in Lemma 16. Our notation
follows that of [11].
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3.1. Birth-death processes. We investigate birth-death processes on N = {0, 1, 2, . . .}
with generator

Lf(n) = a(n)∇+f(n) + b(n)∇−f(n), n ∈ N,

where a and b are nonnegative functions on N satisfying b(0) = 0. The function a represents
the rate of birth, the function b the rate of death. The set of allowed moves is given by
G = {+,−}, where +(n) = n + 1 for n ∈ N and −(n) = n − 1 for n ≥ 1, −(0) = 0. In
particular, ∇±f(n) = f(n ± 1) − f(n). According to the notation of Section 2, c(n,+) =
a(n) and c(n,−) = b(n).
Since we considered in the previous section finite state spaces, we need to assume that

the transition rates a(n) and b(n) vanish for sufficiently large values of n in order to fit
into this framework. Another possibility is to consider finitely supported test functions.
According to [25], this case may be covered by using the results of Daniri and Savaré [16].
We expect that the result below still holds for countable Markov chains, but we leave the
proof for future works; also see [18, Remark 4.2].
We suppose that this Markov chain is irreducible and reversible, i.e., there exists a

probability measure π on N satisfying the detailed-balance condition

(22) a(n)π(n) = b(n+ 1)π(n+ 1), n ∈ N.

The following theorem is a consequence of Corollary 4, applied to birth-death processes.

Theorem 5. Let λ > 0 and let φ satisfy the assumptions stated in Proposition 2. Assume
that a is nonincreasing, b is nondecreasing, and

(23) a(n)− a(n+ 1) + b(n+ 1)− b(n) + Θ
(
a(n)− a(n+ 1), b(n+ 1)− b(n)

)
≥ λ

for all n ∈ N, where

Θ(A,B) := inf
s,t>0

θ(s, t)(Aφ′′(s) + Bφ′′(t)), A,B ≥ 0,

and θ(s, t) = (s− t)/(φ′(s)− φ′(t)) for s 6= t. Then the convex Sobolev inequality (5) and
the decay estimates (6) and (20) hold with constant λ.

The mapping Θ generalizes the function in [18, Section 4.1]. For the special case φ(s) =
φα(s) = (sα − s)/(α − 1) − s + 1, Lemma 18 in the Appendix shows that Θ(A,B) ≥
(α− 1)(A+B). Moreover, Θ(A,B) = A+B if α = 2. Figure 1 illustrates the “sharpness”
of the inequality Θ(A,B) ≥ (α− 1)(A+B) for α close to one.

Remark 6. Estimates for Poincaré inequalities for Markov chains are given in, e.g., [13,
14, 26]. The same criterion as in (23) was obtained in [27, Theorem 5.1] and [18, Theorem
4.1] for the logarithmic entropy (α → 1). From Lemma 18 we conclude that the Beckner
constant can be estimated by λ ≥ α(a(n)−a(n+1)+b(n−1)−b(n)). There exist sufficient
and necessary conditions on π and a(n) such that an interpolation between the Poincaré
and log-Sobolev inequality holds, but without estimates on the constant [31, Theorem
6.2.4]. �
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Figure 1. Illustration of Θ(A,B), defined in (9), for α = 1.01 (left) and
α = 1.8 (right).

Proof. We define as in [11, Section 3]

R(n,+,+) = a(n)a(n+ 1), R(n,−,−) = b(n)b(n− 1),

R(n,+,−) = R(n,−,+) = a(n)b(n).

This function satisfies Assumption 1. In particular, (ii) follows from the detailed-balance
condition (22). As before, we set Γ(n, γ, δ) = c(n, γ)c(n, δ) − R(n, γ, δ) for γ, δ ∈ G.
According to Corollary 4, we only need to verify (19). The left-hand side equals

π

[ ∑

γ,δ∈G

Γ(n, γ, δ)
(
∇γφ

′(ρ(n))∇δρ(n) +∇γρ(n)∇δρ(n)φ
′′(ρ(n))

)]

= π
[
a(n)(a(n)− a(n+ 1))

(
∇+φ

′(ρ(n))∇+ρ(n) + (∇+ρ(n))
2φ′′(ρ(n))

)]

+ π
[
b(n)(b(n)− b(n− 1))

(
∇−φ

′(ρ(n))∇−ρ(n) + (∇−ρ(n))
2φ′′(ρ(n))

)]
,

since the sum over all γ, δ ∈ G consists of four terms (+,+), (−,−), (+,−), and (−,+), and
because of Γ(n,+,−) = Γ(n,−,+) = 0, only two terms do not vanish. Now, we perform the
change n 7→ n+1 in the second term and replace π(n+1)b(n+1) by π(n)a(n), according to
the detailed-balance condition (22). Observing that b(0) = 0 and ∇−ρ(n+1) = −∇+ρ(n),
this leads to

π

[ ∑

γ,δ∈G

Γ(n, γ, δ)
(
∇γφ

′(ρ(n))∇δρ(n) +∇γρ(n)∇δρ(n)φ
′′(ρ(n))

)]

= π
[
a(n)(a(n)− a(n+ 1))

(
∇+φ

′(ρ(n))∇+ρ(n) + (∇+ρ(n))
2φ′′(ρ(n))

)]

+ π
[
a(n)(b(n+ 1)− b(n))

(
∇+φ

′(ρ(n))∇+ρ(n) + (∇+ρ(n))
2φ′′(ρ(n+ 1))

)]

= π
[
a(n)

(
a(n)− a(n+ 1) + b(n+ 1)− b(n)

)
∇+φ

′(ρ(n))∇+ρ(n)
]
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+ π
[
a(n)

(
(a(n)− a(n+ 1))φ′′(ρ(n)) + (b(n+ 1)− b(n))φ′′(ρ(n+ 1))

)

× ρ̂(n, n+ 1)∇+φ
′(ρ(n))∇+ρ(n)

]

≥ λπ
[
a(n)∇+φ

′(ρ(n))∇+ρ(n)
]
,

where in the last step we employed (23). Using again the detailed-balance condition (22)
and the identity ∇−ρ(n) = −∇+ρ(n− 1), the right-hand side of (19) becomes

λ

2
π

[∑

γ∈G

c(n, γ)∇γφ
′(ρ(n))∇γρ(n)

]

=
λ

2
π
[
a(n)∇+φ

′(ρ(n))∇+ρ(n)
]
+
λ

2
π
[
b(n)∇−φ

′(ρ(n))∇−ρ(n)
]

=
λ

2
π
[
a(n)∇+φ

′(ρ(n))∇+ρ(n)
]
+
λ

2
π
[
a(n)∇+φ

′(ρ(n))∇+ρ(n)
]

= λπ
[
a(n)∇+φ

′(ρ(n))∇+ρ(n)
]
.

Combining the above computations, inequality (19) follows. �

3.2. Zero-range processes. A zero-range process describes a stochastically interacting
particle system that may exhibit phase separation; see, e.g., [28]. The system consists
of finitely many particles moving in a finite number of sites {1, 2, . . . , L}. We adopt the
notation of [11]. Let ηx ∈ N denote the number of particles at x ∈ {1, 2, . . . , L}. Then
the state space is S = N

L. The configuration is changed by moving a particle from an
(occupied) site x to another site y. Correspondingly, the set G of allowed moves is given
by self-mappings of S which are of the form η 7→ ηxy, where x, y ∈ {1, 2, . . . , L}, x 6= y,
and

ηxyz =





ηz if z /∈ {x, y} or ηx = 0,
ηz − 1 for z = x and ηx > 0,
ηz + 1 for z = y and ηx > 0.

We denote by xy the mapping η 7→ ηxy (such that xy(η) = ηxy) and set ∇xyf(η) =
f(ηxy)− f(η) for η ∈ S.
The jump rates are functions cx : N → R+ for x ∈ {1, 2, . . . , L} satisyfing cx(0) = 0 and

cx(n) > 0 for n > 0. They describe the rate at which a particle is moved from site x to
site y, with randomly chosen y, with uniform probability on {1, 2, . . . , L}. Then the rate
c(η, xy) for moving a particle from x to y is cx(ηx)/L, and the generator of the Markov
chain becomes

Lf(η) = 1

L

∑

x,y

cx(ηx)∇xyf(η),

where the sum extends to all x, y ∈ {1, 2, . . . , L}. The number of particles N =
∑

1≤x≤L ηx
is conserved. We define the probability measure πN on configurations with N particles by

πN(η) =
1

ZN

L∏

x=1

ηx∏

k=1

1

cx(k)
,
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where ZN > 0 the (finite) normalization constant. Since

(24) π[cx(ηx)g(η)] = π[cy(ηy)g(η
yx)]

holds for all functions g : S → R, the Markov chain is reversible with respect to πN . In
the following, we fix the number of particles N and omit the subscript N .

Theorem 7. Let φ(s) = (sα − s)/(α− 1)− s+ 1 and 1 < α < 2. Assume that there exist
constants 0 ≤ δ < 22−αc such that

(25) c ≤ cx(n+ 1)− cx(n) ≤ c+ δ for x ∈ {1, 2, . . . , G}, n ≥ 0.

Then the Beckner inequality (7) and the decay estimates (6) and (20) hold with λ =
αc− (3 + 2α−2 − α)δ.

Remark 8. In the case of constant rates, the spectral gap is of the order of L2/(L2 +N2)
[30]. Note that our bound λ = 2(c− δ) for α = 2 does not depend on either L or N . It was
shown in [9] that the lower bound in (25) is sufficient to derive the spectral-gap estimate
λ ≥ c. In the homogeneous case δ = 0, we have even λ = 2c. As pointed out in [11],
a condition on the growth of the rates is necessary for the modified logarithmic Sobolev
inequality. Our bound λ = c− 5δ/2 for α → 1 is the same as in [18, Theorem 4.3]. �

Proof. We define as in [11, Section 4] the function

R(η, xy, uv) =
1

L2

{
cx(ηx)cu(ηu) for x 6= u,
cx(ηx)cu(ηu − 1) for x = u,

which satisfies Assumption 1. It follows that Γ(η, xy, uv) = 0 if x 6= u and

Γ(η, xy, uv) = L−2cx(ηx)
(
cx(ηx)− cx(ηx − 1)

)
if x = u,

and the left-hand side of (19) can be written as

π

[ ∑

γ,δ∈G

Γ(η, γ, δ)
(
∇γρ

α−1(η)∇δρ(η) + (α− 1)∇γρ(η)∇δρ(η)ρ
α−2(η)

)]

=
1

L2
π

[∑

x,y,v

cx(ηx)
(
cx(ηx)− cx(ηx − 1)

)
∇xvρ

α−1(η)∇xyρ(η)

]

+
α− 1

L2
π

[∑

x,y,v

cx(ηx)
(
cx(ηx)− cx(ηx − 1)

)
∇xyρ(η)∇xvρ(η)ρ

α−2(η)

]

= C1 + C2.

For future reference, we denote the right-hand side of (19) (without the constant λ) by

A =
1

2L
π

[∑

x,y

cx(ηx)∇xyρ
α−1(η)∇xyρ(η)

]
.

The estimate of the term C1 is similar to B̃1(ρ, ψ) in the proof of Theorem 4.3 in [18] (take
ψ(η) = ρα−1(η)). First, we interchange y and v and then use ∇xvρ

α−1(η) = ∇xyρ
α−1(η) +
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∇yvρ
α−1(ηxy) as well as the lower bound cx(ηx)− cx(ηx − 1) ≥ c:

C1 =
1

L2
π

[∑

x,y,v

cx(ηx)
(
cx(ηx)− cx(ηx − 1)

)(
∇xyρ

α−1(η) +∇yvρ
α−1(ηxy)

)
∇xyρ(η)

]
(26)

≥ 2cA+
1

L2
π

[∑

x,y,v

cx(ηx)
(
cx(ηx)− cx(ηx − 1)

)
∇yvρ

α−1(ηxy)∇xyρ(η)

]
.

Note that the term involving ∇xyρ
α−1(η) does not depend on v, so the sum over x, y, v

equals L times the sum over x, y. Employing the reversibility condition (24) and exchanging
x and y in the second term yields

C1 ≥ 2cA+
1

L2
π

[∑

x,y,v

cy(ηy)
(
cx(η

yx
x )− cx(η

yx
x − 1)

)
∇yvρ

α−1(η)∇xyρ(η
yx)

]

= 2cA− 1

L2
π

[∑

x,y,v

cx(ηx)
(
cy(ηy + 1)− cy(ηy)

)
∇xvρ

α−1(η)∇xyρ(η)

]
.(27)

We average (26) and (27) and employ again the identity ∇xyρ
α−1(η) + ∇yvρ

α−1(ηxy) =
∇xvρ

α−1(η):

C1 ≥ cA+
1

2L2
π

[∑

x,y,v

cx(ηx)
(
(cx(ηx)− cx(ηx − 1))− (cy(ηy + 1)− cy(ηy))

)

×∇xvρ
α−1(η)∇xyρ(η)

]
.

Setting C0 := (cx(ηx) − cx(ηx − 1)) − (cy(ηy + 1) − cy(ηy)), the bounds (25) imply that
|C0| ≤ δ. Hence, by Young’s inequality,

C0∇xvρ
α−1(η)∇xyρ(η) = C0ρ̂(η, η

xy)∇xvρ
α−1(η)∇xyρ

α−1(η)

≥ −1

2
|C0|ρ̂(η, ηxy)

(
(∇xyρ

α−1(η))2 + (∇xvρ
α−1(η))2

)

≥ −δ
2

(
∇xyρ(η)∇xyρ

α−1(η) + (∇xvρ
α−1(η))2ρ̂(η, ηxy)

)
.

This yields

(28) C1 ≥
(
c− δ

2

)
A− δ

4L2
π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2ρ̂(η, ηxy)

]
.

Next, we rewrite B = (C2−C1)/2. By definition (13) of ρ̂1 and the reversibility condition
(24),

B =
1

2L2
π

[∑

x,y,v

cx(ηx)
(
cx(ηx)− cx(ηx − 1)

)
(∇xyρ

α−1(η))2ρ̂1(η, η
xy)∇xvρ(η)

]

=
1

2L2
π

[∑

x,y,v

cy(ηy)
(
cx(ηx + 1)− cx(ηx)

)
(∇xyρ

α−1(ηyx))2ρ̂1(η
yx, η)∇xvρ(η

yx)

]
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=
1

2L2
π

[∑

x,y,v

cx(ηx)
(
cy(ηy + 1)− cy(ηy)

)
(∇xyρ

α−1(η))2ρ̂2(η, η
xy)

(
ρ(ηxv)− ρ(ηxy)

)]
.

In the last step, we interchanged x and y and used the identity ρ̂1(η
xy, η) = ρ̂2(η, η

xy).
Averaging the expressions for B involving ρ̂1 and ρ̂2 gives

B =
1

4L2
π

[∑

x,y,v

cx(ηx)(∇xyρ
α−1(η))2ρ(ηxv)

×
((
cx(ηx)− cx(ηx − 1)

)
ρ̂1(η, η

xy) +
(
cy(ηy + 1)− cy(ηy)

)
ρ̂2(η, η

xy)
)]

− 1

4L2
π

[∑

x,y,v

cx(ηx)(∇xyρ
α−1(η))2

×
((
cx(ηx)− cx(ηx − 1)

)
ρ̂1(η, η

xy)ρ(η) +
(
cy(ηy + 1)− cy(ηy)

)
ρ̂2(η, η

xy)ρ(ηxy)
)]

= B1 + B2.

The term B1 is estimated by using condition (25) (note that ρ̂1, ρ̂2 ≥ 0 since θ is nonde-
creasing in both variables) and then employing the assumption c ≥ 2α−2δ and interchanging
y and v:

B1 ≥
c

4L2
π

[∑

x,y,v

cx(ηx)(∇xyρ
α−1(η))2ρ(ηxv)

(
ρ̂1(η, η

xy) + ρ̂2(η, η
xy)

)]

≥ 2α−2δ

4L2
π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2ρ(ηxy)

(
ρ̂1(η, η

xv) + ρ̂2(η, η
xv)

)]

= B3.

We employ condition (25) once more and Lemma 17 (i) (see Appendix) to estimate B2:

B2 ≥ −c+ δ

4L2
π

[∑

x,y,v

cx(ηx)(∇xyρ
α−1(η))2

(
ρ̂1(η, η

xy)ρ(η) + ρ̂2(η, η
xy)ρ(ηxy)

)]

= −c+ δ

4L2
(2− α)π

[∑

x,y,v

cx(ηx)(∇xyρ
α−1(η))2ρ̂(η, ηxy)

]
= −1

2
(2− α)(c+ δ)A.

Consequently,

(29) B ≥ −1

2
(2− α)(c+ δ)A+ B3.

We add (28) and (29):

C1 + B ≥
(
c− δ

2
− 1

2
(2− α)(c+ δ)

)
A+B4, where(30)
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B4 = B3 −
δ

4L2
π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2ρ̂(η, ηxy)

]
.

We wish to estimate B4 from below by a multiple of A. To this end, we employ the
reversibility and interchange x and v in the second term in B4:

π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2ρ̂(η, ηxy)

]
= π

[∑

x,y,v

cv(ηv)(∇xvρ
α−1(ηvx))2ρ̂(ηvx, ηvy)

]

= π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2ρ̂(ηxv, ηxy)

]
.

Then, averaging those two expressions for B4 that involve ρ̂(η, ηxy) and ρ̂(ηxv, ηxy),

B4 =
δ

8L2
π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2(2α−1ρ(ηxy))

(
ρ̂1(η, η

xv) + ρ̂2(η, η
xv)

)]

− δ

8L2
π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2

(
ρ̂(η, ηxy) + ρ̂(ηxv, ηxy)

)]
.

We employ Lemma 17 (ii) in the form

2α−1ρ(ηxy))
(
ρ̂1(η, η

xv) + ρ̂2(η, η
xv)

)
−

(
ρ̂(η, ηxy) + ρ̂(ηxv, ηxy)

)
≥ −2α−1ρ̂(η, ηxv),

which leads to

B4 ≥ −2α−1δ

8L2
π

[∑

x,y,v

cx(ηx)(∇xvρ
α−1(η))2ρ̂(η, ηxv)

]
= −2α−1δ

4
A.

Hence, we infer from (30) that

C1 + B ≥
(
c− δ

2
− 1

2
(2− α)(c+ δ)− δ

4
2α−1

)
A.

Finally, by definition of B,

C1 + C2 = 2(C1 + B) ≥
(
2c− δ − (2− α)(c+ δ)− 2α−2δ

)
A = λA.

This shows (19), and an application of Corollary 4 finishes the proof. �

3.3. Bernoulli-Laplace models. We consider again a system of particles moving in a
finite set of sizes {1, 2, . . . , L} but in contrast to the previous subsection, we assume that
at most one particle per site is allowed, i.e. S = {0, 1}L. The set of allowed moves is
G = {xy : x, y ∈ {1, 2, . . . , L}, x 6= y}, and the moves are of the form xy : η 7→ ηxy for
η ∈ S, where ηxy = η if ηx(1− ηy) = 0 and otherwise,

ηxyz =





ηz if z 6∈ {x, y},
0 for z = x,
1 for z = y.

We associate to each site x a Poisson clock of constant intensity λx > 0. When the clock
of site x rings, we choose randomly a site y. If ηx = 1 and ηy = 0 (i.e. if ηx(1 − ηy) = 1),
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the particle at x moves to y; otherwise (i.e. if ηx(1−ηy) = 0), nothing happens. Therefore,
the transition rates are given by c(η, xy) = (λx/L)ηx(1− ηy), and the generator reads as

Lf(η) = 1

L

∑

xy∈G

λxηx(1− ηy)∇xyf(η),

where, as in the previous subsection, ∇xyf(η) = f(ηxy)− f(η).
Let N ≤ L be the number of particles in the system. There exists a unique stationary

distribution πN , which is given by [11, Section 5]

πN(η) =
1

ZL,N

L∏

x=1

(
1

1 + λx

)ηx ( λx
1 + λx

)1−ηx

,

where ZL,N > 0 is a normalization constant. In the following, we write π instead of πN , as
the number of particles is fixed. Reversibility holds for π, and it reads as

(31) π

[ ∑

xy∈G

c(η, xy)F (η, xy)

]
= π

[ ∑

xy∈G

c(η, xy)F (ηxy, yx)

]

for arbitrary functions F : S ×G→ R.

Theorem 9. Let φ(s) = (sα − s)/(α− 1)− s+ 1 and 1 < α < 2. Assume that there exist
constants 0 ≤ δ ≤ 22−αc such that

(32) c ≤ λx ≤ c+ δ for x ∈ {1, 2, . . . , L}.
Then the Beckner inequality (7) and the decay estimates (6) and (20) hold with λ =
αc− (5

2
+ 2α−3 − α)δ.

Remark 10. For the modified log-Sobolev inequality, the bound in [11] reads as λ = c−δ,
and the bound in [18] equals λ = c − 7δ/4 (for δ < 4c/7). Our result coincides with that
in [18] for α → 1. In [21], the bound 1 ≤ λ ≤ 2 was proved in case c = 1, δ = 0. Further
bounds, depending on L and N , were collected in [7, Examples 3.11].
Concerning the Beckner inequality, Bobkov and Tetali [7, Section 4] derived for the

homogeneous case c = L/(N(L−N)) and δ = 0 the constant λ ≥ α(L+ 2)/(2N(L−N).
Our constant λ = (αL− 2α+4)/(N(L−N)) (see the proof below) is larger for L > 2 and
all 1 < α ≤ 2. �

Proof. We need to verify the condition in Corollary 4. As in [11], we choose

R(η, xy, uv) = L−2λxλuηx(1− ηy)ηu(1− ηv) for |{x, y, u, v}| = 4

and R(η, xy, uv) = 0 otherwise. The notation |{x, y, u, v}| = 4 means that the four vari-
ables are pairwise different. Then Γ(η, xy, uv) = 0 if |{x, y, u, v}| = 4 and

Γ(η, xy, uv) = L−2λxλuηx(1− ηy)ηu(1− ηv)

otherwise. The sum of Γ(η, γ, δ) over γ, δ ∈ G in the left-hand side of (19) vanishes
if (x, y, u, v) are pairwise different. Therefore, the sum consists of three terms: (γ, δ) =
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(xy, xy), (γ, δ) = (xy, uy), and (γ, δ) = (xy, xv), and it follows that

π

[ ∑

γ,δ∈G

Γ(η, γ, δ)
(
∇γρ

α−1(η)∇δρ(η) + (α− 1)∇γρ(η)∇δρ(η)ρ
α−2(η)

)]

=
1

L2
π

[∑

x,y

λ2x∇xyρ
α−1(η)∇xyρ(η) +

∑

|{x,y,u}|=3

λxλu∇xyρ
α−1(η)∇uyρ(η)

+
∑

|{x,y,v}|=3

λ2x∇xyρ
α−1(η)∇xvρ(η)

]
+
α− 1

L2
π

[∑

x,y

λ2x∇xyρ(η)∇xyρ(η)ρ
α−2(η)

+
∑

|{x,y,u}|=3

λxλu∇xyρ(η)∇uyρ(η)ρ
α−2(η) +

∑

|{x,y,v}|=3

λ2x∇xyρ(η)∇xvρ(η)ρ
α−2(η)

]

= C1 + C2.

Observe that the right-hand side of (19) (without the constant λ) reads as

(33) A =
1

2
π

[∑

γ∈G

c(η, γ)∇γρ
α−1(η)∇γρ(η)

]
=

1

2L
π

[ ∑

xy∈G

λx∇xyρ
α−1(η)∇xyρ(η)

]
,

since ∇xyρ(η) = 0 whenever ηx(1− ηy) = 0, so the factor ηx(1− ηy) can be omitted.
As in the previous subsection, we estimate B = (C2 −C1)/2, recalling definition (13) of

ρ̂1:

B =
1

2L2
π

[∑

x,y

λ2x(∇xyρ
α−1(η))2ρ̂1(η, η

xy)∇xyρ(η)

]
(34)

+
1

2L2
π

[ ∑

|{x,y,u}|=3

λxλu(∇xyρ
α−1(η))2ρ̂1(η, η

xy)∇uyρ(η)

]

+
1

2L2
π

[ ∑

|{x,y,v}|=3

λ2x(∇xyρ
α−1(η))2ρ̂1(η, η

xy)∇xvρ(η)

]

= B1 +B2 + B3.

The estimations of B1, B2, and B3 are the same as in the proof of Theorem 4.6 in [18]

after taking ψ(η) = ρα−1(η) in B̃2(ρ, ψ). The key point is the use of Lemma 17 (iii). In
constrast to [18], the factor 2−α appears. Therefore, following [18] and taking into account
(33), we conclude that

B1 ≥ − δ

2L
(2− α)A,

B2 ≥ − 1

2L
(N − 1)(c+ δ)(2− α)A,

B3 ≥
c

4L2
π

[ ∑

|{x,y,v}|=3

λxηx(1− ηy)(1− ηv)(∇xyρ
α−1(η))2ρ(ηxv)



DISCRETE BECKNER INEQUALITIES 19

×
(
ρ̂1(η, η

xy) + ρ̂2(η, η
xy)

)]
− 1

2L
(L−N − 1)(c+ δ)(2− α)A.(35)

Since we assumed that δ ≤ 22−αc, we can estimate the factor in the first term of B3 by
c/(4L2) ≥ 2α−4δ/L2.
Next, we estimate C1. This expression consists of three terms. We interchange x and u

in the second term and y and v in the third term. Then C1 = B4 + B5 + B6, where

B4 =
1

L2
π

[∑

x,y

λ2x∇xyρ(η)∇xyρ
α−1(η)

]
,

B5 =
1

L2
π

[ ∑

|{x,y,u}|=3

λxλu∇xyρ(η)∇uyρ
α−1(η)

]
,

B6 =
1

L2
π

[ ∑

|{x,y,v}|=3

λ2x∇xyρ(η)∇xvρ
α−1(η)

]
.

By condition (32), B4 ≥ (2c/L)A. The term B6 is estimated by employing the reversibility
(31), averaging, and using (32), similar to the estimate of J6 in the proof of Theorem 4.6
in [18]. The result is

B6 ≥
1

2L
(L−N − 1)(2c− δ)A− B7, where(36)

B7 =
δ

4L2
π

[ ∑

|{x,y,v}|=3

λxηx(1− ηy)(1− ηv)(∇xvρ
α−1(η))2ρ̂(η, ηxy)

]
.

Similarly, replacing ψ(η) by ρα−1(η) in J5 in the proof of Theorem 4.6 in [18], we have
B5 ≥ (c/L)(N − 1)A.
It remains to rewrite B7. For this, we employ the reversibility, average the original and

the resulting expressions, and interchange y and v. This yields (see the computation of J7
in [18])

B7 =
δ

8L2
π

[ ∑

|{x,y,v}|=3

λxηx(1− ηy)(1− ηv)(∇xyρ
α−1(η))2

(
ρ̂(ηxv, ηxy) + ρ̂(η, ηxv)

)]
.

Combining estimate (35) for B3 and (36), together with the above estimate for B7 and
applying Lemma 17 (ii), we infer that

B3 + B6 ≥
1

2L
(L−N − 1)

(
αc− (3− α)δ

)
A

+
δ

8L2
π

[ ∑

|{x,y,v}|=3

λxηx(1− ηy)(1− ηv)(∇xyρ
α−1(η))2

×
(
2α−1ρ(ηxv)

(
ρ̂1(η, η

xy) + ρ̂2(η, η
xy)

)
−

(
ρ̂(ηxv, ηxy) + ρ̂(ηxv, η)

))]
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≥ 1

4L
(L−N − 1)

(
2αc− 2(3− α)δ − 2α−1δ

)
A.

It remains to summarize the estimates:

C1 + C2 = 2B + 2C1 = 2(B1 +B2) + 2(B4 + B5) + 2(B3 + B6)

≥ −(2− α)

L

(
δ + (N − 1)(c+ δ)

)
A+

2

L

(
2c+ (N − 1)c

)
A

+
1

2L
(L−N − 1)

(
2αc− 2(3− α)δ − 2α−1δ

)
A

=
1

L

(
(αL+ 4− 2α)c+

(
(α− 2α−2 − 3)L+ (1 + 2α−2)N + (3 + 2α−2 − α)

)
δ
)
A.

Arguing as in [18], we may suppose that N ≥ L/2. Because of 4−2α ≥ 0, (1+2α−2)N/L ≥
(1 + 2α−2)/2, and 3 + 2α−2 − α ≥ 0, we infer that

C1 + C2 ≥
(
1

L
(αL+ 4− 2α)c+

(
α− 5

2
− 2α−3

)
δ

)
A

≥
(
αc−

(
5

2
+ 2α−3 − α

)
δ

)
A

which concludes the proof. �

3.4. Random transposition model. The random transposition model is a random walk
on the group of permutations. Let Sn be the set of permutations on {1, 2, . . . , n} and Tn the
set of all transpositions in Sn. Given 1 ≤ i, j ≤ n, we denote by τij ∈ Tn the transposition
that interchanges i and j, i.e. τij(i) = j, τij(j) = i, and τij(k) = k for k 6= i, j. The
composition of two permutations σ1, σ2 ∈ Sn is denoted by σ1σ2.
We define a graph structure on the group Sn by saying that two permutations are

neighbors if they differ by precisely one transposition. Thus every vertex σ ∈ Sn has(
n
2

)
= n(n− 1)/2 neighbors given by {τijσ}1≤i,j≤n, and the set of edges is En = {{σ, τijσ} :

1 ≤ i, j ≤ n, σ ∈ Sn}. We write σ ↔ τσ if {σ, τσ} ∈ En. The random walk on (Sn, En)
is then defined by the transition rates c(σ, τ) = 2/(n(n − 1)) if σ ↔ τσ and c(σ, τ) = 0
otherwise. The generator of the Markov chain reads as

Lf(σ) = 2

n(n− 1)

∑

τ∈Tn

∇τf(σ),

where ∇τf(σ) = f(τ ◦ σ) − f(σ). The uniform measure π(σ) = 1/n! for all σ ∈ Sn

is reversible for the above transition rates c(σ, τ). To simplify the notation, we write
∇ij = ∇τ if τ = τij, σij = τij ◦ σ, and σijk = τij ◦ τjk ◦ σ.
Theorem 11. Let φ(s) = (sα − s)/(α− 1)− s+1 and 1 < α < 2. For n ≥ 2, the Beckner
inequality (7) and the decay estimates (6) and (20) hold with constant λ = 8/(n(n− 1)).

Remark 12. Diaconis and Saloff-Coste [17, Section 4.3] report that the logarithmic So-
bolev constant satisfies the bounds 1/(3n log n) ≤ λ ≤ 1/(n− 1); also see [21, Theorem 1].
Our bound is worse by a factor of 1/n. The bound λ ≥ α(n+2)/(n(n− 1)) was derived in
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[7, Section 4]. It is usually better than our bound λ = 8/(n(n−1)); for very small numbers
of n (namely n < (8/α)− 2), our result is superior. �

Proof. The right-hand side of (19) (except the factor λ) can be written as

(37) A =
1

n(n− 1)
π

[ ∑

τ∈Tn

∇τρ
α−1(σ)∇τρ(σ)

]
=

1

2n(n− 1)
π

[∑

i 6=j

∇ijρ
α−1(σ)∇ijρ(σ)

]
,

where the factor 1/2 takes into account that every transposition (i, j) is counted twice.
As in [18, Section 4.4], we define R(σ, (i, j), (k, ℓ)) = 4/(n2(n− 1)2) if |{i, j, k, ℓ}| = 4 and
R(σ, (i, j), (k, ℓ)) = 0 otherwise. Then Γ(σ, (i, j), (k, ℓ)) = 0 if |{i, j, k, ℓ}| = 4 and

Γ(σ, (i, j), (k, ℓ)) =
4

n2(n− 1)2

otherwise. The left-hand side of (19) then becomes

π

[∑

γ,δ

Γ(σ, γ, δ)
(
∇γρ

α−1(σ)∇δρ(σ) + (α− 1)∇γρ(σ)∇δρ(σ)ρ
α−2(σ)

]

=
2

n2(n− 1)2
π

[∑

i 6=j

∇ijρ
α−1(σ)∇ijρ(σ) + 2

∑

|{i,j,k}|=3

∇ijρ(σ)∇ikρ
α−1(σ)

]

+
2(α− 1)

n2(n− 1)2
π

[∑

i 6=j

∇ijρ(σ)∇ijρ(σ)ρ
α−2(σ) + 2

∑

|{i,j,k}|=3

∇ijρ(σ)∇ikρ(σ)ρ
α−2(σ)

]

= C1 + C2.

The expression C1 can be estimated exactly as in the proof of Theorem 4.8 in [18] using

the reversibility and averaging (see the estimate for B̃1(ρ, ψ) for ψ = ρα−1):

C1 ≥
2

n− 1
A− 1

n2(n− 1)2
π

[ ∑

|{i,j,k}|=3

(
ρα−1(σij)− ρα−1(σ)

)2
ρ̂(σik, σijk)

]
.

We estimate now B = (C2 − C1)/2:

B =
1

n2(n− 1)2
π

[∑

i 6=j

(∇ijρ
α−1(σ))2∇ijρ(σ)ρ̂1(σ, σij)

+ 2
∑

|{i,j,k}|=3

(∇ikρ
α−1(σ))2∇ijρ(σ)ρ̂1(σ, σik)

]
.

Arguing as for B̃2(ρ, ψ) with ψ = ρα−1 in the proof of Theorem 4.8 in [18], it follows that

B =
1

n2(n− 1)2
π

[ ∑

|{i,j,k}|=3

(∇ijρ
α−1(σ))2

(
ρ(σik)ρ̂1(σ, σij) + ρ(σijk)ρ̂2(σ, σij)

)]

− 1

n2(n− 1)2
π

[ ∑

|{i,j,k}|=3

(∇ijρ
α−1(σ))2

(
ρ(σ)ρ̂1(σ, σij) + ρ(σij)ρ̂2(σ, σij)

)]
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+
1

2n2(n− 1)2
π

[∑

i 6=j

(∇ijρ
α−1(σ))2∇ijρ(σ)

(
ρ̂1(σ, σij)− ρ̂2(σ, σij)

)]

= B1 + B2 + B3.

Property (iii) of Lemma 17 (applied with λ1 = λ2 = 1) implies that B3 ≥ 0. Combining
B1 and B2, we can apply Lemma 15 with s = ρ(σ), t = ρ(σij), u = ρ(σik), and v = ρ(σijk),
leading to

B ≥ B1 + B2 ≥
1

n2(n− 1)2
π

[ ∑

|{i,j,k}|=3

(∇ijρ
α−1(σ))2

(
ρ̂(σik, σijk)− ρ̂(σ, σij)

)]

=
1

n2(n− 1)2
π

[ ∑

|{i,j,k}|=3

(∇ijρ
α−1(σ))2ρ̂(σik, σijk)

]
− 2(n− 2)

n(n− 1)
A.

Adding the estimations for C1 and B, one term cancels and we end up with

C1 + C2 = 2(C1 + B) ≥ 2

(
2

n− 1
− 2(n− 2)

n(n− 1)

)
A =

8

n(n− 1)
A.

This concludes the proof. �

4. Application: Finite-volume discretization of a Fokker-Planck equation

The Bakry-Emery method has been originally applied to Markov diffusion operators or
associated Fokker-Planck equations, and the exponential decay for the probability densities
with an explicit decay rate was shown. In numerical analysis, the aim is to prove this
equilibration property for numerical discretizations of Fokker-Planck equations. As these
discretizations can, at least in some cases, be interpreted as a Markov chain, one may
apply Markov chain theory to achieve this goal. This was done by Mielke [27, Section 5.3]
to prove exponential decay of the logarithmic entropy for a finite-volume approximation
of a Fokker-Planck equation. The proof is based on diagonal dominance properties of
the matrices appearing in (2). Our aim is to extend the exponential decay to power-type
entropies by combining Mielkes results and the estimate for birth-death processes from
Theorem 5. As a by-product, this provides an alternative proof for the case α → 1 without
using matrix algebra.
More specifically, we consider a finite-volume approximation of the one-dimensional

Fokker-Planck equation

(38) ∂tu = ∂x(∂xu+ u∂xV ), t > 0, u(·, 0) = u0 in R,

where u(x, t) describes some probability density and V (x) is a given potential satisfying
e−V ∈ L1(R). We introduce the uniform grid xn = n/N , n ∈ Z, where N ∈ N. The
quantity h = 1/N is the grid size. The Fokker-Planck equation has the unique steady state
π(x) = Ze−V (x), where Z > 0 is a normalization constant. The symmetric form of (38),

∂tu = ∂x

(
π∂x

(
u

π

))
,
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motivates the following numerical scheme. We integrate this equation over [xn−1, xn]:

d

dt

1

h

∫ xn

xn−1

u(x, t)dx =
1

h

[
π∂x

(
u(·, t)
π

)]xn

xn−1

.

We choose un to approximate
∫ xn

xn−1

u(·, x)dx/h, πn =
∫ xn

xn−1

π(x)dx/h, and the numerical

flux qn to approximate h−1[π∂x(u/π)](xn). We choose as in [27]

qn =
κn
h2

(
un+1

πn+1

− un
πn

)
, κn = (πnπn+1)

1/2.

Setting ρn = un/πn, the numerical scheme reads as

∂tρn =
1

πn
(qn − qn−1) =

κn
h2πn

(ρn+1 − ρn) +
κn−1

h2πn
(ρn−1 − ρn)

= a(n)∇+ρn + b(n)∇−ρn,

where we employed the notation of Section 3.1 and a(n) = κn/(h
2πn), b(n) = κn−1/(h

2πn).
The right-hand side can be interpreted as the generator of a birth-death process on Z. The
initial datum is given by ρn(0) = un(0)/πn, where un(0) =

∫ xn

xn−1

u(x, 0)dx/h. According

to [11, Section 3.5], the results of Theorem 5 still hold in that case, and the assumption
b(0) = 0 is clearly not needed. The entropy is given by

Entφα

π (ρ) =
1

α− 1

∑

n∈Z

πn(ρ
α
n − 1), ρ = (ρn)n∈Z, 1 < α ≤ 2.

Theorem 13. Let V ∈ C2([0, 1]) and V ′′(x) ≥ λ > 0 for x ∈ [0, 1]. Then

Entφα

π (ρ(t)) ≤ Entφα

π (ρ(0))e−2αλht, n ∈ N,

where λh = 2h−2Φ(h2λ/8) and

Φ(s2) =
3erf(s)− erf(3s)

2erf(s)
with erf(s) =

2√
p

∫ s

0

e−t2dt

and p = 3.14159 . . . is the number pi (to avoid confusion with the invariant measure π).
Moreover, the following discrete Beckner inequality holds:

2λh
∑

n∈Z

πn(ρ
α
n − 1) ≤

∑

n∈Z

√
πn+1πn

h2
(
ρα−1
n+1 − ρα−1

n

)(
ρn+1 − ρn

)
.

Remark 14. We remark that λh ր λ as h → 0 [27, Corollary 5.5]. Thus, the decay rate
is asymptotically sharp. A modified log-Sobolev inequality with constant λ for a finite-
difference approximation was proved in [24] for λ-log-concave potentials by translating the
Bakry-Emery condition to the discrete case. �
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Proof. Note that a(n) and b(n) satisfy the detailed-balance condition (22). The proof is a
consequence of Theorem 5 and the results of Mielke [27, Section 5]. In particular, he has
shown that (1− λh)πn ≥ √

πn−1πn+1. Consequently,

a(n)− a(n+ 1) =

√
πn+1

πn
−

√
πn+2

πn+1

≥ λh

√
πn+1

πn
,

b(n+ 1)− b(n) =

√
πn
πn+1

−
√
πn−1

πn
≥ λh

√
πn
πn+1

.

Using Lemma 18 and the relation between the arithmetic and geometric mean, it follows
that

a(n)− a(n+ 1) + b(n+ 1)− b(n) + Θ
(
a(n)− a(n+ 1), b(n+ 1)− b(n)

)

≥ α
(
a(n)− a(n+ 1) + b(n+ 1)− b(n)

)

≥ 2α
√

(a(n)− a(n+ 1))(b(n+ 1)− b(n)) ≥ 2αλh.

Applying Theorem 5 concludes the proof. �

Appendix A. Properties of the mean function

We show some properties for

(39) θ(s, t) =
s− t

φ′(s)− φ′(t)
, 0 < s, t, <∞, s 6= t,

with θ(s, s) = 1/φ′′(s). This function is symmetric and, if φ is convex, positive. For the
following lemma, we introduce for 0 < s, t <∞,

Y (s, t) = (φ′)−1((1−m)φ′(s) +mφ′(t)), 0 ≤ m ≤ 1.

We set Y1 = ∂Y/∂s, Y2 = ∂Y/∂t, Y11 = ∂2Y/∂s2, etc.

Lemma 15 (Concavity of θ). Let φ ∈ C3((0,∞); (0,∞)) be convex such that φ(1) = 0,
and 1/φ′′ is concave on (0,∞). If φ(3)(s) ≤ 0 for s > 0, the function θ, defined in (39), is
nondecreasing in s and in t. Furthermore, if additionally

(40) Y11 ≤ 0, Y22 ≤ 0, Y11Y22 ≥ Y 2
12 in (0,∞)2, m ∈ (0, 1),

then θ is concave. In this situation, it holds that for all u, v, s, t > 0,

(41) θ(u, v)− θ(s, t) ≤ ∂1θ(s, t)(u− s) + ∂2θ(s, t)(v − t).

Proof. The function θ is nondecreasing in s if and only if ∂1θ(s, t) ≥ 0. Since

∂1θ(s, t) =
φ′(s)− φ′(t)− (s− t)φ′′(s)

(φ′(s)− φ′(t))2
,

it is sufficient to prove the nonnegativity of G(s, t) = φ′(s) − φ′(t) − (s − t)φ′′(s). By
assumption, the derivative ∂1G(s, t) = −(s − t)φ(3)(s) is nonpositive for s ∈ (0, t) and
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nonnegative otherwise. Then G(s, t) ≥ G(t, t) = 0, and the conclusion follows. The
monotonicity in the second variable is shown analogously.
For the proof of the concavity of θ, we observe that

θ(s, t) =

∫ 1

0

((φ′)−1)′
(
(1−m)φ′(s) +mφ′(t)

)
dm.

Thus, the concavity of θ is equivalent to that one of

F (s, t) = ((φ′)−1)′
(
(1−m)φ′(s) +mφ′(t)

)
=

1

φ′′(Y (s, t))

for any m ∈ (0, 1). Let 0 < s, t < ∞ and 0 < m < 1. We claim that if φ(3) ≤ 0 and
(40) holds, then F is concave. For this, it is sufficient to prove that F11 = ∂2F/∂s2 ≤ 0,
F22 = ∂2F/∂t2 ≤ 0, and the determinant of the Hessian of F is nonnegative. Because of
(40) and φ′′(Y ) ≥ 0, φ(3)(Y ) ≤ 0, and (1/φ′′)′′(Y ) ≤ 0, we obtain

F11 = −φ
(4)(Y )

φ′′(Y )2
Y 2
1 + 2

φ(3)(Y )2

φ′′(Y )3
Y 2
1 − φ(3)(Y )

φ′′(Y )2
Y11 =

(
1

φ′′

)′′

(Y )Y 2
1 − φ(3)(Y )

φ′′(Y )2
Y11 ≤ 0,

F22 =

(
1

φ′′

)′′

(Y )Y 2
2 − φ(3)(Y )

φ′′(Y )2
Y22 ≤ 0.

Then, using the assumptions and

F12 = F21 = −φ
(4)(Y )

φ′′(Y )2
Y1Y2 + 2

φ(3)(Y )2

φ′′(Y )3
Y1Y2 −

φ(3)(Y )

φ′′(Y )2
Y12

=

(
1

φ′′

)′′

(Y )Y1Y2 −
φ(3)(Y )

φ′′(Y )2
Y12,

Y1 = (1−m)
φ′′(s)

φ′′(Y )
≥ 0, Y2 = m

φ′′(t)

φ′′(Y )
≥ 0,

Y12 = −m(1−m)
φ′′(s)φ′′(t)φ(3)(Y )

φ′′(Y )3
≥ 0,

it follows that

F11F22 − F 2
12 =

(
φ(3)(Y )

φ′′(Y )2

)2(
Y11Y22 − Y 2

12

)

+
φ(3)(Y )

φ′′(Y )2

(
1

φ′′

)′′

(Y )
(
2Y1Y2Y12 − Y 2

1 Y22 − Y 2
2 Y11

)
≥ 0.

Finally, inequality (41) follows after Taylor expansion and taking into account the concavity
of θ. �

We claim that the assumptions of Lemma 15 are satisfied for the power mean

θα(s, t) =
α− 1

α

s− t

sα−1 − tα−1
, 1 < α < 2.



26 A. JÜNGEL AND W. YUE

Lemma 16. Let 1 < α < 2. The function θα is C∞, symmetric, positive, increasing
and concave on (0,∞)2. Furthermore, θα and its first partial derivatives are positive ho-
mogenous, i.e., θα(λs, λt) = λ2−αθα(s, t), ∂1θα(λs, λt) = λ1−α∂1θα(s, t), and ∂2θα(λs, λt) =
λ1−α∂2θα(s, t) for all s, t > 0 and λ > 0.

Proof. The regularity, symmetry, and positivity of θα follow from elementary computations.

The monotonicity follows from φ
(3)
α (s) = α(α − 2)sα−3 < 0 for s > 0. To show that θα is

concave, we verify the conditions of Lemma 15. We compute

Y (s, t) =
(
(1−m)sα−1 +mtα−1

)1/(α−1)
,

Y11(s, t) = −m(1−m)(2− α)(st)α−3Y (s, t)3−2αt2,

Y22(s, t) = −m(1−m)(2− α)(st)α−3Y (s, t)3−2αs2,

Y12(s, t) = m(1−m)(2− α)(st)α−3Y (s, t)3−2αst,

and it follows that Y11 ≤ 0, Y22 ≤ 0, and Y11Y22 − Y 2
12 = 0. �

We prove more properties of θα, needed in Sections 3.2-3.4.

Lemma 17 (Properties of θα). Let 1 < α < 2. The function θα satisfies for all r, s, t > 0
and λ1, λ2 > 0,
(i) s∂1θα(s, t) + t∂2θα(s, t) = (2− α)θα(s, t);
(ii) 2α−1r(∂1θα(s, t) + ∂2θα(s, t))− (θα(r, s) + θα(r, t)) ≥ −2α−1θα(s, t);
(iii) λ1∂1θα(s, t)(s− t)− λ2∂2θα(s, t)(s− t) ≤ (2− α)|λ1 − λ2|θα(s, t).
Proof. Identity (i) can be obtained by an elementary computation. The proof of (ii) is
similar to the proof of Lemma A.2 in [18]. Indeed, setting u = s/r and v = t/r and
using the homogeneity properties of θα and its first partial derivatives, inequality (ii) is
equivalent to

2α−1
(
∂1θα(u, v) + ∂2θα(u, v)

)
−
(
θα(1, u) + θα(1, v)

)
≥ −2α−1θα(u, v).

This inequality follows from the concavity and the (2−α)-homogeneity property of θα and
from (i):

θα(1, u) + θα(1, v) ≤ 2θα

(
u+ 1

2
,
v + 1

2

)
= 2α−1θα(u+ 1, v + 1)

≤ 2α−1
(
θα(u, v) + ∂1θα(u, v) + ∂2θα(u, v)

)
.

Finally, by property (i),

λ1∂1θα(s, t)(s− t)− λ2∂2θα(s, t)(s− t)

≤ max{λ1, λ2}
(
s∂1θα(s, t) + t∂2θα(s, t)

)
−min{λ1, λ2}

(
t∂1θα(s, t) + s∂2θα(s, t)

)

= max{λ1, λ2}(2− α)θα(s, t)−min{λ1, λ2}
(
t∂1θα(s, t) + s∂2θα(s, t)

)
.

Choosing u = t and v = s in (41) gives ∂1θα(s, t)(s − t) + ∂2θα(s, t)(t − s) ≤ 0, and
combining this inequality with property (i) yields

−
(
t∂1θα(s, t) + s∂2θα(s, t)

)
= ∂1θα(s, t)(s− t) + ∂2θα(s, t)(t− s)
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−
(
s∂1θα(s, t) + t∂2θα(s, t)

)
≤ −(2− α)θα(s, t),

such that

λ1∂1θα(s, t)(s− t)− λ2∂2θα(s, t)(s− t)

≤
(
max{λ1, λ2} −min{λ1, λ2}

)
(2− α)θα(s, t)

= |λ1 − λ2|(2− α)θα(s, t).

This concludes the proof. �

Lemma 18. Let φα(s) = (sα−s)/(α−1)−s+1 and 1 < α < 2. It holds for all A, B ≥ 0,

Θ(A,B) := inf
s,t>0

θα(s, t)(Aφ
′′
α(s) +Bφ′′

α(t)) ≥ (α− 1)(A+B).

Proof. Since

θα(s, t) =
α− 1

α

s− t

sα−1 − tα−1
=

1

α

∫ 1

0

(
(1−m)sα−1 +mtα−1

)(2−α)/(α−1)
dm,

it follows that

θα(s, t)(Aφ
′′
α(s) + Bφ′′

α(t)) = A

∫ 1

0

(
(1−m) +m

(
t

s

)α−1 )(2−α)/(α−1)

dm

+ B

∫ 1

0

(
(1−m)

(s
t

)α−1

+m

)(2−α)/(α−1)

dm

≥ A

∫ 1

0

(1−m)(2−α)/(α−1)dm+ B

∫ 1

0

m(2−α)/(α−1)dm

= (α− 1)(A+B),

which finishes the proof. �
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(eds.), Séminaire de Probabilités 36 (2002), 1-134. Lect. Notes Math. 1801, Springer, Berlin, 2003.
[23] M. Jerrum, J.-B. Son, P. Tetali, and E. Vigoda. Elementary bounds on Poincaré and log-Sobolev

constants for decomposable Markov chains. Ann. Appl. Prob. 14 (2004), 1741-1765.
[24] O. Johnson. A discrete log-Sobolev inequality under a Bakry-Emery type condition. To appear in
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