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Abstract. The existence of global nonnegative martingale solutions to a stochastic cross-
diffusion system for an arbitrary but finite number of interacting population species is
shown. The random influence of the environment is modeled by a multiplicative noise
term. The diffusion matrix is generally neither symmetric nor positive definite, but it
possesses a quadratic entropy structure. This structure allows us to work in a Hilbert
space framework and to apply a stochastic Galerkin method. The existence proof is
based on energy-type estimates, the tightness criterion of Brzeźniak and co-workers, and
Jakubowski’s generalization of the Skorokhod theorem. The nonnegativity is proved by
an extension of Stampacchia’s truncation method due to Chekroun, Park, and Temam.

1. Introduction

The dynamics of interacting population species can be described macroscopically by
cross-diffusion equations. A well-known model example is the deterministic Shigesada-
Kawasaki-Teramoto population system [36]. It can be derived formally from a random-walk
model on lattices for transition rates which depend linearly on the population densities
[38, Appendix A]. Generalized population cross-diffusion models are obtained when the
dependence of the transition rates on the densities is nonlinear. The existence of global
weak solutions to these deterministic models was proved for an arbitrary number of species
in [13]. In this paper, we allow for a random influence of the environment and prove
the existence of global nonnegative martingale solutions to the corresponding stochastic
cross-diffusion system.
More precisely, we consider the cross-diffusion equations

(1) dui − div

( n∑

j=1

Aij(u)∇uj
)
dt =

n∑

j=1

σij(u)dWj(t) in O, t > 0, i = 1, . . . , n,

with no-flux boundary and initial conditions

(2)
n∑

j=1

Aij(u)∇uj · ν = 0 on ∂O, t > 0, ui(0) = u0i in O, i = 1, . . . , n,
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where O ⊂ Rd with d = 2, 3 is a bounded domain with Lipschitz boundary, ν is the
exterior unit normal vector to ∂O, and u0i is a possibly random initial datum. The solution
u = (u1, . . . , un) : O × [0, T ] × Ω → Rn models the density of the ith population species,
where x ∈ O represents the spatial variable, t ∈ (0, T ) the time, and ω ∈ Ω the stochastic
variable. The matrix A(u) = (Aij(u)) is the diffusion matrix, σij(u) is a multiplicative noise
term, and W = (W1, . . . ,Wn) is an n-dimensional cylindrical Wiener process. Details on
the stochastic framework will be given in section 1.3.
The diffusion coefficients are given by

(3) Aij(u) = δij

(
ai0 +

n∑

k=1

aiku
2
k

)
+ 2aijuiuj, i, j = 1, . . . , n,

where ai0 > 0 and aij > 0. This model is derived from an on-lattice model with transition
rates pi(u), which depend quadratically on the densities, i.e. pi(u) = ai0 +

∑n
k=1 aiku

2
k for

i = 1, . . . , n [38]. This quadratic structure is essential for our analysis. To understand this,
we need to explain the entropy structure of equations (1).

1.1. Entropy structure. Generally, the diffusion matrix in (1), originating from general
transition rates in the lattice model, is neither symmetric nor positive definite which sig-
nificantly complicates the analysis. However, the equations possess a formal gradient-flow
or entropy structure under certain conditions. For the sake of simplicity, we sketch this
structure in the deterministic context only and refer to [23, Chapter 4] for details. By
entropy structure, we mean that there exists a so-called entropy density h : Rn

+ → R such
that, still in the deterministic context, system (1) in the entropy variables wi := ∂h/∂ui,
i = 1, . . . , n, has a positive semi-definite diffusion matrix B = (Bij),

(4) ∂tui(w)− div

( n∑

j=1

Bij∇wj

)
= 0,

where B = A(u)h′′(u)−1 is the product of A(u) and the inverse of the Hessian of h(u),
and u(w) = (h′)−1(w) is the back transformation. When the transition rates are given by
pi(u) = ai0 +

∑n
k=1 aiku

s
k for some s ≥ 1, the entropy density can be chosen as h(u) =∑n

i=1 πihs(ui)ds, where πi > 0 are some numbers and

hs(z) =

{
z(log z − 1) + 1 for s = 1,
zs/s for s 6= 1.

It was shown in [12] that B = (Bij) in (4) is positive semi-definite in the two-species case
n = 2 with π1 = π2 = 1. This property generally does not hold for the n-species system.
It turns out [13] that B is symmetric, positive semi-definite if the numbers πi are chosen
such that

πiaij = πjaji for all i, j = 1, . . . , n.

This condition is recognized as the detailed-balance condition for the Markov chain asso-
ciated to (aij) and (π1, . . . , πn) is the reversible measure. The detailed-balance condition
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is sufficient but not necessary for the positive semi-definiteness of B; in fact, when self-
diffusion dominates cross-diffusion (see (8) for the precise statement) then B is still positive
semi-definite.
The entropy structure also yields a priori estimates. Indeed, let H(u) =

∫
O
h(u)dx be

the so-called entropy. A computation shows that, still in the absence of the stochastic
term,

dH

dt
+

∫

O

n∑

i,j=1

∂2h

∂ui∂uj
(u)Aij(u)∇ui · ∇ujdx = 0.

Since B = A(u)h′′(u)−1 is positive semi-definite, this holds true for h′′(u)A(u). Thus,
taking into account the special structure of A(u), this yields gradient estimates (see Lemma
3 below).
The gradient-flow structure is the key of the analysis of the deterministic analog to

(1), but there are severe difficulties in the stochastic context. Indeed, neither semigroup
techniques [15, 26] nor monotonicity arguments [30] can be applied because of the properties
of the differential operator in (1). Stochastic Galerkin methods usually work in Hilbert
spaces, and generally they cannot be used since the transformation to entropy variables is
nonlinear. In order to overcome these difficulties, we consider quadratic transition rates
with s = 2 which makes the transformation to entropy variable linear,

wi =
∂h

∂ui
= πih

′
2(ui) = πiui.

Still, the diffusion matrix A(u) is not positive definite, but the new diffusion matrix B =
A(u) diag(1/π1, . . . , 1/πn) is positive semi-definite; see Lemma 3. This allows us to combine
entropy methods for diffusive equations and stochastic techniques.

1.2. State of the art. Before stating our main existence result, let us review the literature.
Fundamental results on stochastic partial differential equations of monotone type were
obtained already in the 1970s by Pardoux [34]. More recently, abstract stochastic evolution
equations with locally monotone nonlinearities [30] or maximal monotone operators [4] were
analyzed. The existence of (mild or pathwise strong) solutions to quasilinear stochastic
evolution equations was proved in, e.g., [17, 21]. For these solutions, the driving noise is
given in advance. A weaker concept is given by martingale solutions, where the stochastic
basis is unknown a priori and is given as part of the solution. Existence proofs of such
solutions to nonlinear stochastic evolution equations can be found in [6, 14].
Stochastic reaction-diffusion equations are a special class of evolution equations, and they

are investigated in many papers starting from the 1980s [19, 20]. There are less results on
systems of stochastic reaction-diffusion equations. In [10], the existence and uniqueness of
mild solutions with Lipschitz continuous multiplicative noise was shown. The result was
generalized in [29] to Hölder continuous multiplicative noise. The existence of maximal
pathwise solutions to stochastic reaction-diffusion systems with polynomial reaction terms
was proved in [33]. More general quasilinear systems were investigated recently in [28],
proving the existence of local pathwise mild solutions, including the Shigesada-Kawasaki-
Teramoto cross-diffusion system. The local-in-time results are not surprising since even in
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the deterministic case, certain reaction terms may lead to finite-time blow-up of solutions.
The work [31] also analyzes population systems and provides the existence of pathwise
unique solutions, but only for two species and for Lipschitz continuous nonlinearities.
Up to our knowledge, the population model (1) with coefficients (3) was not studied in

the literature. In this paper, we prove the existence of global martingale solutions using the
techniques of [8, 9]. We show that the solutions are nonnegative under a natural condition
on the operators σij(u) using the stochastic maximum principle of [11]. Since even the
uniqueness of weak solutions to the deterministic analog of (1)-(3) is not known (see the
partial result in [24]), we cannot expect to obtain pathwise unique strong solutions.

1.3. Stochastic framework and main results. Let (Ω,F ,P) be a probability space
endowed with a complete right continuous filtration F = (Ft)t≥0 and let H be a Hilbert
space. The space L2(O) is the vector space of all square integrable functions u : O → R

with the inner product (·, ·)L2(O). We fix a Hilbert basis (ek)k∈N of L2(O). The space
L2(Ω;H) consists of all H-valued random variables u with

E‖u‖2H :=

∫

Ω

‖u(ω)‖2HP(dω) <∞.

Furthermore, the spaceH1(O) contains all functions u ∈ L2(O) such that the distributional
derivatives ∂u/∂x1, . . . , ∂u/∂xd belong to L2(O). Let Y be any separable Hilbert space
with orthonormal basis (ηk)k∈N. We denote by

L2(Y ;L2(O)) =

{
L : Y → L2(O) linear continuous:

∞∑

k=1

‖Lηk‖2L2(O) <∞
}

the space of Hilbert-Schmidt operators from Y to L2(O) endowed with the norm

‖L‖2L2(Y ;L2(O)) :=
∞∑

k=1

‖Lηk‖2L2(O).

Let (βjk)j=1,··· ,n, k∈N be a sequence of independent one-dimensional Brownian motions and
for j = 1, . . . , n, let Wj(x, t, ω) =

∑
k∈N ηk(x)βjk(t, ω) be a cylindrical Brownian motion.

If Y0 ⊃ Y is a second auxiliary Hilbert space such that the map Y ∋ u 7→ u ∈ Y0 is
Hilbert-Schmidt, the series Wj =

∑
k∈N ηkβjk converges in L2(Ω;Y0).

The multiplicative noise terms σ := σij(u, t, ω) : L2(O) × [0, T ] × Ω → L2(Y ;L2(O))
are assumed to be B(L2(O)⊗ [0, T ]⊗F ;B(L2(Y ;L2(O))))-measurable and F-adapted with
the property that there exists one constant Cσ > 0 such that for all u, v ∈ L2(O) and
i, j = 1, . . . , n,

(5)
‖σij(u)‖2L2(Y ;L2(O)) ≤ Cσ

(
1 + ‖u‖2L2(O)

)
,

‖σij(u)− σij(v)‖2L2(Y ;L2(O)) ≤ Cσ‖u− v‖2L2(O).

Here, the L2(O) norm of the function u = (u1, . . . , un) is understood as ‖u‖2L2(O) =∑n
i=1 ‖ui‖2L2(O), and we use this notation also for other vector-valued or tensor-valued
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functions. The expression σij(u)dWj(t) formally means that

(6) σij(u)dWj(t) =
∑

k,ℓ∈N

σkℓ
ij (u)eℓdβjk(t), where σkℓ

ij (u) :=
(
σij(u)ηk, eℓ

)
L2(O)

.

Next, we define our concept of solution.

Definition 1. Let T > 0 be arbitrary. We say that the system (Ũ , W̃ , ũ) is a global

martingale solution to (1)-(3) if Ũ = (Ω̃, F̃ , P̃, F̃) is a stochastic basis with filtration F̃ =

(F̃t)t∈[0,T ], W̃ is a cylindrical Wiener process, and ũ(t) = (ũ1(t), . . . , ũn(t)) is an F̃t-adapted
stochastic process for all t ∈ [0, T ] such that for all i = 1, . . . , n,

ũi ∈ L2(Ω̃;C0([0, T ];L2
w(O))) ∩ L2(Ω̃;L2(0, T ;H1(O))),

the law of ũi(0) is the same as for u0i , and ũ satisfies for all φ ∈ H1(O) and all i = 1, . . . , n,

(ũi(t), φ)L2(O) = (ũi(0), φ)L2(O) −
n∑

j=1

∫ t

0

〈
div

(
Aij(ũ(s))∇ũj(s)

)
, φ

〉
ds

+

( n∑

j=1

∫ t

0

σij(ũ(s))dW̃j(s), φ

)

L2(O)

.

The brackets 〈·, ·〉 signify the duality pairing between H1(O)′ and H1(O), i.e.

〈
div

(
Aij(ũ)∇ũj

)
, φ

〉
= −

∫

O

Aij(ũ)∇ũj · ∇φdx.

As mentioned before, the new diffusion matrix B in (4) is positive definite only under an
additional assumption, namely either

πiaij = πjaji for i 6= j and α1 := min
i=1,...,n

(
aii −

1

3

n∑

j=1, j 6=i

aij

)
> 0, or(7)

α2 := min
i=1,...,n

(
aii −

1

3

n∑

j=1, j 6=i

(
(aij + aji)− 2

√
aijaji

))
> 0.(8)

Our main result is as follows.

Theorem 1 (Existence of global martingale solution). Let T > 0 be arbitrary, d ≤ 3, and
u0 ∈ L2(O). Let σ = (σij)

n
i,j=1 with σij : L

2(O) × [0, T ] × Ω → L2(Y ;L2(O)) satisfy (5),
ai0 > 0, aij > 0 for i, j = 1, . . . , n, and let either (7) or (8) hold. Then there exists a global
martingale solution to (1)-(3). If additionally, u0i ≥ 0 a.e. in O, P-a.s. for i = 1, . . . , n
and

(9)
n∑

j=1

‖σij(u)‖L2(Y ;L2(O)) ≤ C‖ui‖L2(O),

then the population densities are nonnegative P-a.s.
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Remark 2 (Discussion of the assumptions). (i) We can also choose random initial data,
see Remark 18. We need additionally that E‖u0‖pL2(O) < ∞ for p = 24/(4 − d). This

condition is needed to derive a higher-order estimate for ui. It can be weakened to smaller
values of p by refining the Gagliardo-Nirenberg argument in the proof of Lemma 7.
(ii) Assumption (5) on σij seems to be quite natural. In [29], the multiplicative noise was

assumed to be only Hölder continuous, but the matrix (σij(u)) is needed to be diagonal,
which we do not assume. Condition (9) implies that

∑n
j=1 σij(u) = 0 if ui = 0, which is a

natural condition to obtain the nonnegativity of ui.
(iii) The existence of solutions to the deterministic version of (1)-(3) can be shown also

for vanishing coefficients ai0 = 0 [13]. This seems to be not possible in the stochastic
framework, since the condition ai0 > 0 is needed to derive estimates for ∇ui in L2(O)
P-a.s., and these estimates are necessary to work in the Hilbert space H1(O).
(iv) Conditions (7) and (8) on the matrix coefficients are probably not optimal. For

local-in-time existence of solutions to the determinstic analog of (1), only the positivity
of the real parts of the eigenvalues of A(u) is needed [1]. This condition is generally not
sufficient to ensure global solvability. A sufficient condition for the global existence for
general quasilinear evolution equations is provided by uniform W 1,p(O) bounds with p > d
[2, Theorem 15.3], but it is difficult to prove this regularity for solutions to cross-diffusion
systems. Conditions (7) and (8) are currently the best available assumptions to guarantee
the existence of global solutions, even in the deterministic framework. �

1.4. Ideas of the proof of Theorem 1. We sketch the main steps of the proof. The full
proof is given in section 2. First, we show the existence of a pathwise unique strong solution
u(N) to a stochastic Galerkin approximation of (1)-(3), where N ∈ N is the Galerkin
dimension. Estimates uniform in N are derived from a stochastic version of the entropy
inequality (which is made rigorous using Itô’s formula in section 2.3)

EH(u(N)(t))− EH(u(N)(0)) +
n∑

i,j=1

E

∫ t

0

∫

O

πiAij(u
(N))∇u(N)

i · ∇u(N)
j dxds

≤ 1

2
E

∫ t

0

‖P 1/2ΠNσ(u
(N))‖2L2(Y ;L2(O))ds+

n∑

i,j=1

E

∫ t

0

∫

O

πiu
(N)
i σij(u

(N))dWj(s)dx,

where ΠN is the projection on the finite-dimensional Galerkin space,

H(u) =
n∑

i=1

∫

O

πih2(ui)dx =
n∑

i=1

πi
2

∫

O

u2i dx =
1

2
‖P 1/2u‖2L2(O)

is the quadratic entropy, and P = diag(π1, . . . , πn), P
1/2 = diag(π

1/2
1 , . . . , π

1/2
n ). Since

PA(u(N)) is positive definite, the last term on the left-hand side yields uniform gradient
estimates. The first integral on the right-hand side is bounded from above by the entropyH
(up to some additive constant), using assumption (5), and the second integral is estimated
using the Burkholder-Davis-Gundy inequality (see Proposition 21 in the appendix).
Next, the tightness of the laws L(u(N)) in the topological space ZT , defined in (23) below,

is proved by applying a criterion of Brzeźniak, Goldys, and Jegaraj [7]. Because of the low
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regularity properties of the solutions, ZT cannot be chosen to be a metric space and we
cannot apply the Skorokhod representation theorem, as usually done in the literature (e.g.
[16, 33]). This problem is overcome by using Jakubowski’s generalization of the Skorokhod
theorem, which holds for topological spaces with a separating-points property (Theorem
23). Then there exists a subsequence of (u(N)) (not relabeled), another probability space,

and random variables (ũ(N), W̃ (N)) having the same law as (u(N),W ) and (ũ(N), W̃ (N))

converges to (ũ, W̃ ) in the topology of ZT . Because of the gradient estimates, we conclude
in particular the strong convergence ũ(N) → ũ in L2(O× (0, T )) P-a.s. This, together with
further convergences resulting from the relative compactness in ZT , allows us to pass to the

limit N → ∞ in the Galerkin approximation, showing that (ũ, W̃ ) is a global martingale
solution to (1).
From the application viewpoint, we expect that the population densities ui(t) are non-

negative P-a.s. if this holds initially. The problem is that generally, maximum principle
arguments cannot be applied to cross-diffusion systems. System (1), (3), however, possesses
a special structure. Indeed, we may write (1) as

dui − div

((
ai0 +

n∑

k=1

aiku
2
k

)
∇ui + uiFi[u]

)
=

n∑

j=1

σij(u)dWj(t),

and Fi depends on uj and ∇uj for j 6= i. The term uiFi[u] can be interpreted as a drift
term which vanishes if ui = 0. If we assume that σij(u) = 0 if ui = 0 then a maximum
principle can be applied.
More precisely, we employ the stochastic Stampacchia-type maximum principle due to

Chekroun, Park, and Temam [11]. The idea is to regularize the test function (ũ
(N)
i )− =

max{0,−ũ(N)
i } by some smooth function Fε(ũ

(N)
i ), to apply the Itô formula for E

∫
Fε(ũ

(N)
i )dx,

and then to pass to the limits N → ∞ and ε→ 0 leading to the inequality

E‖ũi(t)−‖2L2(O) ≤ E

∫ t

0

‖ũi(s)−‖2L2(O)ds.

Gronwall’s lemma show that ũi(t)
− = 0 a.e. in O, which proves the nonnegativity of ũi

P-a.s.
In order to make the manuscript accessible also to non-experts of stochastic partial

differential equations, we recall some known results from stochastic analysis used in this
paper in Appendix A. As the tightness criterion of [7] is probably less known, we present
the details directly in the proof of Theorem 1 in section 2.4.

2. Proof of the existence theorem

2.1. An algebraic property. We recall the following result on the positive definiteness
of the new diffusion matrix, taken from [13, Lemma 3] by choosing s = 2.

Lemma 3. Let π1, . . . , πn > 0 and P = diag(π1, . . . , πn) ∈ Rn×n. Let either condition (7)
or (8) hold. Then PA(u) is positive definite, i.e., it holds for any z = (z1, . . . , zn) ∈ Rn
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and u = (u1, . . . , un) ∈ Rn,
n∑

i,j=1

πiAij(u)zizj ≥
n∑

i=1

πiai0z
2
i + 3α

n∑

i=1

πiu
2
i z

2
i ,

where α = α1 if (7) holds and α = α2 if (8) is satisfied. In the latter case, we may choose
πi = 1 for all i = 1, . . . , n.

2.2. Stochastic Galerkin approximation. We fix an orthonormal basis (ek)k≥1 of L
2(O)

and a number N ∈ N and set HN = span{e1, . . . , eN}. We introduce the projection oper-
ator ΠN : L2(O) → HN ,

ΠN(v) =
N∑

i=1

(v, ei)L2(O)ei, v ∈ L2(O).

The approximate problem is the following system of stochastic differential equations,

du
(N)
i − ΠN div

( n∑

j=1

Aij(u
(N))∇u(N)

j

)
dt = ΠN

( n∑

j=1

σij(u
(N))

)
dWj(t),(10)

u
(N)
i (0) = ΠN(u

0
i ), i = 1, . . . , n.(11)

Lemma 4. Let Assumptions (7) or (8) hold. Then there exists a pathwise unique strong
solution to (10)-(11).

Proof. We apply Theorem 22 in Appendix A to

(12) π · du = a(u)dt+ b(u)dW (t), t > 0, u(0) = ΠN(u
0),

where

a = (a1, . . . , an) : HN → Rn, ai(u) = ΠN div

( n∑

j=1

πiAij(u)∇uj
)
,

bij : HN → L2(Y ;HN), bij(u) = πiΠNσij(u),

and the numbers π1, . . . , πn > 0 are given by (7). Observe that this problem is equivalent
to (10) after componentwise division by πi. It is sufficient to verify Assumptions (48)-(49).
Let R > 0, T > 0, and ω ∈ Ω and let u, v ∈ HN with ‖u‖HN

, ‖v‖HN
≤ R. Then, using the

positive definiteness of PA, according to Lemma 3, and the equivalence of norms on HN ,

(a(u)− a(v), u− v)HN
= −

n∑

i,j=1

∫

O

πiAij(u)∇(ui − vi) · ∇(uj − vj)dx

+
n∑

i,j=1

∫

O

πi(Aij(u)− Aij(v))∇(ui − vi) · ∇vjdx

≤ C‖A(u)− A(v)‖L2(O)‖∇(u− v)‖L2(O)‖∇v‖L∞(O)

≤ C(N,R)‖u− v‖2HN
,
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where the constant C(N,R) > 0 depends on N and R. In the last step we have used the
fact that Aij(u) is locally Lipschitz continuous. Hence, together with assumption (5) on σ,
the local weak monotonicity condition (48) holds. To verify the weak coercivity condition
(49), we take u ∈ HN with ‖u‖HN

≤ R and employ again the positive definiteness of PA:

(a(u), u)HN
+ ‖b(u)‖2L2(Y ;HN ) = −

n∑

i,j=1

∫

O

πiAij(u)∇ui · ∇ujdx+ ‖P 1/2σ(u)‖2L2(Y ;HN )

≤ Cσ(1 + ‖u‖2HN
),

where we recall that P 1/2 = diag(π
1/2
1 , . . . , π

1/2
n ). Therefore, the lemma follows after ap-

plying Theorem 22. �

2.3. Uniform estimates. We prove some energy-type estimates uniform in N .

Lemma 5 (A priori estimates). Let T > 0 and let u(N) be the pathwise unique strong
solution to (10)-(11) on [0, T ]. Then there exists a constant C1 > 0 which depends on
E‖u0‖2L2(O), Cσ, and T but not on N such that

sup
N∈N

E

(
sup

t∈(0,T )

‖u(N)‖2L2(O)

)
≤ C1,(13)

sup
N∈N

E

(∫ T

0

‖∇u(N)‖2L2(O)dt

)
≤ C1,(14)

α sup
N∈N

E

(∫ T

0

∥∥∇(u(N))2
∥∥2

L2(O)
dt

)
≤ C1,(15)

and α = α1 if (7) holds, α = α2 if (8) holds.

We remark that (13) shows that (u(N)) is bounded in L2(O × (0, T ) × Ω), so together
with (14), we infer a uniform bound for u(N) in L2((0, T )× Ω;H1(O)).

Proof. We apply the Itô formula (Theorem 19) to the process X(t) = u(N)(t), where u(N)

solves (12):

1

2
‖P 1/2u(N)(t)‖2L2(O) −

1

2
‖ΠN(P

1/2u0)‖2L2(O)

=
n∑

i,j=1

∫ t

0

(
u
(N)
i (s),ΠN div(πiAij(u

(N)(s))∇u(N)
j (s))

)
L2(O)

ds

+
1

2

∫ t

0

∥∥ΠN(P
1/2σ(u(N)(s)))

∥∥2

L2(Y ;L2(O))
ds

+
n∑

i,j=1

∫ t

0

(
u
(N)
i (s),ΠN(πiσij(u

(N)(s)))dWj(s)
)
L2(O)

= −
n∑

i,j=1

∫ t

0

(
∇u(N)

i (s), πiAij(u
(N)(s))∇u(N)

j (s)
)
L2(O)

ds
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+
1

2

∫ t

0

∥∥ΠN(P
1/2σ(u(N)(s)))

∥∥2

L2(Y ;L2(O))
ds

+
n∑

i,j=1

∫ t

0

πi
(
u
(N)
i (s), σij(u

(N)(s))dWj(s)
)
L2(O)

.(16)

The first term on the right-hand side can be estimated by using Lemma 3:

n∑

i,j=1

(
∇u(N)

i (s), πiAij(u
(N)(s))∇u(N)

j

)
L2(O)

≥
n∑

i=1

πiai0

∫

O

|∇u(N)
i |2dx+ 3α

n∑

i=1

πi

∫

O

|u(N)
i |2|∇u(N)

i |2dx

≥ C‖∇u(N)‖2L2(O) + Cα‖∇(u(N))2‖2L2(O),

where (u(N))2 = ((u
(N)
1 )2, . . . , (u

(N)
n )2) and here and in the following, C > 0 is a generic

constant independent of N with values changing from line to line. Therefore, (16) becomes

1

2
‖P 1/2u(N)(t)‖2L2(O) + C

∫ t

0

‖∇u(N)(s)‖2L2(O)ds+ Cα

∫ t

0

‖∇(u(N)(s)2)‖2L2(O)ds

≤ 1

2
‖P 1/2u0‖2L2(O) +

1

2

∫ t

0

∥∥P 1/2σ(u(N)(s))
∥∥2

L2(Y ;L2(O))
ds(17)

+
n∑

i,j=1

∫ t

0

πi
(
u
(N)
i (s), σij(u

(N)(s))dWj(s)
)
L2(O)

.

For the second integral on the right-hand side, we take into account assumption (5):

1

2

∫ t

0

∥∥P 1/2σ(u(N)(s))
∥∥2

L2(Y ;L2(O))
ds ≤ C

∫ t

0

∥∥σ(u(N)(s))
∥∥2

L2(Y ;L2(O))
ds

≤ C

∫ t

0

(
1 + ‖u(N)‖2L2(O)

)
ds = Ct+ C

∫ t

0

‖u(N)‖2L2(O)ds.

To estimate the last integral in (17), we observe that, since the process u(N) is HN -valued
and a solution to (10), the process

µ(N)(t) =
n∑

i,j=1

∫ t

0

πi
(
u
(N)
i , σij(u

(N)(s))dWj(s)
)
L2(O)

, t ∈ [0, T ],

is an Ft-martingale. Then, by the Burkholder-Davis-Gundy inequality (see Proposition
21), we have

E

(
sup

t∈(0,T )

∣∣∣∣
n∑

i,j=1

∫ t

0

πi
(
u
(N)
i , σij(u

(N)(s))dWj(s)
)
L2(O)

∣∣∣∣
)
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≤ CE

(∫ T

0

‖u(N)(s)‖2L2(O)

∥∥σ(u(N)(s))
∥∥2

L2(Y ;L2(O))

)1/2

,

and by the Hölder inequality, assumption (5) on σ, and the Young inequality, we obtain

E sup
t∈(0,T )

∣∣∣∣
n∑

i,j=1

∫ t

0

πi
(
u
(N)
i , σij(u

(N)(s))dWj(s)
)
L2(O)

∣∣∣∣

≤ CE

{(
sup

t∈[0,T ]

‖u(N)(t)‖2L2(O)

)1/2

C1/2
σ

(∫ T

0

(
1 + ‖u(N)‖2L2(O)

)
ds

)1/2}

≤ 1

4
E

(
sup

t∈[0,T ]

‖u(N)(t)‖2L2(O)

)
+ C

(
T + E

∫ T

0

‖u(N)‖2L2(O)ds

)
.(18)

We take in (17) the supremum over t ∈ (0, T ) and the mathematical expectation and use
the inequality ‖P 1/2u(N)‖L2(O) ≥ C‖u(N)‖L2(O) for some constant C > 0 only depending
on π1, . . . , πn and the previous estimates to conclude that

1

4
E

(
sup

t∈[0,T ]

‖u(N)(t)‖2L2(O)

)
+ CE

∫ t

0

‖∇u(N)(s)‖2L2(O)ds+ CαE

∫ t

0

‖∇(u(N)(s)2)‖2L2(O)ds

≤ CT + CE
(
‖u0‖2L2(O)

)
+ C

∫ T

0

E

(
sup
t∈[0,τ ]

‖u(N)(τ)‖2L2(O)

)
ds.(19)

We infer from the Gronwall lemma that

sup
N∈N

E

(
sup

t∈[0,T ]

‖u(N)(t)‖2L2(O)

)
≤ C,

where C > 0 depends on E‖u0‖2L2(O), Cσ, and T . This proves (13). Inserting the previous

estimate into (19), we deduce immediately estimates (14) and (15). �

We need a higher-order moment estimate, which is proved in the following lemma.

Lemma 6. Let T > 0 and let u(N) be the pathwise unique strong solution to (10)-(11) on
[0, T ]. Furthermore, let p > 2 and E‖u0‖pL2(O) < ∞. Then there exists a constant C2 > 0

which depends on p, E‖u0‖pL2(O), Cσ, and T but not on N such that

(20) sup
N∈N

E

(
sup

t∈(0,T )

‖u(N)‖pL2(O)

)
≤ C2.

Proof. We take the supremum over t ∈ (0, T ) in (17) and neglect the second and third
terms on the left-hand side. Then, raising both sides to the the power p/2 and applying
the Hölder inequality, we find that

sup
t∈(0,T )

‖u(N)‖pL2(O) ≤ C‖u0‖pL2(O) + CT p/2−1

∫ T

0

∥∥σ(u(N)(s))
∥∥p

L2(Y ;L2(O))
ds
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+ C

(
sup

t∈(0,T )

n∑

i,j=1

∫ t

0

(
u
(N)
i (s), πiσij(u

(N)(s))dWj(s)
)
L2(O)

)p/2

.

Taking the mathematical expectation and using assumption (5), it follows that

E

(
sup

t∈(0,T )

‖u(N)‖pL2(O)

)
≤ C + CE‖u0‖pL2(O) + CE

∫ T

0

‖u(N)(s)‖pL2(O)ds

+ CE

(
sup

t∈(0,T )

n∑

i,j=1

∫ t

0

(
u
(N)
i (s), πiσij(u

(N)(s))dWj(s)
)
L2(O)

)p/2

.(21)

For the last term, we use the Burkholder-Davis-Gundy and Young inequalities,

E

(
sup

t∈(0,T )

n∑

i,j=1

∫ t

0

(
u(N)(s), πiσij(u

(N)(s))dWj(s)
)
L2(O)

)p/2

≤ CE

(∫ T

0

‖u(N)(s)‖2L2(O)

∥∥σ(u(N)(s))
∥∥2

L2(Y ;L2(O))
ds

)p/4

≤ CE

{(
sup

t∈[0,T ]

‖u(N)(t)‖2L2(O)

)p/4

Cp/4
σ

(∫ T

0

(
1 + ‖u(N)‖2L2(O)

)
ds

)p/4}

≤ CE

{(
sup

t∈[0,T ]

‖u(N)(t)‖pL2(O)

)1/2(∫ T

0

(
1 + ‖u(N)‖pL2(O)

)
ds

)1/2}

≤ 1

2
E

(
sup

t∈[0,T ]

‖u(N)(t)‖pL2(O)

)
+ CE

∫ T

0

(
1 + ‖u(N)‖pL2(O)

)
ds.

Inserting this estimate into (21) and observing that the first term on the right-hand side
of the previous inequality can be absorbed by the first term on the left-hand side of (21),
we infer that

E

(
sup

t∈(0,T )

‖u(N)‖pL2(O)

)
≤ C + CE‖u0‖pL2(O) + CE

∫ T

0

sup
τ∈(0,s)

‖u(N)(τ)‖pL2(O)ds

+ CE

∫ T

0

(
1 + ‖u(N)‖pL2(O)

)
ds.

Then the Gronwall inequality implies that

E

(
sup

t∈(0,T )

‖u(N)‖pL2(O)

)
≤ C,

which concludes the proof. �

The previous lemma allows us to improve slightly the regularity of u(N).

Lemma 7. Let T > 0 and let u(N) be the pathwise unique strong solution to (10)-(11)

on [0, T ]. Then (u
(N)
i )2 ∈ L3((0, T ) × Ω;L2(O)) for i = 1, . . . , N and, for some constant
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C3 > 0,

E

∫ T

0

‖(u(N))2‖3L2(O)dt ≤ C3,

where (u(N))2 is the vector with the coefficients (u
(N)
i )2 for i = 1, . . . , N .

Proof. By the Gagliardo-Nirenberg inequality with θ = d/(2+d) and the Hölder inequality
with q = 2(2 + d)/(3d) and q′ = 2(2 + d)/(4− d) (here, we need that d ≤ 3), we find that

E

∫ T

0

‖(u(N))2‖3L2(O)dt ≤ CE

∫ T

0

‖(u(N))2‖3d/(2+d)

H1(O) ‖(u(N))2‖6/(2+d)

L1(O) dt

≤ CE

(
sup

t∈(0,T )

‖u(N)‖12/(2+d)

L2(O)

∫ T

0

‖(u(N))2‖3d/(2+d)

H1(O) dt

)

≤ C

{
E

(
sup

t∈(0,T )

‖u(N)‖24/(4−d)

L2(O)

)}1/q′{
E

∫ T

0

‖(u(N))2‖2H1(O)dt

}1/q

.

The first factor is uniformly bounded by (20) with p = 24/(4− d) and the second factor is
uniformly bounded as a consequence of (13) and (14). �

2.4. Tightness. The aim of this subsection is to prove that the sequence of laws of u(N)

is tight on a certain topological space. For this, we introduce the following spaces:

• C0([0, T ];H3(O)′) is the space of continuous functions u : [0, T ] → H3(O)′ with the
topology T1 induced by the norm ‖u‖C0([0,T ];H3(O)′) = supt∈(0,T ) ‖u(t)‖H3(O)′ ;

• L2
w(0, T ;H

1(O)) is the space L2(0, T ;H1(O)) with the weak topology T2;
• L2(0, T ;L2(O)) is the space of square integrable functions u : (0, T ) → L2(O) with
the topology T3 induced by the norm ‖ · ‖L2(0,T ;L2(O));

• C0([0, T ];L2
w(O)) is the space of weakly continuous functions u : [0, T ] → L2(O)

endowed with the weakest topology T4 such that for all h ∈ L2(O), the mappings

C0([0, T ];L2
w(O)) → C0([0, T ];R), u 7→ (u(·), h)L2(O),

are continuous.

In particular, convergence in C0([0, T ];L2
w(O)) means the following: un → u in C0([0, T ];

L2
w(O)) as n→ ∞ holds if and only if

lim
n→∞

sup
t∈(0,T )

|(un(t)− u(t), h)L2(O)| = 0 for all h ∈ L2(O).

We need another space: Let r > 0 and B := {u ∈ L2(O) : ‖u‖L2(O) ≤ r}. Let q be
the metric compatible with the weak topology on B. We define the following subspace of
C0([0, T ];L2

w(O)):

(22)
C0([0, T ];Bw) = set of all weakly continuous functions u : [0, T ] → L2(O)

such that supt∈(0,T ) ‖u(t)‖L2(O) ≤ r.
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This space is metrizable with the metric q∗(u, v) = supt∈(0,T ) q(u(t), v(t)) [5, Theorem 3.29].

By the Banach-Alaoglu theorem, Bw is compact [5, Theorem 3.16], so, (C0([0, T ];Bw), q
∗)

is a complete metric space.
The following lemma ensures that any sequence in C0([0, T ];B) which converges in some

space C0([0, T ];U ′) with U ⊂ H1(O) is also convergent in C0([0, T ];Bw). We apply this
lemma with U = H3(O).

Lemma 8 (Lemma 2.1 in [8]). Let un : [0, T ] → L2(O) (n ∈ N) be functions satisfying

sup
n∈N

sup
t∈(0,T )

‖un(t)‖L2(O) ≤ r,

un → u in C0([0, T ];U ′) as n→ ∞,

where U ⊂ H1(O) and U ′ is the dual space of U . Then un, u ∈ C0([0, T ];Bw) and un → u
in C0([0, T ];Bw) as n→ ∞.

We define the space

(23) ZT := C0([0, T ];H3(O)′) ∩ L2
w(0, T ;H

1(O)) ∩ L2(0, T ;L2(O)) ∩ C0([0, T ];L2
w(O)),

endowed with the topology T which is the maximum of the topologies Ti, i = 1, 2, 3, 4, of
the corresponding spaces. On this space, we can formulate a compactness criterion which
is analogous to the result due to Mikulevcius and Rozowskii [32].

Lemma 9 (Compactness criterion). Let (ZT , T ) be as defined in (23). A set K ⊂ ZT is
T -relatively compact if the following three conditions hold:

(1) supu∈K supt∈(0,T ) ‖u(t)‖L2(O) <∞,

(2) K is bounded in L2(0, T ;H1(O)), and
(3) limδ→0 supu∈K sups,t∈(0,T ), |s−t|≤δ ‖u(s)− u(t)‖H3(O)′ = 0.

We refer to [8, Lemma 2.3] for a proof. The result follows since the embeddingsH1(O) →֒
L2(O) →֒ H3(O)′ are continuous and the embedding H1(O) →֒ L2(O) is compact, such
that we can apply Dubinskii’s Theorem [18] (also see [37]) to a sequence (un)n∈N ⊂ K to
conclude that there exists a subsequence of (un)n∈N that is convergent in C0([0, T ];H3(O)′).
By Lemma 8, this subsequence is also convergent in C0([0, T ];Bw).
The compactness criterion in Lemma 9 allows for a proof of the following tightness

criterion taken from [8, Corollary 2.6].

Theorem 10 (Tightness criterion). Let H, V , and U be separable Hilbert spaces such
that the embeddings U →֒ V →֒ H are dense and continuous and the embedding V →֒ H
is compact. Furthermore, let (Xn)n∈N be a sequence of continuous F-adapted U ′-valued
stochastic processes such that

(1) there exists C > 0 such that

sup
n∈N

E

(
sup

t∈(0,T )

‖Xn(t)‖2H
)

≤ C,
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(2) there exists C > 0 such that

sup
n∈N

E

(∫ T

0

‖Xn(t)‖2V dt
)

≤ C,

(3) (Xn)n∈N satisfies the Aldous condition in U ′ (see Definition 3 in the appendix).

Furthermore, let Pn be the law of Xn on ZT . Then (Pn)n∈N is tight on ZT .

The main result of this subsection is the tightness of the laws L(u(N)) of the solutions
u(N) to (10)-(11).

Lemma 11. The set of measures {L(u(N)) : N ∈ N} is tight on (ZT , T ).

Proof. The idea of the proof is to apply Theorem 10 with U = H3(O), V = H1(O), and
H = L2(O). In view of estimates (13) and (14), conditions (1) and (2) of Theorem 10
are fulfilled. It remains to show that (u(N))N∈N satisfies the Aldous condition in H3(O)′.
To this end, let (τN)N∈N be a sequence of F-stopping times such that 0 ≤ τN ≤ T . Let
t ∈ [0, T ] and φ ∈ H3(O). Then (10) can be written as

〈u(N)
i (t), φ〉 = 〈ΠN(u

0
i ), φ〉 −

n∑

j=1

∫ t

0

〈
Aij(u

(N))∇u(N)
j ,∇ΠNφ

〉
ds

+
n∑

j=1

〈∫ t

0

ΠN

(
σij(u

(N)(s))
)
dWj(s), φ

〉

=: J
(N)
1 + J

(N)
2 (t) + J

(N)
3 (t),(24)

where 〈·, ·〉 is the dual pairing between H3(O)′ and H3(O). We estimate each term on the
right-hand side individually.
First, consider the term involving the diffusion coefficients. Let θ > 0. Then, using the

(at most) quadratic dependence of Aij on uk and the continuous embedding H3(O) →֒
W 1,∞(O) (this is another instance where we use d ≤ 3), we find that

E

∣∣∣∣
∫ τN+θ

τN

〈
Aij(u

(N))∇u(N)
j ,∇ΠNφ

〉
ds

∣∣∣∣

≤ E

∫ τN+θ

τN

‖Aij(u
(N))‖L2(O)‖∇u(N)

j ‖L2(O)‖∇φ‖L∞(O)ds

≤ E

(∫ τN+θ

τN

(
1 + ‖(u(N))2‖L2(O)

)
‖∇u(N)‖L2(O)ds

)
‖φ‖H3(O)

≤ E

((
θ1/2 + θ1/6‖(u(N))2‖L3(0,T ;L2(O))

)
‖∇u(N)‖L2(0,T ;L2(O))

)
‖φ‖H3(O)

≤
{
θ1/2 + θ1/6

(
E

(∫ T

0

‖(u(N))2‖3L2(O)dt

)2/3)1/2
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×
(
E

∫ T

0

‖∇u(N)‖2L2(O)dt

)1/2}
‖φ‖H3(O),

where in the last two inequalities we applied the Hölder inequality with respect to time
and then with respect to the random variable. The vector (u(N)))2 consists of elements

(u
(N)
i ))2 for i = 1, . . . , N . Taking into account the estimates from Lemmas 5 and 7, we

deduce that

(25) E

∣∣∣∣
∫ τN+θ

τN

〈
Aij(u

(N))∇u(N)
j ,∇ΠNφ

〉
ds

∣∣∣∣ ≤ Cθ1/6‖φ‖H3(O).

For the stochastic term, we use assumption (5) on σ, the Itô isometry (see Proposition 20),
and the Hölder inequality to obtain

E

∣∣∣∣
〈 ∫ τN+θ

τN

ΠN(σij(u
(N)(s)))dWj(s), φ

〉∣∣∣∣
2

≤ E

(∫ τN+θ

τN

‖σ(u(N))‖2L2(Y ;L2(O))dt

)
‖φ‖2L2(O)

≤ CσE

(∫ τN+θ

τN

(
1 + ‖u(N)‖2L2(O)

)
dt

)
‖φ‖2L2(O)

≤ C

(
θ + θ1/3

(
E

∫ T

0

‖u(N)‖3L2(O)dt

)2/3)
‖φ‖2L2(O) ≤ Cθ1/3‖φ‖2L2(O).(26)

Next, let κ > 0 and ε > 0. By the definition of the H3(O)′ norm, the Chebyshev
inequality, and estimate (25), we have

P

{
‖J (N)

2 (τN + θ)− J
(N)
2 (τN)‖H3(O)′ ≥ κ

}
≤ 1

κ
E‖J (N)

2 (τN + θ)− J
(N)
2 (τN)‖H3(O)′

=
1

κ
sup

‖φ‖
H3(O)=1

E
∣∣〈J (N)

2 (τN + θ)− J
(N)
2 (τN), φ

〉∣∣ ≤ Cθ1/6

κ
.

Thus, choosing δ1 = (κε/C)6, we infer that

sup
N∈N

sup
0<θ<δ1

P

{
‖J (N)

2 (τN + θ)− J
(N)
2 (τN)‖H3(O)′ ≥ κ

}
≤ ε.

In a similar way, it follows that

P

{
‖J (N)

3 (τN + θ)− J
(N)
3 (τN)‖H3(O)′ ≥ κ

}
≤ 1

κ2
E‖J (N)

3 (τN + θ)− J
(N)
3 (τN)‖2H3(O)′

≤ C2θ
1/3

κ2
,

and choosing δ2 = (κ2ε/C)3 gives

sup
N∈N

sup
0<θ<δ1

P

{
‖J (N)

3 (τN + θ2)− J
(N)
3 (τN)‖H3(O)′ ≥ κ

}
≤ ε.



STOCHASTIC POPULATION CROSS-DIFFUSION SYSTEM 17

This shows that the Aldous condition holds for all three terms J
(N)
i , i = 1, 2, 3. Conse-

quently, in view of (24), it also holds for (u(N))N∈N. We conclude the proof by invoking
Theorem 10. �

2.5. Convergence of the approximate solutions. First, we show that the space ZT ,
defined in (23), verifies the assumption of the Skorokhod-Jakubowski theorem (see Theorem
23 in the appendix). More precisely, we prove that on each space in definition (23) of ZT ,
there exists a countable set of continuous real-valued functions separating points.

Lemma 12. The topological space ZT , defined in (23), satisfies the assumption of Theorem
23.

Proof. Since the spaces C0([0, T ];H3(O)′) and L2(0, T ;L2(O)) are separable, metrizable,
and complete, the assumption of Theorem 23 is satisfied; see [3, Exposé 8]. For the space
L2
w(0, T ;H

1(O)), it is sufficient to define

fm(u) =

∫ T

0

(u(t), vm(t))H1(O)dt ∈ R, where u ∈ L2
w(0, T ;H

1(O)), m ∈ N,

and (vm)m∈N is a dense subset of L2(0, T ;H1(O)).
It remains to consider the space C0([0, T ];L2

w(O)). Let (wm)m∈N be a dense subset of
L2(0, T ;L2(O)) and let QT be the set of rational numbers from the interval [0, T ]. Then
the family {fm,t : m ∈ N, t ∈ QT}, defined by

fm,t(u) = (u(t), wm)L2(O) ∈ R, where u ∈ C0([0, T ];L2
w(O)), m ∈ N, t ∈ QT ,

consists of continuous functions separating points in C0([0, T ];L2
w(O)). �

In view of Lemma 12 and Theorem 23, we infer the following result.

Corollary 13. Let (ηn)n∈N be a sequence of ZT -valued random variables such that their
laws L(ηn) on (ZT , T ) form a tight sequence of probability measures. Then there exists a

subsequence (ηk)k∈N, which is not relabeled, a probability space (Ω̃, F̃ , P̃), and ZT -valued
random variables η̃, η̃k with k ∈ N such that the variables ηk and η̃k have the same laws

on ZT and (η̃k)k∈N converges to η̃ a.s. on Ω̃.

By Lemma 11, the set of measures {L(u(N)) : N ∈ N} is tight on (ZT , T ) and by Lemma
12, the space ZT × C0([0, T ];Y0) satisfies the assumption of Theorem 23. Therefore, we
can apply Corollary 13 to deduce the existence of a subsequence of (u(N))N∈N, which is

not relabeled, a probability space (Ω̃, F̃ , P̃), and, on this space, ZT × C0([0, T ];Y0)-valued

random variables (ũ, W̃ ), (ũ(N), W̃ (N)) with N ∈ N such that (ũ(N), W̃ (N)) has the same
law as (u(N),W ) on B(ZT × C0([0, T ];Y0)) and

(ũ(N), W̃ (N)) → (ũ, W̃ ) in ZT × C0([0, T ];Y0), P̃-a.s., as N → ∞.

Because of the definition of the space ZT , this convergence means that P̃-a.s.,

ũ(N) → ũ in C0([0, T ];H3(O)′),

ũ(N) ⇀ ũ weakly in L2(0, T ;H1(O)),
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ũ(N) → ũ in L2(0, T ;L2(O)),(27)

ũ(N) → ũ in C0([0, T ];L2
w(O)),

W̃ (N) → W̃ in C0([0, T ];Y0).

Since u(N) is an element of C0([0, T ];HN ) P-a.s., C
0([0, T ];HN) is a Borel set of C

0([0, T ];
H3(O)′) ∩ L2(0, T ;L2(O)), and since u(N) and ũ(N) have the same laws, we infer that

L(ũ(N))
(
C0([0, T ];HN )

)
= 1 for all N ≥ 1.

Note that, as B(ZT ×C0([0, T ];Y0)) is a subset of B(ZT )×B(C0([0, T ];Y0)), the function ũ
is a ZT -Borel random variable. Furthermore, in view of estimates (13)-(15) and (20) and
the equivalence of the laws of ũ(N) and ũ on B(ZT ), we have the uniform bounds

sup
N∈N

Ẽ

(
sup

t∈(0,T )

‖ũ(N)‖2L2(O)

)
≤ C1,(28)

sup
N∈N

Ẽ

(∫ T

0

‖ũ(N)‖2H1(O)dt

)
+ α sup

N∈N
Ẽ

(∫ T

0

∥∥(ũ(N))2
∥∥2

H1(O)
dt

)
≤ C1,(29)

sup
N∈N

Ẽ

(
sup

t∈(0,T )

‖ũ(N)‖pL2(O)

)
≤ C2,(30)

where p ≥ 2 is any number.
We deduce from (29) that there exists a subsequence of (ũ(N)) (not relabeled) which is

weakly converging in L2((0, T ) × Ω̃;H1(O)) as N → ∞. Since ũ(N) → ũ P̃-a.s. in ZT , we

conclude that ũ ∈ L2((0, T )× Ω̃;H1(O)), i.e.

(31) Ẽ

∫ T

0

‖ũ(t)‖2H1(O)dt <∞.

Similarly, the bound (28) allows us to extract a subsequence which is weakly* convergent

in L2(Ω̃;L∞(0, T ;L2(O))) and

(32) Ẽ

(
sup

t∈(0,T )

‖ũ(t)‖2L2(O)

)
<∞.

The convergence ũ(N) → ũ in L2(0, T ;L2(O)) P̃-a.s. implies, up to a subsequence, that

ũ(N) → ũ a.e. in O, P̃-a.s.
In particular, we have (componentwise) (ũ(N))2 → (ũ)2 a.e. in O, P̃-a.s. On the other
hand, by estimate (29), there exists a subsequence of ((ũ(N))2)N∈N weakly converging to

some function v in L2(Ω̃;L2(0, T ;H1(O))). The uniqueness of the limit function then
implies that v = ũ2 and consequently,

(ũ(N))2 ⇀ (ũ)2 weakly in L2(Ω̃;L2(0, T ;H1(O))).

It remains to show that the stochastic process ũ is a martingale solution to (1). The
following lemmas are taken from [7, Lemma 5.2 and proof].
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Lemma 14. Suppose that the process (W̃ (N)(t))t∈[0,T ], defined on (Ω̃, F̃ , P̃), has the same

law as the Y -valued cylindrical Wiener process W , defined on (Ω,F ,P). Then W̃ (N) is also

a Y -valued cylindrical Wiener process on (Ω̃, F̃ , P̃).

Lemma 15. The process (W̃ (t))t∈[0,T ] is a Y -valued cylindrical Wiener process on (Ω̃, F̃ , P̃).
If 0 ≤ s < t ≤ T , the increments W̃ (t)− W̃ (s) are independent of the σ-algebra generated

by ũ(r) and W̃ (r) for r ∈ [0, s].

We denote by F̃ the filtration generated by (ũ, W̃ ) and by F̃(N) the filtration generated

by (ũ(N), W̃ (N)). Lemma 14 implies that ũ is progressively measurable with respect to F̃,

and Lemma 15 shows that ũ(N) is progressively measurable with respect to F̃(N).
The following lemma plays a significant role in establishing the existence of a martingale

solution to (1).

Lemma 16. It holds for all s, t ∈ [0, T ] with s ≤ t and all φ1 ∈ L2(O) and φ2 ∈ H3(O)
satisfying ∇φ2 · ν = 0 on ∂O that

lim
N→∞

Ẽ

∫ T

0

(
ũ(N)(t)− ũ(t), φ1

)2
L2(O)

dt = 0,(33)

lim
N→∞

Ẽ
(
ũ(N)(0)− ũ(0), φ1

)2
L2(O)

= 0,(34)

lim
N→∞

Ẽ

∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

〈
Aij(ũ

(N)(s))∇ũ(N)
j (s)− Aij(ũ(s))∇ũj(s),∇φ2

〉
ds

∣∣∣∣dt = 0,(35)

lim
N→∞

Ẽ

∫ T

0

∣∣∣∣
n∑

j=1

∫ t

0

(
σij(ũ

(N)(s))dW̃
(N)
j (s)− σij(ũ(s))dW̃j(s), φ1

)
L2(O)

∣∣∣∣
2

dt = 0.(36)

Proof. Let φ1 ∈ L2(O). We know that ũ(N) → ũ in ZT P̃-a.s. In particular, ũ(N) → ũ in

C0([0, T ];L2
w(O)) P̃-a.s., which means that for any t ∈ [0, T ],

lim
N→∞

(ũ(N)(t), φ1)L2(O) = (ũ(t), φ1)L2(O) P̃-a.s.

Estimate (28) provides a uniform bound for (ũ(N)(t), φ1)
2
L2(O) such that we can apply the

dominated convergence theorem to conclude that

(37) lim
N→∞

∫ T

0

(
ũ(N)(t)− ũ(t), φ1

)2
L2(O)

dt = 0 P̃-a.s.

We have for any r > 1, by (30),

Ẽ

(∣∣∣∣
∫ T

0

‖ũ(N)(t)− ũ(t)‖2L2(O)dt

∣∣∣∣
r)

≤ CẼ

∫ T

0

(
‖ũ(N)(t)‖2rL2(O) + ‖ũ(t)‖2rL2(O)

)
dt ≤ C.

This bound provides the equi-integrability of
∫ T

0

(
ũ(N)(t) − ũ(t), φ1

)2
L2(O)

dt. Taking into

account the convergence (37), Vitali’s convergence theorem (see the appendix) then shows
that (33) holds.
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Convergence (34) follows in a similar way. Indeed, since ũ(N) → ũ in C0([0, T ];L2
w(O))

P̃-a.s. and ũ is continuous at t = 0, we infer that for any φ1 ∈ L2(O),

lim
N→∞

(ũ(N)(0), φ1)L2(O) = (ũ(0), φ1)L2(O) P̃-a.s.

Then convergence (34) follows from (28) and Vitali’s convergence theorem.
Next, we establish convergence (35) through several steps. Due to the structure of

Aij(ũ
(N)), we need to show the following three convergences:

lim
N→∞

∫ t

0

〈
∇ũ(N)

j (s)−∇ũj(s),∇φ
〉
ds = 0,(38)

lim
N→∞

∫ t

0

〈
ũ
(N)
j (s)ũ

(N)
k (s)∇ũ(N)

k (s)− ũj(s)ũk(s)∇ũk(s),∇φ
〉
ds = 0,(39)

lim
N→∞

∫ t

0

〈
(ũ

(N)
k (s))2∇ũ(N)

j (s)− (ũk(s))
2∇ũ(s),∇φ

〉
ds = 0,(40)

for j 6= k and suitable test functions φ. We deduce from convergence (27) that (38) follows
for all φ ∈ H1(O). The second convergence (39) is proved as follows:

∣∣∣∣
∫ t

0

〈
ũ
(N)
j (s)ũ

(N)
k (s)∇ũ(N)

k (s)− ũj(s)ũk(s)∇ũk(s),∇φ
〉
ds

∣∣∣∣

=
1

2

∣∣∣∣
∫ t

0

〈
ũ
(N)
j (s)∇

(
ũ
(N)
k (s)

)2 − ũj(s)∇
(
ũk(s)

)2
,∇φ

〉
ds

∣∣∣∣

=
1

2

∣∣∣∣
∫ t

0

〈(
ũ
(N)
j (s)− ũj(s)

)
∇
(
ũ
(N)
k (s)

)2
+ ũj(s)∇

{(
ũ
(N)
k (s)

)2 −
(
ũk(s)

)2}
,∇φ

〉
ds

∣∣∣∣

≤ 1

2

∫ t

0

‖ũ(N)
j (s)− ũj(s)‖L2(O)‖∇(ũ

(N)
k )2‖L2(O)‖∇φ‖L∞(O)ds

+
1

2

∣∣∣∣
∫ t

0

(
ũj(s)∇

{(
ũ
(N)
k (s)

)2 −
(
ũk(s)

)2}
,∇φ

)
L2(O)

ds

∣∣∣∣

=: I
(N)
1 + I

(N)
2 .

Let φ ∈ H3(O). Then the embedding H3(O) →֒ W 1,∞(O) is continuous for d ≤ 3 and,
using the Cauchy-Schwarz inequality,

I
(N)
1 ≤ 1

2
‖φ‖H3(O)‖ũ(N)

j − ũj‖L2(0,T ;L2(O))‖∇(ũ
(N)
k )2‖L2(0,T ;L2(O)).

Since ũ(N) → ũ in L2(0, T ;L2(O)) P̃-a.s. and ∇(ũ(N))2 is uniformly bounded in L2(0, T ;

L2(O)), it follows that I
(N)
1 → 0 as N → ∞. For the second integral, we observe that

ũj∇φ ∈ L2(0, T ;L2(O)) (using (29)) and (ũ(N))2 ⇀ (ũ)2 weakly in L2(0, T ;H1(O)) (by

(27)). This implies that I
(N)
2 → 0 as N → ∞, and we have proved (39).
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We turn to the proof of (40). Let φ ∈ H3(O) be such that ∇φ · ν = 0 on ∂O. An
integration by parts leads to

∫ t

0

〈
(ũ

(N)
k (s))2∇ũ(N)

j (s)− (ũk(s))
2∇ũj(s),∇φ

〉
ds

=

∫ t

0

∫

O

(
(ũ

(N)
k (s))2∇ũ(N)

j (s)− (ũk(s))
2∇ũj(s)

)
· ∇φdxds

= −
∫ t

0

∫

O

(
(ũ

(N)
k (s))2ũ

(N)
j (s)− (ũk(s))

2ũj(s)
)
∆φdxds

−
∫ t

0

∫

O

(
ũ
(N)
j (s)∇(u

(N)
k (s))2 − ũj(s)∇(ũk(s))

2
)
· ∇φdxds

=: I
(N)
3 + I

(N)
4 .

The estimates for I
(N)
1 + I

(N)
2 show that I

(N)
4 → 0 as N → ∞. We estimate I

(N)
3 as follows,

using the continuous embeddings H3(O) →֒ W 2,4(O) and H1(O) →֒ L4(O) (for d ≤ 3):

I
(N)
3 = −

∫ t

0

∫

O

(
ũ
(N)
j (s)− ũj(s)

)(
ũ
(N)
k (s)

)2
∆φdxds

+

∫ t

0

∫

O

(
(ũ

(N)
k (s))2 − (ũk(s))

2
)
ũj(s)∆φdxds

≤
∫ t

0

∥∥ũ(N)
j (s)− ũj(s)

∥∥
L2(O)

∥∥(ũ(N)
k (s))2

∥∥
L4(O)

‖∆φ‖L4(O)ds

+

∫ t

0

∫

O

(
(ũ

(N)
k (s))2 − (ũk(s))

2
)
ũj(s)∆φdxds

≤
∥∥ũ(N)

j − ũj
∥∥
L2(0,T ;L2(O))

∥∥(ũ(N)
k )2

∥∥
L2(0,T ;H1(O))

‖φ‖H3(O)

+

∫ t

0

∫

O

(
(ũ

(N)
k (s))2 − (ũk(s))

2
)
ũj(s)∆φdxds.

The convergences (27) and ũj∆φ ∈ L2(0, T ;L2(O)) P̃-a.s. imply that I
(N)
3 → 0 as N → ∞.

Convergences (38)-(40) imply that P̃-a.s.

(41) lim
N→∞

∫ t

0

(
Aij(ũ

(N)(s))∇ũ(N)
j (s),∇φ2

)
L2(O)

ds =

∫ t

0

(
Aij(ũ(s))∇ũj(s),∇φ2

)
L2(O)

ds

for all φ2 ∈ H3(O) with ∇φ2 · ν = 0 on ∂O. Furthermore, employing the structure of
Aij(u

(N)), the continuous embedding H3(O) →֒ W 1,∞(O) (again for d ≤ 3 only), and
estimates (29)-(30), we find that

Ẽ

(∣∣∣∣
∫ t

0

(
Aij(ũ

(N)(s))∇ũ(N)
j (s),∇φ2

)
L2(O)

ds

∣∣∣∣
2)

≤ ‖∇φ2‖2L∞(O)Ẽ

(∣∣∣∣
∫ t

0

∥∥Aij(u
(N)(s))∇ũ(N)

j (s)
∥∥
L1(O)

ds

∣∣∣∣
2)
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≤ C‖φ2‖2H3(O)Ẽ

(∣∣∣∣
∫ t

0

(
1 + ‖ũ(N)(s)2‖L2(O)

)
‖∇ũ(N)(s)‖L2(O)ds

∣∣∣∣
2)

≤ C‖φ2‖2H3(O)

(
T 1/2

(
Ẽ‖ũ(N)‖2L2(0,T ;H1(O))

)1/2

+ T 1/6
(
Ẽ‖(ũ(N))2‖3L3(0,T ;L2(O))

)1/3(
Ẽ‖ũ(N)‖2L2(0,T ;H1(O))

)1/2) ≤ C.

This bound and the P̃-a.s. convergence (41) allow us to apply the Vitali convergence the-
orem to infer that (35) holds.

It remains to prove convergence (36). Since W̃ (N) → W̃ in C0([0, T ];Y0), it is sufficient to
show that σij(ũ

(N)) → σij(ũ) in L
2(0, T ;L2(Y ;L2(O))) P-a.s. We estimate for φ ∈ L2(O):

∫ t

0

∥∥(σij(ũ(N)(s))− σij(ũ(s)), φ
)
L2(O)

∥∥2

L2(Y ;R)
ds

≤
∫ t

0

∥∥σij(ũ(N)(s))− σij(ũ(s))
∥∥2

L2(Y ;L2(O))
‖φ‖2L2(O)ds

≤ Cσ‖ũ(N) − ũ‖2L2(0,T ;L2(O))‖φ‖2L2(O).

Since ũ(N) → ũ in L2(0, T ;L2(O)) P̃-a.s., by (27), we infer that for t ∈ [0, T ], ω ∈ Ω̃, and
φ ∈ L2(O),

(42) lim
N→∞

∫ t

0

∥∥(σij(ũ(N)(s))− σij(ũ(s)), φ
)
L2(O)

∥∥2

L2(Y ;R)
ds = 0.

We conclude from (30) and (31) that

Ẽ

∣∣∣∣
∫ t

0

∥∥(σij(ũ(N)(s))− σij(ũ(s)), φ
)
L2(O)

∥∥2

L2(Y ;R)
ds

∣∣∣∣
2

≤ CẼ

(
‖φ‖4L2(O)

∫ t

0

(
‖σij(ũ(N)(s))‖4L2(Y ;L2(O)) + ‖σij(ũ(s))‖4L2(Y ;L2(O))

)
ds

)

≤ C

(
1 + Ẽ

(
sup

t∈(0,T )

‖ũ(N)(t)‖4L2(O) + sup
t∈(0,T )

‖ũ(t)‖4L2(O)

))
≤ C.

With this bound, convergence (42), and the Vitali convergence theorem we obtain for all
φ ∈ L2(O),

lim
N→∞

Ẽ

∫ t

0

∥∥(σij(ũ(N)(s))− σij(ũ(s)), φ
)
L2(O)

∥∥2

L2(Y ;R)
ds = 0.

Hence, by the Itô isometry (Proposition 20) for t ∈ [0, T ] and φ ∈ L2(O),

(43) lim
N→∞

Ẽ

∣∣∣∣
( ∫ t

0

(
σij(ũ

(N)(s))− σij(ũ(s))
)
dW̃j(s), φ

)

L2(O)

∣∣∣∣
2

= 0.
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We use the Itô isometry again and estimates (28) and (32) for N ∈ N, t ∈ [0, T ], and
φ ∈ L2(O) to infer that

Ẽ

∣∣∣∣
( ∫ t

0

(
σij(ũ

(N)(s))− σij(ũ(s))
)
dW̃j(s), φ

)

L2(O)

∣∣∣∣
2

= Ẽ

(∫ t

0

∥∥(σij(ũ(N)(s))− σij(ũ(s)), φ
)
L2(O)

∥∥2

L2(Y ;R)
ds

)

≤ Ẽ

(
‖φ‖2L2(O)

∫ t

0

∥∥σij(ũ(N)(s))− σij(ũ(s))
∥∥2

L2(Y ;L2(O))
ds

)

≤ CẼ

(
t sup
t∈(0,T )

‖ũ(N)(t)‖2L2(O) + t sup
t∈(0,T )

‖ũ(s)‖2L2(O)

)
≤ C.

This bound and convergence (43) allow us to apply the dominated convergence theorem
to conclude that for all φ ∈ L2(O),

lim
N→∞

Ẽ

∫ T

0

∣∣∣∣
( ∫ t

0

(
σij(ũ

(N)(s))− σij(ũ(s))
)
dW̃j(s), φ

)

L2(O)

∣∣∣∣
2

dt = 0.

This shows (36) and finishes the proof. �

Let us define

Λ
(N)
i (ũ(N), W̃ (N), φ)(t) := (ΠN(ũi(0)), φ)L2(O)

+
n∑

j=1

∫ t

0

〈
ΠN div

(
Aij(ũ

(N)(s))∇ũ(N)
j (s)

)
, φ

〉
ds

+

( n∑

j=1

∫ t

0

ΠNσij(ũ
(N)(s))dW̃

(N)
j , φ

)

L2(O)

,

Λi(ũ, W̃ , φ)(t) := (ũi(0), φ)L2(O) +
n∑

j=1

∫ t

0

〈
div

(
Aij(ũ(s))∇ũj(s)

)
, φ

〉
ds

+

( n∑

j=1

∫ t

0

σij(ũ(s))dW̃j(s), φ

)

L2(O)

,

for t ∈ [0, T ] and i = 1, . . . , n. The following corollary is essentially a consequence of
Lemma 16.

Corollary 17. It holds for any φ1 ∈ L2(O) and any φ2 ∈ H3(O) satisfying ∇φ2 · ν = 0
on ∂O that

lim
N→∞

∥∥(ũ(N), φ1)L2(O) − (ũ, φ1)L2(O)

∥∥
L2(Ω̃×(0,T ))

= 0,

lim
N→∞

∥∥Λ(N)
i (ũ(N), W̃ (N), φ2)− Λi(ũ, W̃ , φ2)

∥∥
L1(Ω̃×(0,T ))

= 0.
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Proof. The first convergence follows immediately from the identity

∥∥(ũ(N), φ1)L2(O) − (ũ, φ1)L2(O)

∥∥
L2(Ω̃×(0,T )

= Ẽ

∫ T

0

∣∣(ũ(N)(t)− ũ(t), φ1

)
L2(O)

∣∣2dt

and convergence (33). For the second convergence, let φ2 ∈ H3(O) satisfying ∇φ2 · ν = 0
on ∂O. Fubini’s theorem implies that

∥∥Λ(N)
i (ũ(N), W̃ (N), φ2)− Λi(ũ, W̃ , φ2)

∥∥
L1(Ω̃×(0,T ))

=

∫ T

0

Ẽ

∣∣∣Λ(N)
i (ũ(N), W̃ (N), φ2)− Λi(ũ, W̃ , φ2)

∣∣∣dt.

Convergences (34)-(36) show that each term in the definition of Λ
(N)
i (ũ(N), W̃ (N), φ2) tends

to the corresponding terms in Λi(ũ, W̃ , φ2) at least in the space L1(Ω̃× (0, T )). �

Since u(N) is a strong solution to (10)-(11), it satisfies the identity

(u
(N)
i (t), φ)L2(O) = Λ

(N)
i (u(N),W, φ)(t) P-a.s.

for all t ∈ [0, T ], i = 1, . . . , n, and φ ∈ H1(O) and in particular, we have
∫ T

0

E

∣∣∣(u(N)
i (t), φ)L2(O) − Λ

(N)
i (u(N),W, φ)(t)

∣∣∣dt = 0.

Since the laws L(u(N),W ) and L(ũ(N), W̃ (N)) coincide, we find that
∫ T

0

Ẽ

∣∣∣(ũ(N)
i (t), φ)L2(O) − Λ

(N)
i (ũ(N), W̃ (N), φ)(t)

∣∣∣dt = 0.

By Corollary 17, the limit N → ∞ in this equation yields
∫ T

0

Ẽ

∣∣∣(ũi(t), φ)L2(O) − Λi(ũ, W̃ , φ)(t)
∣∣∣dt = 0, i = 1, . . . , n.

This identity holds for all φ ∈ H3(O) satisfying ∇φ · ν = 0 on ∂O. By a density argument,

it also holds for all φ ∈ H1(O). Hence, for Lebesgue-a.e. t ∈ (0, T ] and P̃-a.e. ω ∈ Ω̃, we
deduce that

(ũi(t), φ)L2(O) − Λi(ũ, W̃ , φ)(t) = 0, i = 1, . . . , n.

By definition of Λi, this means that for Lebesgue-a.e. t ∈ (0, T ] and P̃-a.e. ω ∈ Ω̃,

(ũi(t), φ)L2(O) = (ũ(0), φ)L2(O) +
n∑

j=1

∫ t

0

〈
div

(
Aij(ũ(s))∇ũj(s)

)
, φ

〉
ds

+

( n∑

j=1

∫ t

0

σij(ũ(s))dW̃j(s), φ

)

L2(O)

.

Setting Ũ := (Ω̃, F̃ , P̃, F̃), we infer that the system (Ũ , W̃ , ũ) is a martingale solution to
(1) and the stochastic process ũ satisfies estimates (31) and (32).
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Remark 18 (Random initial data). The initial data may be chosen to be random, i.e.,
we prescribe an inital probability measure µ0 on L2(O) instead of a given initial data. We
assume that

(44)

∫

L2(O)

‖x‖pL2(O)dµ
0(x) <∞ for p =

24

4− d
.

Now, in principle, we can carry out the whole analysis also in this case. Since for the given
initial distribution µ0 and a given stochastic basis (Ω,F ,F,P), we have an F0-measurable
random variable, which we will denote by u0 and whose distribution is µ0. Because of
assumption (44), we have E‖u0‖pL2(O) < ∞ and consequently, the a priori estimates ob-

tained in section 2.3 still hold true. As before we can show that the set of measure
{L(u(N)) : N ∈ N} is tight on ZT and therefore, by the Skorohod-Jakubowski theorem, we
obtain a sequence of new random variables (ũ(N))N∈N (and also a sequence of new Wiener
processes) which have the same law as the old random variables u(N) on ZT . In particular,

L(ũ(N)(0)) = L(u(N)(0)) in L2(O) as well as ũ(N) → ũ in C0([0, T ];L2
w(O)) P̃-a.s. and

ũ(N)(0) → ũ(0) in L2(O) weakly P̃-a.s. We conclude that L(ũ(0)) = L(ũ(N)(0)) = L(u0) =
µ0. Thus, we have shown that the process ũ has the initial measure µ0 and therefore is the
required martingale solution of (1). �

2.6. Nonnegativity of the solutions. We show that if u0i ≥ 0 in O for i = 1, . . . , n and
condition (9) on σ holds then ũi is nonnegative P-a.s. For this, we employ the technique
of [11]. The idea is to approximate the test function f(z) = z− = max{0,−z} for z ∈ R

and to use Itô’s formula. We define as in [11, Section 2.4] the following functions:

fε(z) =





−z if z ≤ −ε,
−3

(z
ε

)4

z − 8
(z
ε

)3

z − 6
(z
ε

)2

z if − ε ≤ z ≤ 0

0 if z ≥ 0

for ε > 0. Then fε has at most linear growth, i.e. |fε(z)| ≤ C|z| for all z ∈ R, and the
functions f ′

ε and ψε := fεf
′′
ε + (f ′

ε)
2 are bounded in R. We set

Fε(v) =

∫

O

fε(v(x))
2dx, F (v) =

∫

O

f(v(x))2dx

for square-integrable functions v : O → R.
We replace the diffusion coefficients Aij(u

(N)) in (10) by the modified coefficients

A+
ij(u

(N)) = δij

(
ai0 +

n∑

k=1

aiku
2
k

)
+ 2aiju

+
i uj, i, j = 1, . . . , n,

where z+ = min{0, z} is the positive part of z ∈ R. Observe that generally, A+
ij(u) 6= Aij(u)

but if ui ≥ 0 for all i = 1, . . . , n then we obtain the original coefficients, A+
ij(u) = Aij(u).

The proof of Lemma 4 provides the existence of a pathwise unique strong solution u(N) to
this truncated problem. The Itô formula in finite dimensions gives [11, Formula (3.3)]

Fε(u
(N)
i (t)) = Fε(u

(N)
i (0))
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+ 2

∫ t

0

∫

O

fε(u
(N)
i (s))f ′

ε(u
(N)
i (s))ΠN

( n∑

j=1

σij(u
(N)(s))

)
dxdWj(s)

− 2

∫ t

0

∫

O

ψε(u
(N)
i (s))

n∑

j=1

A+
ij(u

(N)(s))∇u(N)
i (s) · ∇u(N)

j (s)dxds(45)

+

∫ t

0

∫

O

n∑

j=1

N∑

k,ℓ=1

∞∑

m=1

ψε(u
(N)
i (s))ekeℓσ

mk
ij (u(N)(s))σmℓ

ij (u(N)(s))dxds

=: I
(N)
ε,0 + I

(N)
ε,1 + I

(N)
ε,2 + I

(N)
ε,3 ,

where σkm
ij is defined in (6). We claim that the integral I

(N)
ε,1 is nonpositive. Indeed, we

write

I
(N)
ε,1 = −2

∫ t

0

∫

O

ψε(u
(N)
i )A+

ii(u
(N))|∇u(N)

i |2dxds

− 2

∫ t

0

∫

O

ψε(u
(N)
i )

∑

j 6=i

A+
ij(u

(N))∇u(N)
i · ∇u(N)

j dxds.

The first term on the right-hand side is clearly nonpositive; the second term vanishes since

ψε(u
(N)
i ) = 0 in {u(N)

i ≥ 0} and A+
ij(u

(N)) = 0 in {u(N)
i ≤ 0}. This shows that I

(N)
1,ε ≤ 0.

By (27), we know that u(N) → u in L2(0, T ;L2(O)) as N → ∞. (To be precise, we should
work with the new processes ũ(N) but we omit the tilde.) Therefore, up to a subsequence
which is not relabeled, u(N) → u for a.e. (x, t, ω) ∈ O × (0, T )× Ω. Following the steps of
[11, Section 3.2], we can show the following P-a.s. convergence results as N → ∞:

Fε(u
(N)
i (t)) → Fε(ui(t)), I

(N)
ε,0 → Fε(u

0
i ),

I
(N)
ε,2 → 2

∫ t

0

∫

O

fε(ui(s))f
′
ε(ui(s))

n∑

j=1

σij(u(s))dxdWj(s),

I
(N)
ε,3 →

∫ t

0

∫

O

n∑

j=1

∞∑

k,ℓ=1

∞∑

m=1

ψε(ui(s))ekeℓσ
mk
ij (u(s))σmℓ

ij (u(s))dxds.

Passing to the limit N → ∞ in (45) then leads to

Fε(ui(t)) ≤ Fε(u
0
i ) + 2

∫ t

0

∫

O

fε(ui(s))f
′
ε(ui(s))

n∑

j=1

σij(u(s))dWj(s)dx

+

∫ t

0

∫

O

ψε(ui(s))
∞∑

j=1

∞∑

m=1

(
σij(u(s))ηm

)2
dxds.
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Taking the mathematical expectation, the stochastic integral vanishes:

(46) EFε(ui(t)) ≤ EFε(u
0
i ) + E

∫ t

0

∫

O

ψε(ui(s))
n∑

j=1

∞∑

m=1

(
σij(u(s))ηm

)2

dxds.

It is shown in [11, Section 3.4] that in the limit ε→ 0, P-a.s.1

EFε(ui(t)) → E‖u−i (t)‖2L2(O), EFε(u
0
i ) → E‖(u0i )−‖2L2(O),

E

∫ t

0

∫

O

ψε(ui)
n∑

j=1

∞∑

m=1

(
σij(u)ηm

)2

dxds→ E

∫ t

0

n∑

j=1

‖σij(−u−)‖2L2(Y ;L2(O))ds.

Thus, the limit ε→ 0 in (46) gives

E‖u−i (t)‖2L2(O) ≤ E‖(u0i )−‖2L2(O) + E

∫ t

0

n∑

j=1

‖σij(−u−i (s))‖2L2(Y ;L2(O))ds.

The first term on the right-hand side vanishes since u0i ≥ 0. For the second term, we
employ the linear growth (9) of σij, showing that

E‖u−i (t)‖2L2(O) ≤ E

∫ t

0

‖u−i (s)‖2L2(O)ds.

Gronwall’s lemma implies that E‖u−i (t)‖2L2(O) = 0 for t ∈ (0, T ) and consequently, ui(t) ≥ 0

in O, P-a.s. for a.e. t ∈ [0, T ] and all i = 1, . . . , n. This finishes the proof.

Appendix A. Some results from stochastic analysis

A.1. Results for stochastic processes. The following particular Itô formula is proved
in [35, Theorem 4.2.5].

Theorem 19 (Itô formula). Let V ⊂ H ⊂ V ′ be a Gelfand triple and U be a separable
Hilbert space, X0 ∈ L2(Ω;H), and let a ∈ L2(Ω× (0, T );V ′), b ∈ L2(Ω× (0, T );L2(U,H))
be progressively measurable. Define the stochastic process

X(t) = X0 +

∫ t

0

a(s)ds+

∫ t

0

b(s)dW (s), t ∈ (0, T ).

Then

1

2
‖X(t)‖2H =

1

2
‖X0‖2H +

∫ t

0

〈a(s), X(s)〉V ′,V ds+
1

2

∫ t

0

‖b(s)‖2L2(U,H)ds

+

∫ t

0

(X(s), b(s)dW (s))H for t ∈ (0, T ),

where 〈·, ·〉V ′,V is the duality pairing between V ′ and V , (·, ·)H is the inner product in H,
and X(s) ∈ L2(Ω× (0, T );V ) in 〈a(s), X(s)〉V ′,V is any V -valued progressively measurable
dt⊗ P version of the equivalence class represented by X(s).

1Observe that there is a typo in [11, formulas (3.21)-(3.24)]: The sum from l = 1 to ∞ should be outside
the brackets.
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The next proposition can be found in [26, Prop. 2.10].

Proposition 20 (Itô isometry). Let σ(u) ∈ L2((0, T )× Ω;L2(Y ;L2(O))) be a predictable
stochastic process. Then

E

(∫ T

0

σ(u(s))dW (s)

)2

= E

∫ T

0

‖σ(u)‖2L2(Y ;L2(O))ds.

This result can be generalized in the following sense; see [26, Prop. 2.12].

Proposition 21 (Burkholder-Davis-Gundy inequality). Let p ≥ 2 and let σ : L2(O) ×
[0, T ]× Ω → L2(Y ;L2(O)) be a predictible stochastic process such that

E

(∫ T

0

‖σ(u(s))‖2L2(Y ;L2(O))ds

)p/2

<∞.

Then, for some C > 0 depending on p,

E

∣∣∣∣
∫ T

0

σ(u(s))dW (s)

∣∣∣∣
p

≤ CE

(∫ T

0

‖σ(u(s))‖2L2(Y ;L2(O))ds

)p/2

.

A.2. Finite-dimensional stochastic differential equations. We state a result on the
existence of the pathwise unique strong solution to the stochastic differential equation on
Rn (essentially taken from [35, Theorem 3.1.1]; originally from [27]),

(47) π · dX(t) = a(X, t)dt+ b(X, t)dW (t), t > 0, X(0) = X0.

Here, π = (π1, . . . , πn) ∈ (0,∞)n, a : Rn× [0,∞)×Ω → Rn and b : Rn× [0,∞)×Ω → Rn×m

are both continuous in x ∈ Rn for fixed t ∈ [0,∞), ω ∈ Ω, progressively measurable, and
satisfy for all R, T > 0,

(48)

∫ T

0

sup
|x|≤R

(
|a(x, t)|2 + |b(x, t)|2

)
dt <∞ in Ω,

where |a(x, t)| is the Euclidean norm on Rn and |b(x, t)| is the Frobenius norm on Rn×m.
Furthermore, we assume that for all R, t > 0, and x, y ∈ Rn with |x|, |y| ≤ R,

(49)
2
(
a(x, t)− a(y, t), x− y

)
+
∣∣b(x, t)− b(y, t)

∣∣2 ≤ KR(t)|x− y|2,
2(a(x, t), x) + |b(x, t)|2 ≤ K1(t)(1 + |x|2),

where for every R > 0, KR(t) is an R+-valued Ft-adapted process satisyfing
∫ T

0
KR(t)dt <

∞ in Ω for all R, T > 0. We call X the pathwise strong solution to (47) if X(t) =
(X1(t), . . . , Xn(t)) for t ≥ 0 is a P-a.s. continuous Rn-valued Ft-adapted process such that
P-a.s. for all t ≥ 0,

(50) πiXi(t) = πiX0i +

∫ t

0

ai(X(s), s)ds+

∫ t

0

m∑

j=1

bij(X(s), s)dWj(s), i = 1, . . . , n.

Theorem 22 (Existence of solutions). Let Assumptions (48)-(49) hold and let X0 : Ω →
Rn be F0-measurable. Then there exists a (up to P-indistinguishability) pathwise unique
strong solution to (47).
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The proof is the same as in [35, Theorem 3.1.1]. The difference to this theorem is the
appearance of the constant vector π on the left-hand side of (47). As the proof in [35] is
based on the Euler method and the vector is constant, this appearance does not change
the arguments. We just have to take into account that mini=1,...,n πi is positive.

A.3. Tightness. We recall some definitions and results on the tightness of families of
probability measures. Let E be a separable Banach space with norm ‖ · ‖E and associated
Borel σ-field B(E).
Definition 2 (Tightness). The family Λ of probability measures on (E,B(E)) is said to
be tight if and only if for any ε > 0, there exists a compact set Kε ⊂ E such that

µ(Kε) ≥ 1− ε for all µ ∈ Λ.

The theorem of Skorokhod allows for the representation of the limit measure of a weakly
convergent sequence of probability measures on a metric space as the law of a pointwise
convergent sequence of random variables defined on a common probability space. Since
our space ZT , defined in (23), is not a metric space, we use Jakubowski’s generalization of
the Skorokhod Theorem, in the form given in [9, Theorem C.1] (see the original theorem
in [22]). This version is valid for topological spaces.

Theorem 23 (Skorokhod-Jakubowski). Let Z be a topological space such that there exists
a sequence (fm)m∈N of continuous functions fm : Z → R that separate points of Z. Let S
be the σ-algebra generated by (fm)m∈N. Then

(1) Every compact subset of Z is metrizable.
(2) If (µm)m∈N is a tight sequence of probability measures on (Z, S), then there exists

a subquence (µmk
)k∈N, a probability space (Ω̃, F̃ , P̃), and Z-valued Borel measurable

random variables ξk and ξ such that (i) µmk
is the law of ξk and (ii) ξk → ξ almost

surely on Ω.

The Aldous condition is mentioned in the tightness criterion of Theorem 10, and therefore
we recall its definition.

Definition 3 (Aldous condition). Let (Xn)n∈N be a sequence of stochastic processes on a
complete separable metric space S, defined on the probability space (Ω,F ,P) with filtration
F = (Ft)t∈[0,T ]. We say that (Xn)n∈N satisfies the Aldous condition if and only if for any
ε > 0, there exists η > 0 such that for any δ > 0 and any sequence (τn)n∈N of F-stopping
times with τn ≤ T , it holds that

sup
n∈N

sup
0<θ<δ

P
{
d
(
Xn(τn + θ), Xn(τn)

)
≥ η

}
≤ ε.

A.4. Vitali’s convergence theorem. We use the following version of Vitali’s conver-
gence theorem (which can be seen as a special version of the theorem of De la Vallée-
Poussin).

Theorem 24 (Vitali). Let (aN) be a sequence of integrable functions on some probability
space (Ω,B(Ω),P) such that aN → a a.e. as N → ∞ (or aN → a in measure) for some
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integrable function a and there exist r > 1 and a constant C > such that E|aN |r ≤ C for
all N ∈ N. Then E|aN | → E|a| as N → ∞.
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filling. Ann. Inst. H. Poincaré – Anal. Non Lin. 34 (2017), 1–29. (Erratum: 34 (2017), 789–792.)

Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address : gaurav.dhariwal@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address : juengel@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address : nicola.zamponi@tuwien.ac.at


