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Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional cross-
diffusion term in the equation for the chemical signal is analyzed. The main feature of this model
is that there exists a new entropy functional, yielding gradient estimates for the cell density and
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1. Introduction. Chemotaxis, the directed movement of cells in response to
chemical gradients, plays an important role in many biological fields, such as embryo-
genesis, immunology, cancer growth, and wound healing [19, 31]. The mathematical
modeling of chemotaxis dates to the pioneering works of Patlak from 1953 [30] and
Keller and Segel from 1970 [26]. The original model equations have been reduced to
describe the evolution of the cell density n(x, t) and the concentration of the chemical
signal S(x, t), and it is given, in its general form, by

nt = div
(

D1(n, S)∇n − χ(n, S)n∇S
)

+ R1(n, S),

αSt = D2∆S + R2(n, S), x ∈ Ω, t > 0,

where Ω ⊂ R
d (d ≥ 1) is a bounded domain. This system of equations is supplemented

by homogeneous Neumann boundary and initial conditions:

∇n · ν = ∇S · ν = 0 on ∂Ω, t > 0, (1.1)

n(·, 0) = n0, S(·, 0) = S0 in Ω, (1.2)

where the initial condition for S is only needed if α 6= 0, and ν denotes the exterior unit
normal to ∂Ω. The positive coefficients D1 and D2 describe the diffusivity of the cells
and the chemical substance, respectively. The nonlinear term χ(n, S)n∇S models the
cell movement towards higher concentrations of the chemical signal, which is called
positive chemotaxis. The coefficient χ is the chemotactic sensitivity. Furthermore,
R1 describes the cell growth and death and R2 the production and degradation of
the chemical signal. The parameter α ≥ 0 is a measure of the ratio of the time scales
of the cell movement and the distribution of the chemical. When α = 1, we call
the above system to be of parabolic-parabolic type, whereas in the case α = 0, it is
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called parabolic-elliptic. The classical Keller-Segel model corresponds to the choice
D1 = χ = 1, R1 = 0, and R2(n, S) = µn − S, where µ > 0 is the secretion or
production rate at which the chemical substance is emitted by the cells. The rigorous
derivation of the classical Keller-Segel model from an interacting stochastic many-
particle system has been perfomed by Stevens [34].

The classical Keller-Segel model exhibits the phenomenon of cell aggregation.
The more cells are aggregated, the more the attracting chemical signal is produced by
the cells. This process is counter-balanced by cell diffusion, but if the cell density is
sufficiently large, the nonlocal chemical interaction dominates diffusion and results – in
two and three space dimensions – in a blow-up of the cell density, see, e.g., [21]. In two-
dimensional domains, the critical threshold for blow-up is given by M :=

∫

Ω
n0dx = 4π

[29]. If M < 4π, solutions exist globally in time, whereas for M > 4π, solutions blow
up in finite time. In the parabolic-elliptic whole space model, the critical value is 8π
[4]. In the critical case M = 8π, a global solution exists, which becomes unbounded
as t → ∞ [3]. We mention that in dimensions d ≥ 3, a related critical phenomenon
occurs, where the Ld/2 norm of the initial density n0 plays a similar role as the initial
mass M in two dimensions, see, e.g., [10].

Motivated by numerical and modeling issues, the question how blow up of cells
can be avoided has been investigated intensively the last years. In this paper, we show
that an additional cross-diffusion term in the equation for the chemical substance leads
to global solutions to the parabolic-parabolic model and to global bounded solutions
to the parabolic-elliptic model. Before we explain our main results, we review the
methods used in the literature to prevent overcrowding of cells. In the following, if
not stated otherwise, we consider the case D1 = χ = 1, R1 = 0, and R2 = µn − S.

The first method is to modify the chemotactic sensitivity. If we suppose that
aggregation stops when the cell density reaches the maximal value n∞ = 1 (volume-
filling effect), one may model the sensitivity by χ(n) = 1−n. In this case, the cell den-
sity satisfies 0 ≤ n ≤ 1 and the global existence of solutions can be proved, see [7] for
the parabolic-elliptic equations and [15] for the parabolic-parabolic model. Further-
more, if the sensitivity is sublinear in two dimensions or, more generally, χ(n) = np

with 0 < p < 2/d, all solutions to the parabolic-parabolic model are global and
bounded [22]. Global solutions are also obtained when the sensitivity depends on the
chemical concentration. For instance, in the biased random walk approach, which
leads to χ(n, S) = (1 + β)/(S + β) (β > 0) [2], solutions to the two-dimensional
parabolic-elliptic model exist globally in time. Finally, we mention the work by Hillen
et al. [20] in which the gradient of the chemical is replaced by a nonlocal gradient
yielding global bounded solutions.

A second way consists in modifying the cell diffusion. In the context of the
volume-filling effect, Burger et al. [7] have altered the cell equation to nt = div(n(1−
n)∇(n − S)), which has the property that the mobility vanishes at the threshold
value n∞ = 1. The corresponding Keller-Segel system possesses a quadratic energy
functional involving gradients of the chemical, which allows one to show the global
existence of solutions to the parabolic-elliptic system [7]. Global existence results can
be also achieved by employing the degenerate diffusion D1(n, S) = nq with q > 1,
which can be interpreted as a volume-filling effect on the level of cell diffusion, see
[8, 27] for the parabolic-elliptic model and [28] for the parabolic-parabolic model
(with q > 2 − 4/d). According to Hillen and Painter [18], the diffusion coefficient
and the sensitivity are related by D1 = P (n) − P ′(n)n and χ = P (n)r(n), where
P (n(x, t)) is the probability that a cell at (x, t) finds space at its neighboring location.
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This (parabolic-parabolic) model admits a global solution [40]. Furthermore, global
solutions to the parabolic-elliptic model exist if D1 = nq, nχ = np, and p > q − 2/d
[35]. On the other hand, if D1(n)/(nχ(n)) grows faster than n2/d as n → ∞, then
there exist unbounded solutions [39].

A third method is to consider nonvanishing growth-death models R1 6= 0. In [5],
the rate R1(n, S) = n(1 − n)(n − a) with 0 ≤ a ≤ 1 is taken in the parabolic-elliptic
model, and the global existence of solutions has been shown. In the logistic-growth
model R1(n, S) = n(1 − np−1), a global weak solution to the parabolic-elliptic model
exists for all p > 2 − 1/d [38]. Moreover, if p > max{d/2, 2 − 1/d}, the solution is
bounded for all t > 0 even when the initial datum is in L1(Ω) only.

In this paper we suggest a fourth way to prevent blow-up of the cell density by
adding a cross-diffusion term. More precisely, we analyze the following system

nt = div(∇n − n∇S), (1.3)

αSt = ∆S + δ∆n + µn − S, x ∈ Ω, t > 0, (1.4)

with the initial and boundary conditions (1.1)-(1.2), where Ω ⊂ R
2 and δ > 0. This

choice is motivated by the fact that the augmented model possesses a new entropy
functional allowing for global existence results and revealing some interesting struc-
tural properties of the system. Moreover, numerical results (see Section 5) indicate
the existence of nonhomogeneous steady states for this system. For numerical approx-
imations of the parabolic-parabolic model, we refer to [6, 13]; the parabolic-elliptic
Keller-Segel model in d = 2 has been numerically solved in, e.g., [14, 17, 32]. We
show below (Theorems 1.1 and 1.2) that the system (1.1)-(1.4) possesses a global
weak solution, for arbitrarily small values of δ > 0. Thus, discrete (finite-element) so-
lutions are expected to exist for all times too. We confirm this statement by numerical
simulations.

At first sight, the additional cross-diffusion term seems to cause a number of
serious difficulties. Rewriting the system (1.3)-(1.4) in the form

∂t

(

n
αS

)

= div

((

1 −n
δ 1

)

∇
(

n
S

))

+

(

0
µn − S

)

,

we see that the diffusion matrix is neither symmetric nor positive definite. Moreover,
we cannot employ anymore the maximum principle to the equation for the chemical
substance, and it is not clear how to prove the nonnegativity of the cell density or the
boundedness of the variables. All these difficulties can be resolved by the observation
that the system (1.3)-(1.4) possesses a logarithmic entropy. Indeed, differentiating
formally the entropy functional

E(t) =

∫

Ω

(

n(log n − 1) +
α

2δ
S2

)

(x, t)dx

yields the entropy production equation

dE

dt
+

∫

Ω

(

4|∇
√

n|2 +
1

δ
|∇S|2 +

1

δ
S2

)

dx =
µ

δ

∫

Ω

nSdx. (1.5)

When the secretion rate vanishes, µ = 0, E turns out to be a Lyapunov functional.
The right-hand side can be bounded for µ > 0 by use of the Hölder and Gagliardo-
Nirenberg inequalities (see the estimates following (3.6)):

µ

δ

∫

Ω

nSdx ≤ C(µ, δ)‖n‖5/2
L1(Ω) +

∫

Ω

(

2|∇
√

n|2dx +
1

2δ
|∇S|2 +

1

2δ
S2

)

dx.
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Inserting this estimate into (1.5) provides H1 bounds for
√

n and S.
The existence of the entropy functional has another consequence: It allows us

to reformulate the system (1.3)-(1.4) in such a way that the new diffusion matrix
becomes positive definite. Introducing the new variable y = δ log n, the transformed
system reads as

∂t

(

n
αS

)

= div

((

δ−1ey/δ −ey/δ

ey/δ 1

)

∇
(

y
S

))

+

(

0
µn − S

)

. (1.6)

It is well known that, in hyperbolic or parabolic systems, the existence of an entropy
functional is equivalent to the existence of a change of unknowns which “symmetrizes”
the system [11, 25]. (For parabolic systems, “symmetrization” means that the trans-
formed diffusion matrix is symmetric and positive definite.) In the Keller-Segel system
(1.6), we obtain a nonsymmetric, but still positive definite diffusion matrix.

We state now our existence results for the parabolic-parabolic system (α > 0) as
well as for the parabolic-elliptic system (α = 0).

Theorem 1.1 (Global existence). Let α ≥ 0, δ > 0, µ > 0, and let Ω ⊂ R
2 be

a bounded domain with ∂Ω ∈ C0,1. Furthermore, let 0 ≤ n0 ∈ L1(Ω) be such that
n0 log n0 ∈ L1(Ω), S0 ∈ L2(Ω). Then there exists a weak solution (n, S) to (1.1)-(1.4)
satisfying n ≥ 0 in Ω × (0,∞) and

nt ∈ L1
loc(0,∞; (W 1,∞(Ω))′), αSt ∈ L

4/3
loc (0,∞; (W 1,4(Ω))′),

n ∈ L2
loc(0,∞;W 1,1(Ω)),

√
n ∈ L2

loc(0,∞;H1(Ω)),

S ∈ L2
loc(0,∞;H1(Ω)), αS ∈ L∞

loc(0,∞;L2(Ω)).

Moreover, we have the following regularity results:

nβ ∈ L2
loc(0,∞;H1(Ω)) for 0 < β < 1/4, (1.7)

log n ∈ L2
loc(0,∞;H1(Ω)) if log n0 ∈ L1(Ω). (1.8)

Estimate (1.8) shows that the cell density n(·, t) is positive a.e. in Ω but it does
not exclude that n(·, t) vanishes at certain points. The existence proof is based on the
construction of a problem which approximates (1.6). First, we replace (1.6) by a time-
discrete system using the implicit Euler discretization with time step τ > 0. Then
(1.6) becomes a recursive sequence of elliptic problems. Second, we add the fourth-
order operator −ε(∆2y + yey/δ) with ε > 0 to the first component of (1.6), which
guarantees coercivity of the elliptic system in H2(Ω) with respect to y. Third, we add
the regularization εdiv(|∇y|2∇y) to the first component. This regularization, which
was also used in [24], is not needed for the existence proof but for the derivation of the
additional a priori estimates (1.7)-(1.8). The existence of weak solutions (nε, Sε) to
this approximate problem is then proved by the Leray-Schauder fixed-point theorem.
The a priori estimates from the (discrete) entropy inequality are sufficient to pass
to the limit (ε, τ) → 0. More precisely, for given T > 0, we infer from the entropy
estimate that ∇Sε ⇀ ∇S weakly in L2(0, T ;L2(Ω)), as (ε, τ) → 0, and, by the Aubin
compactness lemma, nε → n strongly in L2(0, T ;Lp(Ω)) for all p < 2 (see Step 2 of
the proof below). This does not imply that (nε∇Sε) converges weakly. A remedy of
this difficulty is to exploit the L1 log L1 bound for (nε) which allows us to improve the
strong convergence of (nε) to the case p = 2 (see Proposition 2.1). As a consequence,
nε∇Sε → n∇S weakly in L1(0, T ;L1(Ω)).
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The entropy estimate from (1.5) depends on the parameter δ > 0 and does not
allow for the limit δ → 0 in a direct way. This is not surprising since in the limit
δ → 0, the limiting solution is expected to satisfy the classical Keller-Segel system
for which finite-time blow up is possible. We expect that the limit δ → 0 leads to
measure-valued solutions, see, e.g., [12]. The investigation of this limit is devoted to
future work.

The proof of Theorem 1.1 covers the parabolic-elliptic system α = 0. In fact, we
are able to prove some regularity and the uniqueness of solutions, as stated in the
following theorem.

Theorem 1.2 (Regularity and uniqueness for the parabolic-elliptic system). Let
α = 0, δ > 0, µ > 0, and let Ω ⊂ R

2 be a bounded domain with ∂Ω ∈ C1,1.
Furthermore, let 0 ≤ n0 ∈ L∞(Ω). Then there exists a unique weak solution (n, S) to
(1.1)-(1.4) satisfying n ≥ 0 in Ω × (0,∞) and

n ∈ L∞(0,∞;L∞(Ω)), nt ∈ L2
loc(0,∞; (H1(Ω))′), n ∈ L2

loc(0,∞;H1(Ω)),

S ∈ L∞(0,∞;L∞(Ω)), S ∈ L2
loc(0,∞;H1(Ω)).

Moreover, S + δn ∈ L∞(0,∞;W 2,p(Ω)) for all p < ∞.
The idea of the proof of the L∞ bound for n is to introduce the new variable

v = S + δn. Then (1.1)-(1.4) with α = 0 can be written formally as

nt = div
(

(1 + δn)∇n − n∇v
)

, 0 = ∆v + (µ + δ)n − v.

This corresponds to the Keller-Segel model with the nonlinear cell diffusivity D1 =
1 + δn. Similar models have been investigated in the literature. For instance, in [27]
the boundedness of n is shown by estimating the Lp norm of n and then by passing
to the limit p → ∞. This Moser-type strategy has been first applied in [23] to the
Keller-Segel model. Global boundedness of n and S in space and time has been proved
by Calvez and Carrillo [8]. Our proof is based on these techniques.

Theorem 1.2 shows that blow up of the solutions cannot occur. When the secretion
rate µ > 0 is sufficiently small or δ is sufficiently large, we are able to show the
exponential time decay of the weak solution (n, S) to the homogeneous steady state
(n∗, S∗), where n∗ = M/meas(Ω), S∗ = µn∗, and M =

∫

Ω
n0dx. For this, we define

the relative entropy

E∗(t) =

∫

Ω

(

n log
n

n∗

)

(x, t)dx.

Theorem 1.3 (Exponential time decay). Let (n, S) be the weak solution con-
structed in Theorem 1.2. Then there exist constants c1(Ω), c2(Ω) > 0 only depending
on Ω such that if µ2M/δ < c1(Ω) then

E∗(t) ≤ E∗(0)e−κt, t ≥ 0,

where κ = c2(Ω)(c1(Ω) − µ2M/δ) > 0. Moreover, for t ≥ 0,

‖n(·, t) − n∗‖L1(Ω) ≤
√

2E∗(0)e−κt/2, ‖S(·, t) − S∗‖L2(Ω) ≤ c3e
−κt/4,

where c3 > 0 depends on µ, δ, n∗, and the global L∞ bound of n.
We expect that a largeness condition on δ is necessary to obtain convergence

to the homogeneous steady state since the Keller-Segel system with δ = 0 exhibits
blow-up solutions for large initial mass.
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The paper is organized as follows. A strong convergence result, which improves
slightly the compactness resulting from the Aubin lemma, is shown in Section 2.
Section 3 is devoted to the proof of Theorem 1.1. The parabolic-elliptic system is
studied in Section 4, and Theorems 1.2 and 1.3 are proved. Finally, some numerical
simulations are presented in Section 5 illustrating the smoothing effect of the cross-
diffusion parameter δ > 0.

2. A convergence result. In this section, we prove the strong convergence of
a sequence of functions bounded in certain Sobolev spaces.

Proposition 2.1. Let Ω ⊂ R
d (d ≥ 1) be a bounded domain with ∂Ω ∈ C0,1,

T > 0, and s ≥ 0. Furthermore, let (uε) be a sequence of nonnegative functions
satisfying

‖√uε‖L2(0,T ;H1(Ω)) + ‖uε log uε‖L∞(0,T ;L1(Ω)) + ‖∂tuε‖L1(0,T ;(Hs(Ω))∗) ≤ C

for some C > 0 independent of ε. Then, up to a subsequence, as ε → 0,

uε → u strongly in L2(0, T ;Ld/(d−1)(Ω)).

The above uniform estimates are typical for solutions uε of nonlinear diffusion
equations for which

∫

Ω
uε(log uε − 1)dx is an entropy with

∫

Ω
|∇√

uε|2dx as the
corresponding entropy production. Notice that the estimate implies that ∇uε =
2
√

uε∇
√

uε is uniformly bounded in L2(0, T ;L1(Ω)). Hence, since the embedding
W 1,1(Ω) →֒ Lp(Ω) is compact for all p < d/(d − 1), we conclude from the Aubin
lemma that there exists a subsequence of (uε), which is not relabeled, such that
uε → u strongly in L2(0, T ;Lp(Ω)) as ε → 0. The additional estimate for uε log uε in
L1 allows us to extend this convergence result to p = d/(d − 1). This is the novelty
of Proposition 2.1.

Proof. By the above application of the Aubin lemma, it holds uε → u a.e. First,
we claim that this convergence and the bound for (uε log uε) imply that

√
uε → √

u
strongly in L∞(0, T ;L2(Ω)) as ε → 0. Indeed, by the Fatou lemma,

sup
(0,T )

∫

Ω

|u log u|dx = sup
(0,T )

∫

Ω

lim
ε→0

|uε log uε|dx ≤ lim inf
ε→0

sup
(0,T )

∫

Ω

|uε log uε|dx ≤ C.

Let L > 1 and vε = min{uε, L}. Then vε → v = min{u,L} a.e. By dominated
convergence, it holds for sufficiently small ε > 0:

sup
(0,T )

∫

Ω

|vε − v|dx ≤ 1

log L
.

Then, for sufficiently small ε > 0,

sup
(0,T )

∫

Ω

|uε − u|dx ≤ sup
(0,T )

∫

Ω

|uε − vε|dx + sup
(0,T )

∫

Ω

|vε − v|dx + sup
(0,T )

∫

Ω

|v − u|dx

≤ sup
(0,T )

∫

{uε≥L}

(uε − L)dx +
1

log L
+ sup

(0,T )

∫

{u≥L}

(u − L)dx

≤ sup
(0,T )

∫

Ω

|uε log uε|
log L

dx +
1

log L
+ sup

(0,T )

∫

Ω

u log u

log L
dx ≤ 1 + 2C

log L
.
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Since L > 1 is arbitrary, this shows that uε → u strongly in L∞(0, T ;L1(Ω)) and
hence,

√
uε → √

u strongly in L∞(0, T ;L2(Ω)).
Next, we apply the Gagliardo-Nirenberg inequality (see p. 1034 in [41])

‖√uε −
√

u‖4
L4(0,T ;L2d/(d−1)(Ω)) ≤ C1

∫ T

0

‖√uε −
√

u‖2
H1(Ω)‖

√
uε −

√
u‖2

L2(Ω)dt

≤ C2

(

‖√uε‖2
L2(0,T ;H1(Ω)) + ‖

√
u‖2

L2(0,T ;H1(Ω))

)

× ‖√uε −
√

u‖2
L∞(0,T ;L2(Ω))

→ 0 as ε → 0.

Hence,
√

uε → √
u strongly in L4(0, T ;L2d/(d−1)(Ω)) and consequently, uε → u

strongly in L2(0, T ;Ld/(d−1)(Ω)).

3. The parabolic-parabolic system. This section is devoted to the proof of
Theorem 1.1. The proof is divided in several steps.

Step 1: existence of a time-discrete problem. Let T > 0 and K ∈ N. We split the
time interval in the subintervals

(0, T ] =
K
⋃

k=1

((k − 1)τ, kτ ], τ = T/K.

Let 0 < ε < min{1, 1/(δτ)}. For given functions yk−1 and Sk−1, we wish to solve the
approximate elliptic problem

1

τ

(

eyk/δ − eyk−1/δ

α(Sk − Sk−1)

)

− div

(

D(yk)∇
(

yk

Sk

))

= ε

(

−∆2yk + δ−2div(|∇yk|2∇yk) − ykeyk/δ

0

)

+

(

0
µeyk/δ − Sk

)

, (3.1)

subject to the boundary conditions

∇yk · ν = ∇∆yk · ν = ∇Sk · ν = 0 on ∂Ω, (3.2)

where the diffusion matrix is given by

D(yk) =

(

δ−1eyk/δ −eyk/δ

eyk/δ 1

)

.

Here, nk := exp(yk/δ) is an approximation of the cell density at time kτ . In the
first time step, we do not replace n0 by exp(y0/δ). If yk is a bounded function, the
cell density is strictly positive. Due to the fourth-order term, we need the additional
boundary condition ∇∆yk · ν = 0 on ∂Ω. In the limit ε → 0, we will loose this
condition. The following proposition is also valid for three-dimensional domains Ω.

Proposition 3.1. Let yk−1 be a measurable function such that exp(yk−1) ∈
L1(Ω) and let Sk−1 ∈ L2(Ω). Then there exists a solution (yk, Sk) ∈ H2(Ω) × H1(Ω)
to (3.1)-(3.2).

Proof. First, we solve a linearized problem. For this, let (ȳ, S̄) ∈ H7/4(Ω)×L2(Ω)
be given. In view of the Sobolev embedding H7/4(Ω) →֒ L∞(Ω) for Ω ⊂ R

d (d ≤ 3),
we have exp(ȳ/δ) ∈ L∞(Ω). We show the existence of a unique solution (y, S) ∈
H2(Ω) × H1(Ω) to the linear problem

a((y, S), (z,R)) = F (z,R) for all (y, S), (z,R) ∈ H2(Ω) × H1(Ω), (3.3)
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where

a((y, S), (z,R)) =

∫

Ω

(

∇z
∇R

)⊤

D(ȳ)

(

∇y
∇S

)

dx

+ ε

∫

Ω

(

∆y∆z + δ−2|∇ȳ|2∇y · ∇z + yeȳ/δz
)

dx +

∫

Ω

SRdx,

F (z,R) = −1

τ

∫

Ω

(

eȳ/δ − eyk−1/δ

α(S̄ − Sk−1)

)

·
(

z
R

)

dx + µ

∫

Ω

eȳ/δRdx.

The diffusion coefficients are bounded. Moreover, in view of the embedding H2(Ω) →֒
W 1,4(Ω) for Ω ⊂ R

d (d ≤ 3), we can estimate

∫

Ω

|∇ȳ|2∇y · ∇zdx ≤ ‖∇ȳ‖2
L4(Ω)‖∇y‖L4(Ω)‖∇z‖L4(Ω) ≤ C(ȳ)‖y‖H2(Ω)‖z‖H2(Ω).

This proves the continuity of the bilinear form a : (H2(Ω) × H1(Ω))2 → R. The
functional F : H2(Ω) × H1(Ω) → R is continuous, too. Moreover, a is coercive since

a((y, S), (y, S)) =

∫

Ω

(

δ−1eȳ/δ|∇y|2 + |∇S|2
)

dx

+ ε

∫

Ω

(

(∆y)2 + δ−2|∇ȳ|2|∇y|2 + y2eȳ/δ
)

dx +

∫

Ω

S2dx

≥ C(ε)‖y‖2
H2(Ω) + ‖S‖2

H1(Ω)

for some C(ε) > 0. By the Lax-Milgram lemma, there exists a unique solution
(y, S) ∈ H2(Ω) × H1(Ω) to (3.3).

Now we turn to the nonlinear problem which we solve by applying the Leray-
Schauder fixed-point theorem (see Theorem B.5 in [36]). For given (ȳ, S̄) ∈ H7/4(Ω)×
L2(Ω) and σ ∈ [0, 1], we define the fixed-point operator B : H7/4(Ω)×L2(Ω)×[0, 1] →
H7/4(Ω)×L2(Ω) by B(ȳ, S̄;σ) = (y, S), where (y, S) ∈ H2(Ω)×H1(Ω) is the solution
to the linear problem

a((y, S), (z,R)) = σF (z,R) for all (z,R) ∈ H2(Ω) × H1(Ω). (3.4)

We notice that B(ȳ, S̄; 0) = (0, 0) for all (ȳ, S̄) ∈ H7/4(Ω) × L2(Ω). Standard
arguments prove that B is continuous and, because of the compact embeddings
H2(Ω) →֒ H7/4(Ω) and H1(Ω) →֒ L2(Ω) for d ≤ 3, also compact. It remains to
show that there exists a constant C > 0 such that for any (y, S) ∈ H7/4(Ω) × L2(Ω),
σ ∈ [0, 1] satisfying B(y, S;σ) = (y, S), the estimate ‖(y, S)‖H7/4(Ω)×L2(Ω) ≤ C holds.

In order to prove this bound, we use first the test function (z,R) = (1, 0) in (3.4)
giving, with the elementary inequality xex ≥ ex − 1 for x ≥ 0,

∫

Ω

ey/δdx =

∫

Ω

eyk−1/δdx − ετ

∫

Ω

yey/δdx ≤
∫

Ω

eyk−1/δdx + ετδ

∫

Ω

(1 − ey/δ)dx

≤
∫

Ω

eyk−1/δdx + ετδmeas(Ω).

Hence exp(y/δ) is bounded in L1(Ω) uniformly in t > 0:

∫

Ω

ey/δdx ≤
∫

Ω

ey0/δdx + εδTmeas(Ω). (3.5)
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Next, we employ the test function (y, S) in (3.4):

1

τ

∫

Ω

(

(ey/δ − eyk−1/δ)y + α(S − Sk−1)S
)

dx + 4δ

∫

Ω

|∇ey/2δ|2dx

+

∫

Ω

(|∇S|2 + S2)dx + ε

∫

Ω

(

(∆y)2 + δ−2|∇y|4 + y2ey/δ
)

dx

= σµ

∫

Ω

ey/δSdx. (3.6)

We estimate the right-hand side of (3.6) using the Hölder inequality and the Sobolev
embedding theorem:

µ

∫

Ω

ey/δSdx ≤ µ‖ey/δ‖L6/5(Ω)‖S‖L6(Ω) ≤ µC0‖ey/2δ‖2
L12/5(Ω)‖S‖H1(Ω).

The Gagliardo-Nirenberg inequality (see p. 1034 in [41]) with θ = d/12 and the Young
inequality for p1 = 1/θ, p2 = 2/(1 − 2θ), and p3 = 2 imply that

µ

∫

Ω

ey/δSdx ≤ µC1‖ey/2δ‖2θ
H1(Ω)‖ey/2δ‖2(1−θ)

L2(Ω) ‖S‖H1(Ω)

≤ µC1‖ey/2δ‖2θ
H1(Ω)‖ey/δ‖1−θ

L1(Ω)‖S‖H1(Ω)

≤ 2δ‖ey/2δ‖2
H1(Ω) + C2(δ)‖ey/δ‖(2−2θ)/(1−2θ)

L1(Ω) +
1

2
‖S‖2

H1(Ω).

The first and last term can be absorbed by the second and third integral in (3.6),
respectively, using (3.5). The second term is bounded because of (3.5). Since φ(x) =
x(log x − 1) is convex, φ(x) − φ(z) ≤ φ′(x)(x − z) for all x, z > 0. This yields for
x = ey/δ and z = eyk−1/δ

∫

Ω

(ey/δ − eyk−1/δ)ydx ≥ δ

∫

Ω

(

φ(ey/δ) − φ(eyk−1/δ)
)

dx.

Moreover,

α

∫

Ω

(S − Sk−1)Sdx ≥ α

2

∫

Ω

(S2 − S2
k−1)dx.

Hence, (3.6) becomes

1

τ
(Ek − Ek−1) + 2

∫

Ω

|∇ey/2δ|2dx +
1

2δ
‖S‖2

H1(Ω)

+
ε

δ

∫

Ω

(

(∆y)2 + δ−2|∇y|4 + y2ey/δ
)

dx ≤ C3(δ)‖ey/δ‖(2−2θ)/(1−2θ)
L1(Ω) , (3.7)

where

Ek =

∫

Ω

(

φ(eyk/δ) +
α

2δ
S2

)

dx.

With the test function (e−y/δ, 0) in (3.4), we obtain, after some elementary cal-
culations,

ε

∫

Ω

(−y)dx = − 1

δ2

∫

Ω

|∇y|2dx +
σ

τ

∫

Ω

(

1 − e(yk−1−y)/δ
)

dx

− ε

δ

∫

Ω

e−y/δ
(

(∆y)2 − 1

δ
∆y|∇y|2 +

1

δ2
|∇y|4

)

dx +
1

δ

∫

Ω

∇S · ∇ydx.
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The first term on the right-hand side is nonpositive. The second term is estimated
from above by meas(Ω)/τ , and the third integral can be written as the sum of two
squares. Finally, we apply the Cauchy-Schwarz inequality to the the last term, show-
ing that it is bounded. Observing that

∫

Ω
ydx is bounded (as a consequence of the

discrete entropy estimate (3.7)), we have shown that yk is uniformly bounded in L1(Ω)
(with a constant that depends on ε). Hence, by (3.5) and (3.7), this gives a uniform
H2-bound for yk and an H1-bound for Sk. The proposition is proved.

Step 2: limit of vanishing approximation parameters. From now on, we require
that d = 2. Let (yk, Sk) be a solution to (3.1)-(3.2) and define y(τ)(x, t) = yk(x),
n(τ)(x, t) = nk(x) = exp(yk(x)/δ) > 0, and S(τ)(x, t) = Sk(x) for x ∈ Ω and t ∈
((k − 1)τ, kτ ]. Then (n(τ), S(τ)) solves the following problem:

Dτn(τ) = div(∇n(τ) − n(τ)∇S(τ)) − ε
(

∆2y(τ)

− δ−2div(|∇y(τ)|2∇y(τ)) + y(τ)n(τ)
)

, (3.8)

αDτS(τ) = ∆S(τ) + δ∆n(τ) + µn(τ) − S(τ), (3.9)

subject to the boundary conditions

∇n(τ) · ν = ∇∆y(τ) · ν = ∇S(τ) · ν = 0 on ∂Ω,

where Dτn(τ) = (n(τ) − στn(τ))/τ is the discrete time derivative and στ denotes the
shift operator (στn(τ))(t) = n(τ)(·, t − τ) for τ ≤ t < T . We collect some a priori
estimates uniform in ε and τ .

Estimate (3.5) can be reformulated as

‖nk‖L1(Ω) ≤ ‖n0‖L1(Ω) + εδTmeas(Ω), k ∈ {1, . . . ,K}.

Using this estimate, we can solve the discrete entropy inequality (3.7) recursively:

Ek + 2τ

k
∑

j=1

‖∇√
nj‖2

L2(Ω) +
τ

2δ

k
∑

j=1

‖Sj‖2
H1(Ω)

+
ετ

δ

k
∑

j=1

∫

Ω

(

(∆yj)
2 + δ−2|∇yj |4 + y2

j eyj/δ
)

dx ≤ E0 + τkC ≤ E0 + TC,

where C > 0 depends on δ, T , and the L1-norm of n0 (notice that 0 < ε < 1). Hence,
we have proved:

Lemma 3.2. The following bounds hold:

‖n(τ) log n(τ)‖L∞(0,T ;L1(Ω)) + ‖
√

n(τ)‖L2(0,T ;H1(Ω))

+ ‖S(τ)‖L2(0,T ;H1(Ω)) ≤ C, (3.10)
√

ε‖∆y(τ)‖L2(ΩT ) + 4
√

ε‖∇y(τ)‖L4(ΩT ) +
√

ε
∥

∥y(τ)
√

n(τ)
∥

∥

L2(ΩT )
≤ C, (3.11)

where C > 0 is independent of ε and τ .
The following lemma is a consequence of the above uniform estimates.
Lemma 3.3. The following bound holds:

‖n(τ)‖L2(0,T ;W 1,1(Ω)) + ‖n(τ)‖L4/3(0,T ;W 1,4/3(Ω)) ≤ C, (3.12)

where C > 0 is independent of ε and τ .
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Proof. We employ the Cauchy-Schwarz inequality:

‖∇n(τ)‖2
L2(0,T ;L1(Ω)) = 4

∫ T

0

‖
√

n(τ)∇
√

n(τ)‖2
L1(Ω)dt

≤ 4

∫ T

0

‖
√

n(τ)‖2
L2(Ω)‖∇

√

n(τ)‖2
L2(Ω)dt

≤ 4‖n(τ)‖L∞(0,T ;L1(Ω))‖∇
√

n(τ)‖2
L2(0,T ;L2(Ω)) ≤ C,

using (3.10). This shows the first estimate. Notice that this bound implies, because
of the embedding W 1,1(Ω) →֒ L2(Ω) for d = 2, that (n(τ)) is bounded in L2(ΩT ),
where ΩT = Ω × (0, T ). Then the second bound follows from

‖∇n(τ)‖L4/3(ΩT ) = 2‖
√

n(τ)∇
√

n(τ)‖L4/3(ΩT )

≤ 2‖
√

n(τ)‖L4(ΩT )‖∇
√

n(τ)‖L2(ΩT ) ≤ C,

which finishes the proof.
Next, we show that the discrete time derivatives of n(τ) and S(τ) are uniformly

bounded.
Lemma 3.4. It holds for any η > 0:

‖Dτn(τ)‖L1(0,T ;(H2+η(Ω))′) + α‖DτS(τ)‖L4/3(0,T ;(W 1,4(Ω))′) ≤ C, (3.13)

where C > 0 does not depend on ε and τ .
Proof. Let η > 0 and φ ∈ L∞(0, T ;H2+η(Ω)). By Sobolev embedding, it holds

φ ∈ L∞(0, T ;W 1,∞(Ω)). Then, by (3.8) and Hölder’s inequality,

∫ T

0

〈Dτn(τ), φ〉dt = −
∫ T

0

∫

Ω

(

∇n(τ) · ∇φ − n(τ)∇S(τ) · ∇φ
)

dx dt

+ ε

∫ T

0

∫

Ω

(

∆y(τ)∆φ + δ−2|∇y(τ)|2∇y(τ) · ∇φ + y(τ)n(τ)φ
)

dx dt

≤ ‖∇n(τ)‖L4/3(ΩT )‖∇φ‖L4(ΩT )

+ ‖n(τ)‖L2(ΩT )‖∇S(τ)‖L2(ΩT )‖∇φ‖L∞(ΩT )

+ ε‖∆y(τ)‖L2(ΩT )‖∆φ‖L2(ΩT ) + εδ−2‖∇y(τ)‖3
L4(ΩT )‖∇φ‖L4(ΩT )

+ ε
∥

∥y(τ)
√

n(τ)
∥

∥

L2(ΩT )

∥

∥

√

n(τ)
∥

∥

L4(ΩT )
‖φ‖L4(ΩT )

≤ C
(

‖φ‖L∞(0,T ;W 1,∞(Ω)) + ‖φ‖L∞(0,T ;H2(Ω))

)

≤ C‖φ‖L∞(0,T ;(H2+η(Ω))′),

using (3.10)-(3.12). Here, the brackets 〈·, ·〉 denote the dual product in the corre-
sponding spaces. In a similar way, using (3.9),

α

∫ T

0

〈DτS(τ), φ〉dt = −
∫ T

0

∫

Ω

(

∇S(τ) · ∇φ + δ∇n(τ) · ∇φ − µn(τ)φ + S(τ)φ
)

dx dt

≤ ‖∇S(τ)‖L2(ΩT )‖∇φ‖L2(ΩT ) + δ‖∇n(τ)‖L4/3(ΩT )‖∇φ‖L4(ΩT )

+
(

µ‖n(τ)‖L2(ΩT ) + ‖S(τ)‖L2(ΩT )

)

‖φ‖L2(ΩT )

≤ C‖φ‖L4(0,T ;W 1,4(Ω)),
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which shows the lemma.
Taking into account (3.10), (3.12), and (3.13), Aubin’s lemma [33, Thm. 6] (or

using Lemma A.2 in [9]) provides the existence of subsequences of (n(τ)) and (S(τ)),
which are not relabeled, such that, as (ε, τ) → 0,

n(τ) → n strongly in L2(0, T ;Lp(Ω)), p < 2,

S(τ) → S strongly in L2(0, T ;Lq(Ω)), q < ∞, if α 6= 0.

Here, we have used the compactness of the embeddings W 1,1(Ω) →֒ Lp(Ω) for all
1 ≤ p < 2 and H1(Ω) →֒ Lq(Ω) for all 1 ≤ q < ∞ in two-dimensional domains.
Notice that the positivity of n(τ) = exp(y(τ)/δ) implies the nonnegativity of the limit
function n. The estimates (3.10) and (3.12) show that, up to subsequences,

∇n(τ) ⇀ ∇n weakly in L4/3(0, T ;L4/3(Ω)),

∇S(τ) ⇀ ∇S weakly in L2(0, T ;L2(Ω)),

and (3.13) implies that, if α 6= 0,

DτS(τ) ⇀ St weakly in L4/3(0, T ; (H2(Ω))′).

Unfortunately, these results do not allow us to pass to the limit in the term n(τ)∇S(τ).
However, we are able to exploit the boundedness of n(τ) log n(τ) in L1. Indeed, Propo-
sition (2.1) shows that, up to a subsequence,

n(τ) → n strongly in L2(0, T ;L2(Ω)).

Hence, we find that

n(τ)∇S(τ) ⇀ n∇S weakly in L1(0, T ;L1(Ω)). (3.14)

Since, by (3.11), for all φ ∈ L4(0, T ;H2(Ω)),

∣

∣

∣
ε

∫ T

0

〈∆2y(τ) − δ−2div(|∇y(τ)|2∇y(τ)) + y(τ)n(τ), φ〉dt
∣

∣

∣

≤ ε
(

‖y(τ)‖L2(0,T ;H2(Ω))‖φ‖L2(0,T ;H2(Ω)) + δ−2‖∇y(τ)‖3
L4(ΩT )‖∇φ‖L4(ΩT )

+
∥

∥y(τ)
√

n(τ)
∥

∥

L2(ΩT )

∥

∥

√

n(τ)
∥

∥

L4(ΩT )
‖φ‖L4(ΩT )

)

≤ C(ε1/2 + ε1/4)‖φ‖L4(0,T ;H2(Ω)),

we infer that

ε
(

∆2y(τ) − div(|∇y(τ)|2∇y(τ)) + y(τ)n(τ)
)

⇀ 0 weakly in L4/3(0, T ; (H2(Ω))′).

Observing (3.8), this result and (3.14) imply

Dτn(τ) ⇀ div(∇n − n∇S) weakly in L1(0, T ; (H2+η(Ω))′).

Since Dτn(τ) → nt in the sense of distributions, this gives

nt = div(∇n − n∇S) in L1(0, T ; (H2+η(Ω))′).

Due to the boundedness of the right-hand side we can now employ a density argument
to extend this equation to the space L1(0, T ; (W 1,∞(Ω))′).
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The limit (ε, τ) → 0 in the linear equation (3.9) leads to

αSt = ∆S + δ∆n + µn − S in L2(0, T ; (W 1,∞(Ω))′).

Since (Dτn(τ)) is bounded in W 1,1(0, T ; (W 1,∞(Ω))′) →֒ C0([0, T ]; (W 1,∞(Ω))′), the
initial datum n(·, 0) = n0 holds in the sense of (W 1,∞(Ω))′.

The above proof also works in the case α = 0. Indeed, we loose the estimate for
(S(τ)) in L∞(0, T ;L2(Ω)) and the estimate on the time derivative of S(τ). Both bounds
are not required in the convergence arguments since we only need weak convergence
for (S(τ)). This proves the existence result for α ≥ 0.

Step 3: proof of the regularity results. We show (1.7) and (1.8). We employ
(n(τ))γ−1 with 0 < γ < 1/2 as a test function in the weak formulation of (3.8).
This is possible since n(τ) = exp(y(τ)/δ) is strictly positive and, on each subinterval
((k − 1)τ, kτ ], an element of H1(Ω). Then

4(1 − γ)

γ2
‖∇(n(τ))γ/2‖2

L2(ΩT ) = (1 − γ)

∫ T

0

∫

Ω

|∇n(τ)|2(n(τ))γ−2dx dt

=

∫ T

0

∫

Ω

(

Dτn(τ)(n(τ))γ−1 +
1 − γ

γ
∇(n(τ))γ · ∇S(τ)

)

dx dt

+ ε

∫ T

0

∫

Ω

(

∆y(τ)∆(n(τ))γ−1 + δ−2|∇y(τ)|2∇y(τ) · ∇(n(τ))γ−1
)

dx dt

+ ε

∫ T

0

∫

Ω

y(τ)(n(τ))γdx dt. (3.15)

Using the concavity of the function x 7→ xγ , we infer that

∫ T

0

∫

Ω

Dτn(τ)(n(τ))γ−1dx dt =

K
∑

k=1

∫

Ω

(

nk − nk−1)n
γ−1
k dx

≤ 1

γ

K
∑

k=1

∫

Ω

(nγ
k − nγ

k−1)dx =
1

γ

∫

Ω

(

(n(τ)(·, T ))γ − nγ
0

)

dx,

which is uniformly bounded by (3.10). We know from (3.10) that (∇S(τ)) is bounded
in L2(ΩT ). Hence, in order to show that the integral

∫ T

0

∫

Ω

∇(n(τ))γ · ∇S(τ)dx dt ≤ 1

2
‖∇(n(τ))γ‖2

L2(ΩT ) +
1

2
‖∇S(τ)‖2

L2(ΩT )

is uniformly bounded, it remains to control (∇(n(τ))γ) in L2(ΩT ). For this, we observe
that, using the elementary inequality x2γ−1 ≤ ηxγ−1 + C(η) for all x > 0 and η > 0
(here we need the assumption γ < 1/2),

|∇(n(τ))γ |2 = γ2|∇n(τ)|2(n(τ))−1(n(τ))2γ−1

≤ γ2|∇n(τ)|2(n(τ))−1
(

η(n(τ))γ−1 + C(η)
)

= 4ηγ2|∇(n(τ))γ/2|2 + 4C(η)γ2|∇
√

n(τ)|2.

For sufficiently small η > 0, the first term can be absorbed by the left-hand side
of (3.15). Furthermore, the integral over the second term is uniformly bounded, by
(3.10). This shows that the first integral on the right-hand side of (3.15) is uniformly
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bounded. We proceed by estimating the second integral in (3.15). To this end, we
rewrite this integral as

ε(γ − 1)

δ

∫ T

0

∫

Ω

(n(τ))γ−1
(

(∆y(τ))2 +
γ − 1

δ
|∇y(τ)|2∆y(τ) +

1

δ2
|∇y(τ)|4

)

dx dt

= −ε(1 − γ)

δ

∫ T

0

∫

Ω

(n(τ))γ−1

(

(1

2
(γ − 1)∆y(τ) +

1

δ
|∇y(τ)|2

)2

+
(

1 − 1

4
(1 − γ)2

)

(∆y(τ))2
)

dx dt ≤ 0.

The last integral in (3.15) is estimated as follows:

δε

∫ T

0

∫

Ω

log(n(τ))(n(τ))γdx ≤ δεC(1 + ‖n(τ)‖2
L2(ΩT )) ≤ δεC.

This shows that

‖∇(n(τ))γ/2‖L2(ΩT ) ≤ C(γ)
(

‖∇
√

n(τ)‖L2(ΩT ) + ‖∇S(τ)‖L2(ΩT ) + 1
)

.

The regularity (1.7) follows with β = γ/2 < 1/4.
Next, we choose the (admissible) test function 1/n(τ) in the weak formulation of

(3.8):

1

δ2
‖∇y(τ)‖2

L2(Ω) =

∫ T

0

∫

Ω

|∇n(τ)|2
(n(τ))2

dx dt

=

∫ T

0

∫

Ω

(Dτn(τ)

n(τ)
+

1

n(τ)
∇S(τ) · ∇n(τ)

)

dx dt

+ ε

∫ T

0

∫

Ω

(

∆y(τ)∆
1

n(τ)
+ δ−2|∇y(τ)|2∇y(τ) · ∇ 1

n(τ)

)

dx dt

+ ε

∫ T

0

∫

Ω

y(τ)dx dt. (3.16)

We estimate the right-hand side term by term. The elementary inequality 1 − x ≤
− log x leads to

∫ T

0

∫

Ω

Dτn(τ)

n(τ)
dx dt =

K
∑

k=1

∫

Ω

(

1 − nk−1

nk

)

dx ≤
K

∑

k=1

∫

Ω

(

log nk−1 − log nk

)

dx

=

∫

Ω

(

log n(τ)(x, T ) − log n0(x)
)

dx

≤
∫

Ω

(n(τ)(x, T ) − 1 − log n0(x))dx ≤ C,

since n(τ) is uniformly bounded in L∞(0, T ;L1(Ω)), by (3.10). Furthermore,

∫ T

0

∫

Ω

1

n(τ)
∇S(τ) · ∇n(τ)dx dt ≤ 1

2δ
‖∇y(τ)‖2

L2(ΩT ) +
1

2
‖∇S(τ)‖2

L2(ΩT ).

The first term can be absorbed by the left-hand side of (3.16), the second term is
uniformly bounded, by (3.10). This shows that the first integral on the right-hand
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side of (3.16) can be controlled. The second integral is nonnegative since it is equal
to

−ε

δ

∫ T

0

∫

Ω

1

n(τ)

(

(∆y(τ))2 − 1

δ
∆y(τ)|∇y(τ)|2 +

1

δ2
|∇y(τ)|4

)

dx dt

= −ε

δ

∫ T

0

∫

Ω

1

n(τ)

(

(1

2
∆y(τ) − 1

δ
|∇y(τ)|2

)2

+
3

4
(∆y(τ))2

)

dx dt ≤ 0.

Finally, the last integral is estimated as follows:

ε

∫ T

0

∫

Ω

y(τ)dx dt = εδ

∫ T

0

∫

Ω

log n(τ)dx dt ≤ εδ‖n(τ)‖L1(ΩT ).

Thus, ∇ log n(τ) is uniformly bounded in L2(ΩT ) which proves (1.8).

4. The parabolic-elliptic system. In this section, we prove Theorem 1.2 (Sec-
tion 4.1) and Theorem 1.3 (Section 4.2).

4.1. Existence of solutions. Taking α = 0 in the Keller-Segel system (1.3)-
(1.4), we obtain the parabolic-elliptic system

nt = div(∇n − n∇S), (4.1)

0 = ∆S + δ∆n + µn − S, x ∈ Ω, t > 0, (4.2)

supplemented by the Neumann boundary conditions and the initial condition (1.1)-
(1.2) with α = 0. The proof of Theorem 1.1 covers the case α = 0. However,
this yields only low regularity. Therefore, we present an alternative proof of the
existence of solutions to (1.1)-(1.2), (4.1)-(4.2) with bounded cell densities, preventing
overcrowding of cells. As mentioned in the introduction, the idea is to define the new
variable v = S + δn. Then the parabolic-elliptic system can be written as

nt = div
(

(1 + δn)∇n − n∇v
)

, (4.3)

0 = ∆v + (µ + δ)n − v, x ∈ Ω, t > 0, (4.4)

together with the boundary and initial conditions

∇n · ν = ∇v · ν = 0 on ∂Ω, t > 0, n(·, 0) = n0 in Ω. (4.5)

We consider the regularized system (3.1) with α = 0. Written in the variables
nk = exp(yk/δ) ∈ H2(Ω) and vk = Sk + δnk ∈ H1(Ω), this system reads as

1

τ
(nk − nk−1) = div

(

(1 + δnk)∇nk − nk∇vk

)

− ε
(

∆2yk − δ−2div(|∇yk|2∇yk) + yknk

)

, (4.6)

0 = ∆vk + (µ + δ)nk − vk in Ω. (4.7)

The existence of solutions (nk, vk) is guaranteed by the proof of Theorem 1.1.
Step 1: nonnegativity of v. The test function v−

k = min{0, vk} in (4.7) leads to
∫

Ω

|∇v−
k |2dx = (µ + δ)

∫

Ω

nkv−
k dx −

∫

Ω

(v−
k )2dx ≤ 0,

since nk > 0. Hence, vk ≥ 0 in Ω and v(τ) ≥ 0 in ΩT . Performing the limit (ε, τ) → 0,
this implies that v ≥ 0 in ΩT .
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Step 2: regularity n ∈ L2(0, T ;H1(Ω)). Next, we use log nk = yk/δ as a test
function in the weak formulation of (4.6) and nk as a test function in the weak
formulation of (4.7). Summing both equations, the nonlinear term in ∇nk · ∇vk

cancels and we end up with

1

τ

∫

Ω

(nk − nk−1) log nkdx +

∫

Ω

(1 + δnk)
|∇nk|2

nk
dx

= −ε

δ

∫

Ω

(

(∆yk)2 + δ−2|∇yk|4 + y2
knk

)

dx + (µ + δ)

∫

Ω

n2
kdx −

∫

Ω

nkvkdx

≤ (µ + δ)

∫

Ω

n2
kdx.

As in the proof of Theorem 1.1, we can write this inequality as

1

τ

∫

Ω

(

nk(log nk − 1) − nk−1(log nk−1 − 1)
)

dx + δ

∫

Ω

|∇nk|2dx ≤ (µ + δ)

∫

Ω

n2
kdx.

Solving this recursive inequality gives, with the notation of Section 3,

∫

Ω

n(τ)(·, t)
(

log n(τ)(·, t) − 1
)

dx +

∫ t

0

∫

Ω

|∇n(τ)|2dx ds

≤
∫

Ω

n0(log n0 − 1)dx + (µ + δ)

∫ t

0

∫

Ω

(n(τ))2dx ds.

In view of (3.12) and the continuous embedding W 1,1(Ω) →֒ L2(Ω) for d ≤ 2, the right-
hand side is uniformly bounded. This shows (after performing the limit (ε, τ) → 0)
that n ∈ L2(0, T ;H1(Ω)).

Step 3: regularity n ∈ L∞(0, T ;L2(Ω)). We employ nk in the weak formulation
of (4.6),

1

τ

∫

Ω

(nk − nk−1)nkdx +

∫

Ω

(1 + δnk)|∇nk|2dx

=
1

2

∫

Ω

∇vk · ∇n2
kdx − ε

δ

∫

Ω

nk

(

(∆yk)2 + δ−2|∇yk|4 + δ−1∆yk|∇yk|2
)

dx

− ε

∫

Ω

ykn2
kdx,

and n2
k/2 in the weak formulation of (4.7),

1

2

∫

Ω

∇vk · ∇n2
kdx =

1

2
(µ + δ)

∫

Ω

n3
kdx − 1

2

∫

Ω

vkn2dx.

Summing both equations, the expression in ∇vk ·∇n2
k cancels and, using the nonneg-

ativity of vk and the Cauchy-Schwarz inequality, we infer that

1

τ

∫

Ω

(n2
k − n2

k−1)dx +
4δ

9

∫

Ω

|∇n
3/2
k |2dx

≤ − ε

2δ

∫

Ω

nk

(

(∆yk)2 + δ−2|∇yk|4
)

dx − εδ

∫

Ω

n2
k log nkdx +

1

2
(µ + δ)

∫

Ω

n3
kdx.
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Solving this recursive inequality, we end up with
∫

Ω

(n(τ))2(·, t)dx +
4

9
δ

∫ t

0

∫

Ω

|∇(n(τ))3/2|2dx ds

≤
∫

Ω

n2
0dx − εδ

∫ t

0

∫

Ω

(n(τ))2 log n(τ)dx ds +
1

2
(µ + δ)

∫ t

0

∫

Ω

(n(τ))3dx ds.

The second integral on the right-hand side is uniformly bounded since x 7→ −x2 log x
has an upper bound in [0,∞). The third integral is estimated by using the Gagliardo-
Nirenberg inequality with θ = 2/3:

∫ T

0

∫

Ω

(n(τ))3dx =

∫ T

0

‖n(τ)‖3
L3(Ω)dt ≤ C

∫ T

0

‖n(τ)‖3θ
H1(Ω)‖n(τ)‖3(1−θ)

L1(Ω) dt

≤ C‖n(τ)‖L∞(0,T ;L1(Ω))‖n(τ)‖2
L2(0,T ;H1(Ω)),

and this is bounded by (3.10) and Step 2. Hence, letting (ε, τ) → 0, we have n ∈
L∞(0, T ; L2(Ω)).

Step 4: regularity n ∈ L∞(0, T ;L3(Ω)). We employ the test function n2
k in the

weak formulation of (4.6) and 2n3
k/3 in the weak formulation of (4.7) and sum both

equations:

1

τ

∫

Ω

(nk − nk−1)n
2
kdx + 2

∫

Ω

(1 + δnk)nk|∇nk|2dx

= −2ε

δ

∫

Ω

n2
k

(

(∆yk)2 +
2

δ
∆yk|∇yk|2 +

1

δ2
|∇yk|4

)

dx − ε

∫

Ω

ykn3
kdx

+
2

3
(µ + δ)

∫

Ω

n4
kdx − 2

3

∫

Ω

vkn3
kdx.

The first term on the left-hand side is bounded from above by

1

3τ

∫

Ω

(n3
k − n3

k−1)dx.

The first integral on the right-hand side is nonnegative since it is equal to

−2ε

δ

∫

Ω

n2
k

(

(∆yk)2 +
1

δ
|∇yk|2

)2

dx.

We estimate the second integral on the right-hand side as above. Furthermore, the
fourth integral is nonnegative. Hence, we obtain

1

3

∫

Ω

(n(τ))3(·, t)dx +
δ

2

∫ t

0

∫

Ω

|∇n2
k|2dx ds

≤ 1

3

∫

Ω

n3
0dx + εC +

2

3
(µ + δ)

∫ t

0

‖n(τ)‖4
L4(Ω)ds.

Estimate (3.11) and Step 3 show that the second integral on the right-hand side is
uniformly bounded. In order to estimate the last integral, we employ the Gagliardo-
Nirenberg inequality with θ = 1/2:

∫ T

0

‖n(τ)‖4
L4(Ω)dt ≤ C

∫ T

0

‖n(τ)‖4θ
H1(Ω)‖n(τ)‖4(1−θ)

L2(Ω) dt

≤ C‖n(τ)‖2
L2(0,T ;H1(Ω))‖n(τ)‖2

L∞(0,T ;L2(Ω)) ≤ C,
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by Steps 2 and 3. This proves n ∈ L∞(0, T ;L3(Ω)).

Step 5: regularity v ∈ L∞(0, T ;W 1,∞(Ω)). In view of the regularity n(τ) ∈
L∞(0, T ; L3(Ω)), standard elliptic theory implies that the problem

−∆v(τ) + v(τ) = (µ + δ)n(τ) in Ω, ∇v(τ) · ν = 0 on ∂Ω,

has a unique solution satisfying v(τ) ∈ L∞(0, T ;W 2,3(Ω)). Here, we need the assump-
tion ∂Ω ∈ C1,1. By Sobolev embedding, we find that v(τ) ∈ L∞(0, T ;W 1,∞(Ω)).

Step 6: regularity L∞(0, T ;L∞(Ω)). This step is a consequence of the following
proposition.

Proposition 4.1. Let Ω ⊂ R
2 be a bounded domain with ∂Ω ∈ C0,1, T > 0,

u0 ∈ L∞(Ω), δ > 0, and V ∈ L∞(0, T ;W 1,∞(Ω)). Then there exists a unique weak
solution u to

ut − div((1 + δu)∇u) = −div(u∇V ) in Ω, t > 0, (4.8)

((1 + δu)∇u − u∇V ) · ν = 0 on ∂Ω, u(·, 0) = u0 in Ω, (4.9)

such that, for some constant C > 0, depending on Ω and the L∞ norm of ∇V ,

‖u‖L∞(ΩT ) ≤ C max
{

1, ‖u0‖L∞(Ω)

}

, 0 < t ≤ T.

A proof of the above result is sketched in [20] for δ = 0 and with an L∞ bound
which depends on the L1 norm of u0.

Proof. Let uR = max{u,R}, where R > 0 is a constant to be determined. Then
a standard fixed-point argument proves that the quasilinear problem with bounded
coefficients

ut − div
(

(1 + δuR)∇u
)

= −div(u∇V ) in Ω, t > 0, (4.10)

with boundary and initial conditions (4.9) possesses a weak solution in L2(0, T ;
H1(Ω)). Notice that u conserves mass.

It remains to prove the L∞ bound independent of R such that we can remove
the index R in (4.10). This can be done by using (a variant of) up as a test function
and deriving a recursive differential inequality. Since up is not an admissible test
function, we have to truncate. Let 0 < k < K with k = ‖u0‖L∞(Ω), p ≥ 1, and set
uK = min{u,K}. Then φ(u) = [(uK − k)+]p ∈ L2(0, T ;H1(Ω)) since this function is
bounded and u ∈ L2(0, T ;H1(Ω)). Hence, φ(u) is an admissible test function in the
weak formulation of (4.10). Observing that

Φ(u) =

∫ u

0

φ(z)dz ≥ 1

p + 1
[(uK − k)+]p+1

and, using φ(u0) = 0,

∫ t

0

〈ut, φ(u)〉ds =

∫

Ω

(

Φ(u(·, t)) − Φ(u0)
)

dx ≥ 1

p + 1

∫

Ω

[(uK(·, t) − k)+]p+1dx,
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we conclude from (4.10) that

1

p + 1

∫

Ω

[(uK(·, t) − k)+]p+1dx

+ p

∫ t

0

∫

Ω

(1 + δuR)[(uK − k)+]p−1|∇(uK − k)+|2dx ds

= p

∫ t

0

∫

Ω

(u − k)[(uK − k)+]p−1∇V · ∇(uK − k)+dx ds

+ kp

∫ t

0

∫

Ω

[(uK − k)+]p−1∇V · ∇(uK − k)+dx ds.

Since u − k = (uK − k)+ on {k < u < K}, we can write

1

p + 1

∫

Ω

[(uK(·, t) − k)+]p+1dx

+
4p

(p + 1)2

∫ t

0

∫

Ω

|∇[(uK − k)+](p+1)/2|2dx ds

≤ 2p

p + 1

∫ t

0

∫

Ω

[(uK − k)+](p+1)/2∇V · ∇[(uK − k)+](p+1)/2dx ds

+
2kp

p + 1

∫ t

0

∫

Ω

[(uK − k)+](p−1)/2∇V · ∇[(uK − k)+](p+1)/2dx ds.

Applying the Cauchy-Schwarz inequality and absorbing the gradient terms by the
second integral on the left-hand side, we infer that

1

p + 1

∫

Ω

[(uK(·, t) − k)+]p+1dx +
2p

(p + 1)2

∫ t

0

∫

Ω

|∇[(uK − k)+](p+1)/2|2dx ds

≤ p‖∇V ‖2
L∞(ΩT )

∫ t

0

∫

Ω

[(uK − k)+]p+1dx ds

+ k2p‖∇V ‖2
L∞(ΩT )

∫ t

0

∫

Ω

[(uK − k)+]p−1dx ds.

We apply ap−1 ≤ (p − 1)ap+1/(p + 1) + 2/(p + 1) (which follows from the Young
inequality) to the last integral:

k2p‖∇V ‖2
L∞(ΩT )

∫ t

0

∫

Ω

[(uK − k)+]p−1dx ds

≤ p(p − 1)

p + 1
C1(V )

∫ t

0

∫

Ω

[(uK − k)+]p+1dx ds +
2p

p + 1
C2,

and hence,

∫

Ω

[(uK(·, t) − k)+]p+1dx ≤ p(p + 1)C1(V )

∫ t

0

∫

Ω

[(uK − k)+]p+1dx ds + pC2,

where C1 > 0 depends on k and the L∞ norm of ∇V , and C2 > 0 depends on k, T ,
and Ω. By the Gronwall lemma,

∫

Ω

[(uK(·, t) − k)+]p+1dx ≤ pC2e
p(p+1)C1(V )t, t ≥ 0.
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Since the right-hand side does not depend on K > 0, we can perform the limit K → ∞
and obtain

‖(u(·, t) − k)+‖Lp+1(Ω) ≤ (pC2)
1/(p+1)epC1(V )t, t ≥ 0.

This shows that u ∈ L∞(0, T ;Lp(Ω)) for all p < ∞. Unfortunately, we cannot perform
the limit p → ∞ since the right-hand side is not unformly bounded in p.

Since ut − div((1 + δuR)∇u) = −div(u∇V ) ∈ L∞(0, T ; (W 1,p(Ω))′) for all p <
∞, maximal regularity implies that u ∈ Lp(0, T ;W 1,p(Ω)) (see, e.g., [16]). This,
together with the regularity result u ∈ L∞(0, T ;Lp(Ω)) for all p < ∞, proves that
up ∈ L2(0, T ;H1(Ω)) is an admissible test function in the weak formulation of (4.10).
Estimating as above, we find that

d

dt

∫

Ω

up+1dx +
2p

p + 1

∫

Ω

|∇u(p+1)/2|2dx ≤ p(p + 1)C1(V )

∫

Ω

up+1dx,

where C1(V ) > 0 depends on the L∞ norms of ∇V and n0 and on T and Ω. Now, we
can proceed exactly as in [20] (and similarly as in [27]) to deduce a set of recursive
inequalities in the spirit of Alikakos [1] to prove the theorem.

Next, we prove the global boundedness of n and v. We introduce the functional

F (t) =

∫

Ω

(

h(n) − nv +
1

2(µ + δ)

(

|∇v|2 + v2
)

)

dx,

where h(n) = n(log n − 1) + δn2/2. A straightforward computation shows that F
is decreasing along the solution trajectories, F (t) ≤ F (0) for t ≥ 0. Proceeding
as in the proof of Theorem 4.1 in [8], the entropy estimate implies that

∫

Ω
h(n)dx

and
∫

Ω
|∇v|2dx are uniformly bounded in time. The superlinearity of h shows the

time equi-integrability of n which implies L∞(0,∞;Lp(Ω)) estimates for n for all
p < ∞. By elliptic regularity, we deduce that v ∈ L∞(0,∞;W 1,∞(Ω)). From Lemma
4.1 in [27], which is based on the iteration technique of Alikakos, we find that n ∈
L∞(0,∞;L∞(Ω)).

Finally, the uniqueness of solutions to (1.1)-(1.2), (4.3)-(4.4) can be proved using
the standard dual method. This completes the proof of Theorem 1.2.

4.2. Long-time behavior of solutions. We begin by recalling that a homo-
geneous steady state of (1.1)-(1.2) and (4.1)-(4.2) is given by n∗ = M/meas(Ω) and
S∗ = µn∗, where M =

∫

Ω
n0dx is the total mass. We define the relative entropy

E∗(t) =

∫

Ω

(

n log
n

n∗

)

(x, t)dx ≥ 0.

The following lemma is a consequence of the relative entropy inequality.
Lemma 4.2. Under the assumptions of Theorem 1.3, it holds

∇
√

n ∈ L2(0,∞;L2(Ω)), S − S∗ ∈ L2(0,∞;H1(Ω)).

Proof. Since log n may be not integrable, we define the regularized entropy

Eε(t) =

∫

Ω

(

(n + ε) log
n + ε

n∗

)

(x, t)dx, ε > 0.
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We employ the test function log(n + ε) ∈ L2(0, T ;H1(Ω)) in the weak formulation of
(1.3):

dEε

dt
= 〈nt, log(n+ε)〉 = −4

∫

Ω

|∇
√

n + ε|2dx+2

∫

Ω

n√
n + ε

∇S ·∇
√

n + εdx. (4.11)

Furthermore, employing the test function (S − S∗)/δ in the equation

0 = ∆(S − S∗) + δ∆(n − n∗) + µ(n − n∗) − (S − S∗),

we find that

0 = −1

δ

∫

Ω

|∇(S − S∗)|2dx − 2

∫

Ω

√
n + ε∇S · ∇

√
n + εdx

+
µ

δ

∫

Ω

(n − n∗)(S − S∗)dx − 1

δ

∫

Ω

(S − S∗)2dx. (4.12)

Adding (4.11) and (4.12) gives

dEε

dt
+ 4‖∇

√
n + ε‖2

L2(Ω) +
1

δ
‖S − S∗‖2

H1(Ω)

=
µ

δ

∫

Ω

(n − n∗)(S − S∗)dx − 2

∫

Ω

ε√
n + ε

∇S · ∇
√

n + εdx. (4.13)

Since
∫

Ω
((n + ε) − (n∗ + ε))dx = 0, we can apply the Poincaré inequality

‖n − n∗‖L4/3(Ω) = ‖(n + ε) − (n∗ + ε)‖L4/3(Ω) ≤ C(Ω)‖∇(n + ε)‖L1(Ω)

to the first integral at the right-hand side of (4.13):

µ

δ

∫

Ω

(n − n∗)(S − S∗)dx ≤ µ

δ
‖n − n∗‖L4/3(Ω)‖S − S∗‖L4(Ω)

≤ µ

δ
C(Ω)‖∇(n + ε)‖L1(Ω)‖S − S∗‖H1(Ω).

Using

‖∇(n + ε)‖L1(Ω) ≤ 2‖
√

n + ε‖L2(Ω)‖∇
√

n + ε‖L2(Ω)

= 2
√

M + εmeas(Ω)‖∇
√

n + ε‖L2(Ω),

we proceed by applying the Young inequality:

µ

δ

∫

Ω

(n − n∗)(S − S∗)dx ≤ C(Ω)
µ2

δ
(M + εmeas(Ω))‖∇

√
n + ε‖2

L2(Ω)

+
1

2δ
‖S − S∗‖2

H1(Ω).

Thus, (4.13) becomes

dEε

dt
+

(

4 − C(Ω)
µ2

δ
(M + εmeas(Ω))

)

‖∇
√

n + ε‖2
L2(Ω) +

1

2δ
‖S − S∗‖2

H1(Ω)

≤ 2

∫

Ω

ε√
n + ε

∇S · ∇
√

n + εdx ≤ 2
√

ε‖∇S‖L2(Ω)‖∇
√

n + ε‖L2(Ω).
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The limit ε → 0 gives

dE∗

dt
+

(

4 − C(Ω)
µ2

δ
M

)

‖∇
√

n‖2
L2(Ω) +

1

2δ
‖S − S∗‖2

H1(Ω) ≤ 0. (4.14)

This limit can be justified by first integrating the above inequality in (t, t+h), perform-
ing the limit ε → 0, and then passing to the limit h → 0 to obtain the differentiated
expression. The lemma follows if C(Ω)µ2M/δ < 4.

In order to prove the first part of Theorem 1.3, we choose µ > 0 and δ > 0 such
that C(Ω)µ2M/δ < 4 and use the logarithmic Sobolev inequality

E∗ =

∫

Ω

n log
n

n∗
dx ≤ K(Ω)

∫

Ω

|∇
√

n|2dx.

This shows that

dE∗

dt
+

(

4 − C(Ω)
µ2

δ
M

)

K(Ω)−1E∗ ≤ 0, t > 0.

Gronwall’s lemma concludes the exponential decay of E∗(t). The L1 decay of n − n∗

is an immediate consequence of the Csiszár-Kullback inequality [37]. For the decay
of S − S∗, we observe first that, by interpolation and the global L∞ bound for n,

‖n(·, t) − n∗‖L2(Ω) ≤ ‖n(·, t) − n∗‖1/2
L∞(Ω)‖n(·, t) − n∗‖1/2

L1(Ω) ≤ C1e
−κt/4.

Hence, using n − n∗ as a test function in the weak formulation of (4.4) and applying
Young’s inequality to the right-hand side,

1

2

∫

Ω

|∇(v − v∗)|2dx +

∫

Ω

(v − v∗)2dx ≤ 1

2
(µ + δ)2

∫

Ω

(n − n∗)2dx

≤ 1

2
(µ + δ)2C2

1e−κt/2.

Since S − S∗ = (v − v∗) − δ(n − n∗), the theorem follows.

5. Numerical simulation. We compare the solutions of the classical Keller-
Segel model with those from the augmented Keller-Segel system with additional cross
diffusion. The simulations have been carried out using the COMSOL Multiphysics
package with quadratic finite elements. The numerical solutions are for illustration
only; a more detailed comparison is the subject of future work. We choose a circular
domain Ω with radius r = 2 and

µ = 1, M = 9π,

n0(x, y) = 60
(

(x3 − 0.3y2)(x2 + y2 − 1)2 + 0.15
)

, S0(x, y) = 0.

The initial cell density n0 is illustrated in Figure 5.1. In all figures, we report the
maximal numerical values for the cell density nmax for comparison. Since M > 8π
and the domain is radially symmetric, we expect that the cell density blows up in
finite time and that blow up happens at the domain boundary; see [21, Thm. 4.9] for
the parabolic-elliptic case.

First, we present simulations using the parabolic-parabolic model. Figure 5.2
shows the cell density at time t = 1.4 for the classical Keller-Segel model and at
times t = 1.4 and t = 1000 for the augmented Keller-Segel model with two different
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Fig. 5.1. Initial cell density, nmax = 15.

values of δ. The cell density of the classical model can be computed numerically up to
time t = 1.4 at which a peak forms. For t > 1.4, the numerical scheme breaks down
(and the continuous solution blows up). In contrast, the solution of the augmented
Keller-Segel model exists for all time as predicted by the theoretical results. At
t = 1000, the cell density corresponds to a steady state solution. The effect of the
cross-diffusion parameter δ is a smoothing of the density; the value of the cell density
peak decreases with increasing values of δ. The numerical results indicate that the
cell density remains globally bounded; the proof of the global boundedness in the
parabolic-parabolic model is an open problem.

For comparison, the numerical solutions to the parabolic-elliptic model are shown
in Figure 5.3. The blow-up time in the classical model is approximately t = 0.47.
Again, we observe the smoothing effect of the additional cross diffusion term. At t =
1000, the maximal values of the cell density computed from the parabolic-parabolic
and the parabolic-elliptic model almost coincide. This is clear since the steady states
of the parabolic-parabolic and parabolic-elliptic models are the same. Furthermore,
it seems that the augmented Keller-Segel model allows for smooth nonhomogeneous
steady states.
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