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Abstract. A model of vascular network formation is analyzed in a bounded domain,
consisting of the compressible Navier–Stokes equations for the density of the endothelial
cells and their velocity, coupled to a reaction-diffusion equation for the concentration of
the chemoattractant, which triggers the migration of the endothelial cells and the blood
vessel formation. The coupling of the equations is realized by the chemotaxis force in
the momentum balance equation. The global existence of finite energy weak solutions is
shown for adiabatic pressure coefficients γ > 8/5. The solutions satisfy a relative energy
inequality, which allows for the proof of the weak–strong uniqueness property.

1. Introduction

The formation of blood vessels is regulated by chemical signals triggering the movement
of endothelial cells. The cells may self-assemble into a vascular network, which is known
as vasculogenesis. In this paper, we analyze a mathematical model for the formation of
vascular networks, based on mass and momentum balance equations including a chemotaxis
force and coupled with a reaction-diffusion equation for the signal concentration. The
existence of global weak solutions to the resulting chemotaxis compressible Navier–Stokes
equations was proved in [1] for pressures with adiabatic exponent γ > 3. We extend the
existence result to the range γ > 8/5 and prove a weak–strong uniqueness property. The
proofs are based on a new relative energy inequality.

The dynamics of the density ρ(x, t) of the endothelial cells, their velocity v(x, t), and the
concentration c(x, t) of the chemoattractant (e.g. the vascular endothelial growth factor
VEGF-A [17]) is given by the equations

∂tρ+ div(ρv) = 0,(1)

∂t(ρv) + div(ρv ⊗ v) +∇p(ρ) = µ∆v + (λ+ µ)∇ div v + ρ∇c− ρv

ζ
,(2)

∂tc = ∆c− c+ ρ in Ω, t > 0,(3)
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where Ω ⊂ R3 is a bounded domain, p(ρ) = ργ with the adiabatic exponent γ > 1 is the
pressure, the Lamé viscosity constants µ, λ satisfy µ > 0 and 3λ+ 2µ > 0, and ζ > 0 is a
relaxation constant. We impose the initial and boundary conditions

ρ(·, 0) = ρ0, v(·, 0) = v0, c(·, 0) = c0 in Ω,(4)

v = 0, ∇c · ν = 0 on ∂Ω, t > 0.(5)

The boundary condition for the velocity v is the no-slip condition, and the no-flux bound-
ary condition for c means that there is no inflow or outflow of the concentration. The
momentum balance equation (2) includes viscous terms as in [1] (suggested in [2, p. 1862])
as well as the chemotaxis force ρfchem = −ρ∇c and the drag force ρfdrag = −ρv/ζ. The
reaction-diffusion equation (3) for the signal concentration models diffusion in the sur-
rounding medium, degradation of the signal in finite time, and the release of the signal
produced by the cells. We have set the physical constants in (1)–(3) equal to one, except
ζ to distinguish terms originating from the drag force.

The existence of global finite energy weak solutions to (1)–(5) has been proved in [1] for
γ > 3. This restriction comes from the estimation of the chemotaxis force; see Remark 4
on page 10. We extend the existence result to γ > 8/5 by rewriting the force term ρ∇c via
(3) as (∂tc−∆c+ c)∇c and exploiting the properties of the Bogovskii operator. Replacing
the parabolic equation (3) for c by the elliptic one, we can even allow for γ > 3/2, which is
the condition needed in the existence theory of the compressible Navier–Stokes equations
[8]; see Remark 6. This may indicate that our condition γ > 8/5 for system (1)–(3) is not
optimal. We discuss this issue further in Remark 5.

The idea of the existence proof in [1] is to derive a priori estimate via the energy-type
functional

H̃(ρ, v, c) =

∫
Ω

(
ψ(ρ) +

1

2
ρ|v|2 + 1

2
c2
)
dx,

where ψ(ρ) = ρ
∫ ρ

0
s−2p(s)ds = ργ/(γ − 1) can be interpreted as the internal energy.

Unfortunately, this functional is not bounded as t → ∞. Our idea is to use the physical
(free) energy,

(6) E(ρ, v, c) =

∫
Ω

(
ψ(ρ) +

1

2
ρ|v|2 + 1

2
(|∇c|2 + c2)− ρc

)
dx,

which is the sum of the kinetic energy 1
2

∫
Ω
ρ|v|2dx and the energy E(ρ, 0, c) of the parabolic–

parabolic Keller–Segel model. We show in Section 2 (see Lemma 3 on page 6) that

dE

dt
(ρ, v, c) +

∫
Ω

(
µ|∇v|2 + (λ+ µ)| div v|2

)
dx+

∫
Ω

|∂tc|2dx ≤ 0,

providing a bound for E((ρ, v, c)(t)) uniformly in time. Clearly, to infer a priori estimates,
we need an upper bound for ρc. This is done by using the inequality

(7)

∫
Ω

ρcdx ≤ 1

2
∥ψ(ρ)∥L1(Ω) +

1

4
∥∇c∥2L2(Ω) + C1(γ)∥c∥C2(γ)

L1(Ω),
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which is due to Sugiyama [18] (see Lemma 9 on page 21), where C1(γ) > 0 and C2(γ) > 0
only depend on γ, and which (7) requires the condition γ > 8/5. The first two terms on
the right-hand side of (7) can be absorbed by the energy, while the L1(Ω) norm of c can
be bounded in terms of the initial data (ρ0, c0). This provides a bound for the modified
energy-type functional

(8) H(ρ, v, c) =
1

2

∫
Ω

(
ψ(ρ) + ρ|v|2 + 1

2
|∇c|2 + c2

)
dx,

namely

H((ρ, v, c)(t)) +

∫ t

0

∫
Ω

(
µ|∇v|2 + (λ+ µ)| div v|2

)
dxds

+

∫ t

0

∫
Ω

|∂sc|2dxds ≤ C(ρ0, v0, c0),

which allows us to prove the global existence of finite energy weak solutions such that
H(ρ, v, c) is finite for all t > 0. This type of solutions is defined as follows.

Definition 1 (Finite energy weak solution). The triple (ρ, v, c) is a finite energy weak
solution to (1)–(5) if

• they satisfy the regularity

ρ ∈ L∞(0, T ;Lγ(Ω)), ρ ≥ 0 in Ω, t > 0,

v ∈ L2(0, T ;H1
0 (Ω;R3)), c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω));

• equation (1) is satisfied in the sense of renormalized solutions [6, Section 10.18];
• equations (2)–(3) are satisfied in the sense of distributions;
• the energy inequality

E((ρ, v, c)(t)) +

∫ t

0

∫
Ω

(
µ|∇v|2 + (λ+ µ)| div v|2

)
dxds

+

∫ t

0

∫
Ω

|∂scn|2dxds+
1

ζ

∫ t

0

∫
Ω

ρn|vn|2dxds ≤ E(ρ0, v0, c0)

holds for a.e. t ∈ (0, T ).

We introduce for 1 < p, q < ∞ the space W
2−2/p,q
ν (Ω) as the completion of the space of

functions w ∈ C∞(Ω) satisfying ∇w · ν = 0 on ∂Ω in the norm of W 2−2/p,q(Ω). We can
now state our first main result.

Theorem 1 (Global existence). Let ∂Ω ∈ C2, p(ρ) = ργ for ρ ≥ 0 with γ > 8/5. Assume
that the initial datum satisfies ρ0 ∈ Lγ(Ω) with ρ0 ≥ 0, ρ0 ̸≡ 0 in Ω, ρ0|v0|2 ∈ L1(Ω), and

c0 ∈ W
2−2/γ,γ
ν (Ω), c0 ≥ 0 in Ω. Then there exists a finite energy weak solution (ρ, v, c) to

(1)–(5) in the sense of Definition 1.

The condition on the initial datum c0 ∈ W
2−2/γ,γ
ν (Ω) can be rephrased in terms of

interpolation or Besov spaces. Indeed, the condition is needed to apply the maximal
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regularity result of Theorem 10, and the regularity on the initial datum can be formulated
in such spaces; see [6, Theorem 10.22]. The definition of the pressure can be relaxed to
p ∈ C0([0,∞)) ∩ C2(0,∞), p(0) = 0, p′(ρ) > 0 for ρ > 0, and ρ1−γp′(ρ) → a > 0 as
ρ → ∞; see [7, (2.1)]. The proof of the theorem is based on the existence theory for the
compressible Navier–Stokes equations [8]. More precisely, we add some artificial diffusion
and an artificial pressure term, construct Faedo–Galerkin solutions to the approximate
problem, prove an approximate energy inequality for these solutions, and pass to the de-
regularizing limit. Improved uniform bounds for the cell density in Lγ+θ(Ω) for some
θ > 0 are derived by testing the mass balance equation with a test function involving the
Bogovskii operator. The novel part is the estimate of the chemotaxis force term.

Next, we formulate the weak–strong uniqueness property of the system, meaning that a
weak and a strong solution emanating from the same initial data coincide as long as the
latter exists.

Theorem 2 (Weak–strong uniqueness). Let (ρ, v, c) and (ρ̄, v̄, c̄) be two finite energy weak
solutions to (1)–(5) constructed in Theorem 1 with the same initial data. Assume that
(ρ̄, v̄, c̄) satisfies the additional regularity

0 < cp ≤ ρ̄ ≤ Cp, |v̄| ≤ Cv a.e. in Ω× (0, T ), |∇ρ̄|, |∇2v̄| ∈ L2(0, T ;Lq(Ω))(9)

for q > 3 and some constants cp, Cp, Cv > 0. Then ρ = ρ̄, v = v̄, and c = c̄ in Ω× (0, T ).

The no-vacuum assumption ρ̄ ≥ cp > 0 was also needed in [9] and in related contexts,
e.g. for the weak–strong uniqueness property of Maxwell–Stefan systems [11]. The proof
of Theorem 2 is based on the relative energy method. The relative energy, associated to
the energy functional (6), is given by

E(ρ, v, c|r, u, z) =
∫
Ω

(
ψ(ρ|r) + 1

2
ρ|v− u|2 + 1

2

(
|∇(c− z)|2 + (c− z)2

)
− (ρ− r)(c− z)

)
dx,

where ψ(ρ|r) = ψ(ρ) − ψ(r) − ψ′(r)(ρ − r) is the Bregman distance associated to ψ. We
show in Lemma 7 on page 11 that

E((ρ, v, c)(t)|(r, u, z)(t)) +
∫ t

0

∫
Ω

(
µ|∇(v − u|2 + (λ+ µ)| div(v − u)|2

)
dxds(10)

+

∫ t

0

∫
Ω

|∂s(c− z)|2dxds ≤ E(ρ0, v0, c0|r0, u0, z0) +
∫ t

0

R(ρ, v, c|r, u, z)ds,

where (ρ, v, c) is a finite energy weak solution to (1)–(5), (r, u, z) are smooth functions, and
the remainder R(ρ, v, c|r, u, z) is defined in Lemma 7 below. Finite energy weak solutions
to the compressible Navier–Stokes equations satisfying (10) have been called suitable weak
solutions in [9]. It was shown in [7] that finite energy weak solutions in fact always satisfy
the relative energy inequality (10) for smooth functions (r, u, z).

Defining the modified relative energy

H(ρ, v, c|r, u, z) = 1

2

∫
Ω

(
ψ(ρ|r) + ρ|v − u|2 + 1

2
|∇(c− z)|2 + (c− z)2

)
dx
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and giving another weak solution (r, u, z) = (ρ̄, v̄, c̄) satisfying the regularity (9), the idea
of the proof is to show that

R(ρ, v, c|ρ̄, v̄, c̄) ≤ CH(ρ, v, c|ρ̄, v̄, c̄) and∫
Ω

(ρ− ρ̄)(c− c̄)dx ≤ 1

2
H(ρ, v, c|ρ̄, v̄, c̄) + C(ρ0, c0),

which leads to

1

2
H((ρ, v, c)(t)|(ρ̄, v̄, c̄)(t)) ≤ E(ρ0, v0, c0|r0, u0, z0) + C(ρ0, c0) + C

∫ t

0

H(ρ, v, c|ρ̄, v̄, c̄)ds

and which implies, by Gronwall’s lemma, that H((ρ, v, c)(t)|(ρ̄, v̄, c̄)(t)) = 0, Consequently
ρ(t) = ρ̄(t), v(t) = v̄(t), and c(t) = c̄(t) for t > 0.
We finish the introduction by discussing the state of the art. The global existence of

finite energy weak solutions to the compressible Navier–Stokes equations with adiabatic
exponents γ > 3/2 was shown in [8]. The range of γ can be extended to γ > 1 for
axisymmetric initial data [12] or for a class of density-dependent viscosity coefficients [14],
for instance. Germain [10] proved a relative energy inequality and established the weak–
strong uniqueness property for solutions to the compressible Navier–Stokes equations with
an integrable spatial density gradient. Feireisl et al. [9] proved the existence of so-called
suitable weak solutions satisfying a general relative energy inequality with respect to any
sufficiently regular pair of functions and concluded the weak–strong uniqueness property.

Compressible Euler equations with chemotaxis force have been introduced in [17] to de-
scribe early stages of vascologenesis. As remarked in [2, Section 3], the fluid equations may
also include viscous terms. This leads to chemotaxis compressible Navier–Stokes equations,
which have been analyzed in [1] with the pressure function p(ρ) = max{0, ρ− ρc}γ, where
γ > 3 and ρc > 0 is the so-called close-packing density. A viscoelastic mechanical interac-
tion of the cells with the substratum was added to the compressible Euler equations in [20].
Related models are the incompressible Navier–Stokes equations coupled to the chemotaxis
Keller–Segel system via the fluid velocity, proposed in [21] and analyzed in, e.g., [22].

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1. The
technical relative energy inequality (10) is proved in Section 3. Based on this inequality,
Theorem 2 is then shown in Section 4. Finally, some auxiliary results are presented in
Appendix A.

2. Global existence of solutions

In this section, we prove Theorem 1. For this, we proceed as in [8] by constructing an
approximate scheme based on a regularized system, deriving uniform energy estimates,
and assing to the de-regularization limit. For later use, we note the relations between the
pressure p(ρ) and the associated internal energy ψ(ρ) = ρ

∫ ρ

0
s−2p(s)ds:

(11) p(ρ) = ρψ′(ρ)− ψ(ρ), ∇p(ρ) = ρ∇ψ′(ρ) for smooth ρ.
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2.1. Regularized system. We solve first the following regularized system for δ > 0,
ε > 0, and β > 4:

∂tρ+ div(ρv) = ε∆ρ, ∂tc = ∆c− c+ ρ,(12)

∂t(ρv) + div(ρv ⊗ v) +∇p(ρ) + ε∇ρ · ∇v + δ∇ρβ(13)

= µ∆v + (λ+ µ)∇ div v + ρ∇c− ρv

ζ
in Ω, t > 0,

subject to the initial and boundary conditions

ρ(·, 0) = ρ0δ , v(·, 0) = v0, c(·, 0) = c0 in Ω,(14)

∇ρ · ν = 0, v = 0, ∇c · ν = 0 on ∂Ω, t > 0,(15)

where ρ0δ is a smooth strictly positive function such that ρ0δ → ρ0 strongly in Lγ(Ω). The
artificial viscosity term ε∆ρ is balanced by the term ε∇ρ · ∇v in the momentum equation
to control the energy. The artificial pressure term δ∇ρβ is needed to derive an Lγ+θ(Ω)
estimate for the density with θ > 0.

The existence of strong solutions to (12)–(15) was shown in [8, Section 2] without the
chemotaxis term ρ∇c. Here, we sketch the proof for the problem including the chemo-
taxis coupling. As in [8], we use the Faedo–Galerkin method. Let (ψn) be a sequence of
eigenfunctions of the Laplacian with homogeneous Dirichlet boundary conditions and let
Xn = span{ψ1, . . . , ψn}. Then, following the proof of [16, Section 7.7] or [5, Chapter 7],
we obtain the existence of a unique local strong solution (ρn, vn, cn) on (0, Tn) such that
vn ∈ C1([0, Tn];Xn) and

ρn, ∂tρn, ∇ρn, ∇2ρn, cn, ∂tcn, ∇cn, ∇2cn are Hölder continuous on Ω× [0, Tn],

ρn(x, t) > 0, cn(x, t) ≥ 0 for any (x, t) ∈ Ω× [0, Tn].

To obtain global solutions, i.e. T = Tn, we derive an energy inequality for the approximate
system.

2.2. Energy inequality for the approximate system. An energy-type inequality has
been derived in [1, Section 2.2]. Here, we use a different energy functional by including the
H1(Ω) norm of c. We show an inequality for the energies E(ρ, v, c) and H(ρ, v, c), defined
in (6) and (8), respectively.

Lemma 3. Let (ρn, vn, cn) be a strong solution to (12)–(15) constructed in the previous
subsection. Then there exists C > 0 independent of (n, δ, ε) such that for any 0 < t < Tn,

E((ρn, vn, cn)(t)) +

∫ t

0

∫
Ω

(
µ|∇vn|2 + (λ+ µ)| div vn|2

)
dxds+

4δε

β

∫ t

0

∫
Ω

|∇ρβ/2n |2dxds

+
4ε

γ

∫ t

0

∫
Ω

|∇ργ/2n |2dxds+
(
1− ε

4

)∫ t

0

∫
Ω

|∂scn|2dxds+
1

ζ

∫ t

0

∫
Ω

ρn|vn|2dxds

≤ E(ρ0, v0, v0) + 2ε

∫
Ω

ργdx+ Cε,



CHEMOTAXIS COMPRESSIBLE NAVIER–STOKES EQUATIONS 7

H((ρn, vn, cn)(t)) +

∫ t

0

∫
Ω

(
µ|∇vn|2 + (λ+ µ)| div vn|2

)
dxds

+
4δε

β

∫ t

0

∫
Ω

|∇ρβ/2n |2dxds+
(
1− ε

4

)∫
Ω

∫
Ω

|∂scn|2dxds+
1

ζ

∫ t

0

∫
Ω

ρn|vn|2dxds

≤
(
E(ρ0δ , v

0, c0) + C(ρ0, v0) + Cεt
)
eCεt.

Proof. Step 1: Energy inequality for E. We choose the test function ψ′(ρn) − 1
2
|vn|2 +

δβρβ−1
n /(β − 1) in the weak formulation of the first equation in (12) and the test function

vn in the weak formulation of (13). Adding both equations and taking into account (11),
some terms cancel, and we arrive after a standard computation at

d

dt

∫
Ω

(
ψ(ρn) +

1

2
ρn|vn|2 +

δ

β − 1
ρβn

)
dx+

∫
Ω

(
µ|∇vn|2 + (λ+ µ)| div vn|2

)
dx(16)

+
1

ζ

∫
Ω

ρn|vn|2dx+
4δε

β

∫
Ω

|∇ρβ/2n |2dx+ 4ε

γ

∫
Ω

|∇ργ/2n |2dx =

∫
Ω

ρn∇cn · vndx.

We estimate the right-hand side by integrating by parts and using equation (12) for ρn:∫
Ω

ρn∇cn · vndx = −
∫
Ω

cn div(ρnvn)dx =

∫
Ω

cn(∂tρn − ε∆ρn)dx(17)

=
d

dt

∫
Ω

ρncndx−
∫
Ω

ρn∂tcndx− ε

∫
Ω

cn∆ρndx.

Taking into account the second equation in (12), the second term on the right-hand side
is written as

−
∫
Ω

ρn∂tcndx = −
∫
Ω

(∂tcn −∆cn + cn)∂tcndx

= −
∫
Ω

|∂tcn|2dx−
1

2

d

dt

∫
Ω

(|∇cn|2 + c2n)dx.

Because of ρncn ≥ 0, the last term on the right-hand side of (17) becomes

−ε
∫
Ω

cn∆ρndx = −ε
∫
Ω

ρn∆cndx = −ε
∫
Ω

ρn(∂tcn + cn − ρn)dx

≤ −ε
∫
Ω

ρn∂tcndx+ ε

∫
Ω

ρ2ndx ≤ ε

4

∫
Ω

|∂tcn|2dx+ 2ε

∫
Ω

ρ2ndx

≤ ε

4

∫
Ω

|∂tcn|2dx+ 2ε

∫
Ω

ργndx+ C(γ,Ω)ε,

where the last inequality follows from γ ≥ 2. (We observe that at this point, we can weaken
the condition to γ > 8/5 by using the Gagliardo–Nirenberg inequality and the estimate for

∥∇ργ/2n ∥L2(Ω) from (16).) We insert these estimates into (17):∫
Ω

ρn∇cn · vndx ≤ − d

dt

∫
Ω

(
1

2
(|∇cn|2 + c2n)− ρncn

)
dx−

∫
Ω

|∂tcn|2dx
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+
ε

4

∫
Ω

|∂tcn|2dx+ 2ε

∫
Ω

ργndx+ C(γ,Ω)ε.

Therefore, (16) leads to

d

dt

∫
Ω

(
1

2
ρn|vn|2 + ψ(ρn) +

1

2
(|∇cn|2 + c2n)− ρncn +

δ

β − 1
ρβn

)
dx(18)

+

∫
Ω

(
µ|∇vn|2 + (λ+ µ)| div vn|2

)
dx+

4δε

β

∫
Ω

|∇ρβ/2n |2dx+ 4ε

γ

∫
Ω

|∇ργ/2n |2dx

+

(
1− ε

4

)
|∂tcn|2dx+

1

ζ

∫
Ω

ρn|vn|2dx ≤ 2ε

∫
Ω

ργndx+ Cε,

where C > 0 only depends on γ and meas(Ω) but is independent of n, δ, and ε. This
proves the inequality for E(ρn, vn, cn).

Step 2: Energy inequality for H. We need to estimate
∫
Ω
ρncndx in E(ρn, vn, cn). By

Lemma 9 in Appendix A, applied to m = γ, κ = 1/(2(γ − 1)), and ξ = 1/4,

(19)

∫
Ω

ρncndx ≤ 1

2(γ − 1)
∥ρn∥γLγ(Ω) +

1

4
∥∇cn∥2L2(Ω) + C1(γ)∥cn∥C2(γ)

L1(Ω).

Equation (12) implies that the mass is conserved, ∥ρn(t)∥L1(Ω) = ∥ρ0δ∥L1(Ω) for 0 < t < Tn.
Furthermore, by the second equation in (12),

d

dt

∫
Ω

cndx =

∫
Ω

ρndx−
∫
Ω

cndx.

This is an ordinary differential equation for t 7→ ∥cn(t)∥L1(Ω), and a comparison principle
as well as the nonnegativity of cn imply that

∥cn(t)∥L1(Ω) =

∫
Ω

cndx ≤ max

{∫
Ω

c0dx,

∫
Ω

ρ0δdx

}
≤ C,

where C > 0 is independent of δ. Thus, we conclude from (19) and ργn/(2(γ−1)) = 1
2
ψ(ρn)

that ∫
Ω

ρncndx ≤ 1

2

∫
Ω

ψ(ρn)dx+
1

4
∥∇cn∥2L2(Ω) + C(ρ0, c0).

It follows from the definitions of E(ρn, vn, cn) and H(ρn, vn, cn) that

E(ρn, vn, cn) ≥
∫
Ω

(
1

2
ψ(ρn) +

1

2
ρn|vn|2 +

1

4
|∇cn|2 +

1

2
c2n

)
dx− C(ρ0, c0)

= H(ρn, vn, cn)− C(ρ0, c0).

We insert these estimates in (18) and integrate over (0, t) for 0 < t < Tn:

H((ρn, vn, cn)(t)) +

∫ t

0

∫
Ω

(
µ|∇vn|2 + (λ+ µ)| div vn|2

)
dxds+

4δε

β

∫ t

0

∫
Ω

|∇ρβ/2n |2dxds

+
4ε

γ

∫ t

0

∫
Ω

|∇ργ/2n |2dxds+
(
1− ε

4

)∫ t

0

∫
Ω

|∂scn|2dxds+
1

ζ

∫ t

0

∫
Ω

ρn|vn|2dxds
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≤ E(ρ0δ , v
0, c0) + Cε

∫ t

0

∫
Ω

H(ρn, vn, cn)dxds+ C(ρ0, c0) + Cεt,

where we used
∫
Ω
ργndx ≤ CH(ρn, vn, cn). An application of Gronwall’s lemma finishes the

proof. □

Lemma 3 allows us to conclude as in [8, Section 2.3] that T = Tn. Moreover, it yields
the following estimates uniform in (n, δ, ε):

(20)

(ρn) is uniformly bounded in L∞(0, T ;Lγ(Ω)),

(
√
ρnvn) is uniformly bounded in L∞(0, T ;L2(Ω;R3)),

(∇vn) is uniformly bounded in L2(0, T ;L2(Ω;R3×3)),

(cn) is uniformly bounded in L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)).

2.3. Limit (n, δ, ε) → (∞, 0, 0). The limit n→ ∞ can be performed as in [1, Section 2.3]
via the Aubin–Lions compactness lemma. This gives a solution (ρδ, vδ, cδ) to (12)–(15). It
satisfies the energy inequalities in Lemma 3. In particular, we conclude a uniform bound
for ρδ in L∞(0, T ;Lγ(Ω)). By the existence theory for the compressible Navier–Stokes
equations, we can pass to the limit (δ, ε) → 0; see, e.g., [5, 16]. Indeed, to derive a uniform
estimate for the mass density in Lγ+θ(Ω× (0, T )) for some θ > 0, we need to use the test
function

ϕB = B
(
ρθδ −

1

|Ω|

∫
Ω

ρθδdx

)
,

in the weak formulation of the approximate momentum equation, where B is the Bogovskii
operator [16, Section 3.3.1.2]. Compared to the compressible Navier–Stokes equations, the
momentum equation includes the chemotaxis term ρδ∇cδ, which needs to be estimated.
This means that we need a bound for

(21) I =

∫ T

0

∫
Ω

ρδ∇cδ · ϕBdxdt.

Using the second equation in (12),

ρδ∇cδ = (∂tcδ −∆cδ + cδ)∇cδ = (∂tcδ + cδ)∇cδ − div(∇cδ ⊗∇cδ) +
1

2
∇|∇cδ|2,

we can write I = I1 + · · ·+ I4, where

I1 =

∫ T

0

∫
Ω

∂tcδ∇cδ · ϕBdxdt, I2 =

∫ T

0

∫
Ω

cδ∇cδ · ϕBdxdt,

I3 =

∫ T

0

∫
Ω

∇cδ ⊗∇cδ : ∇ϕBdxdt, I4 = −1

2

∫ T

0

∫
Ω

|∇cδ|2 div ϕBdxdt.

We start with the term I1. First, let γ > 2. By parabolic regularity theory (see Theorem
10 in the Appendix with p = q = γ), the continuous embedding W 2−2/γ,γ(Ω) ↪→ W 1,γ(Ω)
and the second equation in (12) yield

∥∇cδ∥L2(0,T ;Lγ(Ω)) ≤ C∥cδ∥L2(0,T ;W 2−2/γ,γ(Ω))(22)
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≤ C
(
∥ρδ∥L∞(0,T ;Lγ(Ω)) + ∥c0∥W 2−2/γ,γ(Ω)

)
≤ C.

Hence, using Hölder’s inequality, the assumption γ > 2, and the previous estimates as well
as the uniform estimates from the energy inequality,

I1 ≤ ∥∂tcδ∥L2(0,T ;L2(Ω))∥∇cδ∥L2(0,T ;Lγ(Ω))∥ϕB∥L∞(0,T ;L2γ/(γ−2)(Ω)) ≤ C∥ϕB∥L∞(0,T ;W 1,r(Ω)),

where r = 6γ/(5γ − 6) is such that W 1,r(Ω) ↪→ L2γ/(γ−2)(Ω). We deduce from the bound-
edness of B : Lr

0(Ω) → W 1,r
0 (Ω) for 1 < r < ∞, where Lr

0(Ω) is the space of all Lr(Ω)
functions u satisfying

∫
Ω
udx = 0, that

I1 ≤ C

∥∥∥∥ρθδ − 1

|Ω|

∫
Ω

ρθδdx

∥∥∥∥
L∞(0,T ;Lr(Ω))

≤ C∥ρθδ∥L∞(0,T ;Lr(Ω))

≤ C∥ρδ∥θL∞(0,T ;Lrθ(Ω)) ≤ C∥ρδ∥θL∞(0,T ;Lγ(Ω)) ≤ C.

The last but one step follows if rθ ≤ γ, which requires the choice 0 < θ ≤ 5γ/6 − 1, and
the last step is a consequence of the energy inequality.

Next, let 3/2 < γ ≤ 2. We apply Theorem 10 with p = 2, q = γ to find that

∥cδ∥L2(0,T ;W 2,γ(Ω)) + ∥∂tcδ∥L2(0,T ;Lγ(Ω)) ≤ C
(
∥ρδ∥L2(0,T ;Lγ(Ω)) + ∥c0∥W 1,γ(Ω)

)
≤ C.

Hence, we deduce from the continuous embedding W 2,γ(Ω) ↪→ W 1,3γ/(3−γ)(Ω) that

I1 ≤ ∥∂tcδ∥L2(0,T ;Lγ(Ω))∥∇cδ∥L2(0,T ;L3γ/(3−γ)(Ω))∥ϕB∥L∞(0,T ;L3γ/(4γ−6)(Ω))

≤ C∥∂tcδ∥L2(0,T ;Lγ(Ω))∥cδ∥L2(0,T ;W 2,γ(Ω))∥ϕB∥L∞(0,T ;W 1,r(Ω)),

where now r = 3γ/(5γ − 6). We choose θ > 0 such that rθ ≤ γ, which is equivalent to
θ ≤ 5γ/3− 2, and we can choose θ > 0 satisfying this inequality. Then, arguing as in the
case γ ≥ 2,

I1 ≤ C∥ρδ∥θL∞(0,T ;Lrθ(Ω)) ≤ C∥ρδ∥θL∞(0,T ;Lγ(Ω)) ≤ C.

For the term I3, we consider again first the case γ > 2:

I3 ≤ ∥∇cδ∥2L2(0,T ;Lγ(Ω))∥∇ϕB∥L∞(0,T ;Lr(Ω)) ≤ C∥ρδ∥θL∞(0,T ;Lrθ(Ω)) ≤ C,

where r = γ/(γ − 2), and the last inequality follows if rθ ≤ γ, which is equivalent to
θ ≤ γ − 2. If 3/2 < γ ≤ 2, we proceed similarly as for I1:

I3 ≤ ∥∇cδ∥2L2(0,T ;L3γ/(3−γ)(Ω))∥∇ϕB∥L∞(0,T ;Lr(Ω)) ≤ C∥ρδ∥θL∞(0,T ;Lrθ(Ω)) ≤ C,

where r = γ/(2γ − 3) and we need rθ ≤ γ or, equivalently, θ ≤ 2γ − 3.
The term I2 is estimated in a similar way as I1, and I4 can be bounded as I3. This shows

that I is bounded and provides a uniform estimate for ρδ in L
γ+θ(Ω× (0, T )). Now we can

proceed as in [16, Section 7.3] to prove the strong convergence of the pressure.

Remark 4 (On the condition on γ in [1]). Aı̈ssa and Alexandre have estimated the term I,
defined in (21), in a different way. They used the test function ψB = B(ρδ−|Ω|−1

∫
Ω
ρδdx):

I ≤ ∥ρδ∥L2(Ω×(0,T ))∥∇cδ∥L2(Ω×(0,T ))∥ψB∥L∞(0,T ;L∞(Ω))

≤ ∥ρδ∥L2(Ω×(0,T ))∥∇cδ∥L2(Ω×(0,T ))∥ρδ∥L∞(0,T ;Lr(Ω)),
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which is a consequence of the estimate ∥B(f)∥L∞(Ω) ≤ C∥B(f)∥W 1,r(Ω) ≤ C∥f∥Lr(Ω) choos-
ing r > d = 3. Thus, the technique of [1] only works for γ > 3. □

Remark 5 (On the condition γ > 8/5). This restriction is needed to estimate the integral∫
Ω
ρncndx by means of Lemma 9. The idea is to obtain “small” terms that can be absorbed

by the left-hand side of the energy inequality (18) and terms that can be controlled (the
L1(Ω) norm of cn). By the Hölder and Gagliardo–Nirenberg inequalities, we may estimate
in a different way:∫

Ω

ρncndx ≤ ∥ρn∥Lγ(Ω)∥cn∥Lγ/(γ−1)(Ω) ≤ C∥ρn∥Lγ(Ω)∥cn∥θW 2,γ(Ω)∥cn∥1−θ
L1(Ω),

where θ = 3/(5γ − 3) ∈ (0, 1) (which requires that γ > 6/5). It follows from the maximal
regularity result of Theorem 10 that∫

Ω

ρncndx ≤ C∥ρn∥Lγ(Ω)(∥ρn∥Lγ(Ω) + 1)θ,

where C > 0 depends on ∥c0∥L1(Ω). We can conclude if 1 + θ < γ, which is equivalent to
γ > 8/5. Thus, even taking into account maximal regularity does not improve the range
for γ.

Remark 6 (Improving the condition on γ). When the dynamics of the chemical concen-
tration is much faster than that one of the cell density, we can neglect the time derivative
of the concentration in (3), and cδ solves 0 = ∆cδ − cδ + ρδ in Ω. In this situation, we are
able to weaken the condition on γ to γ > 3/2. Indeed, estimate (22) still holds for the
elliptic problem. The embedding W 1,γ(Ω) ↪→ L3γ/(3−γ)(Ω) for γ < 3 then shows that

∥∇cδ∥L∞(0,T ;L3γ/(3−γ)(Ω)) ≤ C∥cδ∥L∞(0,T ;W 2,γ(Ω)) ≤ C∥ρδ∥L∞(0,T ;Lγ(Ω)) ≤ C.

Hence, using Hölder’s inequality, we estimate

I3 ≤ ∥∇cδ∥2L∞(0,T ;L3γ/(3−γ)(Ω))∥∇ϕB∥L∞(0,T ;L3γ/(5γ−6)(Ω))

≤ C∥ρδ∥2L∞(0,T ;Lγ(Ω))∥ρθδ∥L∞(0,T ;L3γ/(5γ−6)(Ω)) ≤ C + C∥ρδ∥2+θ
L∞(0,T ;Lγ(Ω)) ≤ C,

provided that 0 < θ < (5γ − 6)/3. The terms I2 and I4 are estimated in a similar way
and I1 = 0, thus proving that I is bounded. This yields a uniform estimate for ρδ in
Lγ+θ(Ω × (0, T )) for γ > 3/2 according to the theory of the compressible Navier–Stokes
equations. □

3. Relative energy inequality

We show a relative energy inequality for smooth functions.

Lemma 7 (Relative energy inequality). Let (ρ, v, c) be a smooth solution to (1)–(5) and
let (r, u, z) be smooth functions satisfying r > 0 in Ω× [0, T ] and u = 0 on ∂Ω. Then the
relative energy inequality (10) holds for 0 < t < T with

R(ρ, v, c|r, u, z) = −
∫
Ω

p(ρ|r) div udx−
∫
Ω

ψ′′(r)(ρ− r)gdx−
∫
Ω

h∂t(c− z)dx
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−
∫
Ω

∇(c− z) · ((ρ− r)u)dx+

∫
Ω

(c− z)gdx

−
∫
Ω

ρ(v − u)⊗ (v − u) : ∇udx− 1

ζ

∫
Ω

ρ|v − u|2dx

−
∫
Ω

(
ρ− r

r

(
µ∆u+ (λ+ µ)∇ div u

)
+ ρf

)
· (v − u)dx,

where

f = ∂tu+ u · ∇u+ 1

r
∇p(r)− 1

r

(
µ∆u+ (λ+ µ)∇ div u

)
−∇z + u

ζ
,(23)

g = ∂tr + div(ru), h = ∂tz −∆z + z − r.(24)

We prove in Section 4 that the relative energy inequality (10) holds for finite energy
weak solutions (ρ, v, c) and (ρ̄, v̄, c̄), where (ρ̄, v̄) satisfies (9). The proof of (10) follows
the lines of [9, Section 3.2], but some steps are different due to the additional chemotaxis
force. For this reason, and for the convenience of the reader, we present a full proof.

Proof. Let (rm, um, zm)m∈N be smooth functions satisfying rm > 0 in Ω × [0, T ], vm ∈
C1([0, T ]; Xm), and vm = 0 on ∂Ω such that (rm, um, zm) → (r, z, u) as m→ ∞ in a sense
made precise in Step 3 below. Here, Xm is the Faedo–Galerkin space defined in Section
2.1. We introduce

fm = ∂tum + um · ∇um +
1

rm
∇p(rm)−

1

rm

(
µ∆um + (λ+ µ)∇ div um

)
(25)

−∇zm +
um
ζ
,

gm = ∂trm + div(rmum), hm = ∂tzm −∆zm + zm − rm.(26)

Then (fm, gm, hm) → (f, g, h) as m → ∞ in the sense of distributions, where (f, g, h)
is defined in (23)–(24). Finally, let (ρn, vn, cn) be a Galerkin solution to (12)–(15). We
compute in the following the approximate relative energy inequality.

Step 1: Time derivative of the relative kinetic energy. We derive an equation for the
time evolution of the relative kinetic energy 1

2

∫
Ω
ρn|vn − um|2dx. It follows from the ap-

proximative mass balance equation (12) that

1

2

d

dt

(
ρn|vn − um|2

)
= −1

2

(
div(ρnvn)− ε∆ρn

)
|vn − um|2 + ρn∂t(vn − um) · (vn − um)

= −1

2
div

(
ρnvn|vn − um|2

)
+ ρnvn · ∇(vn − um) · (vn − um)(27)

+ ρn∂t(vn − um) · (vn − um) +
ε

2
∆ρn|vn − um|2.

Since ρn(∂tvn+vn ·∇vn) = ∂t(ρnvn)+div(ρnvn⊗vn)−ε∆ρnvn, the second and third terms
on the right-hand side are written as

ρnvn · ∇(vn − um) · (vn − um) + ρn∂t(vn − um) · (vn − um)

= ρn(∂tvn + vn · ∇vn) · (vn − um)− ρn(∂tum + vn · ∇um) · (vn − um)
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=
(
∂t(ρnvn) + div(ρnvn ⊗ vn)

)
· (vn − um)− ε∆ρnvn · (vn − um)

− ρn(∂tum + um · ∇um) · (vn − um)− ρn(vn − um) · ∇um · (vn − um).

We insert this expression into (27), integrate over Ω, and replace ∂t(ρnvn)+div(ρnvn⊗ vn)
by the momentum equation (13):

1

2

d

dt

∫
Ω

ρn|vn − um|2dx =
ε

2

∫
Ω

∆ρn|vn − um|2dx−
∫
Ω

∇(p(ρn) + δρβn) · (vn − um)dx

−
∫
Ω

(
µ∇vn · ∇(vn − um) + (λ+ µ) div vn div(vn − um)

)
dx(28)

− ε

∫
Ω

∇ρn · ∇vn · (vn − um)dx+

∫
Ω

ρn∇cn · (vn − um)dx

− 1

ζ

∫
Ω

ρnvn · (vn − um)dx− ε

∫
Ω

∆ρnvn · (vn − um)dx

−
∫
Ω

ρn(∂tum + um · ∇um) · (vn − um)dx−
∫
Ω

ρn(vn − um) · ∇um · (vn − um)dx.

We wish to reformulate the last but one term in the previous equality. For this, we add
and subtract rm and replace rm(∂tum + um · ∇um) by (25):

−
∫
Ω

ρn(∂tum + um · ∇um) · (vn − um)dx

= −
∫
Ω

(
1 +

ρn − rm
rm

)(
rm(∂tum + um · ∇um)

)
· (vn − um)dx

=

∫
Ω

(
1 +

ρn − rm
rm

)(
∇p(rm)− rm∇zm +

rmum
ζ

− rmfm

)
· (vn − um)dx

−
∫
Ω

(
1 +

ρn − rm
rm

)(
µ∆um + (λ+ µ)∇ div um

)
· (vn − um)dx.

Then, after a computation, (28) becomes

1

2

d

dt

∫
Ω

ρn|vn − um|2dx = −
∫
Ω

(
∇p(ρn)−

ρn
rm

∇p(rm)
)
· (vn − um)dx(29)

− δ

∫
Ω

∇ρβn · (vn − um)dx+ ε

∫
Ω

∇ρn · ∇um · (vn − um)dx

−
∫
Ω

(
µ|∇(vn − um)|2 + (λ+ µ)| div(un − um)|2

)
dx

−
∫
Ω

ρn(vn − um)⊗ (vn − um) : ∇umdx+
∫
Ω

ρn∇(cn − zm) · (vn − um)dx

− 1

ζ

∫
Ω

ρn|vn − um|2dx−
∫
Ω

ρnfm · (vn − um)dx

−
∫
Ω

ρn − rm
rm

(
µ∆um + (λ+ µ)∇ div um

)
· (vn − um)dx.
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We rewrite the first, second, and sixth terms on the right-hand side of (28).
Step 2a: Reformulation of the pressure term. Observing that p′(z) = zψ′′(z) for z ≥ 0

(see (11)) and that ρm − rm satisfies

∂t(ρn − rm) + div
(
(ρn − um)um + ρn(vn − um)

)
= ε∆ρn − gm,

we can write the first term on the right-hand side of (29) as

−
∫
Ω

(
∇p(ρn)−

ρn
rm

∇p(rm)
)
· (vn − um)dx =

∫
Ω

ρn∇
(
ψ′(ρn)− ψ′(rm)

)
· (vn − um)dx

= −
∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
div

(
ρn(vn − um)

)
dx(30)

= −
∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∂t(ρn − rm)dx

−
∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
div((ρn − rm)um)dx

+

∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
(ε∆ρn − gm)dx.

Taking into account that the evolution of the relative internal energy is given by

∂tψ(ρn|rm) = ∂t
(
ψ(ρn)− ψ(rm)− ψ′(rm)(ρn − rm)

)
=

(
ψ′(ρn)− ψ′(rm)

)
∂tρn − ψ′′(rm)∂trm(ρn − rm),

the first term on the right-hand side of (30) is reformulated as

−
∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∂t(ρn − rm)dx

= −
∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∂tρndx+

∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∂trmdx

= −
∫
Ω

(
d

dt
ψ(ρn|rm) + ψ′′(rm)∂trm(ρn − rm)

)
dx+

∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∂trmdx

= − d

dt

∫
Ω

ψ(ρn|rm)dx+
∫
Ω

(
ψ′(ρn)− ψ′(rm)− ψ′′(rm)(ρn − rm)

)
(gm − div(rmum))dx,

where we used definition (26) of gm in the last step. Integrating by parts to get rid of
the divergence, inserting the corresponding expression into (30), and observing that the
integral over (ψ′(ρn) − ψ′(rm))gm cancels with the corresponding expression in (30), we
find that

−
∫
Ω

(
∇p(ρn)−

ρn
rm

∇p(rm)
)
· (vn − um)dx = − d

dt

∫
Ω

ψ(ρn|rm)dx

+

∫
Ω

{
∇
(
ψ′(ρn)− ψ′(rm)

)
· (ρnum)−∇

(
ψ′′(rm)(ρn − rm)

)
· (rmum)

}
dx

+ ε

∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∆ρndx−

∫
Ω

ψ′′(rm)(ρn − rm)gmdx.
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We claim that the second term on the right-hand side can be formulated in terms of the
relative pressure p(ρn|rm) = p(ρn) − p(rm) − p′(rm)(ρn − rm). It follows from (11) that
∇p(ρn) = ρn∇ψ′(ρn), ∇p′(rm) = ∇ψ′(rm) + rm∇ψ′′(rm) and hence,

∇p(ρn|rm) = ρn∇ψ′(ρn)− rm∇ψ′(rm)−∇
(
rmψ

′′(rm)(ρn − rm)
)

= ρn∇
(
ψ′(ρn)− ψ′(rm)

)
− rm∇

(
ψ′′(rm)(ρn − rm)

)
and consequently,∫

Ω

{
∇
(
ψ′(ρn)− ψ′(rm)

)
· (ρnum)−∇

(
ψ′′(rm)(ρn − rm)

)}
· (rmum)dx

=

∫
Ω

∇p(ρn|rm) · umdx = −
∫
Ω

p(ρn|rm) div umdx.

Therefore,

−
∫
Ω

(
∇p(ρn)−

ρn
rm

∇p(rm)
)
· (vn − um)dx = − d

dt

∫
Ω

ψ(ρn|rm)dx(31)

−
∫
Ω

p(ρn|rm) div umdx+ ε

∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∆ρndx

−
∫
Ω

ψ′′(rm)(ρn − rm)gmdx.

Step 2b: Reformulation of the chemotaxis term. We reformulate the sixth term on the
right-hand side of (29) by integrating by parts and using the mass balances (12) and (26):∫

Ω

ρn∇(cn − zm) · (vn − um)dx = −
∫
Ω

(cn − zm) div
(
ρn(vn − um)

)
dx(32)

=

∫
Ω

(cn − zm) div
(
− ρnvn + (ρn − rm)um + rmum

)
dx

=

∫
Ω

(cn − zm)
(
∂t(ρn − rm) + div((ρn − rm)um)− ε∆ρn + gm

)
dx

=
d

dt

∫
Ω

(cn − zm)(ρn − rm)dx−
∫
Ω

(ρn − rm)∂t(cn − zm)dx

−
∫
Ω

∇(cn − zm) · ((ρn − rm)um)dx−
∫
Ω

(cn − zm)(ε∆ρn − gm)dx.

In view of the second equation in (26), we have

ρn − rm = ∂t(cn − zm)−∆(cn − zm) + (cn − zm) + hm.

We insert this expression into the second term on the right-hand side of (32):∫
Ω

ρn∇(cn − zm) · (vn − um)dx =
d

dt

∫
Ω

(cn − zm)(ρn − rm)dx−
∫
Ω

|∂t(cn − zm)|2dx(33)

− 1

2

d

dt

∫
Ω

(
|∇(cn − zm)|2 + (cn − zm)

2

)
dx−

∫
Ω

hm∂t(cn − zm)dx
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−
∫
Ω

∇(cn − zm) · ((ρn − rm)um)dx−
∫
Ω

(cn − zm)(ε∆ρn − gm)dx.

Step 2c: Reformulation of the artificial pressure term. We rewrite the second term on
the right-hand side of (29) by integrating by parts and using the mass balance equation
(12):

−δ
∫
Ω

∇ρβn · (vn − um)dx = −βδ
∫
Ω

ρβ−2
n ∇ρn · (ρnvn)dx− δ

∫
Ω

ρβn div umdx(34)

=
βδ

β − 1

∫
Ω

ρβ−1
n div(ρnvn)dx− δ

∫
Ω

ρβn div umdx

=
βδ

β − 1

∫
Ω

ρβ−1
n (ε∆ρn − ∂tρn)dx− δ

∫
Ω

ρβn div umdx

= − δ

β − 1

d

dt

∫
Ω

ρβndx− βδ

∫
Ω

ρβ−2
n |∇ρn|2dx− δ

∫
Ω

ρβn div umdx.

Step 2d: Collecting the reformulations. We include the reformulations (31), (33), and
(34) into (29) to find that

d

dt

∫
Ω

{
1

2
ρn|vn − um|2 + ψ(ρn|rm) +

1

2

(
|∇(cn − zm)|2 + (cn − zm)

2

)
(35)

− (cn − zm)(ρn − rm) +
δ

β − 1
ρβn

}
dx+

∫
Ω

|∂t(cn − zm)|2dx

+ βδ

∫
Ω

ρβ−2
n |∇ρn|2dx+

∫
Ω

(
µ|∇(vn − um)|2 + (λ+ µ)| div(vn − um)|2

)
dx

= −
∫
Ω

p(ρn|rm) div umdx+ ε

∫
Ω

(
ψ′(ρn)− ψ′(rm)

)
∆ρndx

−
∫
Ω

ψ′′(rm)(ρn − rm)gmdx−
∫
Ω

hm∂t(cn − zm)dx− δ

∫
Ω

ρβn div umdx

−
∫
Ω

∇(cn − zm) · ((ρn − rm)um)dx−
∫
Ω

(cn − zm)(ε∆ρn − gm)dx

+ ε

∫
Ω

∇ρn · ∇um · (vn − um)dx−
∫
Ω

ρn(vn − um)⊗ (vn − um) : ∇umdx

− 1

ζ

∫
Ω

ρn|vn − um|2dx−
∫
Ω

ρnfm · (vn − um)dx

−
∫
Ω

ρn − rm
rm

(
µ∆um + (λ+ µ)∇ div um

)
· (vn − um)dx.

Step 3: Limit (n,m) → ∞ and (δ, ε) → 0. As mentioned in [9, Section 3.3], the limit
in the approximate relative energy inequality (35) follows step by step the existence proof
in [5, Chapter 7] or [16, Chapter 7]. In particular, we perform first the limit n → ∞
in the Faedo–Galerkin approximation (ρn, vn, cn) → (ρε,δ, vε,δ, cε,δ). Then the functions
(rm, um, zm) are replaced by smooth functions (r, u, z) using a density argument. Third,
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we pass to the limit (ρε,δ, vε,δ, cε,δ) → (ρδ, vδ, cδ) as ε → 0 and (ρδ, vδ, cδ) → (ρ, v, c) as
δ → 0.

In view of the bounds (20), we can pass to the limit n → ∞ and (δ, ε) → 0 in (35).
We assume that (rm, um, zm) converges to (r, u, z) as m→ ∞ in such a way that the limit
m→ ∞ in (35) is possible. Then some integrals in (35) disappear and we end up with

d

dt

∫
Ω

(
ψ(ρ|r) + 1

2
ρ|v − u|2 + 1

2

(
|∇(c− z)|2 + (c− z)2

)
− (ρ− r)(c− z)

)
dx

+

∫
Ω

(
µ|∇(v − u)|2 + (λ+ µ)| div(v − u)|2

)
dx+

∫
Ω

|∂t(c− z)|2dx

= −
∫
Ω

p(ρ|r) div udx−
∫
Ω

ψ′′(r)(ρ− r)gdx−
∫
Ω

h∂t(c− z)dx

−
∫
Ω

∇(c− z) · ((ρ− r)u)dx+

∫
Ω

(c− z)gdx

−
∫
Ω

ρ(v − u)⊗ (v − u) : ∇udx− 1

ζ

∫
Ω

ρ|v − u|2dx

−
∫
Ω

(
ρ− r

r

(
µ∆u+ (λ+ µ)∇ div u

)
+ ρf

)
· (v − u)dx.

This shows (10) and finishes the proof. □

4. Weak–strong uniqueness

We split the proof in several steps.
Step 1: Relative energy inequality. We claim that (10) holds for finite energy weak

solutions (ρ, v, c) and (ρ̄, v̄, c̄), where (ρ̄, v̄) satisfies the regularity (9). According to [9,
Section 4], using a density argument, the relative energy inequality (10) still holds for
functions (r, u) satisfying the following regularity conditions:

(36)

r ∈ C0
weak([0, T ];L

γ(Ω)), u ∈ C0
weak([0, T ];L

2γ/(γ−1)(Ω;R3)),

|∇u| ∈ L1(0, T ;L∞(Ω)) ∩ L2(Ω× (0, T )), u = 0 on ∂Ω,

∂tu ∈ L1(0, T ;L2γ/(γ−1)(Ω;R3)) ∩ L2(0, T ;L6γ/(5γ−6)(Ω;R3)),

|∇2u| ∈ L1(0, T ;L2γ/(2γ+1)(Ω)) ∩ L2(0, T ;L6/5(Ω)).

Moreover, r needs to be bounded away from zero and we require ∇ψ′(r), ∂tψ
′(r) ∈ L1(0, T ;

L2γ/(γ−1)(Ω)). An inspection of (10) reveals that z should satisfy

(37)
z ∈ C0

weak([0, T ];H
1(Ω)) ∩H1(0, T ;L2(Ω)), ∆z ∈ L2(0, T ;L2(Ω)),

|∇z| ∈ L1(0, T ;L2γ/(2γ−1)(Ω)) ∩ L2(0, T ;L6γ/(5γ−6)(Ω)).

It follows from [7, Theorem 2.4] that (10) still holds if (ρ, v, c) is a finite energy weak
solution.
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Lemma 8. Let (ρ̄, v̄, c̄) be a finite energy weak solution in the sense of Definition 1 sat-
isfying the additional regularity (9). Furthermore, let c̄0 ∈ W 2−2/γ,γ(Ω) and c̄0 ≥ 0 in Ω.
Then (ρ̄, v̄, c̄) fulfills the regularity conditions (36)–(37).

Proof. Regularity (36) follows as in [9, Section 4] from Sobolev embeddings. Theorem 10
in the Appendix shows that (37) is satisfied. □

The previous lemma shows that we can take (r, u, z) = (ρ̄, v̄, c̄) in (10). Then the
remainder R(ρ, v, c|ρ̄, v̄, c̄) in Lemma 7 simplies, since f = 0 and g = h = 0, and we find
that ∫ t

0

R(ρ, v, c|ρ̄, v̄, c̄)ds = J1 + · · ·+ J5, where(38)

J1 = −
∫ t

0

∫
Ω

p(ρ|ρ̄) div v̄dxds,

J2 = −
∫ t

0

∫
Ω

∇(c− c̄) · ((ρ− ρ̄)v̄)dxds,

J3 = −
∫ t

0

∫
Ω

ρ(v − v̄)⊗ (v − v̄) : ∇v̄dxds,

J4 = −1

ζ

∫ t

0

∫
Ω

ρ̄|v − v̄|2dxds,

J5 = −
∫ t

0

∫
Ω

ρ− ρ̄

ρ̄

(
µ∆v̄ + (λ+ µ)∇ div v̄

)
· (v − v̄)dxds.

Step 2: Estimation of Ji. The terms Ji can be estimated as in [9, Section 4.1] except the
new term J2. Indeed, since p(ρ) = (γ − 1)ψ(ρ), we have p(ρ|ρ̄) = (γ − 1)ψ(ρ|ρ̄), showing
that

J1 ≤ C

∫ t

0

∫
Ω

ψ(ρ|ρ̄)dxds,

and Hölder’s inequality gives

J3 ≤ C

∫ t

0

∫
Ω

ρ|v − v̄|2dxds,

where C > 0 depends on the L∞(Ω× (0, T )) norm of ∇v̄. The term J4 is nonpositive and
can be neglected. Formulas (4.13)–(4.14) in [9] lead to

J5 ≤ ξ

∫ t

0

∥v − v̄∥2H1(Ω)ds+ C(ξ)

∫ t

0

∫
Ω

ψ(ρ|ρ̄)dxds,

where ξ > 0 is arbitrary and C(ξ) > 0 depends on ξ as well as ∥v̄∥L∞(0,t;W 2,3(Ω)) and
∥∇2v̄∥L∞(0,t;Lq(Ω)). At this point, we need the condition q > 3.
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To estimate the term J2, which is not contained in [9], we use equation (3) for c and
integrate by parts:

J2 = −
∫ t

0

∫
Ω

∇(c− c̄) · v̄
(
∂t(c− c̄)−∆(c− c̄) + (c− c̄)

)
dx

= −
∫ t

0

∫
Ω

∂t(c− c̄)∇(c− c̄) · v̄dxds− 1

2

∫ t

0

∫
Ω

∇[(c− c̄)2] · v̄dxds

+

∫ t

0

∫
Ω

(
div

(
∇(c− c̄)⊗∇(c− c̄)

)
− 1

2
∇|∇(c− c̄)|2

)
· v̄dxds

= −
∫ t

0

∫
Ω

∂t(c− c̄)∇(c− c̄) · v̄dxds+ 1

2

∫ t

0

∫
Ω

(c− c̄)2 div v̄dxds

−
∫ t

0

∫
Ω

(
∇(c− c̄)⊗ (c− c̄) : ∇v̄ − 1

2
|∇(c− c̄)|2 div v̄

)
dxds.

Then, by Young’s inequality,

J2 ≤
1

2

∫ t

0

∫
Ω

|∂s(c− c̄)|2dxds+ C

∫ t

0

∫
Ω

(
|∇(c− c̄)|2 + (c− c̄)2

)
dxds,

where C > 0 depends on ∥v̄∥L∞(0,T ;W 1,∞(Ω)). Summarizing, it follows from (38) that∫ t

0

R(ρ, v, c|ρ̄, v̄, c̄)ds ≤ 1

2

∫ t

0

∫
Ω

|∂s(c− c̄)|2dxds+ ξ

∫ t

0

∥v − v̄∥2H1(Ω)ds

+ C

∫ t

0

∫
Ω

(
ψ(ρ|ρ̄) + ρ|v − v̄|2 + |∇(c− c̄)|2 + (c− c̄)2

)
dxds.

The first term on the right-hand side can be absorbed by the last term on the left-hand
side of (10). The second term on the left-hand side of (10) can be bounded from below by
Korn’s inequality [15, Lemma 2] according to∫

Ω

(
µ|∇(v − v̄)|2 + (λ+ µ)| div(v − v̄)|2

)
dx ≥ CK∥v − v̄∥2H1(Ω),

since v = v̄ = 0 on ∂Ω. Therefore, choosing 0 < ξ < CK , (10) yields

E((ρ, v, c)(t)|(ρ̄, v̄, c̄)(t)) + 1

2

∫ t

0

∫
Ω

|∂s(c− c̄)|2dxds+ (CK − ξ)

∫ t

0

∥v − v̄∥2H1(Ω)ds

≤ E(ρ0, v0, c0|ρ̄0, v̄0, c̄0)(39)

+ C

∫ t

0

∫
Ω

(
ψ(ρ|ρ̄) + ρ|v − v̄|2 + |∇(c− c̄)|2 + (c− c̄)2

)
dxds

≤ E(ρ0, v0, c0|ρ̄0, v̄0, c̄0) + C

∫ t

0

H(ρ, v, c|ρ̄, v̄, c̄)ds.
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Step 3: Estimation of
∫
Ω
(ρ− ρ̄)(c− c̄)dx. We use Lemma 9 in Appendix A with m = 2

and arbitrary κ1, ξ > 0 on the set {ρ ≤ R} for some R > 0:∫
{ρ≤R}

(ρ− ρ̄)(c− c̄)dx ≤ κ1∥ρ− ρ̄∥2L2(Ω∩{ρ≤R}) + ξ∥∇(c− c̄)∥2L2(Ω)(40)

+ C1(κ1, ξ)∥c− c̄∥C2(2)

L1(Ω),

as well as with m = γ (which requires γ > 8/5) and arbitrary κ2 > 0 on the set {ρ > R}:∫
{ρ>R}

(ρ− ρ̄)(c− c̄)dx ≤ κ2∥ρ− ρ̄∥γLγ(Ω∩{ρ>R}) + ξ∥∇(c− c̄)∥2L2(Ω)(41)

+ C1(κ2, ξ)∥c− c̄∥C2(γ)

L1(Ω).

According to [13, Lemma 2.4], there exist constants C3, C4, cp, Cp > 0 such that

ψ(ρ|ρ̄) ≥

{
C3|ρ− ρ̄|2 if 0 ≤ ρ ≤ R,

C4|ρ− ρ̄|γ if ρ > R,

as long as cp ≤ ρ̄ ≤ Cp. Thus, we can replace the first term on the right-hand sides of (40)
and (41), respectively, by κ1C

−1
3

∫
Ω
ψ(ρ|ρ̄)dx and κ2C

−1
4

∫
Ω
ψ(ρ|ρ̄)dx, and summing these

inequalities, we obtain∫
Ω

(ρ− ρ̄)(c− c̄)dx ≤
(
κ1
C3

+
κ2
C4

)∫
Ω

ψ(ρ|ρ̄)dx+ 2ξ∥∇(c− c̄)∥2L2(Ω)(42)

+ C1(κ1, ξ)∥c− c̄∥C2(2)

L1(Ω) + C1(κ2, ξ)∥c− c̄∥C2(γ)

L1(Ω).

We wish to estimate the last two norms in terms of the initial data. To this end, we
integrate (3) and use the mass conservation ∥ρ(t)∥L1(Ω) = ∥ρ0∥L1(Ω) and ∥ρ̄(t)∥L1(Ω) =
∥ρ̄0∥L1(Ω):

d

dt

∫
Ω

(c− c̄)(t)dx = −
∫
Ω

(c− c̄)dx+

∫
Ω

(ρ− ρ̄)dx = −
∫
Ω

(c− c̄)dx+

∫
Ω

(ρ0 − ρ̄0)dx.

Gronwall’s lemma yields∫
Ω

(c− c̄)(t)dx ≤ C

∫
Ω

(c0 − c̄0)dx+ C

∫
Ω

(ρ0 − ρ̄0)dx.

The same argument with c̄− c then shows that

∥(c− c̄)(t)∥L1(Ω) ≤ C
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)
.

Hence, choosing κ1 = C3/4, κ2 = C4/4, and ξ = 1/8, we deduce from (42) that∫
Ω

(ρ− ρ̄)(c− c̄)dx ≤ 1

2

∫
Ω

(
ψ(ρ|ρ̄) + 1

2
|∇(c− c̄)|2

)
dx

+ C1(κ1, ξ)
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C2(2)

+ C1(κ2, ξ)
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C2(γ).
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The last two terms are bounded from above by

C
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C5 ,

where C5 equals C2(2) or C2(γ) depending on whether ∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω) is
smaller or larger than one. We conclude that∫

Ω

(ρ− ρ̄)(c− c̄)dx ≤ 1

2

∫
Ω

(
ψ(ρ|ρ̄) + 1

2
|∇(c− c̄)|2

)
dx(43)

+ C
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C5

≤ 1

2
H(ρ, v, c|ρ̄, v̄, c̄) + C

(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C5 .

Step 4: End of the proof. By (43), the relative energy is bounded from below by

E(ρ, v, c|ρ̄, v̄, c̄) ≥ H(ρ, v, c|ρ̄, v̄, c̄)−
∫
Ω

(ρ− ρ̄)(c− c̄)dx

≥ 1

2
H(ρ, v, c|ρ̄, v̄, c̄)− C

(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C5 .

We insert this estimate into (39):

1

2
H((ρ, v, c)(t)|(ρ̄, v̄, c̄)(t)) + 1

2

∫ t

0

∫
Ω

|∂s(c− c̄)|2dxds+ C

∫ t

0

∥v − v̄∥2H1(Ω)ds

≤ E(ρ0, v0, c0|ρ̄0, v̄0, c̄0) + C

∫ t

0

H(ρ, v, c|ρ̄, v̄, c̄)ds

+ C
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C5 .

An application of Gronwall’s lemma gives

H((ρ, v, c)(t)|(ρ̄, v̄, c̄)(t)) ≤ CeCt
{
E(ρ0, v0, c0|ρ̄0, v̄0, c̄0)

+
(
∥c0 − c̄0∥L1(Ω) + ∥ρ0 − ρ̄0∥L1(Ω)

)C5
}
,

and the choice ρ0 = ρ̄0, v0 = v̄0, c0 = c̄0 ends the proof.

Appendix A. Auxiliary results

Lemma 9. Let Ω ⊂ Rd be a bounded domain with d ∈ {2, 3} and let m > 2(d+1)/(d+2).
Furthermore, let κ, ξ > 0. Then there exist constants C1(κ, ξ) > 0 and C2(m) > 0 such
that for all ρ ∈ Lm(Ω), c ∈ H1(Ω),∫

Ω

ρcdx ≤ κ∥ρ∥mLm(Ω) + ξ∥∇c∥2L2(Ω) + C1(κ, ξ)∥c∥C2(m)

L1(Ω) .

Proof. The proof of the lemma is contained in [18, Appendix B] for solutions to the de-
generate Keller–Segel equations. For clarity, we present the proof for general functions ρ
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and c. We conclude from the interpolation inequality for Lebesgue spaces and Young’s
inequality that for any κ > 0,

∥ρc∥L1(Ω) ≤ ∥ρ∥Lm(Ω)∥c∥Lm/(m−1)(Ω) ≤ κ∥ρ∥mLm(Ω) + C(κ)∥c∥m/(m−1)

Lm/(m−1)(Ω)
.

We estimate the second term on the right-hand side by applying the Gagliardo–Nirenberg
inequality with θ = 2d/(m(d+ 2)):

∥c∥Lm/(m−1)(Ω) ≤ C∥∇c∥θL2(Ω)∥c∥1−θ
L1(Ω) + C∥c∥L1(Ω).

Then, by Minkowski’s and Young’s inequality, for any ε > 0,

∥ρc∥L1(Ω) ≤ κ∥ρ∥mLm(Ω) + C(κ,m)
(
∥∇c∥mθ/(m−1)

L2(Ω) ∥c∥m(1−θ)/(m−1)

L1(Ω) + ∥c∥m/(m−1)

L1(Ω)

)
≤ κ∥ρ∥mLm(Ω) + C(κ,m)ε∥∇c∥2L2(Ω)

+ C(κ,m, ε)
(
∥c∥2m(1−θ)/(2(m−1)−mθ)

L1(Ω) + ∥c∥m/(m−1)

L1(Ω)

)
,

which is possible since mθ/(m− 1) < 2 is equivalent to m > 2(d+ 1)/(d+ 2). The lemma
follows after choosing ε = ξ/C(κ,m), C1(κ, ξ) = C(κ,m, ε), and C2(m) = max{m/(m −
1), 2m(1− θ)/(2(m− 1)−mθ)}. □

The following result concerns the maximal regularity of the solution to

∂tu−∆u+ u = f in Ω, t > 0,(44)

∇u · ν = 0 on ∂Ω, t > 0, u(·, 0) = u0 in Ω,(45)

where Ω ⊂ Rd (d ≥ 1) is a bounded domain with C3 boundary. We recall thatW
2,−2/p,q
ν (Ω)

is the completion of the space of functions w ∈ C∞(Ω) satisfying ∇w · ν = 0 on ∂Ω in the
norm of W 2−2/p,q(Ω). The theorem is a special case of [6, Theorem 10.22] or [16, Lemma
7.37].

Theorem 10 (Maximal regularity). Let 1 < p, q < ∞, f ∈ Lp(0, T ;Lq(Ω)), and let

u0 ∈ W
2−2/p,q
ν (Ω). Then there exists a unique solution u to (44)–(45) satisfying

u ∈ Lp(0, T ;W 2,q(Ω)) ∩W 1,p(0, T ;Lq(Ω)) ∩ C0([0, T ];W 2−2/p,q(Ω)),

and there exists a constant C > 0 such that

∥u∥L∞(0,T ;W 2−2/p,q(Ω)) + ∥u∥Lp(0,T ;W 2,q(Ω)) + ∥∂tu∥Lp(0,T ;Lq(Ω))

≤ C
(
∥f∥Lp(0,T ;Lq(Ω)) + ∥u0∥W 2−2/p,q(Ω)

)
.

References

[1] N. Aı̈ssa and R. Alexandre. Global existence of weak solutions to an angiogenesis model. J. Evol. Eqs.
16 (2016), 877–894.

[2] D. Ambrosi, A. Gamba, and G. Serini. Cell directional and chemotaxis in vascular morphogenesis.
Bull. Math. Biol. 66 (2004), 1851–1873.

[3] P. Biler and L. Brandolese. On the parabolic–elliptic limit of the doubly parabolic Keller–Segel system
modelling chemotaxis. Studia Math. 193 (2009), 241–261.

[4] M. Di Francesco and D. Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems
to Keller–Segel type models. Discrete Cont. Dyn. Sys. B 13 (2010), 79–100.



CHEMOTAXIS COMPRESSIBLE NAVIER–STOKES EQUATIONS 23

[5] E. Feireisl. Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford, 2004.
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