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Université Paul Sabatier, Toulouse, France

Ansgar Jüngel
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1 Introduction

In an idealized financial market the price of a European option can be ob-
tained as the solution of the celebrated Black-Scholes equation [6, 24]. This
equation also provides a hedging portfolio that perfectly replicates the con-
tingent claim. However, the Black-Scholes equation has been derived under
quite restrictive assumptions (for instance, frictionless, liquid, complete mar-
kets). In recent years, some of these assumptions have been relaxed in order
to model, for instance, the presence of transcation costs [4, 8, 12], feedback
effects due to large traders [14, 15, 16, 20, 26, 28], and incomplete markets
[23]. In this paper we are concerned with the numerical discretization of a
nonlinear Black-Scholes equation modeling transaction costs arising in the
hedging of portfolios.

If transaction costs are taken into account perfect replication of the con-
tingent claim is no longer possible, and it has been shown in [29] that further
restrictions are needed in the model. A popular approach is to introduce
preferences by assuming that the investor’s behavior is characterized by a
given utility function. In [17] it has been shown that the option price can be
obtained as the cash increment which offsets the difference between the max-
imum utility of terminal wealth when there is no option liability and when
there is such a liability. Davis et al. [12] extended this approach to markets
with transaction costs (see also [4, 32]). It has the disadvantage that the
option price depends on the special choice of the utility function but Con-
stantinides and Zariphopoulou [9] obtained universal bounds independent of
the utility function.

Using this utility maximization approach, the following model has been
proposed by Barles and Soner [4]. Assuming an exponential utility function
U(x) = 1−exp(−x/ε) with ε = 1/γN > 0, where γ is the risk aversion factor
and N the number of options to be sold, they perform an asymptotic analysis
in the limit ε → 0, µ → 0 such that a = µ/

√
ε is a constant transaction cost

parameter, deriving the following nonlinear Black-Scholes equation for the
option price V (S, τ):

Vτ + 1
2
σ(VSS)2S2VSS + ρSVS − ρV = 0, (1)

where the nonlinear volatility σ(VSS) is given by

σ(VSS) = σ0

(

1 + Ψ
[

exp(ρ(τ0 − τ))a2S2VSS

])

. (2)

Here, ρ denotes the risk-free interest rate and τ0 the maturity. The function
Ψ is the solution of the nonlinear initial-value problem

Ψ′(A) =
Ψ(A) + 1

2
√

AΨ(A) − A
, A 6= 0, Ψ(0) = 0. (3)
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Equation (1) is solved for the price S ≥ 0 of the underlying asset and time
τ0 ≥ τ ≥ 0, i.e. backward in time. The terminal condition is

V (S, τ0) = V0(S), S ≥ 0. (4)

The equation is derived in [4] for European Call options, i.e. V0(S) = max(0,
S − E), where E > 0 is the exercise price. The “boundary” conditions are
as follows

V (0, τ) = 0, V (S, τ) ∼ S − Eeρ(τ−τ0) (S → ∞), τ0 ≥ τ ≥ 0. (5)

The last condition has to be understood in the sense

lim
S→∞

V (S, τ)

S − Eeρ(τ−τ0)
= 1,

uniformly for τ0 ≥ τ ≥ 0. In [4] the existence of a unique continuous viscosity
solution V to this problem has been shown.

In [13] we discretized the nonlinear Black-Scholes equation (1) with volati-
lity (2) and proposed a new high-order compact finite difference scheme gen-
eralizing a scheme of Rigal [27]. The nonlinearity was treated explicitly, i.e.,
the final scheme is semi-implicit. We studied the properties of the new com-
pact scheme R3C and showed that the scheme is unconditionally stable (in
the sense of von Neumann) and non-oscillatory. It turned out that it gives
significantly better results than classical schemes. The compact scheme R3C
combines good properties (stability, non-oscillations) with a high order of
accuracy. It can be considered as more efficient since the relation between
CPU time and `2-error is better compared with classical schemes (see [13]
for details).

Our main goal in this article is to prove the convergence of the numerical
solution obtained by the compact scheme R3C to the unique viscosity solu-
tion of (1)-(5). In the literature, unlike for many standard finite difference
schemes, there are very few results concerning the convergence of high-order
compact finite difference schemes. In [7] compact finite difference methods
for initial-boundary-value problems for mixed systems of strongly parabolic
and strictly hyperbolic equations are studied. Assuming the existence of a
smooth solution, a pilot function [25, 30] is constructed which leads to con-
vergence results. Il’in [18] studies compact finite difference schemes for lin-
ear convection-diffusion equations and gives error estimates. Wang and Liu
[31] propose a fourth-order scheme for the two-dimensional, incompressible
Navier-Stokes equations in vorticity formulation and prove its convergence
using energy estimates. The convergence of approximation schemes for fully
nonlinear second order equations is studied in a general setting in [5]. The
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originality of this paper consists in the combination of high-order compact
finite difference schemes and techniques for viscosity solutions.

This article is organized in the following way. To provide the tools needed
later, we study in section 2 the properties of the discretization matrices and
prove the positivity of numerical solutions. Since the numerical solution in-
volves an approximation process for (3), we prove in section 3.1 an analytical
convergence result using the “half-relaxed limits” technique. Finally, in sec-
tion 3.2, we show our main result, the convergence of the compact scheme
R3C, using the results of [5].

2 Compact Scheme R3C

In this section we reformulate the problem (1)-(5) using a variable transfor-
mation, recall the compact finite difference scheme R3C [13] and provide the
tools for the convergence results in the next section.

2.1 Definition of the scheme

To overcome a possible degeneration at S = 0 and to obtain a forward
parabolic problem, we use the variable transformations

x(S) = ln
(S

E

)

, t(τ) =
1

2
σ2

0(τ0 − τ), u = exp(−x)
V

E
.

Equation (1) is hereby transformed into

ut −
(

1 + Ψ
[

exp(Kt + x)a2E(uxx + ux)
])

(uxx + ux) − Kux = 0, (6)

with

x ∈ R, 0 ≤ t ≤ T = σ2
0τ0/2, K =

2ρ

σ2
0

.

For the computation we replace R by Ω̄ = [−R, R] with R > 0. For
simplicity, we consider a uniform grid Z = {xi ∈ [−R, R] : xi = ih, i =
−N, . . . , N} consisting of 2N + 1 grid points, with R = Nh and with space
step h and time step k, where T = Mk. Let Un

i denote the approximate
solution of (6) in xi at time tn = nk and set Un = (Un

i )2N+1
i=1 and U = (Un)M

n=1.
The problem is completed by the following initial and boundary condi-

tions

u(x, 0) = max(1 − exp(−x), 0), (7)

u(−R, t) = 0, (8)

u(R, t) = 1 − exp(−R − Kt). (9)
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The latter condition corresponds to the asymptotic value of the exact solution
of the equation for a = 0. More precisely, the solution of (6) satisfies (see
(5))

u(x, t) ∼ 1 − exp(−x − Kt) as x → ∞.

Approximately, we expect to have u(R, t) ≈ 1−exp(−xN−Kt) for sufficiently
large R > 0. The nonlinear correction of the volatility in (1) is a function of
the second derivative, so we assume that the influence of the nonlinearity at
the boundary can be neglected for large R. The error caused by boundary
conditions imposed on an artificial boundary for a class of Black-Scholes
equations has been studied rigorously in [21].

We use a Dormand-Prince-4-5 Runge-Kutta scheme to solve the ordinary
differential equation (3) and a cubic spline interpolation to obtain the values
of Ψ for arbitrary arguments.

With

β = 1 + Ψ
[

exp(Kt + xi)a
2E(∆2U

n
i + ∆0U

n
i )

]

, λ = β + K,

where

∆0U
n
i =

Un
i+1 − Un

i−1

2h
, ∆2U

n
i =

Un
i+1 − 2Un

i + Un
i−1

h2
,

the “semi-discretized” equation (6) at x = xi takes the form ut = βuxx−λux.
Below we study this equation for arbitrary values β, λ > 0. We use the
following abbreviations

α =
λh

2
, r =

k

h2
, µ =

λk

h
. (10)

We define the two-level three-point scheme R3C as in [13] by

DtU
n
i = β(1

2
+ A1)∆2U

n
i + β(1

2
+ A2)∆2U

n+1
i − λ(1

2
+ B1)∆0U

n
i

− λ(1
2

+ B2)∆0U
n+1
i , (11)

where DtU
n
i = (Un+1

i − Un
i )/k, and Ai, Bi are real constants given by

B1 = −B2,

A1 = − 1
12kβ

(−2h2 + 6λ2k2B2 − k2λ2 − 12kβB2),

A2 = − 1
12kβ

(2h2 + 6λ2k2B2 + k2λ2 + 12kβB2),

B2 = −1 + 4r2α2

12βr
.

Then the R3C scheme can be written in the form

AnUn+1 = BnUn, An = [a−1, a0, a1], Bn = [b−1, b0, b1], (12)
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where the notation [a, b, c] denotes a tridiagonal matrix whose diagonals have
constant entries a, b, and c, respectively. The coefficients ai, bi are given by

a−1 = −β( r
2

+ rA2) − µ
4
− µB2

2
, b−1 = β( r

2
+ rA1) + µ

4
+ µB1

2
,

a0 = 1 + β(r + 2rA2), b0 = 1 − β(r + 2rA1), (13)

a1 = −β( r
2

+ rA2) + µ
4

+ µB2

2
, b1 = β( r

2
+ rA1) − µ

4
− µB1

2
,

or, more explicitly, by

a−1 = −12rβ2 − 2β + rλ2h2 + r3λ4h4 + 6rλhβ − λh − r2λ3h3

24β
,

a0 =
10β + 12rβ2 + rλ2h2 + r3λ4h4

12β
,

a1 = −12rβ2 − 2β + rλ2h2 + r3λ4h4 − 6rλhβ + λh + r2λ3h3

24β
, (14)

b−1 =
12rβ2 + 2β + rλ2h2 + r3λ4h4 + 6rλhβ + λh + r2λ3h3

24β
,

b0 = −−10β + 12rβ2 + rλ2h2 + r3λ4h4

12β
,

b1 =
12rβ2 + 2β + rλ2h2 + r3λ4h4 − 6rλhβ − λh − r2λ3h3

24β
.

2.2 Properties of the scheme

We recall the following result from [13].

Theorem 1 ([13]) The resulting scheme R3C is an unconditionally stable
(in the sense of von Neumann), non-oscillatory and forward diffusive scheme
of order O(k2 + h4).

In the following we prove some properties of the discretization matrices
needed in the convergence proof in section 3. To simplify the presentation,
we only consider the case K = 0 which corresponds to zero interest rate.
Notice that this implies λ = β. In the general case, similar conditions as in
Lemma 2 below can be obtained, with bounds depending on h, β, and λ.

Lemma 2 If h < 2 and

1

6β
≤ r <

1

2β
, (15)

then Bn is a positive matrix (i.e., all elements are positive) and An is an
M-matrix. More specifically, a0, b−1, b0, b1 are positive, a−1, a1 are negative
or zero, An is non-singular, and (An)−1 is a positive matrix.
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Proof. The coefficients a0, b−1 are always positive. It follows from (14) that
b0 and b1 are positive if

10β − 12rβ2 − rβ2h2 − β4h4r3 > 0, (16)

12rβ + 2 + rβh2 + β3h4r3 − 6βhr − h − β2h3r2 > 0, (17)

respectively, and a−1, a1 are negative or zero if

12rβ2 − 2β + rβ2h2 + β4h4r3 + 6β2hr − βh − β3h3r2 ≥ 0, (18)

12rβ2 − 2β + rβ2h2 + β4h4r3 − 6β2hr + βh + β3h3r2 ≥ 0, (19)

respectively.
First, we study (17). Consider the polynomial p(β) = h4r3β2 − h3r2β +

rh2 − 6hr + 12r. It is positive for all h 6= 4, since its leading coefficient is
positive and its discriminant is −3r4h4(h − 4)2, which is negative for h 6= 4.
Hence, p(β)β + 2 − h > 0 and thus (17) follows if h < 2.

We solve the equations related to (16), (18), (19) for r, being cubic polyno-
mials in r. For each equation we obtain one real root and two complex roots.
From the real root of the first equation we obtain the condition r < c0(h)/β
with

c0(h) =
1

3

x2/3 − 36 − 3h2

h2x1/3
,

where x = 135h2 + 3
√

3
√

1728 + 432h2 + 711h4 + h6. The function c0 is
decreasing in h with minh∈[0,2] c0(h) = 1

2
, which gives the upper bound in

(15).
The real roots of the other equations result in the condition max(c1(h),

c2(h))/β ≤ r with

c1(h) =
1

3

y1/3

h2
− 2

3

18 + h2 + 9h

h2y1/3
+

1

3h
,

c2(h) =
1

3

z1/3

h2
− 2

3

18 + h2 − 9h

h2z1/3
− 1

3h
,

where

y = −54h + 10h3 + 6
√

3
√

432 + 423h2 + 648h + 12h4 + 126h3 + h6 + 2h5,

z = 54h − 10h3 + 6
√

3
√

432 + 423h2 − 648h + 12h4 − 126h3 + h6 − 2h5.

It can be seen that the functions c1 and c2 both attain their maximum at h =
0 with c1(0) = c2(0) = 1

6
. This yields the lower bound in (15). Therefore, Bn

is a positive matrix and An is an L-matrix if (15) holds. Since a0 > |a−1|+|a1|,
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Figure 1: The two surfaces represent the equations r = c0(h)/β and r =
max(c1(h), c2(h))/β.

An is strictly diagonally dominant. Hence, An is an M-matrix which yields
the claim.

In Figure 1 the set max(c1(h), c2(h))/β ≤ r ≤ c0(h)/β is shown. As a
by-product of Lemma 2, we obtain the following corollary, which ensures the
positivity of the numerical solutions.

Corollary 3 Let the assumptions of Lemma 2 hold. Then the linear, con-
stant coefficient R3C scheme is positive, i.e. for all n ∈ N:

Un ≥ 0 =⇒ Un+1 ≥ 0,

where the inequality holds for all components of the vectors.

Remark 4 A finite difference scheme of the form (12) is called positive if
(An)−1Bn is a positive matrix. Unlike for many second-order schemes, the
matrices An and Bn resulting from fourth-order schemes generally do not
commute and positivity cannot be easily deduced. The positivity of the
scheme holds if both matrices (An)−1 and Bn are positive.

Remark 5 The conditions of Lemma 2 are sufficient but not necessary. Fre-
quently, such conditions are too restrictive in practice and the scheme will
preserve the positivity for a larger set of discretization parameters [27]. We
observed this also in our numerical experiments presented in [13].
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3 Convergence results

For the convenience of the reader, we briefly recall the notion of viscosity
solutions, introduced by Crandall and Lions [11]. For a general presentation
on viscosity solutions we refer to [10]. Following the notation of [5], we can
write (6) as

G(x, t, u(x, t), ut(x, t), ux(x, t), uxx(x, t)) = 0 in Ω̄ × [0, T ], (20)

where G is given by

G(x, t, u(x, t), ut(x, t), ux(x, t), uxx(x, t))

=



















ut − (1 + Ψ [exp(Kt + x)a2E(uxx + ux)])(uxx + ux) − Kux in Qt,

u(x, 0) − max(1 − exp(−x), 0) in Ω,

u(−R, t) in (0, T ),

u(R, t) − (1 − exp(−R − Kt)) in (0, T ),

where Qt = Ω × (0, T ). Although we have assumed K = 0 in the previous
section, the results of this section hold for any K ≥ 0 provided that the
conclusion of Lemma 2 holds. In the following, let z∗ and z∗ denote the
upper semi-continuous and lower semi-continuous envelope of the function
z : C → R, where C is a closed subset of R, defined by

z∗(x) = lim sup
y→x, y∈C

z(y), z∗(x) = lim inf
y→x, y∈C

z(y).

Definition 6 A locally bounded function u : Ω̄ → R is a viscosity subsolution
(respectively supersolution) of (20) if and only if for all ϕ ∈ C2(Ω̄×[0, T ]) and
for all maximum (respectively minimum) points (x, t) of u∗ − ϕ (respectively
u∗ − ϕ), one has

G∗(x, t, u∗(x, t), ϕt(x, t), ϕx(x, t), ϕxx(x, t)) ≤ 0

(respectively G∗(x, t, u∗(x, t), ϕt(x, t), ϕx(x, t), ϕxx(x, t)) ≥ 0).

A locally bounded function is a viscosity solution of (20) if it is a viscosity
subsolution and a viscosity supersolution.

3.1 Analytical convergence result

The solution of (6) involves two approximation processes. One is imposing
the Dirichlet boundary conditions (8) and (9). The existence and uniqueness
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proof in [4] uses the boundary conditions (5). It is easy to carry over the
existence and uniqueness proof with only small changes, so we omit the proof.
The convergence of the solution on a bounded domain to the solution on the
half-space has been studied in [1, 22] for the linear case, i.e. a = 0.

The other approximation arises when solving (3). Since the right-hand
side of (3) is unbounded for A → 0, it is necessary to solve the ordinary
differential equation approximately with a bounded approximation of the
right-hand side. This gives rise to an approximate function Ψε which is used
in the numerical solution of (6). Thus, we are in fact solving an approximate
problem,

ut −
(

1 + Ψε

[

exp(Kt + x)a2E(uxx + ux)
])

(uxx + ux) − Kux = 0, (21)

with (7)–(9). In the following we show that the solution of this approximate
problem converges to the solution of the original problem.

Proposition 7 Let Ψε be a monotone smooth approximation of Ψ with boun-
ded derivative such that Ψε → Ψ locally uniformly as ε → 0. Then the
viscosity solution uε of (21) and (7)–(9) converges to the viscosity solution
u of (6) and (7)–(9) as ε → 0.

Proof. We use the “half-relaxed limits” technique which has been introduced
by Barles and Perthame [2, 3] and Ishii [19]. Let uε denote a solution to the
approximate problem (21), (7)–(9) with ε > 0. We omit an existence proof
which is very similar to the one for the original problem. Since u1 ≡ 1 and
u2 ≡ 0 are super- and subsolutions, respectively, comparison arguments show
that uε is bounded independently of ε. Then

u(x, t) = lim sup
ε→0

∗uε(x, t) = lim sup
ε′→0

{uε(x
′, t′) : ε ≤ ε′, ‖(x, t) − (x′, t′)‖ ≤ ε′},

u(x, t) = lim inf
ε→0

∗uε(x, t) = lim inf
ε′→0

{uε(x
′, t′) : ε ≤ ε′, ‖(x, t) − (x′, t′)‖ ≤ ε′},

are well-defined. By [10, Lemma 6.1] both limits are discontinuous viscosity
solutions of (6), (7)–(9), since Ψε → Ψ locally uniformly as ε → 0. The strong
comparison result for (6) in [4, App. B, pp. 395] shows that u = u = u.

3.2 Convergence of the compact scheme

The convergence of approximation schemes for fully nonlinear parabolic equa-
tions has been studied in an abstract setting in [5]. We want to apply The-
orem 2.1 in [5] to show the convergence of the compact scheme R3C to the
viscosity solution of (21), (7)–(9). We start by recalling the assumptions of
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Theorem 2.1 in [5]. The numerical scheme R3C (11) approximating (20) can
be written as

S(k, h, n, i, Un+1
i , U) = 0, (22)

where Un+1
i is the desired approximate solution that is computed using el-

ements of U . Roughly speaking, Theorem 2.1 in [5] states that any stable,
consistent and monotone scheme converges to the solution of (20), provided
(20) satisfies a “strong uniqueness” condition. Therefore the scheme S is
expected to have the following properties, at least for some sequence (k, h)
converging to zero.

(S1) For all (k, h), there exists a solution U of (22) that is bounded inde-
pendently of (k, h).

(S2) For any smooth function φ and for any (x, t) in Ω̄ × [0, T ], it holds

lim inf
(k,h)→0, (xi,tn)→(x,t), ξ→0

S(k, h, n, i, φn+1
i + ξ, φ + ξ)

ρ(k, h)

≥ G∗(x, t, φ(x, t), φt(x, t), φx(x, t), φxx(x, t)),

lim sup
(k,h)→0, (xi,tn)→(x,t), ξ→0

S(k, h, n, i, φn+1
i + ξ, φ + ξ)

ρ(k, h)

≤ G∗(x, t, φ(x, t), φt(x, t), φx(x, t), φxx(x, t)),

for some function ρ(k, h) > 0 such that ρ(k, h) → 0 as (k, h) → 0.

(S3) If U ≥ V (the inequality holds for all components) and Un+1
i = V n+1

i ,
then

S(k, h, n, i, Un+1
i , U) ≤ S(k, h, n, i, V n+1

i , V )

for any k, h > 0, 1 ≤ n ≤ M , 1 ≤ i ≤ 2N + 1 and for all U, V ∈
R

M(2N+1).

(S4) If the locally bounded upper semi-continuous (lower semi-continuous)
function u (v) is a viscosity subsolution (supersolution) of (20) then

u ≤ v in Ω̄.

Our main result on the convergence of the compact scheme R3C is the
following theorem.

Theorem 8 Assume that Ψ′ is bounded, the constant transaction cost pa-
rameter a is sufficiently small (see below) and the assumptions of Lemma 2
are fulfilled. Then the solution U converges to the unique viscosity solution
of (21), (7)–(9) as (k, h) → 0, uniformly on each compact subset of Ω̄.
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Proof. In order to be able to apply Theorem 2.1 in [5], we have to check the
assumptions (S1)–(S4). The proof of (S4) is given in [4, App. B, pp. 395].

We show that ‖Un‖∞ is bounded for arbitrary n ∈ N if ‖U 0‖∞ is bounded.
For arbitrary n ∈ N let i0 ∈ {−N, . . . , N} be such that ‖Un+1‖∞ = |Un+1

i0
|.

Employing Lemma 2 and using a−1 + a0 + a1 = b−1 + b0 + b1 = 1, we can
estimate

‖Un+1‖∞ = |Un+1
i0

| = a−1|Un+1
i0

| + a0|Un+1
i0

| + a1|Un+1
i0

|
≤ a−1|Un+1

i0−1| + a0|Un+1
i0

| + a1|Un+1
i0+1|

≤ |a−1U
n+1
i0−1 + a0U

n+1
i0

+ a1U
n+1
i0+1|

= |b−1U
n
i0−1 + b0U

n
i0

+ b1U
n
i0+1|

≤ ||BnUn||∞ ≤ ||Bn||∞||Un||∞ = ||Un||∞,

where ||Bn||∞ is the row-sum norm of Bn. Thus, ||Un||∞ ≤ ‖U0‖∞ for n ∈ N,
yielding (S1).

The consistency assumption (S2) follows from Theorem 1. It remains to
show that (S3) holds. For simplicity, we will only consider the case K = 0.
This relates to the case of zero interest rate in the financial model. The case
K > 0 can be proved analogously. Define F : R

4 → R by

F (∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i )

=β
[

(1
2

+ A1)∆2U
n
i + (1

2
+ A2)∆2U

n+1
i − (1

2
+ B1)∆0U

n
i − (1

2
+ B2)∆0U

n+1
i

]

.

Note that β, A1, A2, B1, B2 depend on U as well. Using this definition we can
write (11) as

S(k, h, n, i, Un+1
i , U) = Un+1

i − Un
i − kF (∆2U

n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ).

Let U, V ∈ R
M(2N+1) with U ≥ V and Un+1

i = V n+1
i . We need to show that

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) ≥ 0.

With the abbreviations W n+1
i = Un+1

i − V n+1
i , W n

i = Un
i − V n

i we infer

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U)

= (Un
i − V n

i ) + k
[

F (∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i )

− F (∆2V
n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )

]

= W n
i + k∇F (z)(∆2W

n+1
i , ∆0W

n+1
i , ∆2W

n
i , ∆0W

n
i ),

using the mean value theorem

F (∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ) − F (∆2V

n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )

= ∇F (z)[(∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i )

− (∆2V
n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )]
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for some

z ∈
[

(∆2U
n+1
i , ∆0U

n+1
i , ∆2U

n
i , ∆0U

n
i ), (∆2V

n+1
i , ∆0V

n+1
i , ∆2V

n
i , ∆0V

n
i )

]

,

where z = (z1, z2, z3, z4), and [p, q] denotes the line between p, q ∈ R
4. We

compute

∇F (z) =









β(1
2

+ A2)
−β(1

2
+ B2)

β[(1
2

+ A1) + c(a2)A1,βΨ′z3] + c(a2)Ψ′(1
2

+ A1)z3

−β[(1
2

+ B1) + c(a2)B1,βΨ′z4] − c(a2)Ψ′(1
2

+ B1)z4









,

where β, A1, A2, B1, B2, Ψ
′ and A1,β, B1,β, the derivatives with respect to β,

are evaluated in z and c(a2) is a positive constant depending on a2 with
c(a2) → 0 as a → 0. We obtain

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) = W n
i + kβT1 + c(a2)kT2, (23)

where

T1 =
(

1
2

+ A2

)W n+1
i+1 − 2W n+1

i + W n+1
i−1

h2
−

(

1
2

+ B2

)W n+1
i+1 − W n+1

i−1

2h

+
(

1
2

+ A1

)W n
i+1 − 2W n

i + W n
i−1

h2
−

(

1
2

+ B1

)W n
i+1 − W n

i−1

2h

and

T2 =
[

βA1,βΨ′ + Ψ′
(

1
2

+ A1

)]

z3

W n
i+1 − 2W n

i + W n
i−1

h2

−
[

βB1,βΨ
′ + Ψ′

(

1
2

+ B1

)]

z4

W n
i+1 − W n

i−1

2h
.

The term T1 collects the terms known from the linear scheme (13), where
β is simply a positive constant. The term T2 involves additional expressions
for the nonlinear case. Note also that the nonlinear terms only involve the
coefficients at time level n, since the nonlinearity is discretized explicitly. We
will make use of this observation in the following by employing Lemma 2 to
obtain the positivity of T1 and use this to control the term T2 for suitably
small values of a.
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We collect the terms in (23) according to the grid points, make use of
W n+1

i = 0 and obtain

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U)

=[1 − rβ(1 + 2A1) + c(a2)2r(βA1,βΨ
′ + Ψ′(1

2
+ A1))z3]W

n
i

+ [rβ(1
2

+ A2) − µ
2
(1

2
+ B2)]W

n+1
i+1

+ [rβ(1
2

+ A2) + µ
2
(1

2
+ B2)]W

n+1
i−1

+ [rβ(1
2

+ A1) − µ
2
(1

2
+ B1)]W

n
i+1

+ c(a2)[r(βA1,βΨ
′ + Ψ′(1

2
+ A1))z3 − k

2h
(βB1,βΨ

′ + Ψ′(1
2

+ B1))z4]W
n
i+1

+ [rβ(1
2

+ A1) + µ
2
(1

2
+ B1)]W

n
i−1

+ c(a2)[r(βB1,βΨ
′ + Ψ′(1

2
+ A1))z3 + k

2h
(βB1,βΨ′ + Ψ′(1

2
+ B1))z4]W

n
i−1

=
[

b0 + c(a2)2r(βA1,βΨ
′ + Ψ′(1

2
+ A1))z3

]

W n
i − ai+1W

n+1
i+1 − ai−1W

n+1
i−1

+
[

b1 + c(a2)[r(βA1,βΨ′ + Ψ′(1
2

+ A1))z3

− k
2h

(βB1,βΨ
′ + Ψ′(1

2
+ B1))z4]

]

W n
i+1

+
[

b−1 + c(a2)[r(βA1,βΨ′ + Ψ′(1
2

+ A1))z3

+ k
2h

(βB1,βΨ′ + Ψ′(1
2

+ B1))z4]
]

W n
i−1

≥
[

b0 + c(a2)2r(βA1,βΨ
′ + Ψ′(1

2
+ A1))z3

]

W n
i

+
[

b1 + c(a2)[r(βA1,βΨ′ + Ψ′(1
2

+ A1))z3

− k
2h

(βB1,βΨ
′ + Ψ′(1

2
+ B1))z4]

]

W n
i+1

+
[

b−1 + c(a2)[r(βA1,βΨ′ + Ψ′(1
2

+ A1))z3

+ k
2h

(βB1,βΨ′ + Ψ′(1
2

+ B1))z4]
]

W n
i−1.

where a−1, a1, b−1, b0, b1 are the coefficients of the linear scheme (13) and
where we have employed Lemma 2 in the last inequality. Making use of the
assumption that Ψ′ is bounded, we can control the nonlinear terms by the
positive coefficients b−1, b0, and b1 if a is sufficiently small. We conclude

S(k, h, n, i, V n+1
i , V ) − S(k, h, n, i, Un+1

i , U) ≥ 0,

which completes the proof.
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