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Abstract

Due to its deterministic nature, the spherical harmonics

expansion of the Boltzmann transport equation is an attrac-

tive alternative to the Monte Carlo method for the purpose

of electronic device simulation. The major drawback when

using higher order expansions is the huge memory require-

ment, especially for two- and three-dimensional simula-

tions. We propose a method to compress the resulting sys-

tem of linear equations, such that memory requirements are

reduced by up to two orders of magnitude. In that context

we discuss criteria for the selection of an appropriate linear

equation solver and show that execution times for matrix-

vector multiplications using the compressed matrix scheme

on a single CPU core are comparable to that of an un-

compressed system matrix. Numerical results demonstrate

the applicability of our method and confirm our theoretical

results.

Introduction

As long as quantum mechanical effects are negligible, the

microscopic behavior of electrons is very well described

by a distribution function f(x, k, t) that depends on the

spatial coordinate x = (x, y, z), the momentum ~k =
(~kx, ~ky, ~kz) and time t, and fulfills the Boltzmann trans-

port equation (BTE). The most commonly used method

to solve the BTE is the Monte Carlo method, with the

main disadvantage of its computational expense, especially

when attempting to reduce the statistical noise in the low

density tails of the distribution function. The most promi-

nent alternative to the stochastic Monte Carlo (MC) method

is the deterministic spherical harmonics expansion (SHE)

method [1]. Traditionally, only expansion up to first order

have been employed [1], [2], which gives reasonable but

not perfect agreement with MC simulations. Recent results

demonstrate that higher order expansions, e.g. of order nine,

result in excellent agreement with MC simulations, while

maintaining the performance benefit [3], [4].

The major challenge of the SHE method is the huge

memory consumption reported even for two-dimensional

devices [3] at moderate expansion orders, which has so

far prohibited an application of the SHE method to three-

dimensional simulations. To overcome these limitations,

we present a new system matrix compression scheme that

reduces the memory requirements by up to two orders of

magnitude and paves the way for three-dimensional device

simulations using the SHE method.

The Projected Equations

After a truncated expansion of the distribution func-

tion into real valued, orthonormal spherical harmonics

Yl,m(θ, ϕ) up to order L,

f(x, ε, θ, ϕ, t) ≈
L

∑

l=0

l
∑

m=−l

fl,m(x, ε, t)Yl,m(θ, ϕ) , (1)

a spherical projection of the BTE and application of the H-

transform [2], one obtains with Einstein’s summation con-

vention a system of coupled partial differential equations

with shifted arguments [3]

∂fl,mZ

∂t
+ ∇x · vl′,m′

l,m fl′,m′Z − F · Γl′,m′

l,m fl′,m′Z

=
∑

η

s
l′,m′;in
l,m fl′,m′(x, ε ∓ ~ωη, t)Z(x, ε ∓ ~ωη, t)

− s
l′,m′;out
l,m fl′,m′Z

for all l ∈ {0, . . . , L}, m ∈ {−l, . . . , l}. The generalized

density of states Z depends on the band structure, F is

the force and s
l′,m′;in
l,m and s

l′,m′;out
l,m denote the in- and out-

scattering coefficients.

If all coupling coefficients v
l′,m′

l,m , Γ
l′,m′

l,m , s
l′,m′;in
l,m;η and

s
l′,m′;out
l,m were multiples of the Kronecker delta δl,l′δm,m′ ,

all equations would be decoupled and could be solved

individually. Conversely, nonzero coupling coefficients for

all quadruples (l, m, l′, m′) indicate a tight coupling, which
usually complicates the solution process. This is in analogy

to systems of linear equations: If the system matrix is

diagonal, the solution is found immediately, but if the

matrix is dense, typically a lot of computational effort is

required to solve the system.

It has been shown in [4] that the scattering terms s
l′,m′;in
l,m

and s
l′,m′;out
l,m do not couple different expansion coefficients

in the case of spherical energy bands. For non-spherical

energy bands each expansion coefficient fl,m is coupled

with f0,0 only, thus the coupling among the equations

induced by the scattering operator is very weak.



For general band structures, the symmetry of the under-

lying processes yields that

v
2i′,m′

2i,m = v
2i′+1,m′

2i+1,m = 0, Γ
2i′,m′

2i,m = Γ
2i′+1,m′

2i+1,m = 0 .

for all permissible integers i, i′ and m, m′ holds [4]. There-

fore, all nonzero coupling coefficients possess different

parities in the leading indices. This structural information

about the coupling was already used in a preprocessing step

for the solution of the discretized equations in [4].

Under the assumption of spherical energy bands, i.e.

ε(k) = ε̃(|k|), the velocity v, the modulus of the wave

vector |k| and the generalized density of states only depend

on the energy ε, but not on the angles θ, ϕ. Consequently,

we rewrite

v
l′,m′

l,m (ε) = v(ε)

∫

Yl,meεYl′,m′ dΩ

=: v(ε)al′,m′

l,m ,

(2)

Γ
l′,m′

l,m (ε) =
1

~|k|

∫

(∂Yl,m

∂θ
eθ

+
1

sin θ

∂Yl,m

∂ϕ
eϕ

)

Yl′,m′ dΩ

=:
1

~|k|
b

l′,m′

l,m ,

(3)

where eθ and eϕ denote the unit vectors in angular direc-

tion. The coupling between index pairs (l, m) and (l′, m′)

is determined by the integral terms a
l′,m′

l,m and b
l′,m′

l,m only.

With this it can now be shown that the coupling induced

by v
l′,m′

l,m and Γ
l′,m′

l,m is still weak:

Theorem 1. Under the assumption of spherical en-

ergy bands, the following holds true for indices l, l′ ∈
{0, . . . , L}, m ∈ {−l, . . . , l} and m′ ∈ {−l′, . . . , l′}:

1) If v
l′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈
{±|m′| ± 1, m′}.

2) If Γ
l′,m′

l,m is nonzero, then l ∈ {l′ ± 1} and m ∈
{±|m′| ± 1, m′}.

A proof is given in [5]. The theorem allows one to better

eliminate those coefficients v
l′,m′

l,m and Γ
l′,m′

l,m , which may

not vanish in simulations due to numerical noise, even

though they are analytically zero.

Discretization and System Matrix Compression

In steady state, a discretization of the expansion coeffi-

cients on a staggered grid (cf. [6]) is obtained by a Galerkin

method

f even
l,m =

Neven

∑

i=1

αeven
i;l,m(t)ϕeven

i (x, H) , (4)

fodd
l,m =

Nodd

∑

i=1

αodd
i;l,m(t)ϕodd

i (x, H) , (5)

where H denotes the total energy. This leads to a system of

linear equations represented by a system matrix S of size

(N even + Nodd)(L + 1)2 × (N even + Nodd)(L + 1)2. The

sparsity of S is clear due to the local support of the basis

functions ϕeven
i (x, H) and ϕodd

i (x, H).
Using the results of Theorem 1, it can be shown [5]

that the number of entries in each row of S is at most

11Csparse, where Csparse is a constant that depends only

on the regularity of the underlying mesh. Hence, with

the typical values L = 9 and Csparse = 10, there are

at most 11000(N even + Nodd) entries in S, which still

prohibits sufficiently fine grids for three-dimensional device

simulations. If there were a dense coupling among the

spherical harmonics expansion equations, the number of

entries per row in S would be O(L2Csparse) = O(L2), so
the memory requirements in this example would have been

two orders of magnitude larger.

For spherical energy bands, the decoupling (2) and (3)

allows to separate the spatial coupling due to the overlap

of basis functions ϕeven
i (x, H) and ϕodd

i (x, H) from the

coupling of different expansion coefficients. This allows

one to write the resulting system matrix as

S =

(

See Seo

Soe Soo

)

=

8
∑

i=1

(

Qee ⊗ Ree
i Qeo

i ⊗ Reo
i

Qoe ⊗ Roe
i Qoo

i ⊗ Roo
i

)

,

(6)

where ⊗ denotes the Kronecker product. The dimensions

of the matrices Qee
i , Qeo

i , Qoe
i , Qoo

i only depend on

the number of degrees of freedom in (x, H)-space, while
the dimensions of the matrices Ree

i , Reo
i , Roe

i , Roo
i are

determined by the spherical harmonics expansion order L

only.

This allows for a representation of S using only O((L+
1)2+CsparseN) numbers. Since N is typically much larger

than (L + 1)2, the full system matrix can be stored for

Csparse = 10 with roughly 80N numbers, which means a

reduction by a factor 137 compared to the uncompressed

case.

In the case of non-spherical bands, the velocity and

the modulus of the wave vector depend on the energy

and on the angles. In order to decouple the radial energy

contributions from the angular ones, we perform a spherical

expansion up to order L′ of the coupled terms in the

integrands by approximating [4]

v(ε, θ, ϕ) ≈

L′

∑

l′′=0

l′′
∑

m′′=−l′′

vl′′,m′′

(ε)Yl′′,m′′(θ, ϕ) , (7)

1

~|k(ε, θ, ϕ)|
≈

L′

∑

l′′=0

l′′
∑

m′′=−l′′

Γl′′,m′′

(ε)Yl′′,m′′(θ, ϕ) , (8)

where the expansion coefficients are given by

vl′′,m′′

(ε) =

∫

v(ε, θ, ϕ)Yl′′,m′′(θ, ϕ) dΩ ,

Γl′′,m′′

(ε) =

∫

1

~|k(ε, θ, ϕ)|
Yl′′,m′′(θ, ϕ) dΩ .



For simplicity, the expansion order L′ is the same for

both v
l′,m′

l,m and Γ
l′,m′

l,m and has to be chosen such that the

complexity of the band structure is captured. Values of L′

in the range five to ten are expected to be sufficient to

obtain a good approximation of the non-spherical bands of

interest. In this way, certain full-band effects can also be

considered in the deterministic SHE approach [7].

Similar to the case of spherical energy bands, the system

matrix S can then be written in the form

S =

3+6(L′+1)2
∑

i=1

(

Qee ⊗ Ree
i Qeo

i ⊗ Reo
i

Qoe ⊗ Roe
i Qoo

i ⊗ Roo
i

)

, (9)

which allows one to store the system matrix using only

O(L′2(L4 + N)) matrix entries. The term L4 stems from

the conservative assumption that the coupling among the

SHE equations might be dense for non-spherical energy

bands. However, the number of grid points N is typically

larger than L4 ≈ 10 000 for L ≈ 10, so even a dense

coupling does not influence the total memory requirements

considerably, since the number of grid points N is typically

still larger than 10 000 and thus the dominant term.

Solution of the Linear System

The matrix compression scheme is of use only if the

resulting system of linear equations can be solved without

the need to recover the full matrix again. Such a recon-

struction is, in principle, necessary if direct solvers such as

the Gauss algorithm are used, because during the solution

process the matrix structure is altered in a way that destroys

the block structure. For many popular iterative solvers from

the family of Krylov methods, it is usually sufficient to

provide matrix-vector multiplications [8], [9].

Matrix-vector products for a matrix given as a Kronecker

product of two smaller matrices can be carried out in a

straightforward manner by decomposing the vector into

blocks of suitable size. This allows for the realization of

a very memory efficient matrix-vector multiplication if the

system matrix is given in the form (6) or (9).

However, the full system matrix for the even and odd

order expansions coefficients was found by numerical ex-

periments to be ill-conditioned. A substantial improvement

of the system matrix condition number can be obtained if

the unknowns for the odd order expansion coefficients are

eliminated in a preprocessing step. This is possible since

Soo as in (6) is a diagonal matrix [5]. However, a direct

elimination by altering the system matrix is not possible

without destroying the Kronecker product structure. This

can be avoided by using the Schur complement. Writing

the system as

Sf =

(

See Seo

Soe Soo

) (

fe

fo

)

=

(

re

ro

)

(10)

with the vector of unknowns f split into fe and fo as

unknowns associated with even and odd order harmonics

respectively and analogously for the right hand side vector
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Fig. 1. Memory used for the uncompressed and the compressed
system matrix for different expansion orders L on a three-
dimensional (x, H)-grid with 12 500 nodes.

r, the elimination of odd order unknowns using the Schur

complement leads to

(See − Seo(Soo)−1Soe)f e = re − Seo(Soo)−1ro .

(11)

Therefore, the system matrix compression scheme can also

benefit from the improved system matrix condition number

after elimination of the odd order unknowns.

The total memory needed for the SHE equations is

essentially given by the memory required for the unknowns,

which adds another perspective on the selection of the

iterative solver. Recent publications on SHE simulations

[3], [4] used GMRES [8], which is typically restarted

after, say, s steps, denoted by GMRES(s). If the system

matrix is uncompressed, the additional memory needed

for GMRES(s) is approximately the amount of memory

needed for the storage of the system matrix; thus, it is

not a major concern. However, using the proposed matrix

compression scheme, the memory of orderO(NL2) needed
for the unknowns is dominant, so the additional memory

for GMRES(s) of order O(sNL2) makes the method very

unattractive from the memory consumption point of view

when used with the typical values of s in the range 20 to 30.
Therefore we conclude that either GMRES(s) with small

values of s or other iterative solvers with smaller memory

consumption such as BiCGStab [9] should be used for SHE

simulations that rely on a compressed matrix scheme.

Results

We have compared memory requirements for the storage

of the system matrix at several expansion orders in a two-

dimensional device simulation. The results in Fig. 1 clearly

demonstrate the asymptotic advantage of our approach:

Already at an expansion order of L = 5, memory savings

by a factor of 18 are observed, which increases to 146 at

L = 13. With the compressed scheme, the memory required
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Fig. 2. Memory used for the system matrix in relation to the
total amount of memory used (i.e. system matrix, unknowns and
right hand side).

for the system matrix increases only by a few kilobytes as

L increases, which is negligible.

Since the memory required by the system matrix is of

order O(N + L2) and the memory for the unknowns is

of order O(NL2), the memory required for the unknowns

is much larger than the memory required for the rep-

resentation of the system matrix for large values of L,

cf. Fig. 2. Therefore, the asymptotic memory requirements

for the full simulation is still O(NL2), but the constant of

proportionality is of order one, while for the full system

matrix it is around 11Csparse ≈ 100, so a reduction

of memory requirements by two orders of magnitude is

obtained.

On a single CPU core, the minor price to pay for

the dramatic reduction in memory consumption is that

the execution times of matrix-vector products with the

Schur complement (See − Seo(Soo)−1Soe) increase by

a factor of about two, cf. Fig. 3. However, the proposed

matrix compression scheme is very well suited for parallel

architectures, because the data required for the system

matrix may even fit into the CPU caches, allowing for a

very high performance. Moreover, since the blocks See,

Seo, Soe and Soo are given by sums of Kronecker products,

each summand can be computed on a separate core.

Conclusion

The matrix compression scheme presented in this work

reduces the memory requirements for the system matrix

arising from a SHE of the BTE from order O(NL2) to

O(N + L2), which results in total memory savings for

the full simulation run by up to two orders of magnitude.

Therefore, our scheme paves the way for three-dimensional

device simulations especially for larger expansion orders L.

On a single CPU core, the small price to pay is a runtime

penalty on matrix-vector multiplication of about a factor of

two. However, the proposed method is especially attractive

for parallel architectures where it is expected to outperform
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Fig. 3. Execution times for matrix-vector multiplication with the
Schur complement (See

− Seo(Soo)−1Soe) on a single core of
an Intel Core 2 Quad Q9550 CPU.

the traditional storage scheme.
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